WorldWideScience

Sample records for binuclear transition metal

  1. Hydrolysis of p-Nitrophenyl Picolinate Catalyzed by Mono-and Binuclear Transition Metal Complexes with Polyether Bridged Dihydroxamic Acid

    Institute of Scientific and Technical Information of China (English)

    李建章; 李鸿波; 冯发美; 谢家庆; 李慎新; 周波; 秦圣英

    2005-01-01

    Two polyether bridged dihydroxamic acids and their mono-and binuclear manganese(Ⅱ), zinc(Ⅱ) complexes have been synthesized and employed as models to mimic hydrolase in catalytic hydrolysis of p-nitrophenyl picolinate (PNPP). The reaction kinetics and the mechanism of hydrolysis of PNPP have been investigated. The kinetic mathematical model for PNPP cleaved by the complexes has been proposed. The effects of the different central metal ion, mono-and binuclear metal, the pseudo-macrocyclic polyether constructed by polyethoxy group of the complexes, and reactive temperature on the rate for catalytic hydrolysis of PNPP have been examined. The results showed that the transition metal dthydroxamates exhibited high catalytic activity to the hydrolysis of PNPP, the catalytic activity of binuclear complexes was higher than that of mononuclear ones, and the pseudo-macrocyclic polyether might synergetically activate H20 coordinated to metal ion with central metal ion together and promote the catalytic hydrolysis of PNPP.

  2. The synthesis and characterization of organometallic copolymers with Mn-Re binuclear transition-metal group in the side chain

    Institute of Scientific and Technical Information of China (English)

    XU Zhi; FENG Gang; BAI Zhifeng; MA Yongqiang; CHANG Weixing; LI Jing

    2006-01-01

    Novel organometallic copolymers with Mn-Re binuclear transition-metal groups in the side chain are synthesized and characterized. The structure and properties of the copolymers are characterized by GPC, DSC, TG, NMR, FT-IR, UV-Vis spectra and elemental analysis. The glass transition temperature and UV-Vis spectra properties of these three organometallic copolymers are found to be different from the normal polystyrene. New synthetic strategy for the synthesis of organometallic copolymer is developed.

  3. Ferromagnetic interactions in EO-azido-bridged binuclear transition metal(Ⅱ)systems:Syntheses,crystal structures and magnetostructural correlations%Ferromagnetic interactions in EO-azido-bridged binuclear transition metal(Ⅱ)systems: Syntheses,crystal structures and magnetostructural correlations

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShiYuan; WANG BingWu; XU Na; SHI Wei; GAO Song; CHENG Peng

    2012-01-01

    Three new isostructural binuclear transition metal complexes with azido ion and 1,2-bis(3-(pyridin-2-yl)-1H-pyrazol-l-yl)ethane(bppe),formulated as[M2(N3)2(bppe)2](ClO4)2(M =Co,1; Ni,2; Cu,3),were successfully synthesized.They were structurally and magnetically characterized.In 1-3,the double azido ions link two adjacent octahedral metal centers together in the end-to-on mode(EO),with the M-NEo-M angles of 99.41°,100.24° and 99.80°,respectively.The co-ligand bppe acts as terminal ligand to saturate the remaining coordination sites.The magnetic properties of 1-3 have been investigated in the temperature range of 2-300 K.Fitting of the magnetic susceptibility data revealed the occurrence of the strong ferromagnetic interactions[J =26.32 cm-1(1),J =38.23 cm-1(2)and J =139.83 cm-1(3)].Density functional theory calculations have been performed on 1-3 to provide a magneto-structural correlation of the ferromagnetic behavior.

  4. Synthesis and characterization of bioactive binuclear transition metal complexes of Schiff base ligand derived from 4-amino-pyrimidine-2-one, diacetyl and glycine

    Directory of Open Access Journals (Sweden)

    Srivastava Abhay Nanda

    2014-01-01

    Full Text Available A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino-propylideneamino-acetic acid (LaH derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II, Ni(II, Co(II and Zn(II metals in 1:1 (metal : ligand molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi and fungi (Candida albicans and Candida parapsilosis to assess their antibacterial and antifungal properties.

  5. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation

    OpenAIRE

    Abhay Nanda Srivastva; Netra Pal Singh; Chandra Kiran Shriwastaw

    2016-01-01

    Novel binuclear metal complexes of general formula [M2(PymL)X3] (where: M = Cu(II), Ni(II), Co(II) or Zn(II); X = Cl− or CH3CO2− and PymL = C13H17N4O6) were synthesized by template condensation of Schiff base (L) derived from glycine using 2,3-butanedione, 5-methyl-2,6-pyrimidine-dione and metal chloride/acetate salt in 1:1:2 stoichiometric ratio. Synthesized compounds were characterized by elemental analysis, conductance measurement, magnetic measurement, IR, UV–visible, 1H NMR, 13C NMR, EPR...

  6. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation

    Directory of Open Access Journals (Sweden)

    Abhay Nanda Srivastva

    2016-01-01

    Full Text Available Novel binuclear metal complexes of general formula [M2(PymLX3] (where: M = Cu(II, Ni(II, Co(II or Zn(II; X = Cl− or CH3CO2− and PymL = C13H17N4O6 were synthesized by template condensation of Schiff base (L derived from glycine using 2,3-butanedione, 5-methyl-2,6-pyrimidine-dione and metal chloride/acetate salt in 1:1:2 stoichiometric ratio. Synthesized compounds were characterized by elemental analysis, conductance measurement, magnetic measurement, IR, UV–visible, 1H NMR, 13C NMR, EPR and ESI-MS spectral studies. IR spectral data suggest that Schiff base (L behaves as tetradentate ligand with two nitrogen and two oxygen donor sites of the azomethine group and carboxylic group, respectively and 5-methyl-2,6-pyrimidine-dione behaves as tridentate ligand with two oxygen atoms of the carbonyl group and one nitrogen atom of pyrimidine ring as binding sites. Physico-chemical data suggest octahedral geometry and non-electrolytic nature of metal complexes. The compounds were evaluated for their antimicrobial property by in vitro antimicrobial screening against bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi and fungi Candida albicans and Candida parapsilosis. The results indicate that metal complexes exhibit more activity than free Schiff base (L against studied bacteria and fungi.

  7. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    Science.gov (United States)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  8. Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane

    Science.gov (United States)

    Emara, Adel A. A.; Saleh, Akila A.; Adly, Omima M. I.

    2007-11-01

    The bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) serves as precursor for the formation of different Schiff base ligands, which are either di- or tetra-basic with two symmetrical sets of either O 2N or N 2O tridentate chelating sites. The condensation of 4,6-diacetylresorcinol with 3-amino-1-propanol (3-AP) or 1,3-diaminopropane (DAP), yields the corresponding hexadentate Schiff base ligands, abbreviated as H 4L a and H 2L b, respectively. The structures of these ligands were elucidated by elemental analyses, IR, mass, 1H NMR and electronic spectra. Reaction of the Schiff base ligands with copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear complexes for the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses, infrared, electronic, mass, 1H NMR and ESR spectra as well as magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and amino nitrogen atoms, and phenolic and alcoholic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.

  9. Crystallographic elucidation of purely structural, thermal and light-induced spin transitions in an iron(II) binuclear complex.

    Science.gov (United States)

    Kaiba, A; Shepherd, H J; Fedaoui, D; Rosa, P; Goeta, A E; Rebbani, N; Létard, J F; Guionneau, P

    2010-03-21

    The intricate phase diagram of the binuclear iron(II) spin-crossover complex [{Fe(3-bpp)(NCS)(2)}(2)(4,4'-bypiridine)].2CH(3)OH where 3-bpp is 2,6-bis(pyrazol-3-yl)pyridine has been investigated by variable temperature single crystal X-ray diffraction including a study into the effect of photo-irradiation. This sample is known to exhibit an incomplete spin transition at low temperature. At room temperature, in phase I, iron ions are all crystallographically equivalent, adopting the high spin state (HS). X-Ray structural investigation has revealed two phase transitions in the range (300-30 K). The first transition (T approximately 161 K) leading to phase II is of a purely structural nature and corresponds to a break in symmetry as a result of a twist of the two rings of 4,4'-bipyridine; the two iron sites of the binuclear unit becoming crystallographically independent but remaining all HS. The second structural transition corresponds to the spin crossover, one of the two Fe(II) ions of the binuclear complex being in the low spin state (LS) in phase III. The crystal structure shows an ordered HS-LS crystal packing where HS and LS sites are clearly identified and not randomly distributed in the metal ion sites as often observed. Moreover, light irradiation of single crystals in phase III at 30 K, leading to phase III*, induces a light-induced spin-state trapping (LIESST) effect corresponding to the full conversion of all the iron sites to HS. The crystal packing in phase III* is closer to that of phase III than to those observed in the other HS phases, I and II. This reveals an unusual differentiation between the thermal and light-induced HS states. A deeper analysis of the structural properties first demonstrates the key role of the bipyridine bridge in the peculiar preliminary pure structural transition shown by the title compound. Elsewhere, it also shows that the molecular packing is strongly dependent on the nature of the external perturbation contrary to the

  10. Binuclear Metal Centers in Plant Purple Acid Phosphatases: Fe-Mn in Sweet Potato and Fe-Zn in Soybean

    OpenAIRE

    Schenk, Gerhard; Ge, Yubin; Carrington, Lyle E; Wynne, Ceridwen J.; Searle, Iain R.; Carroll, Bernard J; Hamilton, Susan E.; de Jersey, John

    1999-01-01

    Purple acid phosphatases comprise a family of binuclear metal-containing acid hydrolases, representatives of which have been found in animals, plants, and fungi. The goal of this study was to characterize purple acid phosphatases from sweet potato tubers and soybean seeds and to establish their relationship with the only well-characterized plant purple acid phosphatase, the FeIII–ZnII-containing red kidney bean enzyme. Metal analysis indicated the presence in the pu...

  11. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  12. Photochemical activation and reactivity of polynuclear transition-metal-complex molecules. Progress report, June 1981-May 31, 1982

    International Nuclear Information System (INIS)

    Significant results obtained during the year are summarized for the following programs: (1) reversible, two electron transfer at a single potential in binuclear complexes; (2) photophysics of polyketonate complexes; (3) synthetic strategies and characterization of heavy metal heterobinuclear complexes; (4) high yield synthesis of ligands capable of binding 3 and 4 metal ions per molecule. Electrochemical studies have uncovered a number of new binuclear metal complexes that undergo reversible two-electron reduction at single potential including Cu(II) complexes with two different coordination environments, mixed Ni(II), Cu(II) complexes and binuclear Ni(II) complexes. In each case the species that exhibit these electron transfer properties have been shown to be Na+ ion-paired complexes. Several new trinuclear molecular complexes have been prepared and characterized that contain two UO22+ ions and one transition metal ion. The electrochemistry, absorption spectra, and luminescence have been investigated

  13. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  14. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  15. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine.

    Science.gov (United States)

    Emara, Adel A A

    2010-09-15

    The binuclear Schiff base, H2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria (Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and (Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi (Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. PMID:20627808

  16. Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold.

    Science.gov (United States)

    Mabanglo, Mark F; Xiang, Dao Feng; Bigley, Andrew N; Raushel, Frank M

    2016-07-19

    A novel phosphotriesterase was recently discovered and purified from Sphingobium sp. TCM1 (Sb-PTE) and shown to catalyze the hydrolysis of a broad spectrum of organophosphate esters with a catalytic efficiency that exceeds 10(6) M(-1) s(-1) for the hydrolysis of triphenyl phosphate. The enzyme was crystallized and the three-dimensional structure determined to a resolution of 2.1 Å using single-wavelength anomalous diffraction (Protein Data Bank entry 5HRM ). The enzyme adopts a seven-bladed β-propeller protein fold, and three disulfide bonds were identified between Cys-146 and Cys-242, Cys-411 and Cys-443, and Cys-542 and Cys-559. The active site of Sb-PTE contains a binuclear manganese center that is nearly identical to that of the structurally unrelated phosphotriesterase from Pseudomonas diminuta (Pd-PTE). The two metal ions in the active site are bridged to one another by Glu-201 and a water molecule. The α-metal ion is further coordinated to the protein by interactions with His-389, His-475, and Glu-407, whereas the β-metal ion is further liganded to His-317 and His-258. Computational docking of mimics of the proposed pentavalent reaction intermediates for the hydrolysis of organophosphates was used to provide a model for the binding of chiral substrates in the active site of Sb-PTE. The most striking difference in the catalytic properties of Sb-PTE, relative to those of Pd-PTE, is the enhanced rate of hydrolysis of organophosphate esters with substantially weaker leaving groups. The structural basis for this difference in the catalytic properties between Sb-PTE and Pd-PTE, despite the nearly identical binuclear metal centers for the activation of the substrate and nucleophilic water molecule, is at present unclear. PMID:27353520

  17. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  18. Transition Metal Compounds Towards Holography

    Directory of Open Access Journals (Sweden)

    Volker Dieckmann

    2012-06-01

    Full Text Available We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal–ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications.

  19. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine

    Science.gov (United States)

    Shebl, Magdy

    2009-07-01

    A new bis(tridentate NO2) Schiff base ligand, H4L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  20. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  1. Assignment of Soret MLCT band of reduced form of copper binuclear cluster in cytochrome c oxidase film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Low concentration of dithionite results in the reduction of Cu-Cu binuclear and heme a active sites of the cytochrome c oxidase thin solid film immersed in the acidic phosphate buffer, but Fe-Cu binuclear center keeps in the oxidation state. It manifests as a negative peak at 426 nm and a positive one at ~408 nm in the difference spectra induced by dithionite. The former implies decrease of the oxidized form of heme a center, that is, Fea3+→Fea2+. And the latter results from the contribution of metal-ligand charge transfer (MLCT) transition in the reduced binuclear Cu-Cu cluster, rather than from that of heme a center. This stronger Soret MLCT band must be helpful to overcoming the difficulty in distinguishing the weaker copper sign from the stronger one of iron when studying copper-iron protein.

  2. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N 2O 2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine

    Science.gov (United States)

    Shebl, Magdy

    2008-09-01

    A tetradentate N 2O 2 donor Schiff base ligand, H 2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl -, NO 3-, AcO -, ClO 4- and SO 42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO 4- anion as compared to the strongly coordinating power of SO 42- and Cl - anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.

  3. Transition metal complexes of an isatinic quinolyl hydrazone

    Directory of Open Access Journals (Sweden)

    Seleem Hussein S

    2011-06-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-ylhydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III, Co(II, Ni(II, Cu(II, VO(II and Pd(II ions. The ligand showed a variety of modes of bonding viz. (NNO2-, (NO- and (NO per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II- complexes have the preferable square planar geometry (D4h- symmetry and depend mainly on the mole ratio (M:L. Conclusion The effect of the type of the metal ion for the same anion (Cl- is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl- except complex 5 (SO42- in which it uses its lactam form. The obtained Pd(II- complexes (dimeric, mono- and binuclear are affected by the mole ratio (M:L and have the square planar (D4h geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II > Vanadyl(II > Cobalt

  4. Pillared layered transition metal oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalytic applications of the layered transition metal oxides pillared by inorganic oxides. The factors and their affecting regularity in the process of preparation, and some important results obtained in the catalytic application studies are summarized. Finally, a prospect on the potential new directions in this research area is also presented.

  5. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    Science.gov (United States)

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  6. Merging transition-metal activation and aminocatalysis

    OpenAIRE

    Rios, Ramon; Meazza, Marta

    2015-01-01

    In this review the principal enantioselective methodologies merging transition-metal catalysis and aminocatalysis are disclosed. 1 Introduction 2 Transition-Metal and Enamine Catalysis 3 Transition-Metal and Iminium Catalysis 4 Transition-Metal Catalysis and Organocascade (Iminium/Enamine) Activation 5 Conclusions and Perspectives

  7. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  8. Photochemical activation and reactivity of polynuclear transition metal complex molecules. Final report

    International Nuclear Information System (INIS)

    Several bi- and trinuclear metal complexes containing ligands from β-polyketonates have been synthesized and characterized including homo- and hetero-polynuclear complexes. New synthetic approaches to the preparation of heterobi- and trinuclear complexes have been developed that allow the preparation of a large number of molecules containing heavy-metal ions such as Pd2+ or UO22+ and a first-row transition-metal ion. The electrochemical properties of these complexes have been investigated and many exhibit the ability to transfer two electrons at very nearly the same potential. Photochemical studies on binuclear Cu(II) and Ni(II) showed that these compounds yielded reduced metal species and decomposition upon irradiation. Luminescence of hetero-complexes of uranyl polyketonates is observed at 770K with the UO22+ moiety functioning as an isolated chromophore in which emission is observed only on direct excitation of UO22+ and energy transfer to lower states in the molecule is not observed

  9. Alkali and transition metal phospholides

    International Nuclear Information System (INIS)

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references

  10. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    Science.gov (United States)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  11. Approximating Metal-Insulator Transitions

    OpenAIRE

    Danieli, C.; Rayanov, K.; Pavlov, B.; Martin, G.; Flach, S

    2014-01-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility ed...

  12. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  13. Approximating metal-insulator transitions

    Science.gov (United States)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  14. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  15. Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited

    Science.gov (United States)

    Calzado, Carmen J.; Angeli, Celestino; Taratiel, David; Caballol, Rosa; Malrieu, Jean-Paul

    2009-07-01

    In magnetic coordination compounds and solids the magnetic orbitals are essentially located on metallic centers but present some delocalization tails on adjacent ligands. Mean field variational calculations optimize this mixing and validate a single band modelization of the intersite magnetic exchange. In this approach, due to the Brillouin's theorem, the ligand to metal charge transfer (LMCT) excitations play a minor role. On the other hand the extensive configuration interaction calculations show that the determinants obtained by a single excitation on the top of the LMCT configurations bring an important antiferromagnetic contribution to the magnetic coupling. Perturbative and truncated variational calculations show that contrary to the interpretation given in a previous article [C. J. Calzado et al., J. Chem. Phys. 116, 2728 (2002)] the contribution of these determinants to the magnetic coupling constant is not a second-order one. An analytic development enables one to establish that they contribute at higher order as a correlation induced increase in the LMCT components of the wave function, i.e., of the mixing between the ligand and the magnetic orbitals. This larger delocalization of the magnetic orbitals results in an increase in both the ferro- and antiferromagnetic contributions to the coupling constant.

  16. Piperazine pivoted transition metal dithiocarbamates

    Science.gov (United States)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2008-03-01

    A quadridentate ligand disodium bis(2,2'-dithiopiperazinato-2,2'-diamino diethylamine) Na 2L 2 and its self assembled transition metal complexes of the type, M 2(L 2) 2 {M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)} have been reported. The piperazine pivoted homodinuclear complexes have been characterized by a range of spectral, thermal, microanalytical and conductometric techniques. On the basis of IR and 1HNMR data a symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the cases. The TGA profile of the ligand exhibits two stage thermolytic pattern although the complexes decompose in three steps, respectively. Metal sulfide is found to be the end product. The formation of homodinuclear complexes has been ascertained on the basis of FAB mass spectral data and a probable fragmentation pattern has been proposed. On the basis of UV-visible spectroscopic results and room temperature magnetic moment data a tetrahedral geometry has been proposed for all the complexes except for the Ni(II) and Cu(II) which are found to be square-planar.

  17. Lattice Dynamics of Transition Metals

    International Nuclear Information System (INIS)

    The frequency versus wave-vector v(q) dispersion relations for the normal modes of vibration of several body-centred cubic transition metal, crystals have been measured recently at room temperature. The dispersion curves for niobium, measured by Nakagawa and Woods, displayed some very unusual features, and the results could only be fitted by means of a Born-von Kármán model if interactions out to very distant neighbours (beyond eighth) were included. Subsequent measurements on tantalum by Woods showed very similar results. This is not surprising since niobium and tantalum are in column V of the periodic table and many of their electronic properties are similar. Measurements of the dispersion curves of molybdenum by Woods and Chen and of tungsten by Chen and Brockhouse showed that although these metals, which are in column VI of the periodic table, had dispersion relations which were similar to each other, these dispersion relations were very different from those of the column V metals, niobium and tantalum. The gross features of the v(q) for molybdenum and tungsten were very nearly describable by a third neighbour axially-symmetric Born-von Kármán force model, although several important features were not reproduced by this model. One of these features is a striking anomaly in the [ζζζ] longitudinal (L) branch for molybdenum where the frequency changes from v = 6.3 x 1012 c/s at ζ = 0.92 to v= 5.5 x 1012 c/s at ζ = 1.0. If this and other observed features are Kohn anomalies, their positions are consistent with the dimensions of the Fermi suríace of the column V metals proposed by Lomer. Thus it is suggested that the striking differences between the dispersion relation for niobium and that for molybdenum (metals which are believed to have quite similar band structures) reflect differences in the Fermi energies and hence the Fermi surfaces for these materials. (author)

  18. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  19. Electronic doping of transition metal oxide perovskites

    Science.gov (United States)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  20. Electronic spectroscopy of transition metal dimer

    OpenAIRE

    Qian, Yue; 钱玥

    2013-01-01

    This thesis reports laser spectroscopic studies of gas-phase transition metal dimers using laser ablation/reaction with free jet expansion and laser-induced fluorescence (LIF) spectroscopy technique. Themolecules studied in this work are palladium dimer (Pd2) and vanadium dimer (V2). Many compounds formed from these transition metals are important and functional catalysts in chemical reactions. Therefore, it is of great significance to start from the fundamental level to understand the prope...

  1. Transition metal contacts to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Politou, Maria, E-mail: Maria.Politou@imec.be; De Gendt, Stefan; Heyns, Marc [KU Leuven, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt [imec, Kapeldreef 75, 3001 Leuven (Belgium); Lee, Chang Seung [SAIT, Samsung Electronics Co., Suwon 443-803 (Korea, Republic of); Sayan, Safak [imec, Kapeldreef 75, 3001 Leuven (Belgium); Intel Corporation, 2200 Mission College Blvd, Santa Clara, California 95054 (United States)

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  2. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  3. Transition metal catalysis in confined spaces.

    Science.gov (United States)

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  4. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  5. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Directory of Open Access Journals (Sweden)

    Chad C. Eichman

    2011-01-01

    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  6. Nuclear Scattering from Transition Metals

    Science.gov (United States)

    Hira, Ajit; McKeough, James; Valerio, Mario; Cathey, Tommy

    2016-03-01

    In view of the continued interest in the scattering of light projectiles by metallic nuclei, we present a computational study of the interactions between different nuclear species of atoms such as H through F (Z metals. Recent work has shown that neutron scattering can be used to record holographic images of materials. We have developed a FORTRAN computer program to compute stopping cross sections and scattering angles in Ag and other metals for the small nuclear projectiles, using Monte Carlo calculation. This code allows for different angles of incidence. Next, simulations were done in the energy interval from 50 to 210 keV. The computational results thus obtained are compared with relevant experimental data. The data are further analyzed to identify periodic trends in terms of the atomic number of the projectile. Such studies also have potential applications in nuclear physics and in nuclear medicine. Funding from National Science Foundation.

  7. Synthesis, crystal structure and magnetism of a macrocyclic binuclear dicopper (II) amino alcohol complex from a metal-directed reaction involving formaldehyde and nitroethane

    International Nuclear Information System (INIS)

    Condensation of the bis(1,5-diaminopentan-3-ol)dicopper(II) ion with formaldehyde and nitroethane in basic methanol yields the macromonocyclic ligand 3,13-dimethyl-3,13-dinitro-1,5,11,15-tetraazaeicosane-8,18-diol as the dicopper(II) complex. Ther perchlorate salt of the binuclear complex is very strongly antiferromagnetically coupled, with the magnetic properties measured from 10-300 K identifying a singlet-triplet energy gap of -860 cm-1 and a magnetic moment at room temperature of 0.48 BM. The discrete, binulcear nature of the complex was confirmed by a crystal structure analysis of the nitrite salt, which crystallizes in the monoclinic space group C2/c, a 14.789(6), b 14.560(6), c 12.759(9)Aangstroem, β 99.65(4) degree, and consists of the centrosymmetric macrocycle containing two copper ions each coordinated by two secondary nitrogen donors and two (shared) RO- groups, with water and nitrite oxygens occupying axial sites. The macrocycle donors and the copper ions are essentially coplanar. It is also shown that the nitro (and methyl) groups at extremities of the macrocycle are in anti dispositions. 16 refs., 3 figs., 3 tabs

  8. Synthesis and spectroscopic studies of homo-binuclear, alkoxo bridged homo- and hetero-tetranuclear metal complexes of a bis-N 2O 4 Schiff base ligand derived from ethanolamine and macroacyclic tetranaphthaldehyde

    Science.gov (United States)

    Karaoğlu, Kaan; Baran, Talat; Değirmencioğlu, İsmail; Serbest, Kerim

    2011-09-01

    Three new homo-binuclear Ni(II), Cu(II), Zn(II) complexes ( 2-4), homo-tetranuclear Cu(II) complex ( 5), and hetero-tetranuclear Cu(II)-Ni(II) complex ( 6) of a macroacyclic potentially bis-hexadentate N 2O 4 Schiff base have been synthesized. The imino-alcohol ligand, H 4L was obtained by the condensation of ethanolamine with 2,2'-[2,3-bis(1-formyl-2-naphthyloxymethyl)-but-2-ene-1,4-diyldioxy]bis(naphthalene-1-carbaldehyde). The structures of both the Schiff base and its complexes have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The ligand has two similar compartments to bind first primary two metal ions, and acts bi- or tetra-negative, bis-tetradentate forming five membered chelate ring. However, secondary two metal ions (either Cu 2+ or Ni 2+) are ligated with dianionic oxygen atoms of the alcohol groups and are linked to the 1,10-phenanthroline-nitrogen atoms in the tetranuclear complexes ( 5 and 6).

  9. Quantitative computational thermochemistry of transition metal species.

    Science.gov (United States)

    Deyonker, Nathan J; Peterson, Kirk A; Steyl, Gideon; Wilson, Angela K; Cundari, Thomas R

    2007-11-01

    The correlation consistent Composite Approach (ccCA), which has been shown to achieve chemical accuracy (+/-1 kcal mol-1) for a large benchmark set of main group and s-block metal compounds, is used to compute enthalpies of formation for a set of 17 3d transition metal species. The training set includes a variety of metals, ligands, and bonding types. Using the correlation consistent basis sets for the 3d transition metals, we find that gas-phase enthalpies of formation can be efficiently calculated for inorganic and organometallic molecules with ccCA. However, until the reliability of gas-phase transition metal thermochemistry is improved, both experimentally and theoretically, a large experimental training set where uncertainties are near +/-1 kcal mol-1 (akin to commonly used main group benchmarking sets) remains an ambitious goal. For now, an average deviation of +/-3 kcal mol-1 appears to be the initial goal of "chemical accuracy" for ab initio transition metal model chemistries. The ccCA is also compared to a more robust but relatively expensive composite approach primarily utilizing large basis set coupled cluster computations. For a smaller training set of eight molecules, ccCA has a mean absolute deviation (MAD) of 3.4 kcal mol-1 versus the large basis set coupled-cluster-based model chemistry, which has a MAD of 3.1 kcal mol-1. However, the agreement for transition metal complexes is more system dependent than observed in previous benchmark studies of composite methods and main group compounds. PMID:17500547

  10. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    International Nuclear Information System (INIS)

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes

  11. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guihéry, Nathalie; Ruamps, Renaud [Laboratoire de Chimie et Physique Quantiques, UMR5625, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France); Maurice, Rémi [SUBATECH, IN2P3/EMN Nantes/University of Nantes, 4 rue Alfred Kastler, BP 20722 44307, Nantes, Cedex 3 (France); Graaf, Coen de [University Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  12. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    Science.gov (United States)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  13. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.;

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  14. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  15. Fluid metals the liquid-vapor transition of metals

    CERN Document Server

    Hensel, Friedrich

    2014-01-01

    This is a long-needed general introduction to the physics and chemistry of the liquid-vapor phase transition of metals. Physicists and physical chemists have made great strides understanding the basic principles involved, and engineers have discovered a wide variety of new uses for fluid metals. Yet there has been no book that brings together the latest ideas and findings in the field or that bridges the conceptual gap between the condensed-matter physics relevant to a dense metallic liquid and the molecular chemistry relevant to a dilute atomic vapor. Friedrich Hensel and William Warren seek

  16. Transition-metal dichalcogenides for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zibouche, Nourdine; Kuc, Agnieszka; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Musfeldt, Janice [Department of Chemistry, University of Tennessee, Knoxville, TN (United States)

    2014-10-15

    Spin-orbit splitting in transition-metal dichalcogenide monolayers is investigated on the basis of density-functional theory within explicit two-dimensional periodic boundary conditions. The spin-orbit splitting reaches few hundred meV and increases with the size of the metal and chalcogen atoms, resulting in nearly 500 meV for WTe{sub 2}. Furthermore, we find that similar to the band gap, spin-orbit splitting changes drastically under tensile strain. In centrosymmetric transition metal dichalcogenide bilayers, spin-orbit splitting is suppressed by the inversion symmetry. However, it could be induced if the inversion symmetry is explicitly broken, e.g. by a potential gradient normal to the plane, as it is present in heterobilayers (Rashba-splitting). In such systems, the spin-orbit splitting could be as large as for the heavier monolayer that forms heterobilayer. These properties of transition metal dichalcogenide materials suggest them for potential applications in opto-, spin- and straintronics. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... mRy. Very small pieces of Fermi surface, which have not yet been observed experimentally, are predicted for Os. The limited amount of experimental information available for Zr can be fairly satisfactorily interpreted if the calculated d bands are raised by about 10-20 mRy relative to the sp bands...

  18. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  19. Cascade morphology transition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  20. Cascade morphology transition in bcc metals.

    Science.gov (United States)

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals. PMID:25985256

  1. Lattice Location of Transition Metals in Semiconductors

    CERN Document Server

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  2. Aging of Transition Metal Dichalcogenide Monolayers.

    Science.gov (United States)

    Gao, Jian; Li, Baichang; Tan, Jiawei; Chow, Phil; Lu, Toh-Ming; Koratkar, Nikhil

    2016-02-23

    Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be "air-stable", similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C). This strategy is shown to successfully prevent the degradation of the monolayer material under accelerated aging (i.e., high-temperature, oxygen-rich) conditions. PMID:26808328

  3. Metal-insulator transitions in layered ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Johanna; Silex, Anna; Schumann, Olaf J.; Gottschlich, Michael; Price, Steven; Qureshi, Navid; Loewen, Daniel; Braden, Markus [II. Physik, Univ. Koeln (Germany); Steffens, Paul [II. Physik, Univ. Koeln (Germany); ILL, Grenoble (France); Sidis, Yvan; Goukassov, Arsene; Gillon, Beatrice [LLB, Saclay (France); Nakatsuji, Satoru [ISSP, Tokio (Japan); Farrell, Jason; Kikugawa, Naoki; Mackenzie, Andrew [Univ. of St. Andrews (United Kingdom); Schmalzl, Karin [ILL, Grenoble (France)

    2010-07-01

    Ca- and Sr-Ruthenates are far more interesting than the structural similarity with the cuprates initially suggested. By doping the single or double layer materials, many interesting phenomena are observed. Substituting Ti into Sr{sub 2}RuO{sub 4} stabilizes a spin-density wave (SDW) phase that still is metallic, in which the static ordering corresponds to the dominating magnetic instability in pure Sr{sub 2}RuO{sub 4}. On the other hand, the doping of Ti into the double layer material Sr{sub 3}Ru{sub 2}O{sub 7} seems to induce a SDW type magnetic order with larger impact on the electronic properties. The SDW phase in Ti-doped Sr{sub 3}Ru{sub 2}O{sub 7} does not seem to be related with the magnetic instabilities of the parent phase. In both Sr-ruthenates the impact of the Ti-doping on the crystal structure is small and changes slightly across the magnetic transition. However, we find a strong influence of the Ti-substitution in Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7} which significantly stabilizes a weakly non-metallic phase. This can be seen in the transition temperature and in the resistivity jump. A pronounced flattening of the lattice is discussed as a general feature accompanying the metal-insulator transition in layered ruthenates.

  4. Hydrodenitrogenation of pyridine over transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Milad, I.K.; Smith, K.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical Engineering

    1997-11-01

    The use of transition metal nitrides (TMN) as catalysts for hydrodenitrogenation (HDN) was discussed. A study was conducted in which a series of unsupported and supported Mo, Fe, W, Co, Nb, Cr, V and Ti nitrides were examined as catalysts for the HDN of pyridine at atmospheric pressure and 350 degrees C. The catalysts were prepared by temperature programmed nitridation of the metal oxide with NH{sub 3}. It was shown that a single nitride phase was present in each of the catalysts. The Mo nitride showed the greatest activity per gram of catalyst. Co and Fe nitrides showed the highest activities per surface area of the unsupported catalyst. Metal nitrides with lower heats of formation showed higher HDN activity. 1 tab.

  5. Raman spectroscopy of transition metal dichalcogenides.

    Science.gov (United States)

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs. PMID:27388703

  6. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  7. Electrical conduction in transition-metal salts

    International Nuclear Information System (INIS)

    We predict that a given transition-metal salt as, for example, a K2CuCl4.2H2O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  8. Strain Engineering of Transition Metal Dichalcogenides

    Science.gov (United States)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  9. Electrical conduction in transition-metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Grado-Caffaro, M.A.; Grado-Caffaro, M. [Scientific Consultants, Madrid (Spain)

    2016-08-01

    We predict that a given transition-metal salt as, for example, a K{sub 2}CuCl{sub 4}.2H{sub 2}O-type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.

  10. Reversible mechanism for spin crossover in transition-metal cyanides

    Science.gov (United States)

    Kabir, Mukul; van Vliet, Krystyn J.

    2011-03-01

    Spin transitions generally occur in compounds of octahedrally coordinated 3 d transition metal ions. These transitions can be induced by external perturbations such as light, heat, pressure, magnetic field, and chemical substitution. Transition metal cyanides are one such material, which exhibit reversible spin transition while perturbed with light at T distorted) lattice in the intermediate spin (S = 1) state. The calculated energy required for this transition is in agreement with experiments. We further predict that this spin transition in such materials can be induced, and further tuned, by external pressure to enable realization of such reversible transitions at ambient temperatures.

  11. Tunable magnetocaloric effect in transition metal alloys

    Science.gov (United States)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  12. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity. PMID:26991740

  13. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.

  14. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  15. Smoothing of ultrathin silver films by transition metal seeding

    Science.gov (United States)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  16. Theoretical studies of transition metal dimers

    Science.gov (United States)

    Walch, Stephen P.; Bauschlicher, Charles W., Jr.

    1985-01-01

    The CASSCF approach was used to perform the MCSCF calculations for a number of transition metal dimers, including the Sc2, Ti2, Cr2, Cu2, TiV, Y2, Nb2, and Mo2 molecules; in addition, CASSCF/CI calculations were carried out for Sc2, Ti2, Cu2, and Y2. The CASSCF procedure is shown to provide a consistent set of calculations for these molecules, from which trends and a simple qualitative picture of the electronic structure may be derived. In particular, the calculations confirmed the ground states of the Sc2 and the TiV, and led to predictions for other molecules in this series. In addition to specific predictions, the study provides a simple qualitative picture of the bonding in these dimers.

  17. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  18. Electronic entanglement in late transition metal oxides.

    Science.gov (United States)

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-01

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  19. Ordering in binary transition metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rusakov, G. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Son, L., E-mail: ldson@yandex.ru [Ural State Pedagogical University, 26 Cosmonavtov Ave, 620017 Ekaterinburg (Russian Federation); Efimova, E. [Institute for Metal Physics UB RAS, 18 Kovalevskoj St., 620990 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation); Dubinin, N. [Institute for Metallurgy UB RAS, 101 Amundsen St., 620016 Ekaterinburg (Russian Federation); Ural State Technical University - UPI, 19 Mira St., 620002 Ekaterinburg (Russian Federation)

    2012-03-20

    We present the phenomenological thermodynamic modeling of binary alloys which demonstrate solubility of the components at high temperatures, and form intermediate phase near equiatomic composition at lower ones (the so-called sigma-phase). Besides, the regular solution miscibility gap takes place also. The nonequilibrium thermodynamic potential is written out as a sum of the free energy of regular solution and polynomial term of scalar order parameter {phi}, which describes the {sigma}-phase ordering. There are four parameters in the model: the energy of regular solution mixing, the energy of {sigma}-phase formation at zero temperature, and the widths of temperature and concentration intervals of {sigma}-phase existence in the alloy with frozen-in random distribution of components. Up to now, both phase transitions which take place in a number of transition metals binary alloys (the {sigma}-phase formation and miscibility in the regular solution) have been treated separately. In present work, the standard technique of phase diagram calculation allows us to analyze all possible phase diagrams which may arise in the alloy.

  20. Trends in Ionization Energy of Transition-Metal Elements

    Science.gov (United States)

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  1. Nanostructured transition metal oxides useful for water oxidation catalysis

    Science.gov (United States)

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  2. Nutritional immunity: transition metals at the pathogen-host interface.

    Science.gov (United States)

    Hood, M Indriati; Skaar, Eric P

    2012-07-16

    Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.

  3. Transition Metal Borides: Synthesis, Characterization and Superconducting Properties

    OpenAIRE

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M2B, MB, M3B2, MB2, and M2B4. The reactions were carried out in three different furnaces with different sample co...

  4. Patterning Superatom Dopants on Transition Metal Dichalcogenides.

    Science.gov (United States)

    Yu, Jaeeun; Lee, Chul-Ho; Bouilly, Delphine; Han, Minyong; Kim, Philip; Steigerwald, Michael L; Roy, Xavier; Nuckolls, Colin

    2016-05-11

    This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length of time the films are immersed in the dopant solution. Using this chemical approach, we are able to turn mono- and few-layer MoS2 samples from moderately to heavily electron-doped states. The same approach applied on WSe2 films changes their characteristics from hole transporting to electron transporting. Moreover, we show that the superatom doping can be patterned on specific areas of TMDC films. To illustrate the power of this technique, we demonstrate the fabrication of a lateral p-n junction by selectively doping only a portion of the channel in a WSe2 device. Finally, encapsulation of the doped films with crystalline hydrocarbon layers stabilizes their properties in an ambient environment. PMID:27082448

  5. Transition metal-free olefin polymerization catalyst

    Science.gov (United States)

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  6. Properties of Transition Metal Doped Alumina

    Science.gov (United States)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  7. Solid-solid phase transitions via melting in metals

    Science.gov (United States)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-04-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  8. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  9. Magnetic and luminescent binuclear double-stranded helicates.

    Science.gov (United States)

    Cucos, Paula; Tuna, Floriana; Sorace, Lorenzo; Matei, Iulia; Maxim, Catalin; Shova, Sergiu; Gheorghe, Ruxandra; Caneschi, Andrea; Hillebrand, Mihaela; Andruh, Marius

    2014-07-21

    Three new binuclear helicates, [M2L2]·3DMF (M = Co(II), 1, Zn(II), 3) and [Cu2L2]·DMF·0.4H2O (2), have been assembled using the helicand H2L that results from the 2:1 condensation reaction between o-vanillin and 4,4'-diaminodiphenyl ether. The metal ions within the binuclear helicates are tetracoordinated with a distorted tetrahedral geometry. Direct current magnetic characterization and EPR spectroscopy of the Co(II) derivative point to an easy axis type anisotropy for both Co(II) centers, with a separation of at least 55 K between the two doublets. Dynamic susceptibility measurements evidence slow relaxation of the magnetization in an applied dc field. Since the distance between the cobalt ions is quite large (11.59 Å), this is attributed in a first instance to the intrinsic properties of each Co(II) center (single-ion magnet behavior). However, the temperature dependence of the relaxation rate and the absence of slow dynamics in the Zn(II)-doped sample suggest that neither the simple Orbach mechanism nor Raman or direct processes can account for the relaxation, and collective phenomena have to be invoked for the observed behavior. Finally, due to the rigidization of the two organic ligands upon coordination, the pure zinc derivative exhibits fluorescence emission in solution, which was analyzed in terms of fluorescence quantum yields and lifetimes. PMID:24998701

  10. Hyperfine structure studies of transition metals

    International Nuclear Information System (INIS)

    This past year our studies of hyperfine structure (hfs) in metastable states of transition metals concentrated on the analysis of hfs in the four-valence electron system, Nb II. Earlier, we measured hfs intervals using the laser-rf double resonance and laser-induced fluorescence methods in a fast-ion beam of Nb+. The resulting experimental magnetic dipole and electric quadrupole interaction constants are compared to those calculated by a relativistic configuration interaction approach. These are the first hfs data on this refractory element. Theoretically, it is found that the most important contributions to the energy are the pair excitations, valence single excitations and core polarization from the shallow core. However, the inner core polarization is found to be crucial for hfs, albeit unimportant for energy. For the J=2 level at 12805 cm-1, 4d43F. the theoretical relativistic configuration A-value is in agreement with the experimental result to an accuracy of 4%. Other calculated A-values are expected to be of the same accuracy. A paper describing these results was accepted for publication. Experimental studies of the four-valence electron system V+ in the (4s+3d)4 manifold are complete. The theoretical difficulties for the 3d manifold, noted earlier for the three-valence electron Ti+, as compared to the 4d manifold appear to be repeated in the case of the four-valence electron systems (Nb+ and V+). Relativistic configuration interaction calculations are underway, after which a paper will be published

  11. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  12. A fluorescent bis(benzoxazole) ligand: toward binuclear Zn(II)-Zn(II) assembly.

    Science.gov (United States)

    Chu, Qinghui; Medvetz, Doug A; Panzner, Matthew J; Pang, Yi

    2010-06-14

    A bis(benzoxazole) ligand (HL) has been synthesized, and its reaction with Zn(OAc)(2) has led to fluorescent complexes via formation of binuclear Zn(II)-Zn(II) cores. The ligand-to-metal ratio of the complexes varies from 1 : 1 to 2 : 1, depending on the reaction conditions. A large binding constant K = 8.3 x 10(20) [M(-3)] has been determined for the reaction L + Zn(2+)-->L(2):Zn(2)(2+). The result indicates that the bis(benzoxazole) ligand is a useful building block to construct a binuclear core. On the basis of X-ray analysis, the binuclear Zn(II)-Zn(II) distance in the complexes is determined to be approximately 3.22 A, which is quite comparable to that found in the enzymes (3.3 A). Absorption and fluorescence study shows that a subtle chemical environmental change within the binuclear core can induce a large optical response.

  13. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  14. Mechanisms of transition-metal gettering in silicon

    Energy Technology Data Exchange (ETDEWEB)

    MYERS JR.,SAMUEL M.; SEIBT,M.; SCHROTER,W.

    2000-03-23

    The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.

  15. On metal-insulator transition in cubic fullerides

    Science.gov (United States)

    Iwahara, Naoya; Chibotaru, Liviu

    The interplay between degenerate orbital and electron correlation is a key to characterize the electronic phases in, for example, transition metal compounds and alkali-doped fullerides. Besides, the degenerate orbital couples to spin and lattice degrees of freedom ,giving rise to exotic phenomena. Here, we develop the self-consistent Gutzwiller approach for the simultaneous treatment of the Jahn-Teller effect and electron correlation, and apply the methodology to reveal the nature of the ground electronic state of fullerides. For small Coulomb repulsion on site U, the fulleride is quasi degenerate correlated metal. With increase of U, we found the quantum phase transition from the metallic phase to JT split phase. In the latter, the Mott transition (MT) mainly develops in the half-filled subband, whereas the empty and the completely filled subbands are almost uninvolved. Therefore, we can qualify the metal-insulator transition in fullerides as an orbital selective MT induced by JT effect.

  16. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe;

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  17. The transition to the metallic state in low density hydrogen.

    Science.gov (United States)

    McMinis, Jeremy; Morales, Miguel A; Ceperley, David M; Kim, Jeongnim

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of rs = 2.27(3) a0. We compare our results to previously reported density functional theory, Hedin's GW approximation, and dynamical mean field theory results. PMID:26590549

  18. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes d

  19. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  20. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    The complex PPN+ CpV(CO)3H- (Cp=eta5-C5H5 and PPN = (Ph3P)2) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN+ CpV(CO)3H- reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN+[CpV(C)3X]- and in some cases the binuclear bridging hydride PPN+ [CpV(CO)3]2H-. The borohydride salt PPN+[CpV(CO)3BH4]- has also been prepared. The reaction between CpV(CO)3H- and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)3H-. Sodium amalgam reduction of CpRh(CO)2 or a mixture of CpRh(CO)2 and CpCo(CO)2 affords two new anions, PPN+ [Cp2Rh3(CO)4]- and PPN+[Cp2RhCo(CO)2]-. CpMo(CO)3H reacts with CpMo(CO)3R (R=CH3,C2H5, CH2C6H5) at 25 to 500C to produce aldehyde RCHO and the dimers [CpMo(CO)3]2 and [CpMo(CO)2]2. In general, CpV(CO)3H- appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)3H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)3H- generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)3H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  1. Transition metals and mitochondrial metabolism in the heart

    OpenAIRE

    Rines, Amy K.; Ardehali, Hossein

    2012-01-01

    Transition metals are essential to many biological processes in almost all organisms from bacteria to humans. Their versatility, which arises from an ability to undergo reduction–oxidation chemistry, enables them to act as critical cofactors of enzymes throughout the cell. Accumulation of metals, however, can also lead to oxidative stress and cellular damage. The importance of metals to both enzymatic reactions and oxidative stress makes them key players in mitochondria. Mitochondria are the ...

  2. Melting of bcc Transition Metals and Icosahedral Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Boehler, R; Japel, S

    2006-05-26

    In contrast to polyvalent metals, transition metals have low melting slopes(dT/dP) that are due to partially filled d-bands that allow for a lowering of liquid phase energy through s-d electron transfer and the formation of local structures. In the case of bcc transition metals we show the apparent discrepancy of DAC melting measurements with shock melting of Mo can be understood by reexamining the shock data for V and Ta and introducing the presence of an icosahedral short range order (ISRO) melt phase.

  3. Metal-Insulator Transition in C60-Polymers

    CERN Document Server

    Harigaya, K

    1995-01-01

    Variations in the band structures of C60-polymers are studied, when pi-conjugation conditions are changed. We look at band structures in order to discuss a metal-insulator transition, using a semi-empirical model with the Su-Schrieffer-Heeger type electron-phonon interactions. We find that electronic structures change among direct-gap insulators and the metal, depending on the degree of pi-conjugations. High pressure experiments could observe such pressure-induced metal-insulator transitions.

  4. Probable metal-insulator transition in Ag4SSe

    International Nuclear Information System (INIS)

    Highlights: • New phase transition in Ag4SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag4SSe. • Similar thermal and electrical effects in K3Cu8S6 are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag4SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag4SSe published in literature. Elusive phase transition in Ag2Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K3Cu8S6

  5. Flexible metallic seal for transition duct in turbine system

    Science.gov (United States)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  6. Spectroscopic and biological studies of new binuclear metal complexes of a tridentate ONS hydrazone ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol.

    Science.gov (United States)

    Adly, Omima M I; Emara, Adel A A

    2014-11-11

    The binuclear hydrazone, H2L, ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol, in the molar ratio 2:1, and its copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), cerium(III), iron(III), oxovanadium(IV) and dioxouranium(VI) complexes have been synthesized. Structures of the ligand and its metal complexes were characterized by elemental analyses, spectral (infrared, electronic, mass, 1H NMR and ESR) data, magnetic susceptibility, molar conductivity measurements and thermal gravimetric analysis (TGA). The ligand acts as dibasic with two ONS tridentate sites. The bonding sites are the azomethine nitrogen, phenolate oxygen and sulfur atoms. The metal complexes exhibit different geometrical arrangements such as square planer, tetrahedral and octahedral. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. The ligand and its metal complexes showed antimicrobial activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). Structural parameters of the ligand and its metal complexes were theoretically computed on the basis of semiempirical PM3 level, and the results were correlated with their experimental data.

  7. Glutathione and Transition-Metal Homeostasis in Escherichia coli▿

    OpenAIRE

    Helbig, Kerstin; Bleuel, Corinna; Krauss, Gerd J.; Nies, Dietrich H.

    2008-01-01

    Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-typ...

  8. Memristor using a transition metal nitride insulator

    Science.gov (United States)

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  9. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  10. Metallization and charge-transfer gap closure of transition-metal iodides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. Li-Chung

    1993-05-01

    It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.

  11. Visible Light Absorption of Binuclear TiOCoII Charge-Transfer UnitAssembled in Mesoporous Silica

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hongxian; Frei, Heinz

    2007-01-30

    Grafting of CoII(NCCH3)2Cl2 onto mesoporous Ti-MCM-41 silicain acetonitrile solution affords binuclear Ti-O-CoII sites on the poresurface under complete replacement of the precursor ligands byinteractions with anchored Ti centers and the silica surface. The CoIIligand field spectrum signals that the Co centers are anchored on thepore surface in tetrahedral coordination. FT-infrared action spectroscopyusing ammonia gas adsorption reveals Co-O-Si bond modes at 831 and 762cm-1. No Co oxide clusters are observed in the as-synthesized material.The bimetallic moieties feature an absorption extending from the UV intothe visible to about 600 nm which is attributed to the TiIV-O-CoII?3TiIII-O-CoIII metal-to-metal charge-transfer (MMCT) transition. Thechromophore is absent in MCM-41 containing Ti and Co centers isolatedfrom each other; this material was synthesized by grafting CoII onto aTi-MCM-41 sample with the Ti centers protected by a cyclopentadienylligand. The result indicates that the appearance of the charge-transferabsorption requires that the metal centers are linked by an oxo bridge,which is additionally supported by XANES spectroscopy. The MMCTchromophore of Ti-O-CoII units has sufficient oxidation power to serve asvisible light electron pump for driving multi-electron transfer catalystsof demanding uphill reactions such as water oxidation.

  12. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  13. Electron correlation effects in half-metallic transition metal oxides

    NARCIS (Netherlands)

    Huang, DJ; Tjeng, LH; Chang, CF; Wu, WP; Rata, AD; Hibma, T; Chung, SC; Shyu, SG; Wu, CC; Chen, CT

    2002-01-01

    Spin-resolved photoemission and absorption studies Of Fe3O4 and CrO2 epitaxial thin films have been reviewed to address the relationship between the electron correlation effects and the half-metallic properties of these two materials. Spin-resolved photoemission results suggest that Fe3O4 should be

  14. Insulator-metal transition in highly compressed NiO.

    Science.gov (United States)

    Gavriliuk, Alexander G; Trojan, Ivan A; Struzhkin, Viktor V

    2012-08-24

    The insulator-metal transition was observed experimentally in nickel monoxide (NiO) at very high pressures of ~240 GPa. The sample resistance becomes measurable at about 130 GPa and decreases substantially with the pressure increase to ~240 GPa. A sharp drop in resistance by about 3 orders of magnitude has been observed at ~240 GPa with a concomitant change of the resistance type from semiconducting to metallic. This is the first experimental observation of an insulator-metal transition in NiO, which was anticipated by Mott decades ago. From simple multielectron consideration, the metallic phase of NiO forms when the effective Hubbard energy U(eff) is almost equal to the estimated full bandwidth 2W. PMID:23002762

  15. Chemical compatibility between lithium oxide and transition metals

    International Nuclear Information System (INIS)

    The chemical reactions between Li2O and transition metals (Ti, V, Cr, Mn, Fe, Ni), particularly 316 steel, have been studied up to 1273 K in sealed systems under argon and also under vacuum. Pure Li2O is inherently inert towards transition metals except when such equilibria as 4Li2O + Fe = Li5FeO4 + 3Li 2Li2O + Cr = LiCrO2 + 3Li are disturbed by removal of Li by vacuum or chemical means. The results are rationalised with the known thermodynamics. LiOH impurity has a deleterious effect on the metals and accounts for some of the supposed reactivity of LI2O. It may be possible to inhibit the corrosive reaction of LiOH and LiOT towards steel, and facilitate the release of T2, by introducing metallic lithium. (orig.)

  16. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.;

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation of...... diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd and Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of a Sabatier-Gibbs-type analysis, and we...... demonstrate that this type of analysis yields results that to within a surprisingly small margin of error are directly proportional to the measured direct NO decomposition over Ru, Rh, Pt, Pd, Ag, and An. We suggest that Pd, which is a better catalyst than Pt under the employed reaction conditions, is a...

  17. Synthesis of some novel divalent transition metal complexes as antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Kaushal K. Oza; Paresh N. Patel; Hasmukh S. Patel

    2011-01-01

    A novel series of transition metal complexes have been synthesized from the reaction of 5-((3-(methylthio)-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-ylamino)methyl)quinolin-8-ol with transition metal salts. The structures of these compounds have been elucidated by elemental and spectral analysis. Furthermore, compounds were screened for in vitro antimicrobial activity against the representative panel of two Gram-positive and two Gram-negative bacteria and two strains of fungus. The various compounds show potent inhibitory action against test organisms.

  18. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  19. Microstructure of N—Picolylpolyurethane Transition Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Qun-DongShen; Tian-DouHu; 等

    1999-01-01

    Spectroscopic methods are used to investigate coordination structure of N-picolylpolyurethane transition metal complexes(PUPYM,M=Co2+ and Ni2+) .Geometrical arrangement of ligands in first-shell coordination sphere of metal ions is postulated to be tetrahedral CoL2Cl2 and octahedral NiL2-Cl2Z2.where L is the picolyl group and Z is a hydrate.From extended X-ray absorption fine structure (EXAFS) analysis,bond lengths for metal-chlorine and metal-ligand of PUPYM are similar to those of small molecular weight transition metal complexes.A two-phase model of PUPYM which best describes the experimental data of DMTA and SAXS.is proposed.One microphase is the hard domain of self segregated haed segments brought about by metal-ligand interaction.and the other phase is the matrix of soft segments.Transition metal ion-ligand moieties and their interactions dominate the macroscopic thermal behavior of PUPYM.The ligand field stabilization energy difference(ΔLFSE) between mteal d-electrons in complexes with two picolyl ligands in the coordination sphere of metal ions and complexes maintaining one picolyl ligand as coordination pendent group is calculated on the basis of observed coordination structure,and it represents the energy supplied to split coordination cross-links.ΔLFSE of polyurethane nickel(II) complex is larger than that of the cobalt(II) complex,Since the mobility of hard segments is in inverse proportion to the strength of coordination cross-links.a higher α-transition temperature of PUPYNi2+ with respect to PUPYCo2+ is found as expected.

  20. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    OpenAIRE

    Huixuan Li; Yingru Li; Ming-Kuo Lee; Zhongwei Liu; Changhong Miao

    2015-01-01

    China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1) spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2) spatial statistical...

  1. Volume variation of Gruneisen parameters of fcc transition metals

    Indian Academy of Sciences (India)

    C V Pandya; P R Vyas; T C Pandya; V B Gohel

    2002-02-01

    The volume variation of the Gruneisen parameters of ten fcc transition metals, up to 40% compression, has been studied on the basis of a model approach proposed by Antonov et al. The results are reasonably good for six metals except for Rh, Ag, Au and Ni when compared with available experimental and other theoretical values. The model requires an appropriate modification for Rh, Ag, Au and Ni.

  2. Dimensional effects in a disordered system near metal-insulator transitions and superconductor-insulator transitions

    International Nuclear Information System (INIS)

    Low temperature transport in disordered conducting materials implies quantum interference, Coulomb repulsion, and superconducting fluctuations. Since 2-D is the lower critical dimension for the existence of metallic and superconducting states, we have studied two quantum phase transitions - the Superconductor-to-Insulator Transition (SIT) and the Metal-to-Insulator Transition (MIT) - when the thickness of a disordered system - here a-NbSi - is lowered. The underlying problem is the transition between the different states and the conditions for a 2-D metal to exist. We have studied the field and disorder-induced SIT. The principal characteristics we have observed (renormalization, role of the field orientation) are well explained by M.P.A. Fisher's theory. However, we do not find the critical exponents values and a universal resistance at the transition as predicted by this theory. Concerning the MIT, we have decreased the thickness of a metallic system to reach the dimension 2 and an insulating state. In both transitions, the passage to the insulating state clearly shows the existence of dissipative states at zero temperature that are not predicted by conventional theories. We propose an interpretation of all our results that implies the existence of a novel phase in 2-D, a Bose Metal, between the superconducting and the metallic states. This new state has been predicted by recent theories. We trace the corresponding phase diagram for the model system NbSi with respect to concentration and film thickness. In the second appendix it is shown how superconducting thin films of NbxSi1-x are used to make transition edge sensors used in the particle detection field. (author)

  3. The Metallicities of Stars With and Without Transiting Planets

    CERN Document Server

    Buchhave, Lars A

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (Rp < 1.7 R_Earth). Importantly, both samples have been analyzed in a homogeneous manner using the same set of tools (Stellar Parameters Classification tool; SPC). We find the average metallicity of the sample of stars without detected transiting planets to be [m/H]_SNTP,dwarf = -0.02 +- 0.02 dex and the sample of stars hosting small planets to be [m/H]_STP = -0.02 +- 0.02 dex. The average metallicities of the two samples are indistinguishable within the uncertainties, and the two-sample...

  4. Chromospheric, transition layer and coronal emission of metal deficient stars

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  5. Growth of transition metals on cerium tungstate model catalyst layers

    Science.gov (United States)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  6. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer;

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  7. Electron-Hole Liquids in Transition Metal Oxide Heterostructures

    OpenAIRE

    Millis, Andrew J.; Schlom, Darrell G.

    2010-01-01

    Appropriately designed transition metal oxide heterostructures involving small band gap Mott insulators are argued to support spatially separated electron and hole gasses at equilibrium. Spatial separations and carrier densities favoring the formation of excitonic states are achievable. The excitonic states may exhibit potentially novel properties. Energetic estimates are given, candidate material systems are discussed, and the possibility of large photvoltaic effects is mentioned

  8. Monolayer transition metal disulfide:Synthesis, characterization and applications

    Institute of Scientific and Technical Information of China (English)

    Qi Fu; Bin Xiang

    2016-01-01

    Two-dimensional transition metal dichalcogenides (2D TMDCs) has aroused tremendous attention in recent years, because of their remarkable properties originated from their unique structure. In this re-view we report the synthesis, characterization and applications of monolayer MoS2 and WS2.

  9. Cooperative catalysis with first-row late transition metals

    NARCIS (Netherlands)

    J.I. van der Vlugt

    2012-01-01

    Cooperative catalysis with first-row transition metals holds much promise for future developments regarding sustainable, selective transformations, including e.g. alkenes, dienes and a variety of small molecules such as CO2, N2 and water. This non-exhaustive analysis of the current state-of-the-art

  10. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...

  11. Transport properties of transition metal impurities on gold nanowires

    Science.gov (United States)

    Pontes, Renato B.; da Silva, Edison Z.; Fazzio, Adalberto; da Silva, Antônio J. R.

    2009-03-01

    Performing first principles density functional theory (DFT) we calculated the electronic and transport properties of a Au thin nanowire with transition metal atoms (Mn, Fe, Ni or Co) bridging the two sides of the Au nanowire. We will show that these systems have strong spin dependent transport properties and that the local symmetry can dramatically change them, leading to a significant spin polarized conductance. This spin dependent transport is also associated with the transition metal in the nanowire, in particular with the d-level positioning. Using Co, for example [1], when the symmetry permits the mixing between the wire s-orbitals with the transition metal d-states, there are interference effects that resemble Fano-like resonances with an anisotropy of 0.07 at the Fermi level. On the other hand, if this symmetry decouples such states, we simply have a sum of independent transmission channels and the calculated anisotropy was 0.23. The anisotropies for the other transition metals, as well as calculated transmittances for two Co impurities will also be presented [1] R. B. Pontes, E. Z. da Silva, A. Fazzio and Antônio J. R. da Silva, J. Am. Chem. Soc. 130 (30), 9897-903, 2008

  12. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  13. The Electrochemical Synthesis of Transition-Metal Acetylacetonates

    Science.gov (United States)

    Long, S. R.; Browning, S. R.; Lagowski, J. J.

    2008-01-01

    The electrochemical synthesis of transition-metal acetylacetonates described here can form the basis of assisting in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but where each member has a personal responsibility for the synthesis and…

  14. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NARCIS (Netherlands)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the

  15. Transition metal bioconjugates with an organometallic link between the metal and the biomolecular scaffold

    OpenAIRE

    Monney, Angèle; Albrecht, Martin

    2013-01-01

    This overview compiles recent advances in the synthesis and application of organometallic bioconjugates that comprise a metal–carbon linkage between the metal and the biomolecular scaffold. This specific area of bioorganometallic chemistry has been spurred by the discovery of naturally occurring bioorganometallic compounds and afforded organometallic bioconjugates from transition metals binding to amino acids, nucleic acids and other biomolecules. These artificial bioorganometallic compounds ...

  16. Pressure-induced phase transitions and metallization in VO2

    Science.gov (United States)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  17. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  18. Covalent bonds against magnetism in transition metal compounds.

    Science.gov (United States)

    Streltsov, Sergey V; Khomskii, Daniel I

    2016-09-20

    Magnetism in transition metal compounds is usually considered starting from a description of isolated ions, as exact as possible, and treating their (exchange) interaction at a later stage. We show that this standard approach may break down in many cases, especially in 4d and 5d compounds. We argue that there is an important intersite effect-an orbital-selective formation of covalent metal-metal bonds that leads to an "exclusion" of corresponding electrons from the magnetic subsystem, and thus strongly affects magnetic properties of the system. This effect is especially prominent for noninteger electron number, when it results in suppression of the famous double exchange, the main mechanism of ferromagnetism in transition metal compounds. We study this mechanism analytically and numerically and show that it explains magnetic properties of not only several 4d-5d materials, including Nb2O2F3 and Ba5AlIr2O11, but can also be operative in 3d transition metal oxides, e.g., in CrO2 under pressure. We also discuss the role of spin-orbit coupling on the competition between covalency and magnetism. Our results demonstrate that strong intersite coupling may invalidate the standard single-site starting point for considering magnetism, and can lead to a qualitatively new behavior.

  19. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  20. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    Science.gov (United States)

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  1. Metal-insulator transition in films of doped semiconductor nanocrystals.

    Science.gov (United States)

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  2. The transition to the metallic state in low density hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    McMinis, Jeremy; Morales, Miguel A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ceperley, David M. [Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States); Kim, Jeongnim [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-21

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work, we use diffusion quantum Monte Carlo to benchmark the transition between paramagnetic and anti-ferromagnetic body centered cubic atomic hydrogen in its ground state. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transition order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r{sub s} = 2.27(3) a{sub 0}. We compare our results to previously reported density functional theory, Hedin’s GW approximation, and dynamical mean field theory results.

  3. Determining the critical transition current for metal transfer in gas metal arc welding (GMAW)

    Institute of Scientific and Technical Information of China (English)

    Chuan-song WU; De-gang ZOU; Jin-qiang GAO

    2008-01-01

    It is of great significance to determine the crit-ical transition current from globular transfer to spray transfer in gas metal arc welding (GMAW) because metal transfer modes affect the weld quality and welding pro-ductivity. In this study, a simple model is developed to calculate the critical transition current based on the ana-lysis of various forces exerted on a pendent droplet at the electrode tip. It is found that the force exerted by the incoming molten metal from the wire on the drop, i.e., the term mcVc, plays an important role in determining the critical transition current. For mild steel wires and argon shielding gas, the critical transition current is pre-dicted with different levels of wire diameter and exten-sions. The calculated results match the experimental ones.

  4. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    Science.gov (United States)

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  5. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  6. Adhesion and friction of transition metals in contact with non-metallic hard materials

    International Nuclear Information System (INIS)

    An investigation was conducted to examine the adhesion and friction behavior of transition metals in contact with various non-metallic hard materials and the nature of the metal transfer to the hard materials. Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium and rhodium in sliding contact with single-crystal diamond, silicon carbide, pyrolytic boron nitride and ferrite. All experiments were conducted under the following conditions: loads, 0.05-0.3 N; sliding velocities, 3 x 10-3 and 0.7 x 10-3 m min-1; in a vacuum of 10-8 Pa; at room temperature. Auger electron spectroscopy analysis was conducted with the metals and non-metals to determine the surface chemistry and the degree of surface cleanness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater the amount of transfer to the non-metals. (Auth.)

  7. Bioactive luminescent transition-metal complexes for biomedical applications.

    Science.gov (United States)

    Ma, Dik-Lung; He, Hong-Zhang; Leung, Ka-Ho; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2013-07-22

    The serendipitous discovery of the anticancer drug cisplatin cemented medicinal inorganic chemistry as an independent discipline in the 1960s. Luminescent metal complexes have subsequently been widely applied for sensing, bio-imaging, and in organic light-emitting diode applications. Transition-metal complexes possess a variety of advantages that make them suitable as therapeutics and as luminescent probes for biomolecules. It is thus highly desirable to develop new luminescent metal complexes that either interact with DNA through different binding modes or target alternative cellular machinery such as proteins as well as to provide a more effective means of monitoring disease progression. In this Review, we highlight recent examples of biologically active luminescent metal complexes that can target and probe a specific biomolecule, and offer insights into the future potential of these compounds for the investigation and treatment of human diseases.

  8. The pressure-induced Mott Transition in transition-metal iodides

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, M.P. (Tel Aviv Univ. (Israel). School of Physics and Astronomy); Taylor, R.D. (Los Alamos National Lab., NM (USA)); Jeanloz, R. (California Univ., Berkeley, CA (USA). Dept. of Geology and Geophysics)

    1991-01-01

    Many of the Transition Metal (TM) compounds, because of exchange and correlation interactions within the narrow and poorly overlapping d-bands, become antiferromagnetic insulators, the Mott Insulators (MI). The properties of the MI and their gradual transition into the non-correlated metallic state (the Mott Transition) are of crucial important for the elucidation of HTS materials features in particular and to magnetism in general. The transition of the MI into a metal can be achieved either by doping or by high pressure. To yield the definitive data on the Mott transition high pressure work on well characterized materials should be sought. The present studies provide for the first time extensive information on the Mott-Hubbard gap closure induced by high pressure. High pressure studies using Diamond Anvil Cells were conducted in several (TM)I{sub 2} compounds. They all have layered structures and other antiferromagnetically at ambient pressure. {sup 129}I Moessbauer Spectroscopy (MS) was used to study the properties of the (TM){sup 2+} sublattice magnetization as a function of pressure and temperature, and X-ray diffraction was used to look for possible crystallographic transitions and to obtain the equation of state. Results show that the high pressure transition at P{sub c} from a magnetic to a non-magnetic state is not accompanied by crystallographic changes. Previous studies{sup 1} with NiI{sub 2} have confirmed the presence of a metallic state at P > P{sub c}. Inherent to the pressure behavior of the magnetic state is the gradual increase of T{sub N} in all cases and a slight increase in the TM{sup 2+} moments with pressure increase. The collapse of the magnetic state is abrupt for some cases (NiI{sub 2}) and gradual for others (CoI{sub 2}), indicative of different band-overlap mechanisms. 2 refs., 5 figs.

  9. Pressure-induced phase transitions and metallization in VO2

    OpenAIRE

    Bai, Ligang; Li, Quan; Corr, Serena A; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-01-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M1,P21/c) and the high-temperature rutile phase (R,P42/mnm) of VO2 undergo phase transitions to a distorted M1 monoclinic phase (M1′,P21/c) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, Pnnm) abo...

  10. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    Science.gov (United States)

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  11. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    Science.gov (United States)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  12. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    Science.gov (United States)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  13. Engineering skyrmions in transition-metal multilayers for spintronics

    Science.gov (United States)

    Dupé, B.; Bihlmayer, G.; Böttcher, M.; Blügel, S.; Heinze, S.

    2016-06-01

    Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

  14. Multiferroic materials based on organic transition-metal molecular nanowires.

    Science.gov (United States)

    Wu, Menghao; Burton, J D; Tsymbal, Evgeny Y; Zeng, Xiao Cheng; Jena, Puru

    2012-09-01

    We report on the density functional theory aided design of a variety of organic ferroelectric and multiferroic materials by functionalizing crystallized transition-metal molecular sandwich nanowires with chemical groups such as -F, -Cl, -CN, -NO(2), ═O, and -OH. Such functionalized polar wires exhibit molecular reorientation in response to an electric field. Ferroelectric polarizations as large as 23.0 μC/cm(2) are predicted in crystals based on fully hydroxylized sandwich nanowires. Furthermore, we find that organic nanowires formed by sandwiching transition-metal atoms in croconic and rhodizonic acids, dihydroxybenzoquinone, dichloro-dihydroxy-p-benzoquinone, or benzene decorated by -COOH groups exhibit ordered magnetic moments, leading to a multiferroic organometallic crystal. When crystallized through hydrogen bonds, the microscopic molecular reorientation translates into a switchable polarization through proton transfer. A giant interface magnetoelectric response that is orders of magnitude greater than previously reported for conventional oxide heterostructure interfaces is predicted. PMID:22881120

  15. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe0.75P0.25, Ni0.75P0.25, Co0.75P0.25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  16. Metal-insulator and charge ordering transitions in oxide nanostructures

    Science.gov (United States)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase

  17. Pressure induced structural phase transition in IB transition metal nitrides compounds

    Science.gov (United States)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  18. Unique reactivity of fluorinated molecules with transition metals.

    Science.gov (United States)

    Catalán, Silvia; Munoz, Sócrates B; Fustero, Santos

    2014-01-01

    Organofluorine and organometallic chemistry by themselves constitute two potent areas in organic synthesis. Thus, the combination of both offers many chemical possibilities and represents a powerful tool for the design and development of new synthetic methodologies leading to diverse molecular structures in an efficient manner. Given the importance of the selective introduction of fluorine atoms into organic molecules and the effectiveness of transition metals in C-C and C-heteroatom bond formation, this review represents an interesting read for this aim.

  19. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    Science.gov (United States)

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  20. Two dimensional transition metal dichalcogenides grown by chemical vapor deposition

    OpenAIRE

    Tsang, Ka-yi; 曾家懿

    2014-01-01

    An atomically thin film of semiconducting transition metal dichalcogenides (TMDCs) is emerging as a class of key materials in chemistry and physics due to their remarkable chemical and electronic properties. The TMDCs are layered materials with weak out-of-plane van der Waals (vdW) interaction and strong in-plane covalent bonding enabling scalable exfoliation into two-dimensional (2D) layers of atomic thickness. The growth techniques to prepare these 2D TMDC materials in high yield and large ...

  1. Synthesis and Characterization of Few Layer Semiconducting Transition Metal Dichalcogenides

    OpenAIRE

    Mann, John Calif

    2013-01-01

    The intense interest in graphene as the prototypical 2D electronic material has recently been accompanied by the investigation of layered transition metal dichalcogenides (TMDC), most notably MoS2 and MoSe2. Like graphene, they can be prepared in a stable form down to monolayer thickness. These materials provide favorable mechanical properties similar to graphene, but exhibit an intrinsic indirect band gap that crossovers to a direct band gap in the monolayer limit without the need for nanos...

  2. Applications of Transition Metals in Organic Synthesis and Polymerization

    Institute of Scientific and Technical Information of China (English)

    Praveen; K.Tandon; Manish; Srivastava; Santosh; B.Singh

    2007-01-01

    1 Results Classic oxidants require rigorous control of the experimental conditions added with the problem of lack of selectivity. Catalysis by transition metals with environmentally safe oxidants provides synthetic routes to minimize pollution by giving environmental benign by-products. Fe (Ⅵ) is a powerful and a selective oxidant with Fe(Ⅲ) as a by-product, while hydrogen peroxide is clean with water as the only by-product. Separation of sodium or potassium ferrates requires tedious processes. Associat...

  3. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    The diameter (df) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  4. Optical properties of transition metal oxide quantum wells

    Science.gov (United States)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  5. Optical properties of transition metal oxide quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A. [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  6. Optical properties of transition metal oxide quantum wells

    International Nuclear Information System (INIS)

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered

  7. The development of a biological interface for transition metal implants

    Science.gov (United States)

    Melton, Kim R.

    The specific goal of this research was to develop an in vitro model for a root-form endosseous dental implant that contains a periodontal ligament and that is biologically integratable into alveolar bone. This objective was based on the following two hypotheses. (1) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the number of fibroblast cells attached to the surface of the metal. (2) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the strength of the fibroblast cell attachment to the surface of the metal. The model needed to have a well-controlled surface that was reproducible. Thus, a layer of Au was deposited over a Ti base, and dithiobis(succinimidylpropionate) (DSP) a chemical containing disulfide groups was adsorbed to the Au. Next, extracellular matrix proteins which are periodontal ligament components were attached to the free end group of the chemical that was adsorbed to the Au. This surface served as an attachment substrate on which additional periodontal ligament components such as fibroblast cells could grow. From this model a new implant interface may be developed. This model was tested using the following polypeptides; collagen type I, collagen type IV, fibronectin, and poly-D-lysine. L929 cells were grown on Ti, Ti + Au, Ti + Au + polypeptide, and Ti + Au + DSP + polypeptide. After 72 hours, the live cells were stained with neutral red. The substrates were then subjected to increasing centrifugal forces. The viable stained cells were fixed onto the substrates and cells were counted. The hypotheses were proven for three polypeptides: fibronectin, collagen type I, and poly-D-lysine. The strongest attachment was found with collagen type I. Collagen type IV did not provide any advantage for attachment over uncoated transition metals.

  8. Holographic metal/superconductor phase transitions with dark matter sector

    CERN Document Server

    Peng, Yan

    2015-01-01

    In this paper, we investigate the holographic phase transitions with dark matter sector in the AdS black hole background away from the probe limit. We firstly detect the formation of the scalar hair by examining the behaviors of the superconducting solutions and the effective mass of the scalar field. Then we study the condensation of the scalar operator with respect to the Hawking temperature T. As a further step, we disclose the properties of the phase transitions from the holographic topological entanglement entropy of the system. The holographic topological entanglement entropy is proved to be very useful in characterizing the difference between various phases. At last, we also derive the qualitative properties through the analytical methods. In summary, we find that the model parameters can provide rich physics in the general holographic metal/superconductor phase transitions.

  9. Synthesis and Characterization of some First Row Transition Metal Picrates

    Directory of Open Access Journals (Sweden)

    R. C. Aggarwal

    1975-10-01

    Full Text Available Transition metal picrates of the empirical compositions Ti(Picrate CI/Sub3, Ti (Picrate/Sub2CI/Sub2, Cr (OH (H/Sub2O/Sub6 (Pierate/Sub2 and M(H/Sub2Ox (Picrate/Sub2 (where M=Mn (II, Fe (II, Co(II, Ni(II, Cu(II and Zn(II and x=4for Cu(II, 8 for Fe(II & 6 for others have been prepared and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, infrared and electronic spectral studies. Molar conductances and molecular weights of the soluble metal picrates show that TiCI/Sub2 (Picrate/Sub2 is non electrolyte whereas others are 1:2 electrolytes. Magnetic susceptibility and electronic spectral I studies indicate that(II picrate is square planar, whereas those of Cr(III Mn(II0, Fe(II,Co(II and NI(II are spin free octahedral. The infrared spectral studies of the hydrated and anhydrous metal picrates show: (i that phenolic group of the picric acid is involved in bounding with the metals;(ii the water molecules in the hydrated metal picrates coordinated and (iii the-NO/Sub2 groups do not participate in bonding with the metals.

  10. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  11. Quantum-based Atomistic Simulation of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-08-29

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials.

  12. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua;

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...... and electrocatalysis, in which single crystal models are combined with Wulff construction-based ideas to produce descriptions of average nanocatalyst behavior. Then, I will proceed to describe explicitly DFT-based descriptions of catalysis on truly nanosized particles (

  13. Transition-metal prion protein attachment: Competition with copper

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  14. Method for treating rare earth-transition metal scrap

    Science.gov (United States)

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  15. Capacitive network near the metal insulator transition in Vanadium Dioxide

    Science.gov (United States)

    Ramirez, J. G.; Patino, E. J.; Schmidt, R.; Sharoni, A.; Gomez, M. E.; Schuller, I. K.

    2011-03-01

    Recent infrared spectroscopy and transport measurements in nano-scaled junction of VO2 have revealed the existence of phase separation into metallic and insulating phases. Here we present Impedance spectroscopy measurements performed in high quality Vanadium dioxide (VO2) thin films for the first time. This technique allows distinguishing between the resistive and capacitive response of the VO2 films and provides the dielectric properties across the metal-insulator transition (MIT). The film capacitance exhibits an unusual increase close to the MIT which implies the formation of a capacitor network produced by the nanoscale phase separation of metallic and insulating phases. This work has been supported by AFOSR, COLCIENCIAS, CENM and Ramon y Cajal Fellowship.

  16. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    Science.gov (United States)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  17. Structure and characterization of zero- to two-dimensional compounds built up of the sandwich-type clusters and transition-metal linkers

    International Nuclear Information System (INIS)

    Five new heteropolyoxotungstates K2Na2Mn2(H2O)12[Mn2(H2O)10Mn4(H2O)2(XW9O34)2].18H2O (X=Ge, 1; X=Si, 2), Na4[Mn4(H2O)18Mn4(H2O)2(XW9O34)2].22H2O (X=Ge, 3; X=Si, 4) and K3Na5[Mn2(H2O)6Mn4(H2O)2(SiW9O34)2].23.5H2O (5) have been obtained by the routine synthetic reactions in aqueous solution. In 1 and 2, two isolated Mn2+ ions are covalently linked to the sandwich-type polyoxoanions [Mn4(H2O)2(B-α-XW9O34)2]12- (X=Ge or Si) by two μ2-oxygen atoms resulting in the disupporting sandwich-type polyoxometalates (POMs). Compounds 3 and 4 are built from the disupporting sandwich-type polyoxoanions 1 and 2, linked by additional four Mn2+ ions to construct a 1D ladder-like chain-like structure, which is rarely observed in the POM chemistry. Compound 5 represents the first example of the 2D structure consisting of the sandwich-type polyoxoanion [Mn4(H2O)2(SiW9O34)2]12- and the binuclear {Mn2(H2O)6}4+ group. The magnetic studies of compounds 1, 4 and 5 indicate that the antiferromagnetic interactions are predominant in the three compounds between Mn(II) metal ions. - Graphical abstract: Five new compounds, from zero- to two-dimensional built up of the sandwich-type clusters and transition-metal linkers, have been obtained by the routine synthetic reactions in aqueous solution. This polyoxoanion framework architecture represents the first example of the 2D structure consisting of the sandwich-type polyoxoanion [Mn4(H2O)2(SiW9O34)2]12- and the binuclear {Mn2(H2O)6}4+ group. Display Omitted

  18. Disorder and Metal-Insulator Transitions in Weyl Semimetals.

    Science.gov (United States)

    Chen, Chui-Zhen; Song, Juntao; Jiang, Hua; Sun, Qing-feng; Wang, Ziqiang; Xie, X C

    2015-12-11

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice. PMID:26705648

  19. Mixed-Ligand Approach to Changing the Metal Ratio in Bismuth-Transition Metal Heterometallic Precursors.

    Science.gov (United States)

    Lieberman, Craig M; Wei, Zheng; Filatov, Alexander S; Dikarev, Evgeny V

    2016-04-18

    A new series of heteroleptic bismuth-transition metal β-diketonates [BiM(hfac)3(thd)2] (M = Mn (1), Co (2), and Ni (3); hfac = hexafluoroacetylacetonate, thd = tetramethylheptanedionate) with Bi:M = 1:1 ratio have been synthesized by stoichiometric reactions between homometallic reagents [Bi(III)(hfac)3] and [M(II)(thd)2]. On the basis of analysis of the metal-ligand interactions in heterometallic structures, the title compounds were formulated as ion-pair {[Bi(III)(thd)2](+)[M(II)(hfac)3](-)} complexes. The direct reaction between homometallic reagents proceeds with a full ligand exchange between main group and transition metal centers, yielding dinuclear heterometallic molecules. In heteroleptic molecules 1-3, the Lewis acidic, coordinatively unsaturated Bi(III) centers are chelated by two bulky, electron-donating thd ligands and maintain bridging interactions with three oxygen atoms of small, electron-withdrawing hfac groups that chelate the neighboring divalent transition metals. Application of the mixed-ligand approach allows one to change the connectivity pattern within the heterometallic assembly and to isolate highly volatile precursors with the proper Bi:M = 1:1 ratio. The mixed-ligand approach employed in this work opens broad opportunities for the synthesis of heterometallic (main group-transition metal) molecular precursors with specific M:M' ratio in the case when homoleptic counterparts either do not exist or afford products with an incorrect metal:metal ratio for the target materials. Heteroleptic complexes obtained in the course of this study represent prospective single-source precursors for the low-temperature preparation of multiferroic perovskite-type oxides. PMID:27054922

  20. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 7700C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti2Csub(1+x) and Nb6C5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed

  1. Holographic Metal-Insulator Transition in Higher Derivative Gravity

    CERN Document Server

    Ling, Yi; Wu, Jian-Pin; Zhou, Zhenhua

    2016-01-01

    We introduce a Weyl term into the Einstein-Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter $\\gamma$, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in 1502.03661 and 1604.04857 that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  2. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    Science.gov (United States)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  3. The Holographic Disorder-Driven Supeconductor-Metal Transition

    CERN Document Server

    Arean, Daniel; Landea, Ignacio Salazar; Scardicchio, Antonello

    2015-01-01

    We implement the effects of disorder on a holographic superconductor by introducing a random chemical potential on the boundary. We demonstrate explicitly that increasing disorder leads to the formation of islands where the superconducting order is enhanced and subsequently to the transition to a metal. We study the behavior of the superfluid density and of the conductivity as a function of the strength of disorder. We find explanations for various marked features in the conductivities in terms of hydrodynamic quasi-normal modes of the holographic superconductors. These identifications plus a particular disorder-dependent spectral weight shift in the conductivity point to a signature of the Higgs mode in the context of disordered holographic superconductors. We observe that the behavior of the order parameter close to the transition is not mean-field type as in the clean case, rather we find robust agreement with $\\exp(- A\\, |T-T_c|^{-\

  4. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  5. Efficient photocarrier injection in a transition metal oxide heterostructure

    CERN Document Server

    Muraoka, Y; Ueda, Y; Hiroi, Z

    2002-01-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO sub 2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO sub 2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO sub 2 /TiO sub 2 :Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO sub 2 :Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO sub 2. (letter to the editor)

  6. Nanoparticle plasmonics: going practical with transition metal nitrides

    Directory of Open Access Journals (Sweden)

    Urcan Guler

    2015-05-01

    Full Text Available Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a high performance refractory plasmonic material that could replace and even outperform gold in various plasmonic devices. As a material compatible with biological environments and the semiconductor industry, titanium nitride possesses superior properties compared to noble metals such as high temperature durability, chemical stability, corrosion resistance, low cost and mechanical hardness.

  7. Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins.

    Science.gov (United States)

    Seki, Yohei; Ishiyama, Takashi; Sasaki, Daisuke; Abe, Junpei; Sohma, Youhei; Oisaki, Kounosuke; Kanai, Motomu

    2016-08-31

    Chemical modifications of native proteins can facilitate production of supernatural protein functions that are not easily accessible by complementary methods relying on genetic manipulations. However, accomplishing precise control over selectivity while maintaining structural integrity and homogeneity still represents a formidable challenge. Herein, we report a transition metal-free method for tryptophan-selective bioconjugation of proteins that is based on an organoradical and operates under ambient conditions. This method exhibits low levels of cross-reactivity and leaves higher-order structures of the protein and various functional groups therein unaffected. The strategy to target less abundant amino acids contributes to the formation of structurally homogeneous conjugates, which may even be suitable for protein crystallography. The absence of toxic metals and biochemically incompatible conditions allows a rapid functional modulation of native proteins such as antibodies and pathogenic aggregative proteins, and this method may thus easily find therapeutic applications. PMID:27534812

  8. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    Metal-catalyzed isomerization of N- and O-allylic systems is emerging as an effective method to form synthetically useful iminium and oxocarbenium intermediates. In the presence of tethered nucleophiles, several recent examples illuminate this approach as a powerful strategy for the synthesis...... of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  9. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    Science.gov (United States)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  10. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides

    Science.gov (United States)

    Zhou, Benjamin T.; Yuan, Noah F. Q.; Jiang, Hong-Liang; Law, K. T.

    2016-05-01

    In monolayer transition-metal dichalcogenides (TMDs), electrons in opposite K valleys are subject to opposite effective Zeeman fields, which are referred to as Ising spin-orbit coupling (SOC) fields. The Ising SOC, originating from in-plane mirror symmetry breaking, pins the electron spins to the out-of-plane directions, and results in Ising superconducting states with strongly enhanced upper critical fields. Here, we show that the Ising SOC generates equal-spin-triplet Cooper pairs with spin polarized in the in-plane directions. Importantly, the spin-triplet Cooper pairs can induce superconducting pairings in a half-metal wire placed on top of the TMD and result in a topological superconductor with Majorana end states. Direct ways to detect equal-spin triplet Cooper pairs and the differences between Ising superconductors and Rashba superconductors are discussed.

  11. Transition metal catalysis in the mitochondria of living cells

    Science.gov (United States)

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-09-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential.

  12. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  13. Correlated electron pseudopotentials for 3d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Trail, J. R., E-mail: jrt32@cam.ac.uk; Needs, R. J. [Theory of Condensed Matter Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  14. A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    CERN Document Server

    Dunham, Edward W; Koch, David G; Batalha, Natalie M; Buchhave, Lars A; Brown, Timothy M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fischer, Debra; Furesz, Gabor; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kjeldsen, Hans; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Meibom, Soren; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.

  15. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Chen, Xin; McDonald, Aidan R

    2016-07-01

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) are a fascinating class of nanomaterials that have the potential for application in catalysis, electronics, photonics, energy storage, and sensing. TMDs are rather inert, and thus pose problems for chemical derivatization. However, to further modify the properties of TMDs and fully harness their capabilities, routes towards their chemical functionalization must be identified. Herein, recent efforts toward the chemical (bond-forming) functionalization of 2D TMDs are critically reviewed. Recent successes are highlighted, along with areas where further detailed analyses and experimentation are required. This burgeoning field is very much in its infancy but has already provided several important breakthroughs. PMID:26848815

  16. Transition Metal Silicide Nanowires Growth and Electrical Characterization

    Institute of Scientific and Technical Information of China (English)

    PENG Zu-Lin; LIANG S.; DENG Luo-Gen

    2009-01-01

    We report the characterization of self-assembled epitaxially grown transition metal,Fe,Co,Ni,silicide nanowires(TM-NW)growth and electrical transport properties.NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm,and several micrometers in length.NW orientations strongly depend on substrate crystal orientation,and follow the substrate symmetry.By using conductive-AFM(c-AFM),the electron transport properties of one single NW were measured,the resistivity of crystalline nickel silicide NW was estimated to be 2×10~(-2) Ω·cm.

  17. He-He and He-metal interactions in transition metals from first-principles

    Science.gov (United States)

    Zhang, Pengbo; Zou, Tingting; Zhao, Jijun

    2015-12-01

    We investigated the atomistic mechanism of He-He and He-metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He-He pair as function of distance within the host lattices. The strengths of He-He attraction in Cr, Mo, W, and Fe (0.37-1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06-0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He-He pair is dumbbell in groups VB metals, whereas it adopts close configuration in Cr, Mo, and Fe, and close configuration in W. Overall speaking, the He-He equilibrium distances of 1.51-1.55 Å in the group VIB metals are shorter than 1.65-1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He-He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  18. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  19. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  20. Transition-metal dichalcogenide-based dipolariton optoelectronic devices

    Science.gov (United States)

    Kolmakov, German; Byrnes, Tim; He, Andy; Kezerashvili, Roman Ya.

    Using computational modeling, we simulate the dynamics of dipolaritons in an optical microcavity, which encompasses the transition-metal dichalcogenide double-layer structure. We demonstrate that dipolaritons, a three-way superposition of photons, direct excitons and indirect excitons, are guided by a pattern deposited on the microcavity and can be driven by an external electric field or voltage applied to the structure. Focusing on a normal dipolariton gas in Y- and Psi-shaped patterns, we isolate conditions when the dipolariton flow can be switched between the channel branches of the pattern by the electric field. We also studied the superfluid dynamics of dipolariton Bose-Einstein condensates in patterned substrates at low temperatures, showing that the condensate in the channels can be accelerated and then directed by the electric field. We compare the obtained results with those for GaAs-based microcavities and demonstrate that dipolaritons in transition-metal dichalcogenide-based microcavities can be utilized for the design of optical switches and transistors for optoelectronic integrated circuits.

  1. Isothermal compression of bcc transition metals to 100 kbar

    International Nuclear Information System (INIS)

    Pressure-volume relationships for the bcc transition metals in the groups VB (V, Nb, and Ta) and VIB (Cr, Mo, and W) were determined under hydrostatic pressure to 100 kbar at room temperature by means of x-ray diffraction, employing diamond-anvil pressure cell and the ruby (R1 line) fluorescence calibration technique. Using the measured ultrasonic K'0 values, where K0 is the bulk modulus at ambient pressure, for five metals and the deduced shock-wave K'0 value for Cr, the values of K0 for V, Nb, Ta, Mo, W, and Cr are calculated to be 1.54, 1.71, 1.94, 2.67, 3.07, and 1.93 Mbar, respectively, by least-squares fit of the experimental P-V data to the Birch-Murnaghan equation. The K0 values thus determined are in good agreement with the ultrasonic and shock-wave values for V, Nb, Ta, Mo, and W. For Cr, the K0 value (1.93 Mbar) is in agreement with the shock-wave value (1.92 Mbar) but not with the ultrasonic value (1.65 Mbar). This discrepancy can be explained in view of the paramagnetic→antiferromagnetic transition in Cr in the temperature proximity of the ultrasonic measurements (Neel temperature T/sub N/approx.311 0K at 1 bar) and by the negative pressure dependence of T/sub N/

  2. Superconductivity Series of Ion-gated Transition Metal Dichalcogenides

    Science.gov (United States)

    Shi, Wu; Ye, Jianting; Zhang, Yijing; Suzuki, Ryuji; Yoshida, Masaro; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-03-01

    Semiconducting transition metal dichalcogenides (TMDs) have attracted considerable interest as typical two-dimensional (2D) materials. By mechanical cleavage, atomically flat and chemically stable thin flakes of TMDs can be readily obtained from bulk crystals. Recently, coupling with high efficient ionic media, TMD thin flakes have exhibited extraordinary electronic and opto-valleytronic properties in the form of electrical double layer transistors (EDLTs). The introduction of high-density carriers have also induced metal-insulator transition and superconductivity in MoS2, revealing an enhanced Tc and a dome-like phase diagram that are inaccessible through conventional chemically doping. In this work, we report the discovery of a superconductivity series based on a further exploration of other available semiconducting TMDs (MoSe2, MoTe2, WS2, WSe2) by using different ionic media. The present results not only complement important superconducting properties in TMDs, but also suggest a close correlation between transistor operation and the possibility of inducing superconductivity, providing general guidelines for the optimization of charge accumulation and the induction of superconductivity in other material series via ionic gating. Present address: University of Groningen.

  3. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    Science.gov (United States)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  4. Magnetism of Metals, Alloys and of Clusters of Transition Metal Atoms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys.NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also added on Ni and Co. This leads into a treatment of the nonlinear response of such 3d ferromagnets to dilute substitutional impurities. Antiferromagnets responding to local changes in the exchange field caused by such impurities are also studied, Mn in Cr being one such system discussed. The paper concludes with a brief summary of clusters of transition metal atoms, with most attention devoted to Cr and to Mn.

  5. High pressure behavior of 3d transition metal carbonates

    Science.gov (United States)

    Farfan, G. A.; Wang, S.; Boulard, E.; Mao, W. L.

    2012-12-01

    Understanding the behavior of carbon-rich phases in Earth's lower mantle is critical for modeling the global carbon cycle since the lower mantle may be the major repository for carbon in our planet. We were interested in the behavior of carbonates containing 3d transition metals, which can exhibit unusual properties at extreme conditions. Thus, we studied siderite (FeCO3) and rhodochrosite (MnCO3) at high pressure using a diamond anvil cell coupled with Raman spectroscopy, X-ray diffraction (XRD) and X-ray emission spectroscopy. In siderite we observed a high to low spin transition and associated volume collapse at approximately 46 GPa which is consistent with previous reports. Our Raman data show that the C-O bonds soften when the Fe2+ volume collapses (Farfan et al, 2012). In contrast, our XES results indicate that the Mn2+ in rhodochrosite does not undergo a spin transition like siderite up to 50 GPa. We observed a new Raman peak emerging above 48 GPa, which is a similar pressure at which a new structure was found in a previous XRD study.

  6. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    Science.gov (United States)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  7. Discovery of elusive structures of multifunctional transition-metal borides.

    Science.gov (United States)

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2016-01-14

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes.

  8. On the interactions between carbon monoxide and transition metals

    International Nuclear Information System (INIS)

    The sticking of carbon monoxide on surface atoms of transition metals is a collective phenomenon: according to the adsorption process period which is considered, this phenomenon may be formally described either by the Elovich equation or essentially from a steric point of view. The process rate depends upon the nature of the metal, the carbon monoxide pressure the temperature and the population densities of the induced and fundamental energy levels of the gas-solid bond. At least one of these induced levels tends to disappear with increasing time. For a localised adsorption and taking into account the surface Rayleigh waves, the analysis of the surface entropy yields the so-called iso-kinetic temperature for thermal desorption. This temperature is correlated with the cohesive energy of the metal surface atoms. Finally, it is shown that the interactions of a low energy electron bean with adsorbed molecules - reflection and energy exchange, desorption, ionization or dissociative ionization are strongly dependent on the energy levels of the gas-solid bond and the relative populations of these levels. (author)

  9. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    Science.gov (United States)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  10. Quantum Spin Hall Effect and Topological Phase Transition in Two-Dimensional Square Transition Metal Dichalcogenides

    OpenAIRE

    Ma, Yandong; Kou, Liangzhi; Dai, Ying; Heine, Thomas

    2015-01-01

    Two-dimensional (2D) topological insulators (TIs) hold promise for applications in spintronics based on the fact that the propagation direction of edge electrons of a 2D TI is robustly linked to their spin origination. Here, with the use of first-principles calculations, we predict a family of robust 2D TIs in monolayer square transition metal dichalcogenides (MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2). Sizeable intrinsic nontrivial bulk band gaps ranging from 24 to 187 meV are obtained, guaran...

  11. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  12. Charge-transfer gap closure in transition-metal halides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  13. Strain Induced Insulator-Metal Transition in Single Wall Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    丁建文; 颜晓红; 刘超平; 唐娜斯

    2004-01-01

    In terms of a single-π orbital model, an analytical expression of the lowest-lying conduction-band and the highestlying valence-band is derived for single wall carbon nanotubes under both the uniaxial and torsional strains. We observe not only semiconductor-metal transitions in primary metallic tubes, but also insulator-metal transitions in semiconducting tubes. Additionally, an indirect transition of electrons and a quantized electron-resonance have been expected in optical spectrum experiments of the nanotubes.

  14. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    We calculate the difference of the ionization energies of a core electron of a surface alloy, i.e., a B atom in a A(1-x)B(x) overlayer on a fee B(001) substrate, and a core electron of the clean fee B(001) surface using density-functional theory. We analyze the initial-state contributions and the...... the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed....... and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  15. Study on catalytic oxidation of planar binuclear copper phthalocyanine on 2-mercaptoethanol

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wenxing

    2006-01-01

    [1]Ichikawa M.JPN Patent,JP74116010,1974[2]Li X P,Yu D Y,Han X X,et al.Liquid oxidation of styrene catalyzed by metal phthalocyanines.J Petrochem U (in Chinese),1998,11(4):21-24[3]Shen Y J.Synthesis and Application of Phthalocyanine (in Chinese).Beijing:Chemical Industry Press,2000.121-122[4]Boston D R,Bailar J C,et al.Phthalocyanine derivatives from 1,2,4,5-tetracyanobenzene or pyromellitic dianhydride and metal salts.Inorg Chem,1972,11(7):1578-1583[5]Mario C,Michael H.A binuclear phthalocyanine containing two different metals.Eur J Org Chem,2003,2003(11):2080-2083[6]Shirai H,Hanabusa K,Kitamura M,et al.Functional metal porphyrazine derivatives and their polymers,14.Synthesis and properties of[bis-or tetrakis (decyloxycarbonyl) phthalocyaninanto] metal complexes.Makromol Chem,1984,185(12):2537-2542[7]Bai N,Zhang P,Guo Y H,et al.Encapsulation and catalytic activity of lipophilic soluble metallophthalocyanine derivative in MCM-41.Chem Res Chinese U (in Chinese),2001,22(8):1275-1278[8]Dennis K P Ng.Dendritic phthalocyanines:Synthesis,photophysical properties,and aggregation behavior.C R Chim,2003,6(8-10):903-910[9]Chen B,Yang S Q,Zhao C D.Study on the mechanisms of catalytic desulfurization with binuclear metallo phthalocyanine III.J Mol Sci (in Chinese),1996,12(3):204-210[10]Nemykin V N,Chernii V A,Volkov S V,et al.Further studies on theoxidation state of iron in --oxo dimeric phthalocyanine complexes.J Porphyr Phthalocya,1999,3(2):87-98[11]Shirai H,Tsuiki H,Masuda E,et al.Functional metallomacrocycles and their polymers.25.Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous olycarboxy-phthalocyaninato metals.J Phys Chem-US,1991,95(1):417-423[12]Chen B,Shao Y,Yang S Q,et al.Study on the mechanisms of catalytic desulfurization with binuclear metallo phthalocyanine Ⅴ.J Mol Sci (in Chinese),1996,12(3):218-223[13]Andreev A,Ivanova V,Prahov L,et al.Catalytic activity of monomeric and polymeric cobalt(II)-phthalocyanines in

  16. Interface of transition metal oxides at the atomic scale

    Science.gov (United States)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  17. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  18. Ferromagnetic semiconductor-metal transition in europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M.

    2007-10-15

    We present a microscopical model to describe the simultaneous para-to-ferromagnetic and semiconductor-to-metal transition in electron-doped EuO. The physical properties of the model are systematically studied, whereas the main remark is on the interplay between magnetic order and the transport properties. The theory correctly describes detailed experimental features of the conductivity and of the magnetization, obtained for EuO{sub 1-x} or Gd-doped Gd{sub x}Eu{sub 1-x}0. In particular the doping dependence of the Curie temperature is reproduced The existence of correlation-induced local moments on the impurity sites is essential for this description. (orig.)

  19. Radiation damage of transition metal carbides. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-12-31

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC{sub 0.88} in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V{sub 8}C{sub 7} superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  20. Optical limiting of layered transition metal dichalcogenide semiconductors

    CERN Document Server

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  1. On holographic disorder-driven metal-insulator transitions

    CERN Document Server

    Baggioli, Matteo

    2016-01-01

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with new direct couplings between the Maxwell and metric that are allowed when gravity is massive. We show that, generically, the effect of disorder is to decrease the DC electrical conductivity. This happens to such an extent that the conductivity does not obey any lower bound and can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  2. Noncollinear exchange interaction in transition metal dichalcogenide edges

    Science.gov (United States)

    Ávalos-Ovando, Oscar; Mastrogiuseppe, Diego; Ulloa, Sergio E.

    2016-04-01

    We study the Ruderman-Kittel-Kasuya-Yosida effective exchange interaction between magnetic impurities embedded on the edges of transition metal dichalcogenide flakes, using a three-orbital tight-binding model. Electronic states lying midgap of the bulk structure have a strong one-dimensional (1D) character, localized on the edges of the crystallite. This results in exchange interactions with 1 /r (or slower) decay with distance r , similar to other 1D systems. Most interestingly, however, the strong spin-orbit interaction in these materials results in sizable noncollinear Dzyaloshinskii-Moriya interactions between impurities, comparable in size to the usual Ising and in-plane components. Varying the relevant Fermi energy by doping or gating may allow one to modulate the effective interactions, controlling the possible helical ground state configurations of multiple impurities.

  3. An Extensive Database of Electronic Structure Calculations between Transition Metals

    Science.gov (United States)

    Sayed, Shereef; Papaconstantopoulos, Dimitrios

    Density Functional Theory and its derived application methods, such as the Augmented Plane Wave (APW) method, have shown great success in predicting the fundamental properties of materials. In this work, we apply the APW method to explore the properties of diatomic pairs of transition metals in the CsCl structure, for all possible combinations. A total of 435 compounds have been studied. The predicted Density of States, and Band Structures are presented, along with predicted electron-phonon coupling and Stoner Criterion, in order to identify potential new superconducting or ferromagnetic materials. This work is performed to demonstrate the concept of ``high-throughput'' calculations at the crossing-point of ``Big Data'' and materials science. Us Dept of Energy.

  4. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  5. Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications.

    Science.gov (United States)

    Nguyen, Emily P; Daeneke, Torben; Zhuiykov, Serge; Kalantar-Zadeh, Kourosh

    2016-06-02

    Known to possess distinctive properties that differ greatly from their bulk form, layered two-dimensional materials have been extensively studied and incorporated into many versatile applications ranging from optoelectronics to sensors. For biomedical research, two-dimensional transition metal dichalcogenides (2D TMDs) have garnered much interest as they have been shown to exhibit relatively low toxicity, high stability in aqueous environments, and the ability to adhere to biological materials such as proteins. These materials are promising candidates, demonstrating potential applications in biosensing, cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDs play an important part in these various applications as their properties are heavily dependent on the number of layers and lateral size. Described in this article are protocols for the liquid exfoliation of 2D TMDs from their bulk materials. Additional protocols are also provided for functionalizing or modifying the surface of the exfoliated 2D TMDs. © 2016 by John Wiley & Sons, Inc.

  6. Three-particle approximation for transition-metal oxides

    Science.gov (United States)

    Lægsgaard, J.; Svane, A.

    1997-02-01

    Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained within the ab initio self-interaction-corrected local-spin density (SIC-LSD) and LSD+U approximations. On-site Coulomb correlations are described by a multiband Hubbard model, which is treated within Igarashi's three-particle approximation. The transition-metal d-state spectral weight is split into a main dnL peak and a dn-1 satellite. We show that mean-field band structures in this way can lead to a good description of the experimental photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.

  7. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier–carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  8. Extrinsic Spin Hall Effect Due to Transition-Metal Impurities

    Science.gov (United States)

    Tanaka, T.; Kontani, H.

    2012-11-01

    We investigate the extrinsic spin Hall effect in the electron gas model due to transition-metal impurities based on the single-impurity Anderson model with orbital degrees of freedom. Both the skew scattering and side jump mechanisms are analyzed in a unified way, and the significant role of orbital degrees of freedom are clarified. The obtained spin Hall conductivities are in proportion to the spin-orbit polarization at the Fermi level _{μ} as is the case with the intrinsic spin Hall effect: skew scattering term {SH}^{ss} ∝ _{μ} δ_1 σ_{xx}, and side jump term σ_{SH}^{sj} ∝ _{μ}, where δ_1 is the phase shift for p (l = 1) partial wave. Furthermore, the present study indicates the existence of a nontrivial close relationship between the intrinsic term σ_{SH}^{int} and the extrinsic side jump term σ_{SH}^{sj}.

  9. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors

    Science.gov (United States)

    Steinhoff, A.; Florian, M.; Rösner, M.; Lorke, M.; Wehling, T. O.; Gies, C.; Jahnke, F.

    2016-09-01

    When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. In atomically thin transition metal dichalcogenide semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab initio band-structure and many-body theory predicts Coulomb-mediated carrier relaxation on a sub-100 fs time scale for a wide range of excitation densities, which is less than an order of magnitude faster than in quantum wells.

  10. Intrinsic disorder in graphene on transition metal dichalcogenide heterostructures

    Science.gov (United States)

    Yankowitz, Matthew; Larentis, Stefano; Kim, Kyounghwam; Xue, Jiamin; McKenzie, Devin; Huang, Shengqiang; Paggen, Marina; Ali, Mazhar; Cava, Robert; Tutuc, Emanuel; Leroy, Brian J.

    2015-03-01

    Recently, semiconducting materials in the transition metal dichalcogenide (TMD) family have gained great popularity for use in novel graphene-based heterostructure devices such as tunneling transistors, highly efficient flexible photovoltaic devices, and nonvolatile memory cells. TMDs have also been explored as alternatives to hexagonal boron nitride (hBN) as substrates for pristine graphene devices. However, their quality has thus far been significantly worse than comparable hBN devices. We examine graphene on numerous TMD substrates (MoS2, WS2, WSe2, MoTe2) with scanning tunneling microscopy and spectroscopy and find that point and line defects intrinsic to all TMD crystals (both of natural and synthetic origin) result in scattering of electrons in graphene. Our findings suggest that the quality of graphene on TMD heterostructures is limited by the intrinsic crystalline quality of the TMDs.

  11. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  12. Six Zn(II) and Cd(II) coordination polymers assembled from a similar binuclear building unit: tunable structures and luminescence properties.

    Science.gov (United States)

    Zhang, Liyan; Rong, Lulu; Hu, Guoli; Jin, Suo; Jia, Wei-Guo; Liu, Ji; Yuan, Guozan

    2015-04-21

    Six Zn(ii) and Cd(ii) coordination polymers were constructed by treating a 2-substituted 8-hydroxyquinolinate ligand containing a pyridyl group with zinc or cadmium salts, and characterized by a variety of techniques. Interestingly, based on a similar binuclear Zn(ii) or Cd(ii) building unit, the supramolecular structures of the six coordination polymers () exhibit an unprecedented structural diversification due to the different choices of metal salts. and represent a novel 2D framework containing 1D infinite right- and left-handed helical chains. and are 2D coordination frameworks based on binuclear Cd(ii) building units. For and , the L ligands can bridge binuclear building units forming a 1D infinite chain. Interestingly, the adjacent Cd2O2 planes of the 1D chain in are in parallel with each other, while the dihedral angle between the two Zn2O2 planes in is 83.43°. Photoluminescence properties revealed that the six coordination polymers exhibit redshifted emission maximum compared with the free ligand HL, which can be ascribed to an increased conformational rigidity and the fabrication of coplanar binuclear building units M2L2 in . Coordination polymers also display distinct fluorescence lifetimes and quantum yields because of their different metal centers and supramolecular structures.

  13. Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer.

    Science.gov (United States)

    Glass, Elliot N; Fielden, John; Huang, Zhuangqun; Xiang, Xu; Musaev, Djamaladdin G; Lian, Tianquan; Hill, Craig L

    2016-05-01

    A series of hetero-bimetallic transition metal-substituted polyoxometalates (TMSPs) were synthesized based on the Co(II)-centered ligand [Co(II)W11O39](10-). The eight complex series, [Co(II)(M(x)OHy)W11O39]((12-x-y)-) (M(x)OHy = V(IV)O, Cr(III)(OH2), Mn(II)(OH2), Fe(III)(OH2), Co(II)(OH2), Ni(II)(OH2), Cu(II)(OH2), Zn(II)(OH2)), of which six are reported for the first time, was synthesized starting from [Co(III)W11O39](9-) and studied using spectroscopic, electrochemical, and computational techniques to evaluate the influence of substituted transition metals on the photodynamics of the metal-to-polyoxometalate charge transfer (MPCT) transition. The bimetallic complexes all show higher visible light absorption than the plenary [Co(II)W12O40](6-) and demonstrate the same MPCT transition as the plenary complex, but they have shorter excited-state lifetimes (sub-300 ps in aqueous media). The decreased lifetimes are rationalized on the basis of nonradiative relaxation due to coordinating aqua ligands, increased interaction with cations due to increased negative charge, and the energy gap law, with the strongest single factor appearing to be the charge on the anion. The most promising results are from the Cr- and Fe-substituted systems, which retain excited-state lifetimes at least 50% of that of [Co(II)W12O40](6-) while more than tripling the absorbance at 400 nm. PMID:27082443

  14. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  15. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  16. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  17. Transistor-like behavior of transition metal complexes.

    Science.gov (United States)

    Albrecht, Tim; Guckian, Adrian; Ulstrup, Jens; Vos, Johannes G

    2005-07-01

    Electron transport through semiconductor and metallic nanoscale structures, molecular monolayers, and single molecules connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices. Common to most reported systems is, however, ultrahigh vacuum and/or cryogenic working conditions. Here we introduce a single-molecule device concept based on a class of robust redox active transition metal (Os(II)/(III)) complexes inserted between the working electrode and tip in an electrochemical scanning tunneling microscope (in situ STM). This configuration resembles a single-molecule transistor, where the reference electrode corresponds to the gate electrode. It operates at room temperature in a condensed matter (here aqueous) environment. Amplification on-off ratios up to 50 are found when the redox level is brought into the energy window between the Fermi levels of the electrodes by the overpotential ("gate voltage"). The current-voltage characteristics for two Os(II)/(III) complexes have been characterized systematically and supported by theoretical frames based on molecular charge transport theory.

  18. Green's function approach to edge states in transition metal dichalcogenides

    Science.gov (United States)

    Farmanbar, Mojtaba; Amlaki, Taher; Brocks, Geert

    2016-05-01

    The semiconducting two-dimensional transition metal dichalcogenides MX 2 show an abundance of one-dimensional metallic edges and grain boundaries. Standard techniques for calculating edge states typically model nanoribbons, and require the use of supercells. In this paper, we formulate a Green's function technique for calculating edge states of (semi-)infinite two-dimensional systems with a single well-defined edge or grain boundary. We express Green's functions in terms of Bloch matrices, constructed from the solutions of a quadratic eigenvalue equation. The technique can be applied to any localized basis representation of the Hamiltonian. Here, we use it to calculate edge states of MX 2 monolayers by means of tight-binding models. Aside from the basic zigzag and armchair edges, we study edges with a more general orientation, structurally modifed edges, and grain boundaries. A simple three-band model captures an important part of the edge electronic structures. An 11-band model comprising all valence orbitals of the M and X atoms is required to obtain all edge states with energies in the MX 2 band gap. Here, states of odd symmetry with respect to a mirror plane through the layer of M atoms have a dangling-bond character, and tend to pin the Fermi level.

  19. Photoinduced energy transfer in transition metal complex oligomers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  20. Photoinduced energy transfer in transition metal complex oligomers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  1. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    Science.gov (United States)

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  2. Generic trend of work functions in transition-metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitake, Michiko, E-mail: yoshitake.michiko@nims.go.jp [MANA Nanoelectronics Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003 (Japan)

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  3. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes.

    Science.gov (United States)

    Jones, Guy M; Arnold, Polly L; Love, Jason B

    2013-07-29

    Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.

  4. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  5. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  6. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides

    Directory of Open Access Journals (Sweden)

    Jikang Yuan

    2010-01-01

    Full Text Available Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer, inorganic (support, promoter, doping compounds and intercalation chemistry are applied.

  7. Magnetic-field-induced superconductor-metal-insulator transitions in bismuth metal graphite

    Science.gov (United States)

    Suzuki, Masatsugu; Suzuki, Itsuko S.; Lee, Robert; Walter, Jürgen

    2002-07-01

    Bismuth metal graphite (MG) has a unique layered structure where Bi nanoparticles are encapsulated between adjacent sheets of nanographites. The superconductivity below Tc (=2.48 K) is due to Bi nanoparticles. The Curie-like susceptibility below 30 K is due to conduction electrons localized near zigzag edges of nanographites. A magnetic-field-induced transition from metallic to semiconductorlike phase is observed in the in-plane resistivity ρa around Hc (~25 kOe) for both H⊥c and H||c (c: c axis). A negative magnetoresistance in ρa for H⊥c (040 kOe) suggest the occurrence of a two-dimensional weak-localization effect.

  8. Role of the excited impurity levels on the metal-non metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-02-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels shown to play a crutial role in the understanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si:P is analyzed.

  9. Mott metal-insulator transition in a metallic liquid - Gutzwiller molecular dynamics simulations

    Science.gov (United States)

    Barros, Kipton; Chern, Gia-Wei; Batista, Cristian D.; Kress, Joel D.; Kotliar, Gabriel

    2015-03-01

    Molecular dynamics (MD) simulations are crucial to modern computational physics, chemistry, and materials science, especially when combined with potentials derived from density-functional theory. However, even in state of the art MD codes, the on-site Coulomb repulsion is only treated at the self-consistent Hartree-Fock level. This standard approximation may miss important effects due to electron correlations. The Gutzwiller variational method captures essential correlated-electron physics yet is much faster than, e.g., the dynamical-mean field theory approach. We present our efficient Gutzwiller-MD implementation. With it, we investigate the Mott metal-insulator transition in a metallic fluid and uncover several surprising static and dynamic properties of this system.

  10. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  11. X-ray absorption to determine the metal oxidation state of transition metal compounds

    Science.gov (United States)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  12. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  13. Synthesis and characterization of two dimensional transition metal dichalcogenides

    Science.gov (United States)

    Gao, Jian

    Two-dimensional transition metal dichalcogenides (TMDs) are an emerging class of atomically thin semiconductors that show potential in next-generation electronics, optoelectronics, and energy storage batteries. The successful synthesis and doping of TMDs is the key to their applications. I have synthesized monolayer MoS2, WS2, and multilayer ReS2 flakes by CVD, and studied an unprecedented one-pot synthesis for transition-metal substitution doping in large-area, synthetic monolayer TMDs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMD monolayers, including semiconducting transport and strong direct-gap luminescence. The Re doping of MoS2 greatly improve the contact quality (one of the biggest issue in TMDs) and the FET shows Ohmic contact even at low temperature (4K). These results potentially enables next-generation optoelectronic technology in the atomically-thin regime. Besides, TMDs are generally considered to be 'air-stable', however, we have found that they exhibit poor long-term stability in air in morphology, chemical states, photo-emission, and demonstrated a potential solution to this problem by encapsulation of the monolayer sheet with transparent parylene C. Synthetic TMDs tend to grow parallel to the growth substrate, however, high performance energy conversion and storage devices prefer flakes with high exposed surface area. Therefore by choosing the right precursors and appropriate tuning of the CVD growth conditions, we have grown vertical ReS2 nanosheets on various growth substrates. We show that these structural features of the vertically grown ReS2 sheets can be exploited to significantly improve their performance as electrochemical catalysts in Lithium-Sulfur (Li-S) batteries and in hydrogen evolution reactions (HER). After 300 cycles, the specific capacity of the Li-S battery with vertical-ReS2 catalyst is retained above

  14. Electron Scattering at Surfaces and Interfaces of Transition Metals

    Science.gov (United States)

    Zheng, Pengyuan

    The effect of surfaces on the electron transport at reduced scales is attracting continuous interest due to its broad impact on both the understanding of materials properties and their application for nanoelectronics. The size dependence of for conductor's electrical resistivity rho due to electron surface scattering is most commonly described within the framework of Fuchs and Sondheimer (FS) and their various extensions, which uses a phenomenological scattering parameter p to define the probability of electrons being elastically (i.e. specularly) scattered by the surface without causing an increase of rho at reduced size. However, a basic understanding of what surface chemistry and structure parameters determine the specularity p is still lacking. In addition, the assumption of a spherical Fermi surface in the FS model is too simple for transition metals to give accurate account of the actual surface scattering effect. The goal of this study is to develop an understanding of the physics governing electron surface/interface scattering in transition metals and to study the significance of their Fermi surface shape on surface scattering. The advancement of the scientific knowledge in electron surface and interface scattering of transition metals can provide insights into how to design high-conductivity nanowires that will facilitate the viable development of advanced integrated circuits, thermoelectric power generation and spintronics. Sequential in situ and ex situ transport measurements as a function of surface chemistry demonstrate that electron surface/interface scattering can be engineered by surface doping, causing a decrease in the rho. For instance, the rho of 9.3-nm-thick epitaxial and polycrystalline Cu is reduced by 11--13% when coated with 0.75 nm Ni. This is due to electron surface scattering which exhibits a specularity p = 0.7 for the Cu-vacuum interface that transitions to completely diffuse (p = 0) when exposed to air. In contrast, Ni-coated surfaces

  15. Quantum spin liquids and the metal-insulator transition in doped semiconductors.

    Science.gov (United States)

    Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T

    2012-08-17

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made. PMID:23006401

  16. Liquid-Liquid Structure Transition in Metallic Melts: Experimental Evidence by Viscosity Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Qing; WU Yu-Qin; BIAN Xiu-Fang

    2007-01-01

    Temperature dependence of viscosity for more than ten kinds of metallic melts is analysed based on viscosity measurements. An obvious turning point is observed on the Arrhenius curves. Since viscosity is one of the physical properties sensitive to structure, its discontinuous change with temperature reveals the possible liquidliquid structure transition in the metallic melts. Furthermore, an integrated liquid structure transition diagram of the Sn-Bi system is presented. The universality of liquid-liquid structure transition is also discussed simply.

  17. Thermal Low-Temperature Properties of Rare Earth Transition Metal Borocarbides

    OpenAIRE

    Lipp, Dieter

    2002-01-01

    The present work reports on thermal low-temperature properties of rare earth transition metal borocarbides such as specific heat, thermal conductivity and thermopower. The influence of structural disorder, caused by stoichiometric variations and substitutions of the rare earth element or the transition metal, on the thermal and superconducting low-temperature properties is investigated. The structural disorder results in the reduction of the superconducting transition temperature Tc, of the S...

  18. The chromospheric and transition layer emission of stars with different metal abundances

    Science.gov (United States)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  19. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity

    Science.gov (United States)

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-07-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. Electronic supplementary information (ESI

  20. Dissociation of N2, NO, and CO on transition metal surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Hansen, Lars Bruno; Mortensen, Jens Jørgen;

    1999-01-01

    Using density functional theory we study the dissociation of N2, NO, and CO on transition metal surfaces. We discuss an efficient method to locate the minimum energy path and the transition state, and review recent calculations using this method to determine the transition state for dissociation ...

  1. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    OpenAIRE

    Aron, Allegra T.; Ramos-Torres, Karla M.; Cotruvo, Joseph A.; Chang, Christopher J.

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzy...

  2. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    Science.gov (United States)

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.

  3. Application of transition metal isotope tracers in global change research

    Institute of Scientific and Technical Information of China (English)

    SONG Jinming; Thomas F. Pedersen

    2005-01-01

    High-precision isotope composition determinations using multicollector, magnetic-sector inductively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research.The Mo isotope system may be useful in paleoredox investigations indicating that δ 97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded in δ 97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ 97/95MO values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ 56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.

  4. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    Science.gov (United States)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  5. Defect engineering of two-dimensional transition metal dichalcogenides

    Science.gov (United States)

    Lin, Zhong; Carvalho, Bruno R.; Kahn, Ethan; Lv, Ruitao; Rao, Rahul; Terrones, Humberto; Pimenta, Marcos A.; Terrones, Mauricio

    2016-06-01

    Two-dimensional transition metal dichalcogenides (TMDs), an emerging family of layered materials, have provided researchers a fertile ground for harvesting fundamental science and emergent applications. TMDs can contain a number of different structural defects in their crystal lattices which significantly alter their physico-chemical properties. Having structural defects can be either detrimental or beneficial, depending on the targeted application. Therefore, a comprehensive understanding of structural defects is required. Here we review different defects in semiconducting TMDs by summarizing: (i) the dimensionalities and atomic structures of defects; (ii) the pathways to generating structural defects during and after synthesis and, (iii) the effects of having defects on the physico-chemical properties and applications of TMDs. Thus far, significant progress has been made, although we are probably still witnessing the tip of the iceberg. A better understanding and control of defects is important in order to move forward the field of Defect Engineering in TMDs. Finally, we also provide our perspective on the challenges and opportunities in this emerging field.

  6. Induce magnetism into silicene by embedding transition-metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaotian; Wang, Lu, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn [Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu (China)

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  7. Nature of the Metallization Transition in Solid Hydrogen

    CERN Document Server

    Azadi, Sam; Foulkes, W M C

    2016-01-01

    We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GPa are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. Our DMC results suggest that the metallization of high-pressure solid hydrogen occurs via a structural phase transition rather than band gap closure.

  8. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    TiO2, transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO2 nano tubes. Amorphous TiO2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO2 nano tube substrate. TiO2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO3 on the surface of the nano tubes. TiO2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm2) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  9. Robust quantum anomalous Hall effect in ferromagnetic transition metal halides

    CERN Document Server

    Huang, Chengxi; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2016-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of robust intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb)2Te3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that RuI3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ~360 K using Monte-Carlo simulation, is above room temperature and higher than most of two-dimensional ferromagnetic thin films. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our wor...

  10. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Quasi phase transition model of shear bands in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zengqian [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang Gang [Department of Materials Science and Engineering, Shanghai University, Shanghai (China); Wu Sujun; Lu Xuyang [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhang Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2011-11-15

    A quasi phase transition model of shear bands in metallic glasses (MGs) is presented from the thermodynamic viewpoint. Energy changes during shear banding in a sample-machine system are analyzed following fundamental energy theorems. Three characteristic parameters, i.e. the critical initiation energy {Delta}G{sub c}, the shear band stability index k{sub 0}, and the critical shear band length l{sub c}, are derived to elucidate the initiation and propagation of shear bands. The criteria for good plasticity in MGs with predominant thermodynamic arrest of shear bands are proposed as low {Delta}G{sub c}, large k{sub 0}, and small l{sub c}. The model, combined with experimental results, is used to analyze some controversial phenomena of deformation behavior in MGs, such as the size effect, the effect of testing machine stiffness and the relationship between elastic modulus and plasticity. This study has important implications for a fundamental understanding of shear banding as well as deformation mechanisms in MGs and provides a theoretical basis for improving the ductility of MGs.

  12. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    Science.gov (United States)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  13. THE ELECTROCONDUCTIVITY OF THE LIQUID ALLOYS OF TRANSITION METALS

    Directory of Open Access Journals (Sweden)

    V.T.Shvets

    2004-01-01

    Full Text Available The concentration dependance of electroresistivity of the liquid binary alloys of transition metals Fe, Co and Ni is calculated. We considered the contribution to conductivity from the s-electrons, described within the model of nearly free electrons. The role of the partially occupied d-bands is reduced to resonance scattering of the s-electrons on d-states. The interaction of the s- and d-electrons is described by the hybridization potential of s- and d-states. The interaction with the ions, not including the partially occupied d-states, is described using the pseudopotential of the electron-ion interaction. The electroresistivity of the alloys is calculated in the second order of the perturbation theory in pseudopotential and hybridization potential. The concentration dependance of electroresistivity of the binary alloys approaches the linear regime as the resonance scattering of the s-electrons on d-states prevails over the scattering on the ions. The calculations exhibit good agreement with the experimental data.

  14. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    Science.gov (United States)

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  15. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors

    Science.gov (United States)

    Kang, Jiahao; Liu, Wei; Sarkar, Deblina; Jena, Debdeep; Banerjee, Kaustav

    2014-07-01

    Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1-2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal contacts to these 2D crystals is a fundamental challenge, which is not adequately addressed at present. In this paper, we report a systematic study of metal-mTMD contacts with different geometries (top contacts and edge contacts) by ab initio density-functional theory calculations, integrated with Mulliken population analysis and a semiempirical van der Waals dispersion potential model (which is critical for 2D materials and not well treated before). Particularly, In, Ti, Au, and Pd, contacts to monolayer MoS2 and WSe2 as well as Mo-MoS2 and W-WSe2 contacts are evaluated and categorized, based on their tunnel barriers, Schottky barriers, and orbital overlaps. Moreover, going beyond Schottky theory, new physics in such contact interfaces is revealed, such as the metallization of mTMDs and abnormal Fermi level pinning. Among the top contacts to MoS2, Ti and Mo show great potential to form favorable top contacts, which are both n-type contacts, while for top contacts to WSe2, W or Pd exhibits the most advantages as an n- or p-type contact, respectively. Moreover, we find that edge contacts can be highly advantageous compared to top contacts in terms of electron injection efficiency. Our formalism and the results provide guidelines that would be invaluable for designing novel 2D semiconductor devices.

  16. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol

    Science.gov (United States)

    Mohamed Subarkhan, M.; Ramesh, R.

    2015-03-01

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.

  17. Ferromagnetism and metal-half-metal-insulator transitions in a frustrated periodic Anderson-like organic polymer

    International Nuclear Information System (INIS)

    The ferromagnetism and quantum phase transitions of a periodic Anderson-like organic polymer, in which the next-nearest-neighboring hopping results in frustration, are investigated by means of many-body Green's function theory. It is found that the ground state lies in half-metallic and paramagnetic metallic states for weak and relatively strong frustrations, respectively. At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. In a magnetic field, in addition to 1/3 magnetization plateau, it presents three cusps and three critical fields indicating metal-half-metal and half-metal-insulator transitions, respectively, which are closely related to the energy bands controlled by the field. - Highlights: • The ferromagnetism and quantum phase transitions of a frustrated periodic Anderson-like organic polymer are investigated by Green's function theory. • At finite temperatures, a ferrimagnetic order and two different ferromagnetic phases are unveiled. • In a magnetic field, we reveal the metal-half-metal and half-metal-insulator transitions

  18. Measurements of Schottky barrier heights formed from metals and 2D transition metal dichalcogedides

    Science.gov (United States)

    Kim, Changsik; Moon, Inyong; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    Schottky barrier height (SBH) is an important parameter that needs to be considered for designing electronic devices. However, for two dimensional (2D) materials based devices, SBH control is limited by 2D structure induced quantum confinement and 2D surface induced Fermi level pinning. In this work, we explore differences in measuring SBH between 2D and 3D materials. Recently, low temperature I-V measurement has been reported to extract SBH based on thermionic emission equation for Schottky diode. However, 2D devices are not real Schottky diode in that both source and drain metal electrodes make Schottky contact. According to our experimental results, SBH extracted from linear slope of ln (I/T3/2) against 1/T show widely diverse values, dependent on applied voltage bias and tested temperature which affect carrier transport including tunneling or thermionic emission across the metal-2D material interface. In this work, we wish to demonstrate the method to determine SBH and Fermi level pinning which are attributed to 2D transition metal dichalcogedides, differently from conventional 3D materials. .

  19. Magnetic-field induced superconductor-metal-insulator transitions in bismuth metal-graphite

    Science.gov (United States)

    Suzuki, Masatsugu; Suzuki, Itsuko S.; Lee, Robert; Walter, Jürgen

    2002-03-01

    Bismuth-metal graphite (MG) has a unique layered structure where Bi nanoparticles are encapsulated in nanographites. The size of nanographite is on the same order as that of Bi nanographite. The observed superconductivity below Tc (= 2.48 K) and the Curie-like Pauli paramagnetic susceptibility below 30 K are related to the high density of states at the Fermi energy arising from edge states of nanographites.^1 A magnetic-field induced transition from metallic to semiconductor-like phase is observed in the in-plane resistivity ρa around Hc (≈ 25 kOe) for both H⊥c and H‖c (c: c axis). The suppression of the metallic phase by H is independent of the directions of H (H‖c and H⊥c) for Bi-MG, suggesting that the spin related effect is significant compared to the orbital effect. The Zeemann energy gSμ_BH at 25 kOe corresponds to a thermal energy k_BTH with TH = 1.7 K, where g = 2 and S = 1/2. The temperature TH is slightly lower than T_c. A negative magnetoresistance in ρa for H⊥c (040 kOe) suggest the occurrence of two-dimensional weak localization effect. ^1K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. 59, 8271 (1999).

  20. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    Science.gov (United States)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  1. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans.

    Science.gov (United States)

    Nies, Dietrich H

    2016-05-01

    This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction. PMID:27065183

  2. Studies on the Transition Metal Ion Induced Fluorescence Enhancement of 1,8-Naphthalimide Derivatives

    Institute of Scientific and Technical Information of China (English)

    WEN,Guo-Tao; ZHU,Man-Zhou; WANG,Zhuo; MENG,Xiang-Ming; HU,Hui-Yuan; GUO,Qing-Xiang

    2006-01-01

    Two fluorosensor systems have been designed and synthesized with their photophysical properties and fluorescence responses toward the transition metal ions studied. The fluorosensor was composed of 1,8-naphthalimide and 4-chloro-1,8-naphthalimide as fluorophore respectively, an amino moiety as the receptor and a hydrocarbon chain as the spacer to link the fluorophore and receptor. Fluorescence intensity of these systems is very weak due to the process of the efficient intramolecular photoinduced electron transfer (PET) in the absence of metal ions. Titration of the transition metal ions can switch on the fluorescence immediately. The intensity of released fluorescence is even higher than the expected from the consideration of the PET in these systems. It may be rationalized that the receptor bound to transition metal ions and the solvation of the fluorophore by the water molecules from the hydrated transition metal salts, may significantly cause fluorescence enhancement.

  3. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    Zirconia compounds stabilised with rare-earth metal oxides like yttria, ytterbia and scandia are known to be good oxide ion conductors suitable as electrolyte material in solid oxide fuel cells. However. stabilised zirconia with high oxide ion conductivity is often only metastable at fuel cell...... the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...... of the host lattice and b) the preferred six coordination compared to the desired eight-fold coordination of the fluorite structure. Particular interest is paid to the solubility of the transition metal ions and to the conductivity of the resulting material. Indium is not a transition metal but due...

  4. Binuclear ruthenium(II) complexes for amyloid fibrils recognition

    Energy Technology Data Exchange (ETDEWEB)

    Hanczyc, Piotr, E-mail: piotr.hanczyc@chalmers.se

    2014-12-05

    Highlights: • Interactions of binuclear ruthenium(II) complexes with amyloid fibrils. • Dimer ruthenium(II) compounds are sensitive amyloid fibrils biomarkers. • Recognition of amyloid-chromophore adducts by two-photon excited emission. - Abstract: Metal–organic compounds represent a unique class of biomarkers with promising photophysical properties useful for imaging. Here interactions of insulin fibrils with two binuclear complexes [μ-(11,11′-bidppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (1) and [μ-C4(cpdppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (2) are studied by linear dichroism (LD) and fluorescence. These ruthenium(II) compounds could provide a new generation of amyloid binding chromophores with long lived lifetimes, good luminescence quantum yields for the bound molecules and photo-stability useful in multiphoton luminescence imaging.

  5. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  6. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  7. Chemistry of Two-Dimensional Transition Metal Carbides (MXenes)

    Science.gov (United States)

    Mashtalir, Olha

    With consumer trends pushing toward smaller, faster, more flexible, multitasking devices, researchers striving to meet these needs have targeted two-dimensional (2D) materials---and graphene in particular---as holding the most promise for use in advanced applications. But in 2011, a significant interest has been triggered by a newly discovered family of novel 2D materials---layered transitional metal carbides and carbonitrides, named MXenes. Those compounds were of general formula Mn+1 XnTx, where M stands for metal atom, X is C and/or N, n = 1, 2 or 3, and Tx represents surface groups. Being initially suggested as a material for electrical energy storage systems, MXenes' properties and their potential applications have not been explored. This work is the first complete study of MXenes' chemistry that sheds light on the chemical composition, structure and properties of these novel materials and possible routes of its modification. The research was focused on 2D titanium carbide, Ti3C2Tx, chosen as the representative of the MXene family. The kinetic study of Ti 3C2Tx synthesis discovered the main synthesis parameters, viz. temperature, time and particle size, that affect the etching process and define the quality of final product. MXenes were found to be able to spontaneously accommodate various ions and small organic molecules between the layers leading to preopening of the structure. A major challenge of large scale production of delaminated, atomically thin 2D MXene layers was solved with two delamination techniques involving dimethyl sulfoxide and isopropyl amine pre-intercalation followed by sonication in water. Ti3C2Tx was also found to possess adsorptive and photocatalytic properties, revealing its potential for environmental applications. It also showed limited stability in water and in the presence of oxygen, providing important practical information on proper handling and storage of MXene materials. Completion of this work allowed the performance of energy

  8. Synthesis of four binuclear copper(II) complexes: Structure, anticancer properties and anticancer mechanism.

    Science.gov (United States)

    Qi, Jinxu; Liang, Shichu; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-01-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs and have been extensively studied. Therefore, four binuclear copper(II) compounds derived from Schiff base thiosemicarbazones (L1-L4), namely [CuCl(L1)]2 (C1), [CuNO3(L2)]2 (C2), [Cu(NCS) (L3)]2 (C3) and [Cu(CH3COO) (L4)]2 (C4) were synthesized and characterized. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells. The formation of reactive oxygen species (ROS), change in mitochondrial membrane potential and western blot analysis revealed that Cu compounds could induce cancer cell apoptosis through the intrinsic ROS-mediated mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins. PMID:25899339

  9. Structural and Electrochemical Characterization of Lithium Transition Metal Phosphates

    Science.gov (United States)

    Hashambhoy, Ayesha Maria

    The lithium ion battery has emerged as one of the most promising hybrid vehicle energy storage systems of the future. Of the potential cathode chemistries explored, lithium transition metal phosphates have generated a significant amount of interest due to their low-cost precursors, potential ease of synthesis, stability, and their environmentally friendly nature. This is in contrast to layered oxide systems such as LiCoO2, which have long been considered state of the art, but are now being reevaluated due to their structural instability at elevated temperatures, and higher cost. In particular, LiFePO4 has an operating potential comparable to those batteries available on the market (˜3.5V vs. Li/Li+), and higher theoretical specific capacity (170mAh/g vs. that of LiCoO2 which is 140mAh/g). The manganese analog to LiFePO4, LiMnPO4, exhibits a higher operating potential (˜4.1V v Li/Li+), and the same theoretical capacity, however Li-ion diffusion through this structure is much more rate limited and its theoretical capacity cannot be realized at rates suitable for commercial applications. The purpose of this work was threefold: 1) To explore the impact of Fe substitution on Mn sites in LiMnPO 4. 2) To examine the effects of alterations to the particle/electrolyte interface on rate capability. 3) To explore a novel fabrication route for LiMnPO4 using microwaves, and determine an optimal power and time combination for best performance. The coexistence of Fe and Mn on the transition metal site M, of LiMPO 4 resulted in an improved apparent Li-ion diffusivity in both Fe and Mn regimes as compared to that observed for LiFePO4 and LiMnPO 4 respectively. Calculations made from two different analysis methods, cyclic voltammetry (CV) and galvanostatic intermittent titration (GITT) drew this same conclusion. The signature characteristics observed from the CVs pertaining to single and dual phase reactions led to a delithiation model of LiFe0.5Mn0.5PO4 proposing the localization

  10. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  11. A metal insulator transition in YbFe4Sb12 granular thin films

    International Nuclear Information System (INIS)

    Results are reported for YbFe4Sb12 thin films grown by pulsed laser deposition. Thick films (thickness > 1000 A) show electrical transport behavior typical of bulk specimens. A metal to insulator transition is observed for films with thickness -β) and a stretched exponential (ρ(T) ∼ exp[T1/T]x) for strongly insulating samples. A comparison of electrical resistivity to scanning electron microscope images indicates a correlation between the metal to insulator transition and the intergranular connectivity. Based on this result it is argued that the intergrain conductance governs the metal to insulator transition

  12. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  13. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    Science.gov (United States)

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  14. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    Science.gov (United States)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  15. A macrocyclic approach to transition metal and uranyl Pacman complexes

    OpenAIRE

    Love, J. B.

    2009-01-01

    Multielectron redox chemistry involving small molecules such as O-2, H2O, N-2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with more than one metal reaction site facilitate this chemistry by providing both unique binding environments and combined redox equivalents. However, controlling the aggregation of metal cations is problematic, as both the primary coordination spheres of the metals and the metal-m...

  16. k-asymmetric spin splitting at the interface between transition metal ferromagnets and heavy metals

    KAUST Repository

    Grytsyuk, Sergiy

    2016-05-23

    We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. We establish a clear connection between the overall strength of the odd-in-k spin splitting of the bands and the charge transfer between the d orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

  17. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Vanadium dioxide (VO2) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO2 occurs through metal and insulator phase coexistence

  18. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    Science.gov (United States)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  19. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    Directory of Open Access Journals (Sweden)

    Ileana Dragutan

    2015-12-01

    Full Text Available This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials.

  20. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    International Nuclear Information System (INIS)

    In this work, quaternary Fe72-xMxY6B22 (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe68Mo4Y6B22 cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions

  1. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    Science.gov (United States)

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-03-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

  2. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lydia; Thurber, Aaron P.; Anghel, Josh; Sabetian, Maryam; Engelhard, Mark H.; Tenne, D.; Hanna, Charles; Punnoose, Alex

    2010-08-13

    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants has been refuted in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn₁₋xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn₁₋xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn₁₋xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies clearly showed that the difference in the ferromagnetic properties of Zn₁₋xFexO nanoparticles with different surface structures originate from differences in the fraction of the doped Fe³⁺ ions that are coupled ferromagnetically.

  3. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  4. Theoretical research program to study transition metal trimers and embedded clusters

    Science.gov (United States)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  5. Direct detection and quantification of transition metal ions in human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Stadler, Nadina; Lindner, Robyn A; Davies, Michael Jonathan

    2004-01-01

    OBJECTIVE: The involvement of transition metals in atherosclerosis is controversial. Some epidemiological studies have reported a relationship between iron (Fe) and cardiovascular disease, whereas others have not. Experimental studies have reported elevated levels of iron and copper (Cu) in disea...

  6. Electron Spin Resonance of Tetrahedral Transition Metal Oxyanions (MO4n-) in Solids.

    Science.gov (United States)

    Greenblatt, M.

    1980-01-01

    Outlines general principles in observing sharp electron spin resonance (ESR) lines in the solid state by incorporating the transition metal ion of interest into an isostructural diamagnetic host material in small concentration. Examples of some recent studies are described. (CS)

  7. Behaviors of d and f electrons in transition metals studied by positron annihilation

    International Nuclear Information System (INIS)

    The background of the spectrum of Doppler broadening of positron annihilation radiation can be reduced remarkably by using a two-detector coincidence technique. With this setup, we get a peak to background ratio of about 104 on the high energy side of the peak. The d electron and f electron signal for the transition metals can be extracted from the coincidence Doppler broadening spectrum. The coincidence Doppler broadening spectra for the transition metals Zr, Nb, Mo, Ag, Hf, Pt, Au and single crystal of Si have been measured. The experimental results show that the height of the peak of the ratio curves (the reference sample is Si) for the transition metals Zr, Nb, Mo, Ag increases with the increase in the number of 4d electrons. There are 2 peaks in the ratio curves (the reference sample is Si) for the transition metals Ag, Hf, Pt. And the height of the peaks increases with the increase in atomic number. (authors)

  8. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    Science.gov (United States)

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition. PMID:23414038

  9. Binuclear ruthenium η6-arene complexes with tetradentate N,S-ligands containing the ortho-aminothiophenol motif.

    Science.gov (United States)

    Acosta-Ramirez, Alberto; Cross, Edward D; McDonald, Robert; Bierenstiel, Matthias

    2014-02-28

    A series of cationic binuclear (η(6)-cymene-Ru)2 complexes with N2S2-ligands were synthesized in 64% to 85% yield by reaction of [Ru(η(6)-cymene)Cl2]2 with bis-S,S'-(ortho-aminothiophenol)-xylenes as BF4(-) and PF6(-) salts. The compounds were studied using NMR, HRMS, UV-vis and IR spectroscopy, EA and inductively coupled plasma (ICP) MS. It was determined that the hinged binuclear Ru complexes were anti and syn diastereomers obtained in 2 : 1 ratio for ortho- and meta-xylylene bridged ligands and in a 1 : 1 ratio for the para-xylylene bridged ligand. An anion effect was found for the presence of NaBF4 with the meta-xylylene bridged system yielding the targeted binuclear Ru complex and a mononuclear Ru complex. This mononuclear S,S'-coordinated η(6)-cymene Ru chloride structure lacked amine-metal coordination and was obtained in a 1 : 3 ratio of anti : syn diastereomers which were insoluble in CH2Cl2 and soluble in DMSO and DMF. X-ray crystallographic analysis was obtained for the N2S2 ligand, 1,2-bis{(2-aminophenyl)thiomethyl}benzene, showing a CS symmetry with amine groups facing outwards with a tilt of 28.95° from the ortho-aminothiophenol pendant ring. The interatomic sulfur-sulfur distance (S-S') is 4.6405 Å within the crystal structure while accommodating a potential metal bite angle from 1.0 Å to 5.9 Å when allowing rotation of the methylene phenyl bond. PMID:24284434

  10. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  11. EPR of transition metal ions in NZP ceramics

    International Nuclear Information System (INIS)

    NZP-ceramics have been produced by different methods such as sol-gel, flux melting and sintering of dry salts or phosphates. Formation of NZP and related phases was confirmed by X-ray diffraction analysis. Electron paramagnetic resonance (EPR) was applied to evaluate a structure positions of paramagnetic ions and nature of radiation-induced centers. EPR responses from transition metal ions Fe3+ and Mn2+ with electron configuration 3d5 (ground state 6S5/2) which occurred as impurities in raw materials were registered in powders of NZP-ceramics. Fine structure arising due to high spin iron complexes is well resolved. A part of Fe3+ ions substitutes for Zr4+ and another part of one substitutes for Na+ ions in six-fold coordinated positions. A great value of hyperfine structure (hfs) constant (9.3 mT) shows a high ionic character of Mn-O bonds in the first coordination sphere. A coordination number is close to 6. Fine structure of Mn2+ ions are not well resolved. A comparison of the spectra of samples containing various alkali cations shows the substitution for cations in series of Li-Na-K-Rb-Cs does not result in fundamental variation in spectra except for CZP ceramics where the response with g=4.3 due to Fe3+ in strong ligand field rather than response with g=2.0 due to Fe3+ in weak field is observed. An investigation of some samples doped by 0.1...0.5 mole % of Fe3+ or Gd3+ has been carried out and principal spin-Hamiltonian parameters have been determined. The increase of Fe and Gd ions content as compared to impurity substituting for Zr and possibly Na in their own structural positions results in noticeable site distortion. Gamma irradiation of NZP ceramics results in formation of radiation-induced paramagnetic centers connected to phosphorus-oxygen. The nature and concentration of these centers depend on production method. The lowest defect concentration is in hot-pressed ceramics

  12. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis

    OpenAIRE

    Luca Deiana; Samson Afewerki; Carlos Palo-Nieto; Oscar Verho; Johnston, Eric V.; Armando Córdova

    2012-01-01

    The concept of combining heterogeneous transition metal and amine catalysis for enantioselective cascade reactions has not yet been realized. This is of great advantage since it would allow for the recycling of expensive and non-environmentally friendly transition metals. We disclose that the use of a heterogeneous Pd-catalyst in combination with a simple chiral amine co-catalyst allows for highly enantioselective cascade transformations. The preparative power of this process has been demonst...

  13. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules

    OpenAIRE

    Karolak, M.; Jacob, D.

    2016-01-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-...

  14. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  15. Abnormal carbenes as ligands in transition metal chemistry: curiosities with exciting perspectives

    OpenAIRE

    Albrecht, Martin

    2009-01-01

    This review compiles the advances achieved in our laboratories using abnormal and less heteroatom-stabilized carbenes as ligands for transition metal chemistry. Fundamental studies allowed the evaluation of the impact of this new class of ligands both electronically and sterically. Based on these results, initial catalytic applications have been devised in the area of H-H and C-H bond activation, demonstrating the potential of abnormal carbenes as unique ligands for transition metals.

  16. Coordination Chemistry of Disilylated Stannylenes with Group 10 d10 Transition Metals: Silastannene vs Stannylene Complexation

    OpenAIRE

    Arp, Henning; Marschner, Christoph; Baumgartner, Judith; Zark, Patrick; Müller, Thomas

    2013-01-01

    The coordination behavior of disilylated stannylenes toward zerovalent group 10 transition metal complexes was studied. This was accomplished by reactions of PEt3 adducts of disilylated stannylenes with zerovalent group 10 transition metal complexes. The thus obtained products differed between the first row example nickel and its heavier congeners. While with nickel stannylene complex formation was observed, coordination of the stannylenes to palladium and platinum compounds led to unusual si...

  17. The thermodynamics and transport properties of transition metals in critical point

    CERN Document Server

    Khomkin, Alexander L

    2016-01-01

    A new method for calculating the critical point parameters (density, temperature, pressure and electrical conductivity) and binodal of vapor-liquid (dielectric-metal) phase transition is proposed. It is based on the assumption that cohesion, which determines the main properties of solid state, also determines the properties in the vicinity of the critical point. Comparison with experimental and theoretical data available for transition metals is made.

  18. Computational and experimental investigation of unreported transition metal selenides and sulphides

    OpenAIRE

    Narayan, Awadhesh; Bhutani, Ankita; Rubeck, Samantha; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    2015-01-01

    Expanding the library of known inorganic materials with functional electronic or magnetic behavior is a longstanding goal in condensed matter physics and materials science. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated-electron properties, as seen in the iron based superconductors and the transition metal dichalcogenides. However, the chalcogenide chemical space is less explored than that of oxides, and there is a...

  19. Catalytic production of carbon nanotubes over first row transition metal oxides supported on montmorillonite

    International Nuclear Information System (INIS)

    Clay-carbon nanotube composites were prepared by employing the catalytic chemical vapor deposition method (CCVD) over different transition metal oxides supported on montmorillonite. Various analytical techniques including SEM, TEM, XRD and DTA/TGA were used for the characterization of the final composite materials. The morphology, quality and structure of the produced nanotubes is shown to be dependent on the type of transition metals

  20. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  1. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    Science.gov (United States)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  2. Spin crossover and polymorphism in a family of 1,2-bis(4-pyridyl)ethene-bridged binuclear iron(II) complexes. A key role of structural distortions.

    Science.gov (United States)

    Matouzenko, Galina S; Jeanneau, Erwann; Verat, Alexander Yu; Bousseksou, Azzedine

    2011-10-01

    Two polymorphic modifications 1 and 3 of binuclear compound [{Fe(dpia)(NCS)(2)}(2)(bpe)] and pseudo-polymorphic modification [{Fe(dpia)(NCS)(2)}(2)(bpe)]·2CH(3)OH (2), where dpia = di-(2-picolyl)amine, bpe = 1,2-bis(4-pyridyl)ethene, were synthesized, and their structures, magnetic properties, and Mössbauer spectra were studied. Variable-temperature magnetic susceptibility measurements of three binuclear compounds show different types of magnetic behaviour. The complex 1 exhibits a gradual two-step spin crossover (SCO) suggesting the occurrence of the mixed [HS-LS] (HS: high spin, LS: low spin) pair at the plateau temperature (182 K), at which about 50% of the complexes undergoes a thermal spin conversion. The complex 2 displays an abrupt full one-step spin transition without hysteresis, centred at about 159 K. The complex 3 is paramagnetic over the temperature range 20-290 K. The single-crystal X-ray studies show that all three compounds are built up from the bpe-bridged binuclear molecules. The structure of 1 was solved for three spin isomers [HS-HS], [HS-LS], and [LS-LS] at three temperatures 300 K, 183 K, and 90 K. The crystal structures for 2 and 3 were determined for the [HS-HS] complexes at room temperature. The analysis of correlations between the structural characteristics and different types of magnetic behaviour for new 1-3 binuclear complexes, as well as for previously reported binuclear compounds, revealed that the SCO process (occurrence of full one-step, two-step, or partial (50%) SCO) is specified by the degree of distortion of the octahedral geometry of the [FeN(6)] core, caused by both packing and strain effects arising from terminal and/or bridging ligands. The comparison of the magnetic properties and the networks of intra- and inter-molecular interactions in the crystal lattice for the family of related SCO binuclear compounds suggests that the intermolecular interactions play a predominant role in the cooperativeness of the spin transition

  3. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines.

    Science.gov (United States)

    Watson, Heather M; Vincent, John B; Cassady, Carolyn J

    2011-11-01

    Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n)  + Met - H](2+) lose CO to form [a(n)  + Met - H](2+), mimicking protonated structures. In contrast, [a(n)  + Met - H](2+) eliminate an amino acid residue to form [a(n-1)  + Met - H](2+), which may be useful in sequencing. PMID:22124980

  4. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  5. Growth and sacrificial oxidation of transition metal nanolayers

    NARCIS (Netherlands)

    T. Tsarfati,; Zoethout, E.; van de Kruijs, R.; F. Bijkerk,

    2009-01-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e(-)

  6. Growth and sacrificial oxidation of transition metal nanolayers

    NARCIS (Netherlands)

    Tsarfati, Tim; Zoethout, Erwin; Kruijs, van de Robbert; Bijkerk, Fred

    2009-01-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3–4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e− d

  7. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    Science.gov (United States)

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  8. Structures of the dehydrogenation products of methane activation by 5d transition metal cations

    NARCIS (Netherlands)

    Lapoutre, V. J. F.; Redlich, B.; van der Meer, A. F. G.; Oomens, J.; Bakker, J. M.; Sweeney, A.; Mookherjee, A.; Armentrout, P. B.

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M +) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H]+ and H2. However, the structure of the dehydrogenation

  9. Transition metal functionalized photo- and redox-switchable diarylethene based molecular switches

    NARCIS (Netherlands)

    Harvey, Emma C.; Feringa, Ben L.; Vos, Johannes G.; Browne, Wesley R.; Pryce, Mary T.

    2015-01-01

    In this review recent progress in combining metal carbonyl and bipyridyl transition metal complexes with dithienylethene photochromic switches is discussed. A key challenge in designing such systems is to allow for interaction between the various components, but without loss in photochemical activit

  10. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    . In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  11. Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations

    NARCIS (Netherlands)

    V.J.F. Lapoutre; B. Redlich; A.F.G. Meer; J. Oomens; J.M. Bakker; A. Sweeney; A. Mookherjee; P.B. Armentrout

    2013-01-01

    The activation of methane by gas-phase transition metal cations (M+) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H-2. However, the structure of the dehydrogenati

  12. Removal and recovery of radionuclides and toxic metals from wastes, soils and materials

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.

    1993-07-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites (Figure 1). In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (uranium trioxide) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  13. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  14. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  15. Transition Metal Configurations and Limitations of the Orbital Approximation.

    Science.gov (United States)

    Scerri, Eric R.

    1989-01-01

    Points out a misconception that is reinforced in many elementary and advanced chemistry texts. Discusses the general limitations of the orbital concept. Notes misconceptions related to the transition elements and their first ionization energies. (MVL)

  16. Dramatic Switching of Magnetic Exchange in a Classic Transition Metal Oxide: Evidence for Orbital Ordering

    International Nuclear Information System (INIS)

    Spin correlations in metallic and insulating phases of V2O3 and its derivatives are investigated using magnetic neutron scattering.Metallic samples have incommensurate spin correlations varying little with hole doping. Paramagnetic insulating samples have spin correlations only among near neighbors. The transition from either of these phases into the low temperature insulating antiferromagnetic phase is accompanied by an abrupt change of dynamic magnetic short range order. Our results support the idea that the transition into the antiferromagnetic insulator is also an orbital ordering transition. copyright 1997 The American Physical Society

  17. Pressure-driven Superconductivity in Transition-metal Pentatelluride HfTe5

    OpenAIRE

    Qi, Yanpeng; Shi, Wujun; Naumov, Pavel G.; Kumar, Nitesh; Schnelle, Walter; Barkalov, Oleg,; Shekhar, Chandra; Borrmann, Horst; FELSER, CLAUDIA; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Layered transition-metal tellurides have attracted considerable attention because of their rich physics; for example, tungsten ditelluride WTe2 exhibits extremely large magnetoresistance; the tritelluride ZrTe3 shows a charge density wave transition at low temperature; and the pentatelluride ZrTe5 displays an enigmatic resistivity anomaly and large thermoelectric power. Recently some transition-metal tellurides are predicted to be quantum spin Hall insulators (e.g. ZrTe5 and HfTe5) or Weyl se...

  18. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  19. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Science.gov (United States)

    Otsuka, Yuichi; Yunoki, Seiji; Sorella, Sandro

    2016-01-01

    The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  20. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Becker, A.; Lemke, R. W.; Cochrane, K. R.; Savage, M. E.; Bliss, D. E.; Mattsson, T. R.; Redmer, R.

    2015-06-01

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.

  1. Binuclear Cu(II and Co(II Complexes of Tridentate Heterocyclic Shiff Base Derived from Salicylaldehyde with 4-Aminoantipyrine

    Directory of Open Access Journals (Sweden)

    Omar Hamad Shihab Al-Obaidi

    2012-01-01

    Full Text Available New binuclear Co(II and Co(II complexes of ONO tridentate heterocyclic Schiff base derived from 4-aminoantipyrine with salicylaldehyde have been synthesized and characterized on the bases of elemental analysis, UV-Vis., FT-IR, and also by aid of molar conductivity measurements, magnetic measurements, and melting points. It has been found that the Schiff bases with Cu(II or Co(II ion forming binuclear complexes on (1 : 1 “metal : ligand” stoichiometry. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolytic nature for all prepared complexes. Distorted octahedral environment is suggested for metal complexes. A theoretical treatment of the formation of complexes in the gas phase was studied, and this was done by using the HyperChem-6 program for the molecular mechanics and semi-empirical calculations. The free ligand and its complexes have been tested for their antibacterial activities against two types of human pathogenic bacteria: the first type (Staphylococcus aureus is Gram positive and the second type (Escherichia coli is Gram negative (by using agar well diffusion method. Finally, it was found that compounds show different activity of inhibition on growth of the bacteria.

  2. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens;

    2005-01-01

    Electron transport through semiconductor and metallic nanoscale structures,(1) molecular monolayers,2-6 and single molecules(7-15) connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices...

  3. Synthesis and Electronic Properties of Transition Metal Containing Polymers

    Institute of Scientific and Technical Information of China (English)

    Wai Kin Chan

    2000-01-01

    @@ 1. Introduction Since the discovery of the first organic light emitting polymer in 1991, research in this area has been mainly focused on conjugated organic polymers. The use of polymer metal complexes for electroluminescence applications has received relatively few attention.

  4. Metallic magnetism and change of conductivity in the nano to bulk transition of cobalt ferrite

    Science.gov (United States)

    Arunkumar, A.; Vanidha, D.; Oudayakumar, K.; Rajagopan, S.; Kannan, R.

    2013-11-01

    Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6 nm and 52 nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (Rgb), increased drastically with particle size (19 MΩ for 6 nm and 259 MΩ for 52 nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6 nm and semiconducting behavior at 52 nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444 G to 1146 G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.

  5. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  6. Cellulose based transition metal nano-composites : structuring and development

    OpenAIRE

    Glatzel, Stefan

    2013-01-01

    Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigat...

  7. Transition metal-templated synthesis of catenanes and rotaxanes

    Institute of Scientific and Technical Information of China (English)

    CHAMBRON Jean-Claude; SAUVAGE Jean-Pierre

    2012-01-01

    Among the various methods nowadays used to make catenanes and rotaxanes,the metal template synthesis occupies a place of choice,because of its versatility.This contribution shows that,thanks to the richness of their chemistry,metal templates can fulfil multiple functions for the construction of these topologically-interesting molecules,from the entwining or threading of their precursors to the simultaneous catalysis of the interlocking reaction.

  8. High volumetric capacitance near insulator-metal percolation transition

    OpenAIRE

    Efros, A. L.

    2011-01-01

    A new type of a capacitor with a very high volumetric capacitance is proposed. It is based upon the known phenomenon of a sharp increase of the dielectric constant of the metal-insulator composite in the vicinity of the percolation threshold, but still on the insulator side. The optimization suggests that the metallic particles should be of nanoscale and that the distance between planar electrodes should be somewhat larger than the correlation length of the percolation theory and 10 to 20 tim...

  9. The influence of the metal net charge of non-metallocene early transition metal catalyst on the ethylene polymerization activity

    Institute of Scientific and Technical Information of China (English)

    WU ChunHong; LI HuaYi; FENG YuQi; HU YouLiang

    2008-01-01

    The net charges on central metals of a serial non-metallocene early transition metal catalysts (FI cata-lyst) with similar steric hindrance were caculated with MM-QEq (molecular mechmism-charge equili-bration) method and associated with ethylene polymerization activities of these FI catalyts. It was found that the activity increased with the net charge on metal if ignoring the influence of the steric hindrance. In other words, introduction of strong and/or more electron-withdrawing groups onto the ligand of FI catalyst would enhance the activity of the catalyst. This conculsion gave a direction to designing new FI catalyst with higher activity.

  10. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Science.gov (United States)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  11. Isocyanide and Phosphine Oxide Coordination in Binuclear Chromium Pacman Complexes.

    Science.gov (United States)

    Stevens, Charlotte J; Nichol, Gary S; Arnold, Polly L; Love, Jason B

    2013-12-01

    The new binuclear chromium Pacman complex [Cr2(L)] of the Schiff base pyrrole macrocycle H4L has been synthesized and structurally characterized. Addition of isocyanide, C≡NR (R = xylyl, (t)Bu), or triphenylphosphine oxide donors to [Cr2(L)] gives contrasting chemistry with the formation of the new coordination compounds [Cr2(μ-CNR)(L)], in which the isocyanides bridge the two Cr(II) centers, and [Cr2(OPPh3)2(L)], a Cr(II) phosphine oxide adduct with the ligands exogenous to the cleft.

  12. Transitions in Theory and Practice: Managing Metals in the Circular Economy

    Directory of Open Access Journals (Sweden)

    Melissa Jackson

    2014-07-01

    Full Text Available Transitioning from current resource management practice dominated by linear economic models of consumption and production, to circular models of resource use, will require insights into the stages and processes associated with socio-technical transitions. This paper is concerned with transitions in practice. It explores two frameworks within the transitions literature—the multi-level perspective and transition management theory—for practical guidance to inform a deliberate transition in practice. The critical futures literature is proposed as a source of tools and methods to be used in conjunction with the transition frameworks to influence and enable transitions in practice. This enhanced practical guidance for initiating action is applied to a specific context—transitioning the Australian metals sector towards a circular economy model. This particular transition case study is relevant because the vision of a circular economy model of resource management is gaining traction internationally, Australia is significant globally as a supplier of finite mineral resources and it will also be used in a collaborative research project on Wealth from Waste to investigate possibilities for the circular economy and metals recycling.

  13. Electronic spectroscopy and electronic structure of the smallest metal clusters: the diatomic 3D transition metal aluminides

    Science.gov (United States)

    Behm, Jane M.; Morse, Michael D.

    1994-06-01

    A systematic study of the electronic spectroscopy, electronic structure, and chemical bonding has been initiated for the 3d series of diatomic transition metal aluminides. This report provides a review of the progress to date, with specific emphasis on AlCa, AlV, AlCr, AlMn, AlCo, AlNi, AlCu, and AlZn.

  14. A general holographic metal/superconductor phase transition model

    CERN Document Server

    Peng, Yan

    2014-01-01

    We study the scalar condensation of a general holographic superconductor model in AdS black hole background away from the probe limit. We find the model parameters together with the scalar mass and backreaction can determine the order of phase transitions completely. In addition, we observe two types of discontinuities of the scalar operator in the case of first order phase transitions. We analyze in detail the effects of the scalar mass and backreaction on the formation of discontinuities and arrive at an approximate relation between the threshold model parameters. Furthermore, we obtain superconductor solutions corresponding to higher energy states and examine the stability of these superconductor solutions.

  15. Activated phosphors having matrices of yttrium-transition metal compound

    Science.gov (United States)

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  16. The thermally induced metal-semiconducting phase transition of samarium monosulfide (SmS) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E; Dorenbos, P; Van der Kolk, E [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, NL-2629 JB Delft (Netherlands); Smet, P F; Poelman, D, E-mail: e.g.rogers@tudelft.n [Lumilab, Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, B-9000 Gent (Belgium)

    2010-01-13

    High quality phase pure samarium monosulfide (SmS) thin films were prepared by electron beam evaporation using a samarium metal source in a H{sub 2}S atmosphere. The optical properties (reflection, transmission, absorption) of the films in the semiconducting and metallic phase were analysed from the UV to the mid-IR and explained in terms of the electronic structure of SmS. In this paper it will be shown that metallic SmS thin films exhibit an apparently continuous thermally induced metallic to semiconducting phase transition when studied optically. Temperature dependent x-ray diffraction measurements, however, indicate that the metallic to semiconductor phase transition is in fact first order at a single grain level. The apparently continuous optical behaviour is therefore due to the polycrystalline nature of the films.

  17. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah;

    2008-01-01

    metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... reforming. The reaction is found to be kinetically controlled by a methane dissociation step and a CO formation step, where the latter step is found to be dominant at lower temperatures. The particle size of the metal catalysts particles have been determined by transmission electron microscopy (TEM...... in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...

  18. Extraction and Binding Efficiency of Calix[8]arene Derivative Toward Selected Transition Metals

    Directory of Open Access Journals (Sweden)

    Imdadullah Qureshi

    2008-12-01

    Full Text Available In this article we have explored the extraction efficiency as well as binding ability of calix[8]arene derivative (3 for selected transition metal ions (Co2+, Cd2+, Ni2+, Pb2+ and Cu2+. Picrate salt solutions of these metals were used in the liquid-liquid extraction experiments. It is apparent from the results that ligand 3 shows appreciable high extraction of transition metal cations, with the relative order Pb2+>Cu2+>Ni2+>Co2+>Cd2+ being observed. Highest extraction efficiency has been observed for Pb2+ and Cu2+ i.e. 95 and 91% respectively. The significant extraction and complexation ability for these metal ions may be attributed to the nature, size, structure and geometry of both ligand and metal ions.

  19. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    Science.gov (United States)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  20. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanhita, E-mail: raj@iiserkol.ac.in; Ghosh, Anirudha, E-mail: raj@iiserkol.ac.in; Raj, Satyabrata, E-mail: raj@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Nadia -741252, West Bengal (India)

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  1. Transport studies in 2D transition metal dichalcogenides and black phosphorus

    Science.gov (United States)

    Du, Yuchen; Neal, Adam T.; Zhou, Hong; Ye, Peide D.

    2016-07-01

    Two-dimensional (2D) materials are a new family of materials with interesting physical properties, ranging from insulating hexagonal boron nitride, semiconducting or semi-metallic transition metal dichalcogenides, to gapless metallic graphene. In this review, we provide a brief discussion of transport studies in transition metal dichalcogenides, including both semiconducting and semi-metallic phases, as well as a discussion of the newly emerged narrow bandgap layered material, black phosphorus, in terms of its electrical and quantum transport properties at room and cryogenic temperatures. Ultra-thin layered channel materials with atomic layer thickness in the cross-plane direction, together with relatively high carrier mobility with appropriate passivation techniques, provide the promise for new scientific discoveries and broad device applications.

  2. Asymmetries in transition metal XPS spectra: metal nanoparticle structure, and interaction with the graphene-structured substrate surface.

    Science.gov (United States)

    Sacher, E

    2010-03-16

    Transition-metal XPS spectra have traditionally been considered to possess a natural asymmetry, extending to the high-binding-energy side. This is based on the fact that these spectra have generally been found experimentally to have such an asymmetry, as well as on the confirmation of asymmetry offered by the Doniach-Sunjić equation, an equation based on the proposal that the conduction electron scattering amplitude for interband absorption or emission in metals, at the Fermi level, is a singularity. Our discovery that metal nanoparticles, prepared under vacuum and characterized without exposure to air, have symmetric peaks, which become asymmetric with time, informed us that these peak asymmetries have other sources. On the basis of our belief that all metal spectra are composed of symmetric peaks, where the asymmetries are attributed to overlapping minor peaks that are consistent with known physical and chemical phenomena associated with that metal, we have shown that, for the metals that we have studied, these asymmetries contain much information, otherwise unavailable, on the structures, contaminants, oxidation, and interfacial interactions of nanoparticle surfaces. The existence of this information has been demonstrated for several metals, and its value is shown by its use in explaining the strong interfacial bonding of the nanoparticles with substrates having graphene structures. A possible future research direction is offered in the field of metal-metal interactions in nanoparticle alloys.

  3. High throughput methods for analyzing transition metals in proteins on a microgram scale.

    Science.gov (United States)

    Atanassova, Anelia; Högbom, Martin; Zamble, Deborah B

    2008-01-01

    Transition metals are among the most common ligands that contribute to the biochemical and physiological properties of proteins. In the course of structural proteomic projects, the detection of transition metal cofactors prior to the determination of a high-resolution structure is extremely beneficial. This information can be used to select tractable targets from the proteomic pipeline because the presence of a metal often improves protein stability and can be used to help solve the phasing problem in x-ray crystallography. Recombinant proteins are often purified with substoichiometric amounts of metal loaded, so additional metal may be needed to obtain the homogeneous protein solution crucial for structural analysis. Furthermore, identifying a metal cofactor provides a clue about the nature of the biological role of an unclassified protein and can be applied with structural data in the assignation of a putative function. Many of the existing methods for transition metal analysis of purified proteins have limitations, which include a requirement for a large quantity of protein or a reliance on equipment with a prohibitive cost.The authors have developed two simple high throughput methods for identifying metalloproteins on a microgram scale. Each of the techniques has distinct advantages and can be applied to address divergent experimental goals. The first method, based on simple luminescence and colorimetric reactions, is fast, cheap, and semiquantitative. The second method, which employs HPLC separation, is accurate and affords unambiguous metal identification. PMID:18542873

  4. A P-type ATPase importer that discriminates between essential and toxic transition metals.

    Science.gov (United States)

    Lewinson, Oded; Lee, Allen T; Rees, Douglas C

    2009-03-24

    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts.

  5. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  6. MICROSTRUCTURE AND INFRARED EMISSIVITY AT NORMAL TEMPERATURE IN TRANSITIONAL METAL OXIDES SYSTEM CERAMICS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8~14μm at room temperature,the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8~14μm at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.

  7. Semiconductor-to-metal transition in trans-polyacetylene (the role of correlated solitons

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2004-06-01

    Full Text Available  In this study the nature of transition to metallic regime in trans-polyacetylene (trans-PA is investigated. Based on Su-Schrieffer-Heeger (SSH model and the use of Continued - Fraction Representation (CFR as well as Lanczos algorithm procedure, we studied the effects of some selected soliton distributions on the semiconductor-to-metal transition in trans-PA.We found that,this transition occurs only when there exists a soliton sublattice in trans-PA, disordered soliton distributions and soliton clustering are the origin of the metallic transition in trans-PA, that is consistent with the experimental data. Our results show that in the presence of correlation between solitons, the disorder in accompanying single soliton distributions plays a crucial role in inducing the transition to metallic regime, so that in contrast to Anderson’s localization theorem, the electronic states near the Fermi level are extended, that is the most significant criteria for the metallic regime .

  8. Insulator-metal transition studied by heat capacity measurements on SmS

    International Nuclear Information System (INIS)

    We have measured the specific heat of SmS at pressures up to ∼7.5 kbar. We have observed that the electronic specific heat coefficient γ shows a steep increase at around Pc∼3.5 kbar, which corresponds to an insulator-metal phase transition. In the metal phase above Pc, we have found that γ reaches 100 mJ/mol K2, indicating a strongly correlated metallic state. In the insulator phase, on the other hand, we have observed an anomaly in the temperature dependence of the specific heat around 1 K, which seems to survive in the metal phase

  9. Correlation functions between specific volume and stoichiometry for transition metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G. [Centro de Ciencias de la Materia Condensada, UNAM, Ap. Postal 2681, 22800 Ensenada B. C. (Mexico)]. E-mail: gerardo@ccmc.unam.mx; Aparicio, E. [Centro de Ciencias de la Materia Condensada, UNAM, Ap. Postal 2681, 22800 Ensenada B. C. (Mexico); Avalos-Borja, M. [Centro de Ciencias de la Materia Condensada, UNAM, Ap. Postal 2681, 22800 Ensenada B. C. (Mexico)

    2005-03-08

    A methodology is proposed to correlate the structural aspects of transition metal nitrides (TMN) to the stoichiometric ratio: x = [N]/[M]. The method is based on a numeric figure, {upsilon}, given by the difference between the atomic concentrations of nitride and parent metal normalized to the atomic concentration of parent metal. Numerical regression is used to construct interpolating functions for {upsilon}(x) using as input the available data for TMN in two well-recognized databases (ICDD and ICSD). In summary we obtain functions of x that describe the deformation caused in the parent metal lattice by the nitrogen assimilation. The results are attractive, since TMN show remarkable trends.

  10. Gas bubble detection in liquid metals by means of the ultrasound transit-time-technique

    International Nuclear Information System (INIS)

    Liquid metals are used in nuclear energy technology and a precise knowledge of the distribution of the gas bubbles and their behaviour inside liquid metals is very useful. In this work the ultrasound-transit time technique is introduced as a versatile method to analyze the bubble dynamics in liquid-metal-gas flows. After discussing the principle of operation and the implementation of the technique, the methods used to extract the positions of the bubbles, their velocities, or their diameters are explained. Finally, the performance of the method is demonstrated for a liquid-metal-gas flow with and without a magnetic field. (authors)

  11. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  12. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration nc for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm-1) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance gc. The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  13. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future. PMID:27164024

  14. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-09-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs.

  15. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-01-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs. PMID:27686869

  16. Chemical compatibility between lithium compounds and transition metals

    International Nuclear Information System (INIS)

    The aim is to investigate the chemical reactions or otherwise of lithium compounds; Li7Pb2 (a tritium breeder), Li2O (breeder and impurity), Li3N and LiH (impurities) with containment and fusion reactor component metals - 316 and austenitic steels, titanium. Experimental details are given and results are summarized. (author)

  17. On Transition Metal Catalyzed Reduction of N-nitrosodimethlamine

    CERN Document Server

    Zhou, Jun; Tian, Junhua; Zhao, Zhun

    2014-01-01

    This report provides a critical review on "Metal-Catalyzed Reduction of N-Nitrosodimethylamine with Hydrogen in Water", by Davie et al. N-nitrosodimethlamine (NDMA) is a contaminant in drinking and ground water which is difficult to remove by conventional physical methods, such as air stripping. Based on the reported robust capability of metal based powder shaped catalysts in hydrogen reduction, several monometallic and bimetallic catalyst are studied in this paper on the reduction of NDMA with hydrogen. Two kinds of kinetics, metal weight normalized and surface area normalized, are compared between each catalyst in terms of pseudo-first order reaction rate. Palladium, copper enhanced palladium and nickel are found to be very efficient in NDMA reduction, with half-lives on the order of hours per 10 mg/l catalyst metal. Preliminary LC-MS data and carbon balance showed no intermediates. Finally, a simple hydrogen and NMDA surface activated reaction mechanism is proposed by the author for palladium and nickel.

  18. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  19. A high-performance liquid chromatography method for determining transition metal content in proteins.

    Science.gov (United States)

    Atanassova, Anelia; Lam, Robert; Zamble, Deborah B

    2004-12-01

    Transition metals are common components of cellular proteins and the detailed study of metalloproteins necessitates the identification and quantification of bound metal ions. Screening for metals is also an informative step in the initial characterization of the numerous unknown and unclassified proteins now coming through the proteomic pipeline. We have developed a high-performance liquid chromatography method for the quantitative determination of the most prevalent biological transition metals: manganese, iron, cobalt, nickel, copper, and zinc. The method is accurate and simple and can be adapted for automated high-throughput studies. The metal analysis involves acid hydrolysis to release the metal ions into solution, followed by ion separation on a mixed-bead ion-exchange column and absorbance detection after postcolumn derivatization with the metallochromic indicator 4-(2-pyridylazo)resorcinol. The potential interferences by common components of protein solutions were investigated. The metal content of a variety of metalloproteins was analyzed and the data were compared to data obtained from inductively coupled plasma-atomic emission spectroscopy. The sensitivity of the assay allows for the detection of 0.1-0.8 nmol, depending on the metal. The amount of protein required is governed by the size of the protein and the fraction of protein with metal bound. For routine analysis 50 microg was used but for many proteins 10 microg would be sufficient. The advantages, disadvantages, and possible applications of this method are discussed. PMID:15519577

  20. Reactivities of d~0 transition metal complexes toward oxygen:Synthetic and mechanistic studies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transition metals such as Fe in porphyrin complexes are known to bind or react with O2,and such reactions are critical to many biological functions and catalytic oxidation using O2.The transition metals in these reactions often contain valence d electrons,and oxidation of metals is an important step.In recent years,reactions of O2 with d0 transition metal complexes such as Hf(NR2)4(R=alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices.This feature article discusses our recent studies of such reactions and the formation of TiO2 thin films.In contrast to the reactions of many dn complexes where metals are often oxidized,reactions of d0 complexes such as Hf(NMe2)4 and Ta(NMe2)4(SiR3) with O2 usually lead to the oxidation of ligands,forming,e.g.,-ONMe2 and -OSiR3 from-NMe2 and-SiR3 ligands,respectively.Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.

  1. Reactivities of d~0 transition metal complexes toward oxygen:Synthetic and mechanistic studies

    Institute of Scientific and Technical Information of China (English)

    CHEN ShuJian; ZHANG XinHao; LIN ZhenYang; WU YunDong; XUE ZiLing

    2009-01-01

    Transition metals such as Fe in porphyrin complexes are known to bind or react with O_2,and such reactions are critical to many biological functions and catalytic oxidation using O_2.The transition metals in these reactions often contain valence d electrons,and oxidation of metals is an important step.In recent years,reactions of O_2 with d~0 transition metal complexes such as Hf(NR_2)_4 (R=alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices.This feature article discusses our recent studies of such reactions and the formation of TiO_2 thin films.In contrast to the reactions of many d~n complexes where metals are often oxidized,reactions of d~0 complexes such as Hf(Nme_2)_4 and Ta(Nme_2)_4(SiR_3) with O_2 usually lead to the oxidation of ligands,forming,e.g.,-ONMe_2 and-OSiR_3 from-Nme_2 and-SiR_3 ligands,respectively.Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.

  2. Corrosion behavior of some transition metals and 4340 steel metals exposed to sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Natishan, P.M.; Jones-Meehan, J.; Loeb, G.I.; Little, B.J.; Ray, R.; Beard, M.

    1999-11-01

    Microbial colonization of metals (zirconium, chromium, niobium, tantalum, molybdenum, tungsten, and type 4340 steel [UNS G43400]) and susceptibility of these metals to microbiologically influenced corrosion by sulfate-reducing bacteria was investigated. Environmental scanning electron microscopy characterization after 12 months and 21 months showed patchy biofilms on all metals except tungsten. Weight loss after 24 months for zirconium and niobium were either nonexistent or negligible, indicating that these metals did not experience MIC under the test conditions.

  3. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  4. Analysis on insulator–metal transition in yttrium doped LSMO from electron density distribution

    Indian Academy of Sciences (India)

    S Israel; S Saravana Kumar; R Renuretson; R A J R Sheeba; R Saravanan

    2012-02-01

    Yttrium doped LSMO (La1−SrMnO3) was prepared using sol–gel technique and analysed for the insulator–metal transition fromcharge density variation in the unit cell with respect to different stoichiometric inclusion of yttrium. X-ray powder diffraction profiles of the samples were obtained and the well known Rietveld method and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit cell was constructed using refined structure factors and was analysed. The charge ordering taking place in the insulator–metal transition was investigated and quantified. The insulator–metal transition was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge environment have also been analysed.

  5. Metal-insulator transition of 2d electron gas in a random magnetic field

    CERN Document Server

    Wang, X R; Liu, D Z

    1999-01-01

    We study the metal-insulator transition of a two-dimensional electron gas in the presence of a random magnetic field from the localization property. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We argue that there is a metal-insulator transition in such a system and show strong numerical evidence that the system undergoes a disorder driven Kosterlitz-Thouless type metal-insulator transition. We will also discuss a mean field theory which maps the random field system into a two-dimensional XY-model. The vortex and antivortex excitations in the XY-model correspond to two different kinds of magnetic domains in the random field system.

  6. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    LIN He; DUAN HaiMing

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3d transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) were studied by using discrete varia-tional method (DVM) based on density functional theory. The calculated result in-dicated that the magnetic moment of transition metal increases first and then de-creases, and reaches the maximum value when Mn is doped into GaAs. In the case of Mn concentration of 1.4%, the magnetic moment of Mn is in good agreement with the experimental result. The coupling between impure atoms in the system with two impure atoms was found to have obvious variation. For different transition metal, the coupling between the impure atom and the nearest neighbor As also has dif-ferent variation.

  7. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  8. Branched chain mechanism of the decomposition of transition metal methyl derivatives

    International Nuclear Information System (INIS)

    Data on the thermal and photodecomposition of transition metal methyl derivatives are analyzed. Generalized kinetic model of the process is suggested. It is customary that the main acts of thermal and photodecomposition of transition metal methyl derivatives are homolysis of Me-C bonds, reactions of forming methyl radicals with nondecomposed Me-CH3 groups, decomposition intermediate Me-CH2. radicals with formation of methylene biradical and its following reactions with nondecomposed groups Me-CH3, Me-CH2-Me and Me3CH and solvent. It is shown that the suggested kinetic model allows to explain quantitatively the peculiarities of decomposition of transition metal methyl derivatives and composition of forming products. (author)

  9. Effective modification of MgO with surface transition metal oxides for NF3 decomposition

    Institute of Scientific and Technical Information of China (English)

    Yanan Wang; Xiufeng Xu; Pei Sheng; Hongguang Li; Tingting Wang; Youfen Huang; Fangshu Liu

    2011-01-01

    NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated.The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min,while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides,for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min.It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.

  10. Theoretical Investigation of Nonlinear Optical Properties of Organic and Transition Metal Hybrid Azobenzene Dendrimers

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; LIU Ping; WU Ke-Chen

    2008-01-01

    In this work, we report a theoretical exploration of the responses of organic azo-benzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO)properties of these organic dendrimers are mainly determined by the azobenzene chromospheres.Additionally, the values of β and γ increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.

  11. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    Science.gov (United States)

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  12. Global transcriptome and deletome profiles of yeast exposed to transition metals.

    Directory of Open Access Journals (Sweden)

    Yong Hwan Jin

    2008-04-01

    Full Text Available A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver, IIB (zinc, cadmium, mercury, VIA (chromium, and VB (arsenic elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome, and a second that provides information on the relationship between the expression of approximately 4,700 non-essential genes and sensitivity to metal exposure (deletome. Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our

  13. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  14. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  15. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  16. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.

    Science.gov (United States)

    Ma, Liang; Zeng, Xiao Cheng; Wang, Jinlan

    2015-10-15

    Oxygen intercalation has been proven to be an efficient experimental approach to decouple chemical vapor deposition grown graphene from metal substrate with mild damage, thereby enabling graphene transfer. However, the mechanism of oxygen intercalation and associated rate-limiting step are still unclear on the molecular level. Here, by using density functional theory, we evaluate the thermodynamics stability of graphene edge on transition metal surface in the context of oxygen and explore various reaction pathways and energy barriers, from which we can identify the key steps as well as the roles of metal passivated graphene edges during the oxygen intercalation. Our calculations suggest that in well-controlled experimental conditions, oxygen atoms can be easily intercalated through either zigzag or armchair graphene edges on metal surface, whereas the unwanted graphene oxidation etching can be suppressed. Oxygen intercalation is, thus, an efficient and low-damage way to decouple graphene from a metal substrate while it allows reusing metal substrate for graphene growth.

  17. Mercury Induced by Pressure to act as a Transition Metal in Mercury Fluorides

    Science.gov (United States)

    Botana, Jorge; Wang, Xiaoli; Hou, Chunju; Yan, Dadong; Lin, Haiqing; Ma, Yanming; Miao, Mao-Sheng

    The question of whether Hg is a transition metal remains open for stable solids. In our work we propose that high-pressure techniques will help prepare unusual oxidation states of Hg in Hg-F compounds. By means of ab initio calculations and an advanced structure-search algorithm we find that under high pressure charge is transferred from the Hg d orbitals to the F, and becomes a transition metal. HgF3 and HgF4 have been found to be stable compounds at high pressure. HgF4 consists of planar molecules, a typical geometry for d8 metallic centers. HgF3 is an example of metallic and ferromagnetic compound, with an electronic structure analogous to transparent conductors due to the Hg d9 configuration.

  18. Fragile-to-Strong Transition in Al-Ni-M(M=La,Pr,Nd)Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Zhi; HU Li-Na; BIAN Xiu-Fang; YUE Yuan-Zheng

    2010-01-01

    @@ We study the dynamic behavior of marginal metallic glass-forming liquids Al-Ni-M(M=La,Pr,Nd)in terms of liquid fragility in high and low temperature regions.The liquids are extremely fragile above the liquidus temperature Tliq,but become rather strong near the glass transition temperature Tg.The strength of the transition is inversely correlated with the fragility index at Tg.This relation is discussed in terms of potential energy landscape.

  19. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh;

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal/semicon-ductor....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  20. Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition

    OpenAIRE

    Rampelberg, Geert; Schaekers, Marc; Martens, Koen; Xie, Qi; Deduytsche, Davy; De Schutter, Bob; Blasco, Nicolas; Kittl, Jorge; Detavernier, Christophe

    2011-01-01

    Vanadium dioxide (VO2) has the interesting feature that it undergoes a reversible semiconductor-metal transition (SMT) when the temperature is varied near its transition temperature at 68°C.1 The variation in optical constants makes VO2 useful as a coating material for e.g. thermochromic windows,2 while the associated change in resistivity could be interesting for applications in microelectronics, e.g. for resistive switches and memories.3 Due to aggressive scaling and increasing integration ...

  1. The origin of increase of damping in transition metals with rare earth impurities

    OpenAIRE

    Hohlfeld, A. Rebei J.

    2006-01-01

    The damping due to rare earth impurities in transition metals is discussed in the low concentration limit. It is shown that the increase in damping is mainly due to the coupling of the orbital moments of the rare earth impurities and the conduction $p$-electrons. It is shown that an itinerant picture for the host transition ions is needed to reproduce the observed dependence of the damping on the total angular moment of the rare earths.

  2. Separating electric field and thermal effects across the metal-insulator transition in vanadium oxide nanobeams

    OpenAIRE

    Stabile, Adam A.; Singh, Sujay K.; Wu, Tai-Lung; Whittaker, Luisa; Banerjee, Sarbajit; Sambandamurthy, G.

    2014-01-01

    We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the nanobeams produces an abrupt MIT and the individual roles of thermal and non-thermal effects in driving the transition are studied. Transport measurements at temperatures ($T$) far below the critical temperature ($T_c$) of MIT, in several nanoscal...

  3. Characterization of Transition Metal Carbide Layers Synthesized by Thermo-reactive Diffusion Processes

    DEFF Research Database (Denmark)

    Laursen, Mads Brink; Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin;

    2015-01-01

    Hard wear resistant surface layers of transition metal carbides can be produced by thermo-reactive diffusion processes where interstitial elements from a steel substrate together with external sources of transition metals (Ti, V, Cr etc.) form hard carbide and/or nitride layers at the steel surface...... electron microscopy, X-ray diffraction and Vickers hardness testing. The study shows that porosityfree, homogenous and very hard surface layers can be produced by thermo-reactive diffusion processes. The carbon availability of the substrate influences thickness of obtained layers, as Vanadis 6 tool steel...

  4. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren;

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...... and adsorption energies through linear correlations. In comparisons with experimental data it is found that the model predicts well the order of catalytic activities for transition metals, although it fails to quantitatively describe the experimental data. This discrepancy could be due to the assumption...

  5. Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Falsig, Hanne; Jensen, Anker Degn;

    2014-01-01

    This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal of the ....... Furthermore, the insights discussed in this paper present a framework for designing catalytic materials for facilitating these conversions efficiently.......This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal of the...

  6. Electron spectroscopic investigation of metal-insulator transition in Ce1-SrTiO3

    Indian Academy of Sciences (India)

    U Manju; S R Krishnakumar; Sugata Ray; S Raj; M Onoda; C Carbone; D D Sarma

    2003-10-01

    We have carried out detailed electron spectroscopic investigation of Ce1-SrTiO3 exhibiting insulator-metal transition with . Core level X-ray photoelectron spectra of Ce 3 as well as resonant photoemission spectra obtained at the Ce 4 → 4 resonant absorption threshold establish Ce as being in the trivalent state throughout the series. Using the `off-resonance’ condition for Ce 4 states, we obtain the Ti 3 dominated spectral features close to , exhibiting clear signatures of coherent and incoherent peaks. We discuss the implications of our findings in relation to the metal-insulator transition observed in this series of compounds.

  7. Metal-insulator transition of fermions on a kagome lattice at 1/3 filling.

    Science.gov (United States)

    Nishimoto, Satoshi; Nakamura, Masaaki; O'Brien, Aroon; Fulde, Peter

    2010-05-14

    We discuss the metal-insulator transition of the spinless fermion model on a kagome lattice at 1/3 filling. The system is analyzed by using exact diagonalization, density-matrix renormalization group methods, and random-phase approximation. In the strong-coupling region, the charge-ordered ground state is consistent with the predictions of an effective model, i.e., plaquette order. We find that the qualitative properties of the metal-insulator transition are totally different depending on the sign of the hopping matrix elements, reflecting the difference in the band structure near the Fermi level.

  8. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Martinez, Jose Ignacio; Rossmeisl, Jan

    2011-01-01

    ) at the cathode. In this contribution, on the basis of Density Functional Theory (DFT) calculations, we show that graphitic materials with active sites composed of 4 nitrogen atoms and transition metal atoms belonging to groups 7 to 9 in the periodic table are active towards ORR, and also towards Oxygen Evolution...... Reaction (OER). Spin analyses suggest that the oxidation state of those elements in the active sites should in general be +2. Moreover, our results verify that the adsorption behavior of transition metals is not intrinsic, since it can be severely altered by changes in the local geometry of the active site...

  9. Inverse correlation between cohesive energy and thermal expansion coefficient in liquid transition metal alloys.

    Science.gov (United States)

    Gangopadhyay, A K; Bendert, J C; Mauro, N A; Kelton, K F

    2012-09-19

    The volume expansion coefficients (α) of twenty-five glass-forming transition metal alloy liquids, measured using the electrostatic levitation technique, are reported. An inverse correlation between α and the cohesive energy is found. The predicted values of α from this relationship agree reasonably well with the published data for thirty other transition metal and alloy liquids; some disagreement was found for a few alloys containing significant amounts of group III and IV elements. A theoretical argument for this empirical relationship is presented. PMID:22842287

  10. Magnetism of 3d transition-metal monolayers on Rh(100)

    OpenAIRE

    A. Al-Zubi; Bihlmayer, G.; Blügel, S.

    2011-01-01

    We employ the full-potential linearized augmented plane-wave method to report a systematic density-functional theory study of the magnetic properties of the 3d transition-metal (V, Cr, Mn, Fe, Co, and Ni) monolayers deposited on the Rh(100) substrate. We find that all monolayer films are magnetic. The size of the local magnetic moments across the transition-metal series follows Hund's rule with a maximum magnetic moment of 3.77 mu(B) for Mn. The largest induced magnetic moment of about 0.46 m...

  11. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  12. Inverse correlation between cohesive energy and thermal expansion coefficient in liquid transition metal alloys

    International Nuclear Information System (INIS)

    The volume expansion coefficients (α) of twenty-five glass-forming transition metal alloy liquids, measured using the electrostatic levitation technique, are reported. An inverse correlation between α and the cohesive energy is found. The predicted values of α from this relationship agree reasonably well with the published data for thirty other transition metal and alloy liquids; some disagreement was found for a few alloys containing significant amounts of group III and IV elements. A theoretical argument for this empirical relationship is presented. (paper)

  13. Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals.

    Science.gov (United States)

    McCall, K A; Fierke, C A

    2000-09-10

    Transition metal ions, although maintained at low concentrations, play diverse important roles in many biological processes. Two assays useful for the rapid quantification of a range of first-row transition metal ions have been developed. The colorimetric assay extends the 4-(2-pyridylazo)resorcinol assay of Hunt et al. (J. Biol. Chem. 255, 14793 (1984)) to measure nanomole quantities of Co(2+), Ni(2+), and Cu(2+) as well as Zn(2+). The fluorimetric assay takes advantage of the coordination of a number of metal ions (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)) by Fura-2 and can also be used to measure nanomole quantities of these ions. The assays developed here have the advantage of not requiring the extensive sample preparation necessary for other methodologies, such as atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy (ICPES), while being comparable in accuracy to the detection limits of ICPES for the first-row transition metal ions. To demonstrate the effectiveness of these assays, we determined the affinity of carbonic anhydrase II (CA II), a prototypical zinc enzyme, for Ni(2+) and Cd(2+). These data indicate that CA II binds transition metals with high affinity and is much more selective for Zn(2+) over Ni(2+) or Cd(2+) than most small-molecule chelators or other metalloenzymes. PMID:10964414

  14. Phase transitions and adsorbate restructuring at metal surface

    CERN Document Server

    King, DA

    1994-01-01

    The objective in initiating this series in 1980 was to provide an in-depth review of advances made in the understanding key aspects of surface chemistry and physics through the application of new techniques to the study of well-defined surfaces. Since then the field of surface science has greatly matured, and further important techniques, particularly scanning probe microscopies, have been successfully assimilated into the applications armoury of the surface scientist. The present volume is a series of timely reviews by many of the current experts in the field of phase transitions an

  15. Metal-insulator transition in nanocomposite VOx films formed by anodic electrodeposition

    OpenAIRE

    Tsui, Lok-kun; Hildebrand, Helga; Lu, Jiwei; Schmuki, Patrik; Zangari, Giovanni

    2014-01-01

    The ability to grow VO2 films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VOx films by anodic electrodeposition of V2O5, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO2 stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is ...

  16. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    OpenAIRE

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tet...

  17. Regularities of formation of ternary alloy phases between non-transition metals

    Institute of Scientific and Technical Information of China (English)

    姚莉秀; 陈瑞亮; 钦佩; 陈念贻; 陆文聪

    2000-01-01

    Using a four-parameter model based on extended Miedema’ s cellular model of alloy phases and pattern recognition methods, the regularities of formation of ternary intermetallic compounds between non-transition metals have been investigated. The criterion of formation can be expressed as some empirical functions of Φ (electronegativity), nws1/3( valence electron density in Wagn-er-Seitz cell), R (Pauling’s metallic radius) and Z (number of valence electrons in atom).

  18. Magnetic Behavior of Some Rare-Earth Transition-Metal Perovskite Oxide Systems

    Institute of Scientific and Technical Information of China (English)

    Kenji Yoshii; Akio Nakamura; Masaichiro Mizumaki; Naoshi Ikeda; Jun'ichiro Mizuki

    2004-01-01

    Magnetic properties were investigated for the rare-earth 3d-transition metal oxides with the perovskite structure. Intriguing magnetic phenomena were reviewed for a few systems:magnetization peak effect in the titanates, magnetization reversal in the chromites and metallic ferromagnetism in the cobaltites. The results suggest an important role of the rare-earth ions for the magnetic properties of such complex oxides.

  19. Steam Reforming on Transition-metal Carbides from Density-functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vojvodic, Aleksandra

    2012-05-11

    A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  20. Transition metal based layered double hydroxides tailored for energy conversion and storage

    OpenAIRE

    Xia Long; Zilong Wang; Shuang Xiao; Yiming An; Shihe Yang

    2016-01-01

    Layered double hydroxides (LDHs) are a class of clays with brucite like layers and intercalated anions. The first (3d) series transition metals based LDHs (TM-LDHs) are attracting increasing interest in the field of energy conversion and storage processes due to their unique physicochemical properties. In this article, we review recent developments in the synthesis and applications of TM-LDH in these areas including water splitting, CO2 conversion, metal-air batteries and supercapacitors and ...

  1. Adsorption of Alkali, Alkaline Earth and Transition Metal Atoms on Silicene

    OpenAIRE

    Sahin, Hasan; Peeters, Francois M.

    2013-01-01

    The adsorption characteristics of alkali, alkaline earth and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon, are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, workfuncti...

  2. Sulfonate Functionalisation of Transition Metal Complexes: A Versatile Tool Towards Catalyst Recovery

    OpenAIRE

    Virboul, M.A.N.

    2011-01-01

    This thesis describes the synthesis and application of sulfonate-functionalised ligands in organometallic chemistry and (aqueous) catalysis. Due to their ability to trigger specific solubility, different NHC ligand precursors bearing a butyl-sulfonate chain were synthesised. The formation of transition metal complexes containing gold and rhodium was enabled by a simple procedure involving the initial synthesis of a silver complex and a transmetallation with a suitable metal precursor and an o...

  3. Mononuclear and oligonuclear transition metal complexes with acyclic and macrocyclic ligands

    OpenAIRE

    Rösel, Pirmin

    2009-01-01

    Chapter 1 describes an efficient multi-step synthesis of an endotopic but sterically un¬hindered biisoquinoline decorated with long alkyl groups for better solubility. This chelate is ideally suited for macrocycle formation around transition metal ions and therefore a valuable new building block for topological chemistry. Sokolov’s concept to use an octahedral metal template for the syntheses of macrocycles and molecular knots is discussed in Chapter 2. The concept was successfully realise...

  4. Elastic properties of 5d transition-metal carbides: An ab initio study

    Directory of Open Access Journals (Sweden)

    L. Mex

    2015-09-01

    Full Text Available We have systematically studied the mechanical stability of group V transition metal carbides TMC2 (TM=Hf, Ta, W, Re, Os, Ir, Pt, and Au in the pyrite and fluorite phase, by calculating their elastic constants within the density functional theory scheme. It was found that all but ReC2 and OsC2 are stable in pyrite phase. On the other hand, all metal carbides studied were unstable in the fluorite phase.

  5. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    Energy Technology Data Exchange (ETDEWEB)

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  6. Hydrogen evolution on nano-particulate transition metal sulfides

    DEFF Research Database (Denmark)

    Bonde, Jacob Lindner; Moses, Poul Georg; Jaramillo, Thomas F.;

    2008-01-01

    The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2 oxidation is presented and used to quantify the surface concentration of MoS2. Other metal...... sulfides with morphologies similar to MoS2 such as WS2, cobalt- promoted WS2, and cobalt-promoted MoS2 were also investigated in the search for improved HER activity. Experimental findings are compared to density functional theory (DFT) calculated values for the hydrogen binding energies (Delta G...

  7. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  8. Holographic entanglement entropy in metal/superconductor phase transition with Born–Infeld electrodynamics

    International Nuclear Information System (INIS)

    We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the properties of the phase transition. For the operator 〈O−〉, we find that the entanglement entropy decreases (or increases) with the increase of the Born–Infeld parameter b in the metal (or superconducting) phase. For the operator 〈O+〉, we observe that, with the increase of the Born–Infeld parameter, the entanglement entropy in the metal phase decreases monotonously but the entropy in the superconducting phase first increases and forms a peak at some threshold bT, then decreases continuously. Moreover, the value of bT becomes smaller as the width of the subsystem A decreases. - Highlights: • We study holographic entanglement entropy in metal/superconductor phase transition for Born–Infeld electrodynamics with full backreaction. • For operator 〈O−〉, entanglement entropy decreases (or increases) with increase of parameter b in metal (or superconducting) phase. • For operator 〈O+〉, with increase of Born–Infeld parameter, the entanglement entropy in the metal phase decreases monotonously but entropy in superconducting phase first increases and forms a peak at some threshold bT, then decreases continuously as increase of b, • The value of bT becomes smaller as the width of the subsystem A decreases

  9. Heterocyclic ring based colorimetric and fluorescent chemosensor for transition metal ions in an aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Udhayakumari, Duraisamy [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Velmathi, Sivan, E-mail: velmathis@nitt.edu [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Boobalan, Maria susai [Department of Chemistry, St. Joseph' s College (Autonomous), Tiruchirappalli 620002 (India); Venkatesan, Parthiban; Wu, Shu-Pao [Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2015-02-15

    Heterocyclic ring based R1–R3 have been synthesized from the simple condensation method. R1–R3 exhibit highly selective and sensitive recognition towards transition metal ions in an aqueous medium via visual color change and were further confirmed by UV–vis and fluorescent spectroscopic methods. Fluorescent turn on and turn off behavior was observed for receptors tested with transition metal ions. The interaction of transition metal ions and receptors R1–R3 was confirmed to adopt 1:1 binding stoichiometry. Micromolar detection limit was found for R1–R3 with metal ions. DFT theoretical calculations were employed to understand the sensing mechanism of the sensors towards the metal ions. R1 and R2 were also successfully demonstrated as a fluorescent probe for detecting Cu{sup 2+} ions in living cells. - highlights: • R1–R3 act as colorimetric and fluorescent sensors for metal ions. • Receptors (R1–R3) detect Cu{sup 2+} ions in aqueous solution at nanomolar levels. • R1 and R2 act as a fluorescent probe for detecting Cu{sup 2+} ions in living cells.

  10. A Theory of the Quantum Metal to Superconductor Transition In Highly Conducting Films

    Science.gov (United States)

    Oreto, Paul; Kivelson, Steven; Spivak, Boris

    2007-03-01

    Treating the inhomogeneous solution of the BCS mean-field equations as the saddle point of an effective quantum action, we derive the theory of the superconductor to metal transition in films under the conditions in which the critical resistance is small compared to the quantum of resistance. The present results are applicable to the magnetic field driven transition in MoGe films. It is also applicable to the transition in zero field in a weakly coupled d-wave superconductor, which may in turn be a useful caricature of a cuprate high temperature superconductor.

  11. Metal-insulator transition and local-moment collapse in FeO under pressure

    OpenAIRE

    Leonov, I.

    2015-01-01

    We employ a combination of the \\emph{ab initio} band structure methods and dynamical mean-field theory to determine the electronic structure and phase stability of paramagnetic FeO at high pressure and temperature. Our results reveal a high-spin to low-spin transition within the B1 crystal structure of FeO upon compression of the lattice volume above 73~GPa. The spin-state transition is accompanied by an orbital-selective Mott metal-insulator transition (MIT). The lattice volume is found to c...

  12. Oxygen vacancy induced metal-insulator transition in LaNiO3

    Science.gov (United States)

    Misra, Debolina; Kundu, Tarun Kumar

    2016-01-01

    First principle calculations were carried out to examine the metal-insulator transition in LaNiO3 due to changes in oxygen content and consequent alteration of valence state of nickel. The optical properties of all the oxygen deficient LaNiO3-x compounds were calculated to illustrate the electronic structures of the compounds and the change they undergo during the metal-insulator transition. The metallic nature of LaNiO3 is characterized by the Drude peak in the optical conductivity spectra and the high reflectivity it exhibits in the low frequency region. The complex dielectric function and the optical conductivity spectra clearly show that, for x = 0.25, i.e., LaNiO2.75 becomes a semiconductor. As x increases further to 0.5, a gap in the optical spectra appears, indicating the insulating nature of LaNiO2.5. The insulating state of LaNiO2.5 is best described by the GW+HSE method which gives a good estimation of the optical gap of the material. The absorption spectra of LaNiO2.5 clearly reveal that this material is transparent in the low frequency region. This metal-insulator transition is followed by another insulator to semiconductor transition, as x is increased further to 1 i.e., in case of LaNiO2. The metal-insulator transition is then explained on the basis of electron localization function calculations, which show the increase in the covalent bonding in the system as the transition to the insulating state sets in.

  13. Toward interfacing organic semiconductors with ferromagnetic transition metal substrates: enhanced stability via carboxylate anchoring.

    Science.gov (United States)

    Han, R; Blobner, F; Bauer, J; Duncan, D A; Barth, J V; Feulner, P; Allegretti, F

    2016-07-28

    We demonstrate that chemically well-defined aromatic self-assembled monolayers (SAMs) bonded via a carboxylate head group to surfaces of ferromagnetic (FM = Co, Ni, Fe) transition metals can be prepared at ambient temperature in ultra-high vacuum and are thermally stable up to 350-400 K (depending on the metal). The much superior stability over thiolate-bonded SAMs, which readily decompose above 200 K, and the excellent electronic communication guaranteed by the carboxylate bonding render benzoate/FM-metal interfaces promising candidates for application in spintronics. PMID:27417687

  14. Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO2

    Science.gov (United States)

    Frenzel, A.; Qazilbash, M. M.; Brehm, M.; Chae, Byung-Gyu; Kim, Bong-Jun; Kim, Hyun-Tak; Balatsky, A. V.; Keilmann, F.; Basov, D. N.

    2009-09-01

    We investigate the percolative insulator-to-metal transition (IMT) in films of the correlated material vanadium dioxide (VO2) . Scattering-type scanning near-field infrared microscopy and atomic force microscopy were used to explore the relationship between the nucleation of metallic regions and the topography in insulating VO2 . We demonstrate that the IMT begins within 10 nm from grain boundaries and crevices by using mean curvature and statistical analysis. We also observe coexistence of insulating and metallic domains in a single crystalline grain that points to intrinsic inhomogeneity in VO2 due to competing electronic phases in the IMT regime.

  15. Relative abundance determinations in extremely metal poor giants. II. Transition probabilities and the abundance determinations

    International Nuclear Information System (INIS)

    The abundances of Fe and other elements are determined for a star of intermediate metallicity and for nine extremely metal poor stars, including two members of the globular cluster M92 and CD -38 deg 245. The accuracy of the transition probabilities for Fe I and other elements is evaluated. The distribution of the abundances of other elements with respect to Fe is the same for most of the cases studied. Manganese is the only element that shows a different relative abundance in an extremely metal poor star. 120 refs

  16. Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

    Directory of Open Access Journals (Sweden)

    Maria A. Komkova

    2013-10-01

    Full Text Available We report here a way for improving the stability of ultramicroelectrodes (UME based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF, more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM experiments for imaging of hydrogen peroxide evolution.

  17. Coherent/incoherent metal transition in a holographic model

    CERN Document Server

    Kim, Keun-Yong; Seo, Yunseok; Sin, Sang-Jin

    2014-01-01

    We study AC electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities in a holographic model, which is based on 3+1 dimensional Einstein-Maxwell-scalar action. There is momentum relaxation due to massless scalar fields linear to spatial coordinate. The model has three field theory parameters: temperature($T$), chemical potential($\\mu$), and effective impurity($\\beta$). At low frequencies, if $\\beta \\mu$ the shape of peak deviates from the Drude form(incoherent metal). At intermediate frequencies($T<\\omega<\\mu$), we have analysed numerical data of three conductivities($\\sigma, \\alpha, \\bar{\\kappa}$) for a wide variety of parameters, searching for scaling laws, which are expected from either experimental results on cuprates superconductors or some holographic models. In the model we study, we find no clear signs of scaling behaviour.

  18. Extremely bulky amido first row transition metal(II) halide complexes: potential precursors to low coordinate metal-metal bonded systems.

    Science.gov (United States)

    Hicks, Jamie; Jones, Cameron

    2013-04-01

    Reactions of the extremely bulky potassium amide complexes, [KL'(η(6)-toluene)] or [KL"] (L'/L" = N(Ar*)(SiR3), Ar* = C6H2{C(H)Ph2}2Me-2,6,4; R = Me (L') or Ph (L")), with a series of first row transition metal(II) halides have yielded 10 rare examples of monodentate amido first row transition metal(II) halide complexes, all of which were crystallographically characterized. They encompass the dimeric, square-planar chromium complexes, [{CrL'(THF)(μ-Cl)}2] and [{CrL"(μ-Cl)}2], the latter of which displays intramolecular η(2)-Ph···Cr interactions; the dimeric tetrahedral complexes, [{ML'(THF)(μ-Br)}2] (M = Mn or Fe), [{ML"(THF)(μ-X)}2] (M = Mn, Fe or Co; X = Cl or Br) and [{CoL"(μ-Cl)}2] (which displays intramolecular η(2)-Ph···Co interactions); and the monomeric zinc amides, [L'ZnBr(THF)] (three-coordinate) and [L"ZnBr] (two-coordinate). Solution state magnetic moment determinations on all but one of the paramagnetic compounds show them to be high-spin systems. Throughout, comparisons are made with related bulky terphenyl transition metal(II) halide complexes, and the potential for the use of the prepared complexes as precursors to low-valent transition metal systems is discussed.

  19. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs.

    Science.gov (United States)

    Yu, Ming-Feng; Li, Wen-Wei; Li, Xiao-Dong; Lin, Xiao-Qing; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Various transition metal oxide and vanadium-containing multi-metallic oxide catalysts were developed for the destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans). A stable PCDD/Fs generating system was installed to support the catalytic destruction tests in this study. Nano-titania supported vanadium catalyst (VOx/TiO2) showed the highest activity, followed by CeOx, MnOx, WOx and finally MoOx. Multi-metallic oxide catalysts, prepared by doping WOx, MoOx, MnOx and CeOx into VOx/TiO2 catalysts, showed different activities on the decomposition of PCDD/Fs. The highest destruction efficiency of 92.5% was observed from the destruction test over VOxCeOx/TiO2 catalyst. However, the addition of WOx and MoOx even played a negative role in multi-metallic VOx/TiO2 catalysts. Characterizations of transition metal oxides and multi-metallic VOx/TiO2 catalysts were also investigated with XRD and TPR. After the catalysts were used, the conversion from high valent metals to low valence states was observed by XPS. PMID:27186687

  20. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  1. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    International Nuclear Information System (INIS)

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals

  2. Synthesis, Structure and Characterization of a Series of Transition Metal Complexes with Tripodal Polyimidazole Ligand

    Institute of Scientific and Technical Information of China (English)

    任颜卫; 吴爱芝; 李珺; 张逢星; 张金花

    2005-01-01

    Five new metal transition metal complexes formed with tripodal polyimidazole ligand tri{2-[2-(1-methyl)imidazoly](methylimino)ethyl}amine ((min)3tren), [Zn(min)3tren](ClO4)2 (1) [Cu(min)3tren](ClO4)2 (2), [Ni(min)3tren]-(ClO4)2 (3), [Co(min)3tren](ClO4)2 (4), and [Mn(min)3tren](ClO4)2·CH3CN (5) were synthesized and characterized by elemental analysis, molar conductances, IR and electronic spectra. Analytical results show 1 : 1 metal-ligand stoichiometry and 2 : 1 type of electrolyte in all metal complexes. The crystal structures of 4 and 5 have been determined. The metal atoms in 4 and 5, being in distorted [MN6] octahedra, are coordinated with three imine nitrogen atoms and three imidazole nitrogen atoms.

  3. Metal insulator transition and Froehlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, Kristel; Raedt, Hans De

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  4. Metal-insulator transition and Frohlich conductivity in the Su-Schrieffer-Heeger model

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.

    1996-01-01

    A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the

  5. Critical exponent of metal-insulator transition in doped semiconductors: the relevance of the Coulomb interaction

    OpenAIRE

    Harashima, Yosuke; Slevin, Keith

    2013-01-01

    We report a simulation of the metal-insulator transition in a model of a doped semiconductor that treats disorder and interactions on an equal footing. The model is analyzed using density functional theory. From a multi-fractal analysis of the Kohn-Sham eigenfunctions, we find $\

  6. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, T.Y.;

    2009-01-01

    directions was observed with the appearance of magnetic-field-induced metal-insulator transition, which further led to a sign crossover in the AMR effect. The AMR crossover may give a direct evidence of the drastic modification of electronic structure or possible orbital reconstruction with the magnetic...

  7. Molecular recognition in homogeneous transition metal catalysis: a biomimetic strategy for high selectivity.

    Science.gov (United States)

    Das, Siddartha; Brudvig, Gary W; Crabtree, Robert H

    2008-01-28

    Traditional methods for selectivity control in homogeneous transition metal catalysis either employ steric effects in a binding pocket or chelate control. In a supramolecular strategy, encapsulation of the substrate can provide useful shape and size selectivity. A fully developed molecular recognition strategy involving hydrogen bonding or solvophobic forces has given almost completely regioselective functionalization of remote, unactivated C-H bonds.

  8. BOND-CHARGE SITE-CHARGE INTERACTION AND METAL-INSULATOR TRANSITIONS

    NARCIS (Netherlands)

    MICHIELSEN, K

    1994-01-01

    Exact-diagonalization and quantum Monte Carlo methods are used to study the occurrence of a metal-insulator transition and the distribution of charges and magnetic moments in the ground state of a one- and two-dimensional half-filled system of correlated electrons, described by a one-band simplified

  9. DFT based study of transition metal nano-clusters for electrochemical NH3 production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Bligaard, Thomas; Rossmeisl, Jan;

    2013-01-01

    energy profile for the reduction of N2 admolecules and N adatoms on transition metal nanoclusters in contact with an acidic electrolyte. The work has established linear scaling relations for the dissociative reaction intermediates NH, NH2, and NH3. In addition, linear scaling relations...

  10. Synthesis of 2-substituted tetraphenylenes via transition-metal-catalyzed derivatization of tetraphenylene

    Science.gov (United States)

    Pan, Shulei; Jiang, Hang; Zhang, Yu; Chen, Dushen

    2016-01-01

    Summary A new strategy for the synthesis of 2-substituted tetraphenylenes through a transition-metal-catalyzed derivatization has been developed. Three types of functionalities, including OAc, X (Cl, Br, I) and carbonyl, were introduced onto tetraphenylene, which allows the easy access to a variety of monosubstituted tetraphenylenes. These reactions could accelerate research on the properties and application of tetraphenylene derivatives. PMID:27559378

  11. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final st

  12. An efficient magnetic tight-binding method for transition metals and alloys

    DEFF Research Database (Denmark)

    Barreteau, Cyrille; Spanjaard, Daniel; Desjonquères, Marie-Catherine

    2016-01-01

    An efficient parameterized self-consistent tight-binding model for transition metals using s, p and d valence atomic orbitals as a basis set is presented. The parameters of our tight-binding model for pure elements are determined from a fit to bulk ab-initio calculations. A very simple procedure ...

  13. Investigation of complexing ability of ionites with various groups to some heavy and transition metal ions

    OpenAIRE

    Yedil Yergozhin; B. Taussarova; R. Ashkeyeva; L. Tugelbayeva

    2013-01-01

    The physico-chemical and complexing properties of the sorbent based on chloromethylated styrene and divinylbenzene copolymer with nicotinamide groups and copolymers based on metacryloilaminobenzene acids with 2-methyl-5-vinylpyridineisomers are studied. By potentiometric titration method the constant of polyelectrolytes functional groups ionization, the composition and strength of the resulting complexes with ions of some heavy and transition metals are determined.

  14. Preparation, Analysis, and Characterization of Some Transition Metal Complexes--A Holistic Approach

    Science.gov (United States)

    Blyth, Kristy M.; Mullings, Lindsay R.; Philips, David N.; Pritchard, David; van Bronswijk, Wilhelm

    2005-01-01

    The chemical and instrumental methods used in the study of transition-metal complexes provide a complete determination of their structure, bonding, and properties. It unites concepts of analytical, inorganic, and physical chemistry in a way that students might appreciate that these areas of chemistry are not different.

  15. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    OpenAIRE

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan; José I. Martínez; Man, Isabela C.; Koper, Marc T. M.; Kitchin, John R.; Rossmeisl, Jan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains the existence of scaling relationships among these compounds.

  16. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    Science.gov (United States)

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  17. Disorder-driven metal-insulator transitions from dirty black holes

    CERN Document Server

    Fadafan, Kazem Bitaghsir

    2016-01-01

    In this paper we study disorder-driven metal-insulator transition in the holographic disordered Einstein-Maxwell-dilaton theories. We study analytically the DC conductivity of such holographic models in terms of black hole horizon data. As it is expected, the electrical conductivity does not obey the lower bound.

  18. THE BREMSSTRAHLUNG ISOCHROMAT SPECTRA OF D(0) TRANSITION-METAL OXIDES

    NARCIS (Netherlands)

    SORIANO, L; ABBATE, M; ALDERS, D; SANZ, JM

    1994-01-01

    We present and discuss the bremsstrahlung isochromat spectra (BIS) of four d0 transition-metal oxides, namely ZrO2, HfO2, Nb2O5, and Ta2O5. The spectra are related to the density of unoccupied states in the conduction band. They give directly the magnitude of the crystal-field splitting and the disp

  19. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    Science.gov (United States)

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  20. A New Fluorescent Sensor for Transition Metal Ions in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new fluorescent sensor consisted of fluorenyl and dioxotetraaza unit, namely, 2,10-dimethyl-6-(9-fluorenyl)-1,4,8,11-tetraazaundencane-5,7-dione (L), was synthesized. It is a fluorescent sensor for transition metal ions in aqueous solution.

  1. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan;

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains the...

  2. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.;

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...

  3. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of...

  4. A new solution of the Falicov-Kimball metal-insulator transition model

    International Nuclear Information System (INIS)

    Using electron correlation approximation of Zubarev, we solve the Falicov-Kimball model of a metal-insulator transition. Calculation for cubic lattices with a narrow band width predict splitting of the band for non-zero intrasite interaction. For a large band width, we find a single band in agreement with previous calculations. (author). 21 refs, 1 fig

  5. Photoinduced Coherent Spin Fluctuation in Primary Dynamics of Insulator to Metal Transition in Perovskite Cobalt Oxide

    Directory of Open Access Journals (Sweden)

    Arima T.

    2013-03-01

    Full Text Available Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.

  6. BEP-relations for N2 dissociation over stepped transition metal and alloy surfaces

    DEFF Research Database (Denmark)

    Fronczek-Munter, Ture Rønved; Bligaard, Thomas; Christensen, Claus H.;

    2008-01-01

    We present density functional theory (DFT) calculations for N(2) dissociation on stepped face-centred cubic (211) surface slabs. By using the same crystal structure, the same adsorption site for atomic nitrogen, and the same transition-state bond length of N(2) over a range of pure metal surfaces...

  7. Group 4 Transition-Metal Complexes of an Aniline–Carbene–Phenol Ligand

    KAUST Repository

    Despagnet-Ayoub, Emmanuelle

    2013-05-24

    Attempts to install a tridentate aniline-NHC-phenol (NCO) ligand on titanium and zirconium led instead to complexes resulting from unexpected rearrangement pathways that illustrate common behavior in carbene-early- transition-metal chemistry. © 2013 American Chemical Society.

  8. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas;

    2006-01-01

    We investigate the dielectric properties of a thin VO2 film in the terahertz frequency range in the vicinity of the semiconductor-metal phase transition. Phase-sensitive broadband spectroscopy in the frequency region below the phonon bands of VO2 gives insight into the conductive properties...

  9. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton;

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps are ...

  10. A magnetic resonance study of 3d transition metals and thermal donors in silicon

    International Nuclear Information System (INIS)

    This thesis describes a study of 3d-transition metal impurities in silicon (titanium and iron in particular) and a study of oxygen-related heat-treatment centers in silicon, both carried out mainly by magnetic resonances techniques like EPR and ENDOR. 119 refs.; 31 figs.; 14 tabs

  11. Ambipolar Transport and Gate-Induced Superconductivity in Layered Transition Metal Dichalcogenides

    Science.gov (United States)

    Shi, Wu; Ye, Jianting; Zhang, Yijing; Suzuki, Ryuji; Saito, Yu; Iwasa, Yoshihiro

    2014-03-01

    Transition metal dichalcogenides (TMDs) are well known van der Waals layered materials that are easy to be exfoliated into atomically flat nano scale flakes. Owing to high efficiency of electrical double layer (EDL) dielectrics, thin flakes of TMDs have achieved high performance ambipolar transistor operation and established metallic states with high mobility, which are ideal for inducing superconductivity. Here, we report a comprehensive study of ambipolar transport behaviors in the EDL transistors (EDLTs) of MoS2, MoSe2 and MoTe2 thin flakes down to 2 K. In comparison, MoSe2 EDLT displayed a well-balanced ambipolar transistor operation while the other two showed opposite predominance in electron and hole accumulation, respectively. By modulation of carrier densities, the metal insulator transition (MIT) was observed in both electron and hole transport measurements. Particularly, superconducting transitions were reached after the formation of metallic states in the electron side. The phase diagram of transition temperature-carrier density was established and a dome-shaped structure was confirmed, revealing a universal feature of gate-induce superconductivity in layered band insulators. Present address: University of Groningen.

  12. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces

    DEFF Research Database (Denmark)

    Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank;

    2011-01-01

    Using density functional theory calculations we show that the adsorption energies for C2Hx-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws...

  13. First-principles calculations of the vacancy formation energy in transition and noble metals

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Abrikosov, Igor A.; Johansson, Börje;

    1999-01-01

    Abstract: The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble metals have been calculated within the local-density approximation. The calculations employ the order-N locally self-consistent Green's-function method in conjunction with a supercel...

  14. Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3.

    Science.gov (United States)

    Luo, Langli; Zhao, Benliang; Xiang, Bin; Wang, Chong-Min

    2016-01-26

    Transition-metal chalcogenides (TMCs) can be used either as intercalation cathodes or as conversion-type anodes for lithium ion batteries, for which two distinctively different lithiation reaction mechanisms govern the electrochemical performance of TMCs. However, the factors that control the transition of lithiation mechanisms remain elusive. In this work, we investigated the lithiation process of NbSe3 ribbons using in situ transmission electron microscopy and observed a size-dependent transition from intercalation to the conversion reaction. Large NbSe3 ribbons can accommodate high concentrations of Li(+) through intercalation by relaxing their internal spacing, while lithiation of small NbSe3 ribbons proceeds readily to full conversion. We found that the size-dependent variation of the lithiation mechanism is associated with both Li(+) diffusion in NbSe3 and the accommodation of newly formed phases. For large NbSe3 ribbons, the intercalation-to-conversion transition is impeded by both long-range Li(+) diffusion and large-scale accommodation of volume expansion induced by the formation of new phases. These results demonstrate the inherent structural instability of NbSe3 as an intercalation cathode and its high lithiation rate as a promising conversion-type anode.

  15. Size-controlled Intercalation to Conversion Transition in Lithiation of Transition-Metal Chalcogenides – NbSe3

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Benliang; Xiang, Bin; Wang, Chong M.

    2016-01-23

    Transition metal chalcogenides (TMCs) can either be used as intercalation cathodes or as conversion type anodes for lithium ion batteries, for which two distinctively different lithiation reaction mechanisms govern the electrochemical performance of TMCs. However, it remains elusive that what controls the transition of lithiation mechanisms. Herein, we investigated the lithiation process of NbSe3 ribbons using in situ transmission electron microscopy (TEM) and observed a size dependent transition from intercalation to conversion reaction. The large NbSe3 ribbons can accommodate high concentration of Li+ through intercalation by relaxing its internal spacing, while lithiation of small NbSe3 ribbons proceeds readily to full conversion reaction. We find that the size dependent variation of lithiation mechanism is attributed to the Li+ diffusion in NbSe3 and the accommodation of newly formed phases, i.e., insufficient Li+ diffusion and limited space for accommodating the volume expansion induced by forming new phases in large size ribbons both impede the intercalation-to-conversion transition. These results demonstrate the inherent structural instability of NbSe3 as an intercalation cathode and fast lithiation rate as a promising conversion type anode.

  16. Hybrid compounds of Keggin polyoxotungstate with transition metal ion as the central atom. Synthesis, structure and properties

    Science.gov (United States)

    Li, Xiao-Min; Chen, Ya-Guang; Shi, Tian

    2016-02-01

    The compounds (Hbipy)2[Co(bipy)2(H2O)4]2(CoW12O40)·2bipy·7H2O (1) and [Ni2(Hbipy)2(bipy)(H2O)4(H2W12O40)]·5H2O (2) (bipy = 4,4-bipyridine) were synthesized hydrothermally and characterized by elemental analysis, IR spectroscopy, TG analyses, solid ultraviolet diffuse spectroscopy and single crystal X-ray diffraction method. In 1 the complex ions, [Co(bipy)2(H2O)4]2+, construct a supramolecular layer through π-π stacking interaction. The heteropolyanions with central Co atom and supramolecular layers are linked by hydrogen bonds. In 2 a 2D structure is formed from metatungstate anions and binuclear Ni-bipy complexes through the coordination of metatungstate anions and bipy to Ni ions. Between the layers and bipyridine molecules are the hydrogen bond interactions. The formation of 1 and 2 shows that the solution acidity and metal ions influence greatly the structure of the compounds. Solid ultraviolet diffusion results indicate that the compounds 1 and 2 are potential semiconductor materials. In 1 and 2 there exists a weak antiferromagnetic interaction.

  17. Transition metal catalysis in the generation of petroleum and natural gas

    Science.gov (United States)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  18. Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides.

    Science.gov (United States)

    Zhou, Yungang; Yang, Chengfei; Xiang, Xia; Zu, Xiaotao

    2013-09-14

    Motivated by recent investigations of semi-decorated two dimensional honeycomb structures, we demonstrated, via spin-polarized molecular-dynamics simulations and density-functional-theory calculations, that semi-sulfuretted transition-metal dichalcogenides of MX type (M = V, Nb, Ta; X = S, Se, Te) are stable and display remarkable magnetism. The unpaired d electron of the transition-metal atom arising from the breakage of the M-X bond is the mechanism behind the induction of the magnetism. The remarkable magnetism of the transition-metal atoms is caused by ferromagnetic coupling due to the competitive effects of through-bond interactions and through-space interactions. This implies the existence of an infinite ferromagnetic sheet with structural integrity and magnetic homogeneity. The estimated Curie temperatures suggest that the ferromagnetism can be achieved above room temperature in the VS, VSe, VTe, NbTe and TaTe sheets. Depending on the species of the M and X atoms, the MX sheet can be a magnetic metal, magnetic semiconductor or half-metal. Furthermore, in contrary to the recently reported semi-hydrogenated and semi-fluorinated layered materials consisting of B, C, N, etc., the MX sheets with many unpaired d electrons can offer a much stronger spin polarization and possess a more stable ferromagnetic coupling, which is critical for practical nanoscale device applications.

  19. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  20. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  1. Insulator to correlated metal transition in V_1-xMo_xO_2

    Energy Technology Data Exchange (ETDEWEB)

    Klimczuk, Tomasz [Los Alamos National Laboratory; Ronning, Filip [Los Alamos National Laboratory; Holman, Katherine [PRINCETON UNIV; Mcqueen, Tyrel M [PRINCETON UNIV; Williams, Anthony J [PRINDCETON UNIV; Stephens, P W [BNL; Zandbergen, Henny W [DELFT INSTIT OF TECH; Xu, Q [DELFT INSTIT OF TECH; Cava, Robert J [PRINCETON UNIV

    2009-01-01

    The change from metallic to insulating states is one of the most dramatic transitions that solids undergo on cooling or chemical doping. Many materials display this transition, but only a handful have the right combination of crystal structure and physical properties to serve as model systems. VO{sub 2} is one of those materials. Using Mo as a chemical dopant in VO{sub 2}, we find unanticipated phenomenology for both the electronic and structural characteristics of the resulting insulator to metal transition. The results support a complex, previously proposed scenario involving the coexistence of both electron repulsion and electron pairing for yielding an insulator in VO{sub 2}, but not simply; many issues are raised about local versus itinerant behavior and structure-property correlations in this most iconic ofdoped correlated electron systems.

  2. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    Science.gov (United States)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2), (CoO),(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  3. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism

    International Nuclear Information System (INIS)

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1−xVxSe2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior. (paper)

  4. Giant perpendicular magnetic anisotropy of an individual atom on two-dimensional transition metal dichalcogenides

    Science.gov (United States)

    Odkhuu, Dorj

    2016-08-01

    Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.

  5. Local electronic structure and magnetic properties of 3d transition metal doped GaAs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The local electronic structure and magnetic properties of GaAs doped with 3 transition metal(Sc,Ti,V,Cr,Mn,Fe,Co,Ni) were studied by using discrete varia tional method(DVM) based on density functional theory.The calculated result in dicated that the magnetic moment of transition metal increases first and then de creases,and reaches the maximum value when Mn is doped into GaAs.In the cas of Mn concentration of 1.4%,the magnetic moment of Mn is in good agreement wit the experimental result.The coupling between impure atoms in the system with tw impure atoms was found to have obvious variation.For different transition meta the coupling between the impure atom and the nearest neighbor As also has dif ferent variation.

  6. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.

    Science.gov (United States)

    Xing, Ying; Zhang, Hui-Min; Fu, Hai-Long; Liu, Haiwen; Sun, Yi; Peng, Jun-Ping; Wang, Fa; Lin, Xi; Ma, Xu-Cun; Xue, Qi-Kun; Wang, Jian; Xie, X C

    2015-10-30

    The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the transport properties of atomically thin gallium films and found that the films undergo superconductor-metal transitions with increasing magnetic field. Approaching the zero-temperature quantum critical point, we observed divergence of the dynamical critical exponent, which is consistent with the Griffiths singularity behavior. We interpret the observed superconductor-metal quantum phase transition as the infinite-randomness critical point, where the properties of the system are controlled by rare large superconducting regions.

  7. Electrodynamical enhancement of optical transitions in semiconductor and metal-semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Semiconductor and metal-semiconductor nanostructures are shown to exhibit electrodynamical resonances analogous to the Froehlich resonance for metal nanoparticles in a dielectric host. If the transition frequency of an optical transition in the nanostructure core coincides with one of the resonance frequencies of the nanostructure, the strength of the optical transition is dramatically enhanced by up to 4-6 orders of magnitude. The resonance frequencies are determined by dielectric permittivities of materials of host and nanostructure, and by sizes of the nanostructure. That enables to tune the resonance frequencies to desired values in an extremely wide spectral range-from ultraviolet to terahertz, engineering thus optical properties of high-efficiency nanostructured optical materials for numerous applications.

  8. Photoinduced insulator-metal transition and nonlinear optical response of correlated electrons - a DMFT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, N; Oka, T; Aoki, H, E-mail: tsuji@cms.phys.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2009-02-01

    We investigate a photoinduced insulator-metal transition in the Falicov-Kimball model with the dynamical mean-field theory (DMFT) extended to nonequilibrium systems in periodic modulations in time. When the photon energy of the pump light is {Omega}{approx} (U: the interaction strength), a Drude-like peak is found to grow in the optical conductivity spectrum, which is an evidence that the system is driven into a metallic state. During the transition, the band gap does not collapse, whereas the distribution function exhibits a non-monotonic behaviour away from the Fermi distribution. This indicates that the transition cannot be accounted for by heating effects, but creation of photo-carriers is responsible.

  9. Nanopatterning of transition metal surfaces via electrochemical dimple array formation.

    Science.gov (United States)

    Singh, Sherdeep; Barden, Warren R T; Kruse, Peter

    2008-12-23

    Nanoscale surface patterning is of great importance for applications ranging from catalysts to biomaterials. We show the formation of ordered nanoscale dimple arrays on titanium, tungsten, and zirconium during electropolishing, demonstrating versatility of a process previously only reported for tantalum. This is a rare example of an electrochemical pattern formation process that can be translated to other materials. The dimpled surfaces have been characterized with scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, and electrochemical conditions were optimized for each material. While conditions for titanium and tungsten resemble those for tantalum, zirconium requires a different type of electrolyte. Given the appropriate electropolishing chemistry, formation of these patterns should be possible on any metal surface. The process is very robust on homogeneous surfaces, but sensitive to inhomogeneities in chemical composition, such as in the case of differentially etched alloys. An alternative process for some materials such as platinum is the coating of a dimpled substrate with a thin film of the required material. PMID:19206279

  10. Transition Metal Carbohydrazide Nitrates: Burn-rate Modifiers for Propellants

    Directory of Open Access Journals (Sweden)

    S. H. Sonawane

    2006-07-01

    Full Text Available This paper discusses the synthesis and characterisation of cobalt (Co, nickel (Ni andcopper (Cu carbohydrazide nitrates. In differential scanning calorimetry (DSC, the complexesexhibited exothermic decomposition indicating their energetic nature. The commencement ofdecomposition was observed at 220 °C for Ni complex, and at 160 °C for Co complex whereasthat of Cu complex occurred at 75 °C. In view of the better thermal stability, Ni and Co complexeswere selected for further study. The activation energy of decomposition of Ni and Co complexeswere found to be 47 kcal/mol and 60 kcal/mol respectively. Impact and friction sensitivity testresults revealed relatively lower vulnerability of carbohydrazide cobalt nitrate. Its incorporationin an ammonium perchlorate (AP-based composite propellant led to 9-19 per cent enhancementwhereas that of carbohydrazide nickel nitrate resulted in 28-74 per cent enhancement in burningrates in the pressure range 1.9 MPa to 8.8 MPa. Exothermic decomposition of the coordinationcomplexes on propellant surface and involvement of metal at molecular level formed ondecomposition of the complexes in combustion environment of composite propellant may beattributed to the catalytic effect of this class of compounds on the lines of reported literature.

  11. Phase-Transfer Activation of Transition Metal Catalysts.

    Science.gov (United States)

    Tuba, Robert; Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-11-01

    With metal-based catalysts, it is quite common that a ligand (L) must first dissociate from a catalyst precursor (L'n M-L) to activate the catalyst. The resulting coordinatively unsaturated active species (L'n M) can either back react with the ligand in a k-1 step, or combine with the substrate in a k2 step. When dissociation is not rate determining and k-1 [L] is greater than or comparable to k2 [substrate], this slows the rate of reaction. By introducing a phase label onto the ligand L and providing a suitable orthogonal liquid or solid phase, dramatic rate accelerations can be achieved. This phenomenon is termed "phase-transfer activation". In this Concept, some historical antecedents are reviewed, followed by successful applications involving fluorous/organic and aqueous/organic liquid/liquid biphasic catalysis, and liquid/solid biphasic catalysis. Variants that include a chemical trap for the phase-labeled ligands are also described. PMID:26338471

  12. Mott insulator-to-metal transition in yttrium-doped CaIrO3

    Science.gov (United States)

    Gunasekera, J.; Chen, Y.; Kremenak, J. W.; Miceli, P. F.; Singh, D. K.

    2015-02-01

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

  13. Mott insulator-to-metal transition in yttrium-doped CaIrO₃.

    Science.gov (United States)

    Gunasekera, J; Chen, Y; Kremenak, J W; Miceli, P F; Singh, D K

    2015-02-11

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators. PMID:25605689

  14. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules.

    Science.gov (United States)

    Karolak, M; Jacob, D

    2016-11-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect. PMID:27605217

  15. Growth and electronic structure of single-layered transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Dendzik, Maciej

    2016-01-01

    TMDCs is directly studied with angle-resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy (XPS) techniques. Experimental results are compared with density-functional theory calculations (DFT), both for a free-standing layer and for a layer adsorbed on a metallic substrate......The discovery of graphene has opened a novel research direction focused on the properties of 2D materials. Transition metal dichalcogenides (TMDCs) were quickly identified as important materials due to the great variety of electronic properties that they manifest – properties that are markedly...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host...

  16. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  17. First-principles calculations on implanted TiO2 by 3d transition metal ions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3d transition metal (V, Cr and Fe) ions are implanted into TiO2 by the method of metal ion implantation. The electronic band structures of TiO2 films doped 3d transition metal ions have been analyzed by ab initio band calculations based on a self-consistent full-potential linearized augmented plane-wave method within the first-principle formalism. Influence of implantation on TiO2 films is examined by the method of UV-visible spectrometry. The results of experiment and calculation show that the optical band gap of TiO2 films is narrowed by ion implantation. The calculation shows that the 3d state of V, Cr and Fe ions plays a significant role in red shift of UV-Vis absorbance spectrum.

  18. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction

    DEFF Research Database (Denmark)

    Skulason, Egill; Bligaard, Thomas; Gudmundsdottir, Sigrıdur;

    2012-01-01

    such as Sc, Y, Ti, and Zr bind N-adatoms more strongly than H-adatoms, a significant production of ammonia compared with hydrogen gas can be expected on those metal electrodes when a bias of 1 V to 1.5 V vs. SHE is applied. Defect-free surfaces of the early transition metals are catalytically more active......Theoretical studies of the possibility of forming ammonia electrochemically at ambient temperature and pressure are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction...... scales with the free energy difference in each elementary step. The most active surfaces, on top of the volcano diagrams, are Mo, Fe, Rh, and Ru, but hydrogen gas formation will be a competing reaction reducing the faradaic efficiency for ammonia production. Since the early transition metal surfaces...

  19. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  20. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.