Sample records for binds phosphatase pp2a

  1. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity.

    Directory of Open Access Journals (Sweden)

    Brigitte Bollag

    Full Text Available BACKGROUND: The human polyomavirus, JC virus (JCV produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg and three T' proteins, but little is known about small tumor antigen (tAg functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A, and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.

  2. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression

    DEFF Research Database (Denmark)

    Kruse, Thomas; Zhang, Gang; Larsen, Marie Sofie Yoo;


    and mutation of these residues prevents the establishment of a proper metaphase plate and delays cells in mitosis. Furthermore, we show that phosphorylation of S670 and S676 stimulates the binding of B56 to BubR1 and that BubR1 targets a pool of B56 to kinetochores. Our data suggests that BubR1 counteracts...

  3. Protein phosphatase 2a (PP2A binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    Directory of Open Access Journals (Sweden)

    Jones Candace A


    Full Text Available Abstract Background Striatin, a putative protein phosphatase 2A (PP2A B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM, which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3 protein, the mammalian Mps one binder (MOB homolog, Mob3/phocein, the mammalian sterile 20-like (Mst kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via

  4. Synthesis of Highly Selective Submicromolar Microcystin‐Based Inhibitors of Protein Phosphatase (PP)2A over PP1 (United States)

    Fontanillo, Miriam; Zemskov, Ivan; Häfner, Maximilian; Uhrig, Ulrike; Salvi, Francesca; Simon, Bernd; Wittmann, Valentin


    Abstract Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure–activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid‐ and solution‐phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues. PMID:27723199

  5. Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. (United States)

    Kaur, Amanpreet; Westermarck, Jukka


    Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.

  6. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    Institute of Scientific and Technical Information of China (English)

    Dries Castermans; Ils Somers; Johan Kriel; Wendy Louwet; Stefaan Wera; Matthias Versele; Veerle Janssens; Johan M Thevelein


    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes.Here,we reveal that both enzymes are direct targets of glucose sensing.Addition of glucose to glucosedeprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1.Glucose activation of PP2A is controlled by regulatory subunits Rts1,Cdc55,Rrd1 and Rrd2.It is associated with rapid carboxymethylation of the catalytic subnnits,which is necessary but not sufficient for activation.Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1.Absence of Gac1,GIc8,Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation.Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase.PP2A activation was dependent on PP1 subunits Reg1 and Shpl while PP1 activation was dependent on PP2A subunit Rts1.Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Regl dependent.Regl-GIc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shpl also causes strong derepression of the invertase gene SUC2.Deletion of the PP2A subunits Pph21 and Pph22,Rrd1 and Rrd2,specifically enhanced the derepression level of SUC2,indicating that PP2A counteracts SUC2 derepression.Interestingly,the effect of the regulatory subunit Rtsl was consistent with its role as a subunit of both PP2A and PP1,affecting derepression and repression of SUC2,respectively.We also show that abolished phosphatase activation,except by reg1A,does not completely block Snf1 dephosphorylation after addition of glucose.Finally,we show that glucose activation of the cAMP-PKA (protein kinase A)pathway is required for glucose activation of both PP2A and PP1.Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose

  7. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. (United States)

    Kitagawa, Daiju; Flückiger, Isabelle; Polanowska, Jolanta; Keller, Debora; Reboul, Jérôme; Gönczy, Pierre


    Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.

  8. Molecular cloning, expression and functional analysis of three subunits of protein phosphatase 2A (PP2A) from black tiger shrimps (Penaeus monodon). (United States)

    Zhao, Chao; Wang, Yan; Fu, Mingjun; Yang, Keng; Qiu, Lihua


    Protein phosphatase 2A (PP2A) is a cellular serine-threonine (Ser/Thr) phosphatase that plays a crucial role in regulating most cellular functions. In the present study, the full-length cDNAs of three subunits of PmPP2A (PmPP2A-A, PP2A-B and PP2A-C) were cloned from Penaeus monodon, which are the first available for shrimps. Sequence analysis showed that PmPP2A-A, PmPP2A-B and PmPP2A-C encoded polypeptides of 591, 443, and 324 amino acids, respectively. The mRNAs of three subunits of PmPP2A were expressed constitutively in all tissues examined, and predominantly in the ovaries. In ovarian maturation stages, the three subunits of PmPP2A were continuously but differentially expressed. Dopamine and 5-hydroxytryptamine injection experiments were conducted to study the expression profile of three subunits of PmPP2A, and the results indicated that PmPP2A played a negative regulatory role in the process of ovarian maturation. In addition, the recombinant proteins of three subunits of PmPP2A were successfully obtained, and the phosphatase activity of PmPP2A was tested in vitro. The results of this study will advance our understanding about the molecular mechanisms of PmPP2A in Penaeus monodon.

  9. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. (United States)

    Foley, Emily A; Maldonado, Maria; Kapoor, Tarun M


    Error-free chromosome segregation depends on the precise regulation of phosphorylation to stabilize kinetochore-microtubule attachments (K-fibres) on sister chromatids that have attached to opposite spindle poles (bi-oriented). In many instances, phosphorylation correlates with K-fibre destabilization. Consistent with this, multiple kinases, including Aurora B and Plk1, are enriched at kinetochores of mal-oriented chromosomes when compared with bi-oriented chromosomes, which have stable attachments. Paradoxically, however, these kinases also target to prometaphase chromosomes that have not yet established spindle attachments and it is therefore unclear how kinetochore-microtubule interactions can be stabilized when kinase levels are high. Here we show that the generation of stable K-fibres depends on the B56-PP2A phosphatase, which is enriched at centromeres/kinetochores of unattached chromosomes. When B56-PP2A is depleted, K-fibres are destabilized and chromosomes fail to align at the spindle equator. Strikingly, B56-PP2A depletion increases the level of phosphorylation of Aurora B and Plk1 kinetochore substrates as well as Plk1 recruitment to kinetochores. Consistent with increased substrate phosphorylation, we find that chemical inhibition of Aurora or Plk1 restores K-fibres in B56-PP2A-depleted cells. Our findings reveal that PP2A, an essential tumour suppressor, tunes the balance of phosphorylation to promote chromosome-spindle interactions during cell division.

  10. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. (United States)

    Hanyu, Yuichiro; Imai, Kumiko K; Kawasaki, Yosuke; Nakamura, Takahiro; Nakaseko, Yukinobu; Nagao, Koji; Kokubu, Aya; Ebe, Masahiro; Fujisawa, Asuka; Hayashi, Takeshi; Obuse, Chikashi; Yanagida, Mitsuhiro


    Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common beta-(Amk2) and gamma-(Cbs2) subunits.

  11. URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells. (United States)

    Mita, Paolo; Savas, Jeffrey N; Briggs, Erica M; Ha, Susan; Gnanakkan, Veena; Yates, John R; Robins, Diane M; David, Gregory; Boeke, Jef D; Garabedian, Michael J; Logan, Susan K


    URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.

  12. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase.

    Directory of Open Access Journals (Sweden)

    Victòria Ceperuelo-Mallafré

    Full Text Available Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes.ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR.ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG.ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.

  13. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A (United States)

    Persad, Amit; Venkateswaran, Geetha; Hao, Li; Garcia, Maria E.; Yoon, Jenny; Sidhu, Jaskiran; Persad, Sujata


    Dysregulation of Wnt/β-catenin signaling has been associated with the development and progression of many cancers. The stability and subcellular localization of β-catenin, a dual functional protein that plays a role in intracellular adhesion and in regulating gene expression, is tightly regulated. However, little is known about the transcriptionally active form of β-catenin, Active Beta Catenin (ABC), that is unphosphorylated at serine 37 (Ser37) and threonine 41 (Thr41). Elucidating the mechanism by which β-catenin is activated to generate ABC is vital to the development of therapeutic strategies to block β-catenin signaling for cancer treatment. Using melanoma, breast and prostate cancer cell lines, we show that while cellular β-catenin levels are regulated by the Wnt pathway, cellular ABC levels are mainly regulated by the PI3K pathway and are dependent on the phosphatase activity of the protein phosphatase PP2A. Furthermore, we demonstrate that although the PI3K/PTEN pathway does not regulate total β-catenin protein levels within the cell, it plays a role in regulating the subcellular localization of β-catenin. Our results support a novel functional interaction/cross-talk between the PTEN/PI3K and Wnt pathways in the regulation of the subcellular/nuclear levels of ABC, which is crucially important for the protein's activity as a transcription factor and its biological effects in health and disease.

  14. PP2A: The Wolf in Sheep’s Clothing?

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Maeve [Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666 (Ireland); Kiely, Patrick A., E-mail: [Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666 (Ireland); Stokes Institute, University of Limerick 78666, Limerick (Ireland)


    Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.

  15. Expression of protein phosphatases (PP-1, PP-2A, PP-2B and PTP-1B) and protein kinases (MAP kinase and P34cdc2) in the hippocampus of patients with Alzheimer disease and normal aged individuals. (United States)

    Pei, J J; Sersen, E; Iqbal, K; Grundke-Iqbal, I


    Microtubule-associated protein tau is abnormally hyperphosphorylated in the brain of patients with Alzheimer disease (AD). Previous studies have shown (i) that in vitro tau can be phosphorylated to an Alzheimer abnormally phosphorylated state-like protein by proline-directed protein kinases MAP kinase and p34cdc2, and (ii) that the AD abnormally phosphorylated tau can be in vitro dephosphorylated by protein phosphatases PP-2B, PP-2A and PP-1 and not by PP-2C. However, to have a direct effect on the regulation of phosphorylation of tau, these enzymes should be present in the affected neurons. In the present study immunocytochemical localization of protein phosphatases PP-1, PP-2A, PP-2B and PTP, and protein kinases MAP kinase and p34cdc2 were studied in the hippocampal formation of AD and as a control in non-demented elderly patients. All the protein phosphatases and protein kinases studied were localized to both granular and pyramidal neurons. In the pyramidal neurons, the enzymes staining was observed in neuronal soma and neurites. PTP-1B, PP-1 and PP-2A were also highly expressed in microglia. The topographical distributions of all the enzymes studied were similar, i.e. the intensity of immunostaining in hippocampus in end-plate (CA3 and CA4) > prosubiculum, subiculum > entorhinal cortex > dentate gyrus > CA2 > CA1. Furthermore, the expression of all the enzymes was also observed in the tangle-bearing neurons. The PP-2B staining of the tangle-bearing neurons was weaker than the unaffected neurons in the same tissue section field in AD cases.

  16. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. (United States)

    Saddoughi, Sahar A; Gencer, Salih; Peterson, Yuri K; Ward, Katherine E; Mukhopadhyay, Archana; Oaks, Joshua; Bielawski, Jacek; Szulc, Zdzislaw M; Thomas, Raquela J; Selvam, Shanmugam P; Senkal, Can E; Garrett-Mayer, Elizabeth; De Palma, Ryan M; Fedarovich, Dzmitry; Liu, Angen; Habib, Amyn A; Stahelin, Robert V; Perrotti, Danilo; Ogretmen, Besim


    Mechanisms that alter protein phosphatase 2A (PP2A)-dependent lung tumour suppression via the I2PP2A/SET oncoprotein are unknown. We show here that the tumour suppressor ceramide binds I2PP2A/SET selectively in the nucleus and including its K209 and Y122 residues as determined by molecular modelling/simulations and site-directed mutagenesis. Because I2PP2A/SET was found overexpressed, whereas ceramide was downregulated in lung tumours, a sphingolipid analogue drug, FTY720, was identified to mimick ceramide for binding and targeting I2PP2A/SET, leading to PP2A reactivation, lung cancer cell death, and tumour suppression in vivo. Accordingly, while molecular targeting of I2PP2A/SET by stable knockdown prevented further tumour suppression by FTY720, reconstitution of WT-I2PP2A/SET expression restored this process. Mechanistically, targeting I2PP2A/SET by FTY720 mediated PP2A/RIPK1-dependent programmed necrosis (necroptosis), but not by apoptosis. The RIPK1 inhibitor necrostatin and knockdown or genetic loss of RIPK1 prevented growth inhibition by FTY720. Expression of WT- or death-domain-deleted (DDD)-RIPK1, but not the kinase-domain-deleted (KDD)-RIPK1, restored FTY720-mediated necroptosis in RIPK1(-/-) MEFs. Thus, these data suggest that targeting I2PP2A/SET by FTY720 suppresses lung tumour growth, at least in part, via PP2A activation and necroptosis mediated by the kinase domain of RIPK1.

  17. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55 for timely mitotic progression.

    Directory of Open Access Journals (Sweden)

    Maria Angeles Juanes

    Full Text Available Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2A(Cdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2 bind to PP2A(Cdc55 in a cell cycle-regulated manner upon Greatwall (Rim15-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2A(Cdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2A(Cdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2A(Cdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.

  18. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue binding phosphatases. (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K


    Implication of protein phosphatases in Alzheimer disease led us to a systemic investigation of the identification of these enzyme activities in human brain. Human brain phosphatases eluted from DEAE-Sephacel with 0.22 M NaCl were resolved into two main groups by affi-gel blue chromatography, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue-binding phosphatases were further separated into four different phosphatases, designated P1, P2, P3, and P4 by calmodulin-Sepharose 4B and poly-(L-lysine)-agarose chromatographies. These four phosphatases exhibited activities towards nonprotein phosphoester and two of them, P1 and P4, could dephosphorylate phosphoproteins. The activities of the four phosphatases differed in pH optimum, divalent metal ion requirements, sensitivities to various inhibitors and substrate affinities. The apparent molecular masses as estimated by gel-filtration for P1, P2, P3, and P4 were 97, 45, 42, and 125 kDa, respectively. P1 is markedly similar to PP2B from bovine brain and rabbit skeletal muscle. P4 was labeled with anti-PP2A antibody and may represent a new subtype of PP2A. P1 and P4 were also effective in dephosphorylating Alzheimer disease abnormally hyperphosphorylated tau (AD P-tau). The resulting dephosphorylated AD P-tau had its activity restored in promoting assembly of microtubules in vitro. These results suggest that P1 and P4 might be involved in the regulation of phosphorylation of tau in human brain, especially in neurodegenerative conditions like Alzheimer's disease which are characterized by the abnormal hyperphosphorylation of this protein.

  19. The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II. (United States)

    Chambon, Jean-Philippe; Touati, Sandra A; Berneau, Stéphane; Cladière, Damien; Hebras, Céline; Groeme, Rachel; McDougall, Alex; Wassmann, Katja


    Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II.

  20. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper


    phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...... glucan phosphatases showed similar affinities for the short oligosaccharide β-cyclodextrin. We performed structure-guided mutagenesis to define the mechanism of these differences. We found that the carbohydrate binding module (CBM) domain provided a stronger binding affinity compared to surface binding...

  1. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;


    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  2. PR65A phosphorylation regulates PP2A complex signaling.

    Directory of Open Access Journals (Sweden)

    Kumar Kotlo

    Full Text Available Serine-threonine Protein phosphatase 2 A (PP2A, a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac; a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa; and one of at least 18 associated variable regulatory proteins (B subunits classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314. Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A and non-phosphorylated (N-PR65A amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A, elongation factor 2, heat shock protein 60 (HSP60, NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.

  3. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;


    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology....

  4. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models.

    Directory of Open Access Journals (Sweden)

    Nirma D Perera

    Full Text Available Bioenergetic abnormalities and metabolic dysfunction occur in amyotrophic lateral sclerosis (ALS patients and genetic mouse models. However, whether metabolic dysfunction occurs early in ALS pathophysiology linked to different ALS genes remains unclear. Here, we investigated AMP-activated protein kinase (AMPK activation, which is a key enzyme induced by energy depletion and metabolic stress, in neuronal cells and mouse models expressing mutant superoxide dismutase 1 (SOD1 or TAR DNA binding protein 43 (TDP-43 linked to ALS. AMPK phosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated in cytoplasmic granules in motor neurons, but not in presymptomatic mice. AMPK phosphorylation also occurred in peripheral tissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatic transgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase, protein phosphatase 2A (PP2A, is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlates with progression in mutant SOD1-mediated disease, AMPK inactivation mediated by PP2A is associated with mutant TDP-43-linked ALS.

  5. PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1. (United States)

    Guergnon, Julien; Godet, Angélique N; Galioot, Amandine; Falanga, Pierre Barthélémy; Colle, Jean-Hervé; Cayla, Xavier; Garcia, Alphonse


    Protein phosphatase 2A (PP2A) is a large family of holoenzymes that comprises 1% of total cellular proteins and accounts for the majority of Ser/Thr phosphatase activity in eukaryotic cells. Although initially viewed as constitutive housekeeping enzymes, it is now well established that PP2A proteins represent a family of highly and sophistically regulated phosphatases. The past decade, multiple complementary studies have improved our knowledge about structural and functional regulation of PP2A holoenzymes. In this regard, after summarizing major cellular regulation, this review will mainly focus on discussing a particulate biological strategy, used by various viruses, which is based on the targeting of PP2A enzymes by viral proteins in order to specifically deregulate, for their own benefit, cellular pathways of their hosts. The impact of such PP2A targeting for research in human diseases, and in further therapeutic developments, is also discussed.

  6. Unique carbohydrate binding platforms employed by the glucan phosphatases. (United States)

    Emanuelle, Shane; Brewer, M Kathryn; Meekins, David A; Gentry, Matthew S


    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.

  7. Identification of protein phosphatase interacting proteins from normal and UVA-irradiated HaCaT cell lysates by surface plasmon resonance based binding technique using biotin-microcystin-LR as phosphatase capturing molecule. (United States)

    Bécsi, Bálint; Dedinszki, Dóra; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor; Lontay, Beáta; Erdődi, Ferenc


    Identification of the interacting proteins of protein phosphatases is crucial to understand the cellular roles of these enzymes. Microcystin-LR (MC-LR), a potent inhibitor of protein phosphatase-1 (PP1), -2A (PP2A), PP4, PP5 and PP6, was biotinylated, immobilized to streptavidin-coupled sensorchip surface and used in surface plasmon resonance (SPR) based binding experiments to isolate phosphatase binding proteins. Biotin-MC-LR captured PP1 catalytic subunit (PP1c) stably and the biotin-MC-LR-PP1c complex was able to further interact with the regulatory subunit (MYPT1) of myosin phosphatase. Increased biotin-MC-LR coated sensorchip surface in the Surface Prep unit of Biacore 3000 captured PP1c, PP2Ac and their regulatory proteins including MYPT1, MYPT family TIMAP, inhibitor-2 as well as PP2A-A and -Bα-subunits from normal and UVA-irradiated HaCaT cell lysates as revealed by dot blot analysis of the recovered proteins. Biotin-MC-LR was used for the subcellular localization of protein phosphatases in HaCaT cells by identification of phosphatase-bound biotin-MC-LR with fluorescent streptavidin conjugates. Partial colocalization of the biotin-MC-LR signals with those obtained using anti-PP1c and anti-PP2Ac antibodies was apparent as judged by confocal microscopy. Our results imply that biotin-MC-LR is a suitable capture molecule in SPR for isolation of protein phosphatase interacting proteins from cell lysates in sufficient amounts for immunological detection.

  8. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)


    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  9. Spatial Memory Deficit and Tau Hyperphosphorylation Induced by Inhibiting PP2A in Rat Brain

    Institute of Scientific and Technical Information of China (English)

    TIAN Qing; ZHENG Hong-yun; CHEN Juan; LI Hong-lian; GONG Cheng-xin; WANG Jian-zhi


    Hyperphosphorylation of Tau in Alzheimer's disease (AD) brain appears to be caused by a down-regulation of protein phosphatase 2A (PP2A). In this study, we selectively inhibited PP2A by injection of okadaic acid (OA) into the Meynert nucleus basalis of rats and found that 0.4 pmol of OA injection induced approximately 60% inhibition of PP2A 24 h after injection, 13% inhibition 48 h after injection and no obvious inhibition 72 h after injection. Hyperphosphorylation of Tau at Ser-198/Ser-199/Ser-202 and Ser-396/Ser-404 and spatial memory deficit of rats were induced 24 h after 0.4 pmol of OA injection. This study suggests that a down-regulation of PP2A may underlie abnormal hyperphosphorylation of cytoskeletal proteins leading to neurofibrillary degeneration in AD.


    Institute of Scientific and Technical Information of China (English)

    刘姣; 李万程; 付淑君; 胡雯峰; 刘方元; 傅永明; 唐鸿钊; 刘文彬; 肖亚梅; 刘筠


    以金鱼和斑马鱼为研究对象,运用RT-PCR和Western Blot技术分析蛋白磷酸酶2A(PP2A)结构亚基A(PP2A-Aα/β)在金鱼、斑马鱼成体9种组织和12个发育时期胚胎中mRNA和蛋白水平的表达情况,得到其分化表达模式为:(1)在mRNA水平上,PP2A-Aα/β在金鱼、斑马鱼9种组织中具有较强表达:种属差异性和组织差异性均较大;结构亚基A的两亚型Aα和Aβ的表达存在差异.(2)在蛋白水平上,PP2A-Aα/β在金鱼、斑马鱼9种组织中均有表达;种属差异性不大但出现明显的组织差异性.(3) PP2A-Aα/βmRNA在金鱼和斑马鱼卵裂期到囊胚期胚胎中大量存在,PP2A-Aα mRNA在金鱼眼色素期量剧增推测其对金鱼眼色素的形成至关重要.(4)PP2A-Aα/β基因在金鱼、斑马鱼12个发育时期胚胎中均有较高水平的蛋白存在,提示其为维持胚胎的正常发育发挥重要作用.%Protein phosphatase-2A (PP2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunit, PP2A-Aα or PP2A-Aβ, provides a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP2A activity. To explore the possible functions of PP2A in the development of lower vertebrates, we analyzed the differential mRNA and protein expression patterns of the scaffold subunit A for PP2A using RT-PCR and western blot analysis on 9 tissues and 12 developmental stages of goldfish and zebra fish embryos. Our study demonstrated the following results: (1) PP2A-Aα/β mRNAs were differentially expressed in various tissues of the goldfish and zebra fish; within the same tissues of the two types offish, PP2A-Aα/β mRNAs had the different expression patterns. (2) PP2A-Aα/β proteins were differentially expressed in various tissues of the goldfish and zebra

  11. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models.

    Directory of Open Access Journals (Sweden)

    Nirma D Perera

    Full Text Available Bioenergetic abnormalities and metabolic dysfunctionoccur in amyotrophic lateral sclerosis (ALS patients and genetic mouse models. However, whether metabolic dysfunction occurs earlyin ALS pathophysiology linked to different ALS genes remains unclear.Here, we investigatedAMP-activated protein kinase (AMPK activation, which is a key enzyme induced by energy depletion and metabolic stress, inneuronal cells and mouse models expressing mutantsuperoxide dismutase 1 (SOD1or TAR DNA binding protein 43 (TDP-43 linked to ALS.AMPKphosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated incytoplasmic granules in motor neurons, but not in pre-symptomatic mice. AMPK phosphorylation also occurred in peripheraltissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatictransgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase,protein phosphatase 2A (PP2A, is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlateswith progressionin mutant SOD1-mediated disease, AMPK inactivation mediated by PP2Ais associated withmutant TDP-43-linked ALS.

  12. The Basic Biology of PP2A in Hematologic Cells and Malignancies. (United States)

    Haesen, Dorien; Sents, Ward; Lemaire, Katleen; Hoorne, Yana; Janssens, Veerle


    Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.

  13. Microcystin-LR (MCLR Induces a Compensation of PP2A Activity Mediated by α4 Protein in HEK293 Cells

    Directory of Open Access Journals (Sweden)

    Tan Li, Pu Huang, Jing Liang, Wenyu Fu, Zonglou Guo, Lihong Xu


    Full Text Available Protein phosphatase 2A (PP2A is a major protein phosphatase with important cell functions. Known and utilized as a potent inhibitor of PP2A, microcystin-LR (MCLR targets PP2A as a core element that affects numerous cellular mechanisms. But apart from direct inhibition, the exact effect of MCLR on PP2A in cell is largely unknown, specifically with regard to cellular response and autoregulation. Here, we show that a low concentration of MCLR stimulates, rather than inhibits, PP2A activity in HEK293 cells. Immunoprecipitation and immunofluorescence assays reveal that the catalytic subunit and a regulatory subunit of PP2A, termed α4, dissociate from inactive complex upon MCLR exposure, suggesting that the released catalytic subunit regains activity and thereby compensates the activity loss. At high concentrations of MCLR, PP2A activity decreases along with dissociation of the core enzyme and altered post-translational modification of its catalytic subunit. In addition, the dissociation of α4 and PP2A may contribute to destabilization of HEK293 cells cytoskeleton architecture, detachment to extracellular matrix and further anoikis. Our data provide a novel PP2A upregulation mechanism and challenge the recognition of MCLR only as a PP2A inhibitor in cells.

  14. Effect of microcystin-LR on protein phosphatase 2A and its function in human amniotic epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jing LIANG; Tan LI; Ya-li ZHANG; Zong-lou GUO; Li-hong XU


    Due to their toxicity,the increased distribution of microcystins (MCs) has become an important worldwide problem.MCs have been recognized as inhibitors of protein phosphatase 2A (PP2A) through their binding to the PP2A catalytic subunit.However,the exact mechanism of MC toxicity has not been elucidated,especially concerning the cellular response and its autoregulation.To further dissect the role of PP2A in MC-induced toxicity,the present study was undertaken to determine the response of PP2A in human amniotic epithelial (FL) cells treated with microcystin-LR (MCLR),one of the MC congeners.The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity,and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A,as expected.The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A.Furthermore,MCLR altered microtubule post-translational modifications through PP2A.These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR.

  15. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. (United States)

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C


    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  16. I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. (United States)

    Liu, Gong-Ping; Wei, Wei; Zhou, Xin; Zhang, Yao; Shi, Hai-Hong; Yin, Jun; Yao, Xiu-Qing; Peng, Cai-Xia; Hu, Juan; Wang, Qun; Li, Hong-Lian; Wang, Jian-Zhi


    A chronic neuron loss is the cardinal pathology in Alzheimer disease (AD), but it is still not understood why most neurons in AD brain do not accomplish apoptosis even though they are actually exposed to an environment with enriched proapoptotic factors. Protein phosphatase-2A inhibitor-2 (I(2)(PP2A)), an endogenous PP2A inhibitor, is significantly increased in AD brain, but the role of I(2)(PP2A) in AD-like neuron loss is elusive. Here, we show that I(2)(PP2A) regulates p53 and Akt correlatively. The mechanisms involve activated transcription and p38 MAPK activities. More importantly, we demonstrate that the simultaneous activation of Akt induced by I(2)(PP2A) counteracts the hyperactivated p53-induced cell apoptosis. Furthermore, I(2)(PP2A), p53 and Akt are all elevated in the brain of mouse model and AD patients. Our results suggest that the increased I(2)(PP2A) may trigger apoptosis by p53 upregulation, but due to simultaneous activation of Akt, the neurons are aborted from the apoptotic pathway. This finding contributes to the understanding of why most neurons in AD brain do not undergo apoptosis.

  17. Regulation of polo-like kinase 1 by DNA damage and PP2A/B55α (United States)

    Wang, Ling; Guo, Qingyuan; Fisher, Laura A; Liu, Dongxu; Peng, Aimin


    In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery. PMID:25483054

  18. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin


    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  19. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation. (United States)

    Yabe, Ryotaro; Miura, Akane; Usui, Tatsuya; Mudrak, Ingrid; Ogris, Egon; Ohama, Takashi; Sato, Koichi


    Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.

  20. PP2A-mediated dephosphorylation of p107 plays a critical role in chondrocyte cell cycle arrest by FGF.

    Directory of Open Access Journals (Sweden)

    Victoria Kolupaeva

    Full Text Available FGF signaling inhibits chondrocyte proliferation, a cell type-specific response that is the basis for several genetic skeletal disorders caused by activating FGFR mutations. This phenomenon requires the function of the p107 and p130 members of the Rb protein family, and p107 dephosphorylation is one of the earliest distinguishing events in FGF-induced growth arrest. To determine whether p107 dephoshorylation played a critical role in the chondrocyte response to FGF, we sought to counteract this process by overexpressing in RCS chondrocytes the cyclin D1/cdk4 kinase complex. CyclinD/cdk4-expressing RCS cells became resistant to FGF-induced p107 dephosphorylation and growth arrest, and maintained significantly high levels of cyclin E/cdk2 activity and of phosphorylated p130 at later times of FGF treatment. We explored the involvement of a phosphatase in p107 dephosphorylation. Expression of the SV40 small T-Ag, which inhibits the activity of the PP2A phosphatase, or knockdown of the expression of the PP2A catalytic subunit by RNA interference prevented p107 dephosphorylation and FGF-induced growth arrest of RCS cells. Furthermore, an association between p107 and PP2A was induced by FGF treatment. Our data show that p107 dephosphorylation is a key event in FGF-induced cell cycle arrest and indicate that in chondrocytes FGF activates the PP2A phosphatase to promote p107 dephosphorylation.

  1. Molecular implication of PP2A and Pin1 in the Alzheimer's disease specific hyperphosphorylation of Tau.

    Directory of Open Access Journals (Sweden)

    Isabelle Landrieu

    Full Text Available BACKGROUND: Tau phosphorylation and dephosphorylation regulate in a poorly understood manner its physiological role of microtubule stabilization, and equally its integration in Alzheimer disease (AD related fibrils. A specific phospho-pattern will result from the balance between kinases and phosphatases. The heterotrimeric Protein Phosphatase type 2A encompassing regulatory subunit PR55/Bα (PP2A(T55α is a major Tau phosphatase in vivo, which contributes to its final phosphorylation state. We use NMR spectroscopy to determine the dephosphorylation rates of phospho-Tau by this major brain phosphatase, and present site-specific and kinetic data for the individual sites including the pS202/pT205 AT8 and pT231 AT180 phospho-epitopes. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate the importance of the PR55/Bα regulatory subunit of PP2A within this enzymatic process, and show that, unexpectedly, phosphorylation at the pT231 AT180 site negatively interferes with the dephosphorylation of the pS202/pT205 AT8 site. This inhibitory effect can be released by the phosphorylation dependent prolyl cis/trans isomerase Pin1. Because the stimulatory effect is lost with the dimeric PP2A core enzyme (PP2A(D or with a phospho-Tau T231A mutant, we propose that Pin1 regulates the interaction between the PR55/Bα subunit and the AT180 phospho-epitope on Tau. CONCLUSIONS/SIGNIFICANCE: Our results show that phosphorylation of T231 (AT180 can negatively influence the dephosphorylation of the pS202/pT205 AT8 epitope, even without an altered PP2A pool. Thus, a priming dephosphorylation of pT231 AT180 is required for efficient PP2A(T55α-mediated dephosphorylation of pS202/pT205 AT8. The sophisticated interplay between priming mechanisms reported for certain Tau kinases and the one described here for Tau phosphatase PP2A(T55α may contribute to the hyperphosphorylation of Tau observed in AD neurons.

  2. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells. (United States)

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka


    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  3. The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. (United States)

    Liu, Jing; Sun, Yu


    Microcystins are a family of monocyclic heptapeptides produced by cyanobacteria during water blooms. Microcystin-LR (MC-LR) is the most common member of this family. Microcystins induce a variety of toxic cellular effects, including oxidative damage, apoptosis, cytoskeletal destabilization, and cancer cell invasion. Recent studies have examined the molecular mechanism of their toxicity. Protein phosphatase 2A (PP2A) is emerging as a critical regulator of the microcystin-induced molecular network. Furthermore, it has been shown that several molecules or signal pathways associated with PP2A play important roles in microcystin-induced toxic effects. This review summarizes the recent research progress of the molecular mechanism and focuses on the role of PP2A in MC-LR toxicity, which will contribute to a better understanding of the mechanism of microcystin toxicity, and will provide biomarkers for toxicity assessment and control.

  4. PP2A: The Achilles Heal in MDS with 5q Deletion

    Directory of Open Access Journals (Sweden)

    David eSallman


    Full Text Available Myelodysplastic syndromes (MDS represent a hematologically diverse group of myeloid neoplasms, however, one subtype characterized by an isolated deletion of chromosome 5q (del(5q is pathologically and clinically distinct. Patients with del(5q MDS share biological features that account for the profound hypoplastic anemia and unique sensitivity to treatment with lenalidomide. Ineffective erythropoiesis in del(5q MDS arises from allelic deletion of the ribosomal processing S-14 (RPS14 gene, which leads to MDM2 sequestration with consequent p53 activation and erythroid cell death. Since its approval in 2005, lenalidomide has changed the natural course of the disease. Patients who achieve transfusion independence and/or a cytogenetic response with lenalidomide have a decreased risk of progression to AML and an improved overall survival compared to non-responders. Elucidation of the mechanisms of action of lenalidomide in del(5q MDS has advanced therapeutic strategies for this disease. The selective cytotoxicity of lenalidomide in del(5q clones derives from inhibition of a haplodeficient phosphatase whose catalytic domain is encoded within the common deleted region on chromosome 5q, i.e., protein phosphatase 2A (PP2Acα. PP2A is a highly conserved, dual specificity phosphatase that plays an essential role in regulation of the G2/M checkpoint. Inhibition of PP2Acα results in cell cycle arrest and apoptosis in del(5q cells. Targeted knockdown of PP2Acα using siRNA is sufficient to sensitize non-del(5q clones to lenalidomide. Through its inhibitory effect on PP2A, lenalidomide stabilizes MDM2 to restore p53 degradation in erythroid precursors, with subsequent arrest in G2/M. Unfortunately, the majority of patients with del(5q MDS develop resistance to lenalidomide over time associated with PP2Acα overexpression. Targeted inhibition of PP2A with a more potent inhibitor has emerged as an attractive therapeutic approach for patients with del(5q MDS.

  5. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. (United States)

    Lipina, Christopher; Hundal, Harinder S


    Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state.

  6. Dipalmitoleoylphosphoethanolamine as a PP2A Enhancer Obstructs Insulin Signaling by Promoting Ser/Thr Dephosphorylation of Akt

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya


    Full Text Available Background/Aims: The phospholipid phosphatidylethanolamine is implicated in the regulation of a variety of cellular processes. The present study investigated the effect of phosphatidylethanolamines such as 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE, 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine (DLPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE, and 1,2-dipalmitoleoyl-sn-glycero-3-phosphoethanolamine (DPPE on protein phosphatases, Akt1/2 activity, GLUT4 mobilizations, and glucose uptake into cells. Methods: Activity of protein phosphatase 2A (PP2A was assayed under the cell-free conditions, and Western blotting, intracellular GLUT4 trafficking, and glucose uptake into cells were monitored using differentiated 3T3-L1-GLUT4myc adipocytes. Results: Of the investigated phosphatidylethanolamines, DLPE and DPPE significantly enhanced PP2A activity. DPPE inhibited insulin-induced phosphorylation of Akt1/2 at Thr308/309 and Ser473/474 in differentiated 3T3-L1-GLUT4myc adipocytes. DPPE also inhibited insulin-stimulated GLUT4 translocation to the cell surface and reduced insulin-stimulated glucose uptake into adipocytes. Conclusion: The results of the present study indicate that the PP2A enhancer DPPE obstructs insulin signaling by promoting serine/threonine dephosphorylation of Akt1/2, resulting in the suppression of GLUT4 translocation to the cell surface and glucose uptake into adipocytes.

  7. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor. (United States)

    Murphy, Jane E; Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Feld, Micha; Brand, Eva; Cedron, Wendy J; Bunnett, Nigel W; Steinhoff, Martin


    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of β-arrestin1 and PP2A with noninternalized NK(1)R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

  8. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells. (United States)

    Wandzioch, Ewa; Pusey, Michelle; Werda, Amy; Bail, Sophie; Bhaskar, Aishwarya; Nestor, Mariya; Yang, Jing-Jing; Rice, Lyndi M


    Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive phenotypes in endometrial adenocarcinoma cells, where it helps maintain activated ERK and Akt by inhibiting PP2A. We obtained evidence that PME-1 could bind and regulate protein phosphatase 4 (PP4), a tumor-promoting protein, but not the related protein phosphatase 6 (PP6). When the PP2A, PP4, or PP6 catalytic subunits were overexpressed, inhibiting PME-1 was sufficient to limit cell proliferation. In clinical specimens of endometrial adenocarcinoma, PME-1 levels were increased and we found that PME-1 overexpression was sufficient to drive tumor growth in a xenograft model of the disease. Our findings identify PME-1 as a modifier of malignant development and suggest its candidacy as a diagnostic marker and as a therapeutic target in endometrial cancer.

  9. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D


    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y.......-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, and J. Sap, Mol. Cell. Biol. 13:2942-2951, 1993). We report here that R-PTP-kappa can mediate homophilic intercellular interaction. Inducible expression of the R-PTP-kappa protein in heterologous cells results in formation of stable...... cellular aggregates strictly consisting of R-PTP-kappa-expressing cells. Moreover, the purified extracellular domain of R-PTP-kappa functions as a substrate for adhesion by cells expressing R-PTP-kappa and induces aggregation of coated synthetic beads. R-PTP-kappa-mediated intercellular adhesion does...

  10. Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation. (United States)

    Magenta, Alessandra; Fasanaro, Pasquale; Romani, Sveva; Di Stefano, Valeria; Capogrossi, Maurizio C; Martelli, Fabio


    The retinoblastoma tumor suppressor protein (pRb) regulates cell proliferation and differentiation via phosphorylation-sensitive interactions with specific targets. While the role of cyclin/cyclin-dependent kinase complexes in the modulation of pRb phosphorylation has been extensively studied, relatively little is known about the molecular mechanisms regulating phosphate removal by phosphatases. Protein phosphatase 2A (PP2A) is constituted by a core dimer bearing catalytic activity and one variable B regulatory subunit conferring target specificity and subcellular localization. We previously demonstrated that PP2A core dimer binds pRb and dephosphorylates pRb upon oxidative stress. In the present study, we identified a specific PP2A-B subunit, PR70, that was associated with pRb both in vitro and in vivo. PR70 overexpression caused pRb dephosphorylation; conversely, PR70 knockdown prevented both pRb dephosphorylation and DNA synthesis inhibition induced by oxidative stress. Moreover, we found that intracellular Ca(2+) mobilization was necessary and sufficient to trigger pRb dephosphorylation and PP2A phosphatase activity of PR70 was Ca(2+) induced. These data underline the importance of PR70-Ca(2+) interaction in the signal transduction mechanisms triggered by redox imbalance and leading to pRb dephosphorylation.

  11. Protein phosphatase 2A, a key player in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Rong LIU; Qing TIAN


    Protein phosphatase 2A (PP2A) is the pre-dominant serine/threonine phosphatase in eukaryotic cells. In the brains of patients with Alzheimer's disease (AD), decreased PP2A activities were observed, which is suggested to be involved in neurofibrillary tangle (NFT) formation, disturbed amyloid precursor protein (APP) secretion and neurodegeneration in AD brain. Based on our research and other previous findings, decreased PP2Ac level, decreased PP2A holoenzyme composition, increased level of PP2A inhibitors, increased PP2Ac Leu309 demethylation and Tyr307 phosphorylation underlie PP2A inactivation in AD. β-amyloid (Aβ) over-production, estrogen deficiency and impaired homocys-teine metabolism are the possible up-stream factors that inactivate PP2A in AD neurons. Further studies are required to disclose the role of PP2A in Alzheimer's disease.

  12. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities. (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K


    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  13. Protein phosphatase 2A (PP2A) regulates interleukin-4-mediated STAT6 signaling

    DEFF Research Database (Denmark)

    Woetmann, Anders; Brockdorff, Johannes; Lovato, Paola


    Interleukin-4 (IL-4) plays a pivotal role in the induction and maintenance of allergy by promoting Th2 differentiation and B cell isotype switching to IgE. Studies on STAT6-deficient mice have demonstrated the essential role of STAT6 in mediating the biological functions of IL-4. IL-4 induces tyr...

  14. A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation


    Lubomir N. Sokolov; Dominguez-Solis, Jose R.; Allary, Anne-Laure; Buchanan, Bob B.; Luan, Sheng


    Starch is the ultimate storage molecule formed in the photosynthetic fixation of carbon dioxide by chloroplasts. Starch accumulates during the day and is degraded at night to intermediates that are exported to heterotrophic organs. The mechanism by which diurnal cycles control the transitory biosynthesis and degradation of chloroplast starch has long remained a mystery. We now report evidence that a dual-specificity protein phosphatase, DSP4, binds to starch granules during the day and dissoc...

  15. Glycogen synthase kinase-3β regulates leucine-309 demethylation of protein phosphatase-2A via PPMT1 and PME-1. (United States)

    Yao, Xiu-Qing; Li, Xia-Chun; Zhang, Xiao-Xue; Yin, Yang-Yang; Liu, Bin; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping


    Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.

  16. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)


    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, medi-ated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interac-tion with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  17. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    SHI YiGong


    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serinetthreonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  18. The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. (United States)

    Connarn, Jamie N; Assimon, Victoria A; Reed, Rebecca A; Tse, Eric; Southworth, Daniel R; Zuiderweg, Erik R P; Gestwicki, Jason E; Sun, Duxin


    Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development.

  19. Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function. (United States)

    Katayama, Kazuhiro; Yamaguchi, Miho; Noguchi, Kohji; Sugimoto, Yoshikazu


    P-glycoprotein (P-gp)/ABCB1 is a key molecule of multidrug resistance in cancer. Protein phosphatase (PP) 2A, regulatory subunit B, gamma (PPP2R3C), which is a regulatory subunit of PP2A and PP5, was identified as a binding candidate to P-gp. Immunoprecipitation-western blotting revealed that PP5 and PPP2R3C were coprecipitated with P-gp, while PP2A was not. PP5/PPP2R3C dephosphorylated protein kinase A/protein kinase C-phosphorylation of P-gp. Knockdown of PP5 and/or PPP2R3C increased P-gp expression and lowered the sensitivity to vincristine and doxorubicin. Consequently, our results indicate that PP5/PPP2R3C negatively regulates P-gp expression and function.

  20. Therapeutic reactivation of protein phosphatase 2A in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Kavitha eRamaswamy


    Full Text Available Protein phosphatase 2A (PP2A is a serine/threonine phosphatase that is required for normal cell growth and development. PP2A is a potent tumor suppressor, which is inactivated in cancer cells as a result of genetic deletions and mutations. In myeloid leukemias, genes encoding PP2A subunits are generally intact. Instead, PP2A is functionally inhibited by post-translational modifications of its catalytic C subunit, and interactions with negative regulators by its regulatory B and scaffold A subunits. Here, we review the molecular mechanisms of genetic and functional inactivation of PP2A in human cancers, with a particular focus on human acute myeloid leukemias (AML. By analyzing expression of genes encoding PP2A subunits using transcriptome sequencing, we find that PP2A dysregulation in AML is characterized by silencing and overexpression of distinct A scaffold and B regulatory subunits, respectively. We review the mechanisms of functional PP2A activation by drugs such as fingolimod, forskolin, OP449, and perphenazine. This analysis yields two non-mutually exclusive mechanisms for therapeutic PP2A re-activation: i allosteric activation of the phosphatase activity, and ii stabilization of active holo-enzyme assembly and displacement of negative regulatory factors from A and B subunits. Future studies should allow the development of specific and potent pharmacologic activators of PP2A, and definition of susceptible disease subsets based on specific mechanisms of PP2A dysregulation.

  1. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    Energy Technology Data Exchange (ETDEWEB)

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E. (WVU); (UNC); (Colorado); (EC Uni.)


    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  2. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects. (United States)

    Roston, Daniel; Cui, Qiang


    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  3. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach.

    Directory of Open Access Journals (Sweden)

    Koyuki Kondo

    Full Text Available Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  4. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach. (United States)

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu


    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  5. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle


    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

  6. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart. (United States)

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J


    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  7. Hepatocyte-Specific Ablation of PP2A Catalytic Subunit α Attenuates Liver Fibrosis Progression via TGF-β1/Smad Signaling

    Directory of Open Access Journals (Sweden)

    Na Lu


    Full Text Available Protein phosphatase 2A (PP2A, a family of the major serine/threonine phosphatases in cells, regulates many aspects of physiological processes. However, isoform-specific substrates and the biological role of each specific member of the PP2A family remain largely unknown. In this study, we investigated whether PP2A catalytic subunit Cα (PP2Acα is involved in chronic hepatic injury and fibrosis. A hepatocyte-specific PP2Acα ablation mice model was established to examine the effect of PP2Acα on carbon tetrachloride- (CCl4- induced chronic hepatic injury and fibrosis. Our results showed that PP2Acα knockout mice were less susceptible to chronic CCl4-induced liver injury as evidenced by lower levels of serum alanine aminotransferase and aspartate aminotransferase, decreased hepatocyte proliferation, and increased rate of apoptotic removal of the injured hepatocytes. PP2Acα knockout mice also displayed a lesser extent of liver fibrosis as a significant decrease in the proportion of α-smooth muscle actin-expressing cells and collagen deposition was observed in their liver tissues. Furthermore, the levels of serum TGF-β1 and hepatocytic Smad phosphorylation were reduced in the PP2Acα knockout mice. These data suggest that hepatocyte-specific ablation of PP2Acα protects against CCl4-induced chronic hepatic injury and fibrogenesis and the protective effect is mediated at least partially through the impaired TGF-β1/Smad signaling.

  8. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. (United States)

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming


    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  9. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  10. Identification of the structural features that mediate binding specificity in the recognition of STAT proteins by dual-specificity phosphatases. (United States)

    Jardin, Christophe; Sticht, Heinrich


    Inactivation of signal transducers and activators of transcription (STAT) proteins is regulated by dual-specificity phosphatases (DSPs) with high substrate specificity. Although experiments have provided useful information about the phosphatase activity and the specificity for STATs, there is up-to-date no data at a molecular level to explain the specific recognition of STAT substrates by this subfamily of phosphatases. Here, a combined approach of molecular modeling, docking and molecular dynamics simulations was used to address the binding between DSPs and their STAT substrates. We identified a binding interface at the protein tyrosine phosphatase (PTP) domain of the DSP VHR that interacts with the SH2-domain of STAT5. This finding is consistent with previous mutational data and supports a "two-step" mechanism for the dephosphorylation event. Application of the same approach suggests the presence of a similar interface between the viral DSP VH1 and STAT1. Furthermore, the interaction network at this interface provides an explanation for the specificity of the DSP-STAT recognition.

  11. Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1.

    Directory of Open Access Journals (Sweden)

    Minghua Nie


    Full Text Available Posttranslational modifications (PTMs provide dynamic regulation of the cellular proteome, which is critical for both normal cell growth and for orchestrating rapid responses to environmental stresses, e.g. genotoxins. Key PTMs include ubiquitin, the Small Ubiquitin-like MOdifier SUMO, and phosphorylation. Recently, SUMO-targeted ubiquitin ligases (STUbLs were found to integrate signaling through the SUMO and ubiquitin pathways. In general, STUbLs are recruited to target proteins decorated with poly-SUMO chains to ubiquitinate them and drive either their extraction from protein complexes, and/or their degradation at the proteasome. In fission yeast, reducing or preventing the formation of SUMO chains can circumvent the essential and DNA damage response functions of STUbL. This result indicates that whilst some STUbL "targets" have been identified, the crucial function of STUbL is to antagonize SUMO chain formation. Herein, by screening for additional STUbL suppressors, we reveal crosstalk between the serine/threonine phosphatase PP2A-Pab1B55 and the SUMO pathway. A hypomorphic Pab1B55 mutant not only suppresses STUbL dysfunction, but also mitigates the phenotypes associated with deletion of the SUMO protease Ulp2, or mutation of the STUbL cofactor Rad60. Together, our results reveal a novel role for PP2A-Pab1B55 in modulating SUMO pathway output, acting in parallel to known critical regulators of SUMOylation homeostasis. Given the broad evolutionary functional conservation of the PP2A and SUMO pathways, our results could be relevant to the ongoing attempts to therapeutically target these factors.

  12. E4orf4 induces PP2A- and Src-dependent cell death in Drosophila melanogaster and at the same time inhibits classic apoptosis pathways (United States)

    Pechkovsky, Antonina; Lahav, Maoz; Bitman, Eliya; Salzberg, Adi; Kleinberger, Tamar


    The adenovirus E4orf4 protein regulates the progression of viral infection, and when expressed alone in mammalian tissue culture cells it induces protein phosphatase 2A (PP2A)-B55– and Src-dependent cell death, which is more efficient in oncogene-transformed cells than in normal cells. This form of cell death is caspase-independent, although it interacts with classic caspase-dependent apoptosis. PP2A-B55–dependent E4orf4-induced toxicity is highly conserved in evolution from yeast to mammalian cells. In this work we investigated E4orf4-induced cell death in a whole multicellular organism, Drosophila melanogaster. We show that E4orf4 induced low levels of cell killing, caused by both caspase-dependent and -independent mechanisms. Drosophila PP2A-B55 (twins/abnormal anaphase resolution) and Src64B contributed additively to this form of cell death. Our results provide insight into E4orf4-induced cell death, demonstrating that in parallel to activating caspase-dependent apoptosis, E4orf4 also inhibited this form of cell death induced by the proapoptotic genes reaper, head involution defective, and grim. The combination of both induction and inhibition of caspase-dependent cell death resulted in low levels of tissue damage that may explain the inefficient cell killing induced by E4orf4 in normal cells in tissue culture. Furthermore, E4orf4 inhibited JNK-dependent cell killing as well. However, JNK inhibition did not impede E4orf4-induced toxicity and even enhanced it, indicating that E4orf4-induced cell killing is a distinctive form of cell death that differs from both JNK- and Rpr/Hid/Grim-induced forms of cell death. PMID:23613593

  13. Generation of PP2A CαKnockout Model in Neonatal Mouse Ventricular Myocytes%PP2A Cα敲除小鼠心肌细胞模型的构建

    Institute of Scientific and Technical Information of China (English)

    陈文; 温明达; 董大川; 高艳红; 张朝


    To generate PP2A Cαknockout model in neonatal mouse ventricular myocytes. Male PP2A Cαfl/fl,Cre/-were se-lectively mated with female PP2A Cαfl/fl,Cre/- mice to obtain abundant offsprings with the same genotype. The neonatal mouse ventricular myocytes were digested by trypsinization and subsequently infected with Cre-adenovirus. The effects of adenovirus infection were observed by fluorescence microscope and identified by western blot analysis. The offsprings in aboundance were obtained by seting up a mating between male and female of PP2A Cαfl/fl,Cre/-mice, as a result, an abundance of neonatal mouse ventricular myocytes with the genotype of PP2A Cαfl/fl,Cre/-were available for Ad-Cre infection. Green fluorescence was observed after GFP labeled Cre-adenovirus( Cre-Ad) infection for 48 h. The expression level of PP2A Cα protein in Cre-Ad infected myocytes was 60% ~80% lower than control. The PP2A Cα knockout model in neonatal mouse ventricular myocytes was successfully generated.%体外构建PP2A Cα敲除的原代小鼠心室肌细胞模型。选择性地将雄性PP2A Cαfl/fl,Cre/-小鼠与雌性PP2A Cαfl/fl,Cre/-小鼠交配。新生小鼠心脏经胰酶消化后差速贴壁获得原代小鼠心室肌细胞,用带有Cre的腺病毒侵染心肌细胞,经荧光显微镜观察和Western-blot检测,分析PP2A Cα的敲除效果。将基因型为PP2A Cαfl/fl,Cre/-的雌雄小鼠进行交配,得到其同样基因型的后代,进而可获得足量基因型为PP2A Cαfl/fl,Cre/-的原代小鼠心肌细胞。用带有重组酶Cre的腺病毒侵染细胞48 h后,可见带有绿色荧光的心肌细胞;Western-blot检测显示,PP2A Cα在Cre腺病毒侵染的心肌细胞可下调60%~80%。本研究成功建立了PP2A Cα敲除的原代小鼠心肌细胞模型。

  14. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster. (United States)

    Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor


    The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster.

  15. Positive cooperativity in substrate binding of human prostatic acid phosphatase entrapped in AOT-isooctane-water reverse micelles. (United States)

    Luchter-Wasylewska, Ewa; Iciek, Małgorzata


    The kinetics of 1-naphthyl phosphate and phenyl phosphate hydrolysis, catalyzed by human prostatic acid phosphatase (PAP) entrapped in AOT-isooctane-water reverse micelles, has been studied over surfactant hydration degree (w0) range 5 to 35. Continuous spectrophotometric acid phosphatase assays, previously prepared, were employed. PAP was catalytically active over the whole w0 studied range. In order to determine steady-state reaction constants the experimental data were fitted to Hill rate equation. Positive cooperativity in substrate binding was observed, as it was earlier found in aqueous solutions. The extent of cooperativity (expressed as the value of the Hill cooperation coefficient h) increased from 1 to 4, when the micellar water-pool size was growing, at fixed enzyme concentration. In the plots of catalytic activity (kcat) versus w0, the maxima have been found at w0=10 (pH 5.6) and 23 (pH 3.8). It is suggested that catalytically active monomeric and dimeric PAP forms are entrapped in reverse micelles of w0=10 and 23, respectively.

  16. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. (United States)

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook


    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  17. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses (United States)

    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G.


    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease. Objectives: Given their common effects, this study investigated whether A1AT acts via PP2A to alter tumor necrosis factor (TNF) signaling, inflammation, and proteolytic responses in this disease. Methods: PP2A activity was measured in peripheral blood neutrophils from A1AT-deficient (PiZZ) and healthy (PiMM) individuals and in alveolar macrophages from normal (60 mg/kg) and high-dose (120 mg/kg) A1AT-treated PiZZ subjects. PP2A activation was assessed in human neutrophils, airway epithelial cells, and peripheral blood monocytes treated with plasma purified A1AT protein. Similarly, lung PP2A activity was measured in mice administered intranasal A1AT. PP2A was silenced in lung epithelial cells treated with A1AT and matrix metalloproteinase and cytokine production was then measured following TNF-α stimulation. Measurements and Main Results: PP2A was significantly lower in neutrophils isolated from PiZZ compared with PiMM subjects. A1AT protein activated PP2A in human alveolar macrophages, monocytes, neutrophils, airway epithelial cells, and in mouse lungs. This activation required functionally active A1AT protein and protein tyrosine phosphatase 1B expression. A1AT treatment acted via PP2A to prevent p38 and IκBα phosphorylation and matrix metalloproteinase and cytokine induction in TNF-α–stimulated epithelial cells. Conclusions: Together, these data indicate that A1AT modulates PP2A to counter inflammatory and proteolytic responses induced by TNF signaling in the lung. PMID:25341065

  18. Tumor Suppressor RARRES1 Regulates DLG2, PP2A, VCP, EB1, and Ankrd26

    Directory of Open Access Journals (Sweden)

    Ziad J. Sahab, Michael D. Hall, Lihua Zhang, Amrita K. Cheema, Stephen W. Byers


    Full Text Available Retinoic Acid Receptor Responder (RARRES1 initially identified as a novel retinoic acid receptor regulated gene in the skin is a putative tumor suppressor of unknown function. RARRES1 was knocked down in immortalized human prostatic epithelial cell line PWR-1E cells and differential protein expression was identified using differential in-gel electrophoresis (DIGE followed by matrix-assisted laser desorption ionization (MALDI mass spectrometry and western Blot analysis excluding highly abundant proteins routinely identified in almost all proteomics projects. Knock-down of RARRES1: 1- down-regulates PP2A, an enzyme involved in the negative regulation of the growth hormone-stimulated signal transduction pathways; 2- down-regulates Valosin-containing protein causing impaired autophagy; 3- up-regulates the tumor suppressor disks large 2; 4- up-regulates Ankrd26 that belongs to the POTE family of genes that are highly expressed in cancer patients with poor outcome; and 5- down-regulates EB1, a protein that is involved in spindle dynamics and chromosome alignment during mitosis.

  19. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells. (United States)

    Chao, Che-Yi; Lii, Chong-Kuei; Ye, Siou-Yu; Li, Chien-Chun; Lu, Chia-Yang; Lin, Ai-Hsuan; Liu, Kai-Li; Chen, Haw-Wen


    Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.

  20. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses


    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G; Foronjy, Robert F.


    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease.

  1. cAMP response element binding protein (CREB activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene

    Directory of Open Access Journals (Sweden)

    Stefano Luisa


    Full Text Available Abstract Background The enzyme glucose-6-phosphatase catalyzes the dephosphorylation of glucose-6-phosphatase to glucose, the final step in the gluconeogenic and glycogenolytic pathways. Expression of the glucose-6-phosphatase gene is induced by glucocorticoids and elevated levels of intracellular cAMP. The effect of cAMP in regulating glucose-6-phosphatase gene transcription was corroborated by the identification of two genetic motifs CRE1 and CRE2 in the human and murine glucose-6-phosphatase gene promoter that resemble cAMP response elements (CRE. Results The cAMP response element is a point of convergence for many extracellular and intracellular signals, including cAMP, calcium, and neurotrophins. The major CRE binding protein CREB, a member of the basic region leucine zipper (bZIP family of transcription factors, requires phosphorylation to become a biologically active transcriptional activator. Since unphosphorylated CREB is transcriptionally silent simple overexpression studies cannot be performed to test the biological role of CRE-like sequences of the glucose-6-phosphatase gene. The use of a constitutively active CREB2/CREB fusion protein allowed us to uncouple the investigation of target genes of CREB from the variety of signaling pathways that lead to an activation of CREB. Here, we show that this constitutively active CREB2/CREB fusion protein strikingly enhanced reporter gene transcription mediated by either CRE1 or CRE2 derived from the glucose-6-phosphatase gene. Likewise, reporter gene transcription was enhanced following expression of the catalytic subunit of cAMP-dependent protein kinase (PKA in the nucleus of transfected cells. In contrast, activating transcription factor 2 (ATF2, known to compete with CREB for binding to the canonical CRE sequence 5'-TGACGTCA-3', did not transactivate reporter genes containing CRE1, CRE2, or both CREs derived from the glucose-6-phosphatase gene. Conclusions Using a constitutively active CREB2

  2. Structural and biochemical characterization of human PR70 in isolation and in complex with the scaffolding subunit of protein phosphatase 2A.

    Directory of Open Access Journals (Sweden)

    Rebecca Dovega

    Full Text Available Protein Phosphatase 2A (PP2A is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A subunit, a catalytic (C subunit and various regulatory (B subunits. Here we report a 2.0 Å crystal structure of the free B''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B'' containing holoenzymes.

  3. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis. (United States)

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W


    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  4. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles. (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario


    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders.

  5. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia.

    Directory of Open Access Journals (Sweden)

    Christoph P Hofstetter

    Full Text Available PURPOSE: The hypoxic microenvironment of glioblastoma multiforme (GBM is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A, a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied. EXPERIMENTAL DESIGN: Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs were exposed to severe hypoxia produced by either CoCl₂ or 1% O₂. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry. RESULTS: In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002. Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002. PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009. In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs. CONCLUSIONS: Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy.

  6. Suppression of cancer cell migration and invasion by protein phosphatase 2A through dephosphorylation of mu- and m-calpains. (United States)

    Xu, Lijun; Deng, Xingming


    The mu- and m-calpains are major members of the calpain family that play an essential role in regulating cell motility. We have recently discovered that nicotine-activated protein kinase C iota enhances calpain phosphorylation in association with enhanced calpain activity and accelerated migration and invasion of human lung cancer cells. Here we found that specific disruption of protein phosphatase 2A (PP2A) activity by expression of SV40 small tumor antigen up-regulates phosphorylation of mu- and m-calpains whereas C2-ceramide, a potent PP2A activator, reduces nicotine-induced calpain phosphorylation, suggesting that PP2A may function as a physiological calpain phosphatase. PP2A co-localizes and interacts with mu- and m-calpains. Purified, active PP2A directly dephosphorylates mu- and m-calpains in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppresses nicotine-stimulated phosphorylation of mu- and m-calpains, which is associated with inhibition of calpain activity, wound healing, cell migration, and invasion. By contrast, depletion of PP2A/C by RNA interference enhances calpain phosphorylation, calpain activity, cell migration, and invasion. Importantly, C2-ceramide-induced suppression of calpain phosphorylation results in decreased secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential clinic relevance in controlling metastasis of lung cancer. These findings reveal a novel role for PP2A as a physiological calpain phosphatase that not only directly dephosphorylates but also inactivates mu- and m-calpains, leading to suppression of migration and invasion of human lung cancer cells.

  7. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy (United States)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang


    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  8. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.


    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  9. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo (United States)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)


    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  10. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. (United States)

    Jaumot, M; Hancock, J F


    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  11. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties


    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida


    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyz...

  12. PP2A-B56γ高表达抑制镉诱导的人肝L02细胞DNA损伤%Overexpression of PP2A-B56 γrepressed the effect of cadmium on DNA damage in human normal L02 liver cells

    Institute of Scientific and Technical Information of China (English)

    林丽娜; 林忠宁; 林育纯; 陈慧峰; 罗洁; 李晓杰; 胡耀明; 李文; 张树江; 陈雯


    OBJECTIVE: To investigate the effects of protein phosphatase 2A (PP2A)-B56 γsubunit (encoded by PPP2R5C gene) overexpression on cadmiun-induced gene transcription and DNA damage in human normal liver L02 cells. METHODS: Cell models were established via stable transfection with overexpression PPP2R5C (L02-2R5Cc) and null vector pBabe-puro (L02-pBabe). QRT-PCR was used to detect the effects of cadmium and TNFα on PPP2R5C and MT1B mRNA expression. SCGE assay was adopted to evaluate their genotoxicity. The 3×2 factorial analysis experiment was aimed to explore the type of their combined effects. RESULTS: The levels of total and exogenous (PPP2R5C-FLAG) PPP2R5C mRNA were markedly elevated in L02-2R5Cc cells compared with L02-pBabe cells, and reduced by treatments with cadmium and TNFa (P 0.05). Further factorial analysis suggested synergistic effects were found between cadmium and TNF a , but antagonistic effect between cadmium and PPP2R5C overexpression (P0.05). CONCLUSION: Cadmium suppressed PPP2R5C gene transcription and significantly induced DNA damage. PP2A-B56 γ overexpression repressed the genotoxicity induced by cadmium, which was enhanced in the presence of inflammatory factor.%目的:探讨人正常肝细胞内蛋白磷酸酶2A-B56γ亚基(PP2A-B56γ,由PPP2R5C基因编码)高表达对镉诱导相关基因转录水平和DNA损伤效应的影响,并探讨其作用机制.方法:构建PP2A-B56 γ高表达L02-2R5Cc和空白载体对照L02-pBabe细胞模型;两种细胞分别给予CdCl2(Cd)、TNFα单独处理及联合处理后,实时荧光定量-PCR(QRT-PCR)检测不同处理组PPP2R5C和金属硫蛋白1B (MT1B) mRNA转录水平;彗星试验(SCGE)检测细胞DNA断裂损伤情况;并按照3×2的析因设计分析不同处理之间是否存在联合作用及作用类型.结果:与L02-pBabe细胞相比较,L02-2R5Cc细胞中PPP2R5C、外源性PPP2R5C-FLAG mRNA显著高表达(P<0.05),细胞株构建成功.3种因素单独处理时,与

  13. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  14. Regulation of hERG and hEAG channels by Src and by SHP-1 tyrosine phosphatase via an ITIM region in the cyclic nucleotide binding domain.

    Directory of Open Access Journals (Sweden)

    Lyanne C Schlichter

    Full Text Available Members of the EAG K(+ channel superfamily (EAG/Kv10.x, ERG/Kv11.x, ELK/Kv12.x subfamilies are expressed in many cells and tissues. In particular, two prototypes, EAG1/Kv10.1/KCNH1 and ERG1/Kv11.1/KCNH2 contribute to both normal and pathological functions. Proliferation of numerous cancer cells depends on hEAG1, and in some cases, hERG. hERG is best known for contributing to the cardiac action potential, and for numerous channel mutations that underlie 'long-QT syndrome'. Many cells, particularly cancer cells, express Src-family tyrosine kinases and SHP tyrosine phosphatases; and an imbalance in tyrosine phosphorylation can lead to malignancies, autoimmune diseases, and inflammatory disorders. Ion channel contributions to cell functions are governed, to a large degree, by post-translational modulation, especially phosphorylation. However, almost nothing is known about roles of specific tyrosine kinases and phosphatases in regulating K(+ channels in the EAG superfamily. First, we show that tyrosine kinase inhibitor, PP1, and the selective Src inhibitory peptide, Src40-58, reduce the hERG current amplitude, without altering its voltage dependence or kinetics. PP1 similarly reduces the hEAG1 current. Surprisingly, an 'immuno-receptor tyrosine inhibitory motif' (ITIM is present within the cyclic nucleotide binding domain of all EAG-superfamily members, and is conserved in the human, rat and mouse sequences. When tyrosine phosphorylated, this ITIM directly bound to and activated SHP-1 tyrosine phosphatase (PTP-1C/PTPN6/HCP; the first report that a portion of an ion channel is a binding site and activator of a tyrosine phosphatase. Both hERG and hEAG1 currents were decreased by applying active recombinant SHP-1, and increased by the inhibitory substrate-trapping SHP-1 mutant. Thus, hERG and hEAG1 currents are regulated by activated SHP-1, in a manner opposite to their regulation by Src. Given the widespread distribution of these channels, Src and SHP

  15. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin

    DEFF Research Database (Denmark)

    Barnea, G; Grumet, M; Milev, P;


    The extracellular domain of receptor type protein tyrosine phosphatase beta (RPTP beta) exhibits striking sequence similarity with a soluble, rat brain chondroitin sulfate proteoglycan (3F8 PG). Immunoprecipitation experiments of cells transfected with RPTP beta expression vector and metabolically...... labeled with [35S]sulfate and [35S]methionine indicate that the transmembrane form of RPTP beta is indeed a chondroitin sulfate proteoglycan. The 3F8 PG is therefore a variant form composed of the entire extracellular domain of RPTP beta probably generated by alternative RNA splicing. Previous...

  16. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1). (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan


    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  17. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. (United States)

    Martín-Ávila, Alejandro; Medina-Tamayo, Jaciel; Ibarra-Sánchez, Alfredo; Vázquez-Victorio, Genaro; Castillo-Arellano, Jorge Iván; Hernández-Mondragón, Alma Cristal; Rivera, Juan; Madera-Salcedo, Iris K; Blank, Ulrich; Macías-Silva, Marina; González-Espinosa, Claudia


    Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.

  18. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena


    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.

  19. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. (United States)

    Li, Li; Zhang, Jing; Xiong, Niya; Li, Shun; Chen, Yu; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao


    Breast cancer has a high incidence in the world and is becoming a leading cause of death in female patients due to its high metastatic ability. High expression of Notch-1 and its ligand Jagged-1 correlates with poor prognosis in breast cancer. Our previous work has shown that Notch-1 signaling pathway upregulates NF-κB transcriptional activity and induces the adhesion, migration and invasion of human breast cancer cell line MDA-MB-231. However, the role of Notch-1 in NF-κB activation is still poorly understood. Here, we aim to understand the exact mechanism that Notch-1 regulates NF-κB activity. In MDA-MB-231 cells where Notch-1 is constitutively activated, the phosphorylation of p85 and AKT (Tyr308/Ser473) is upregulated, indicating PI3K/AKT pathway is activated. Notch-1 activation caused the increase of PP2A phosphorylation at Tyr307, indicating Notch-1 inhibits PP2A activity. NF-κB transcriptional activity was evaluated by dual-luciferase reporter assay, and the results showed that, while silencing of Notch-1, PP2A activity was upregulated and NF-κB activity was downregulated, whereas PP2A inhibitor okadaic acid (OA) restored NF-κB activity. Immunofluorescence and Western blots showed that OA treatment antagonized the decrease of p65 nuclear translocation caused by Notch-1 silencing. Moreover, OA treatment also upregulated MMP-2, MMP-9 and VEGF mRNA expression levels, indicating OA rescues Notch-1 silencing that caused low cell invasion. Taken together, our results suggest that Notch-1-activating PI3K/AKT/NF-κB pathway is PP2A dependent; PP2A may be a potential therapeutic target in breast cancer.

  20. Protein phosphatases and chromatin modifying complexes in the inflammatory cascade in acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Javier; Escobar; Javier; Pereda; Alessandro; Arduini; Juan; Sastre; Juan; Sandoval; Luis; Aparisi; Gerardo; López-Rodas; Luis; Sabater


    Acute pancreatitis is an inflammation of the pancreas that may lead to systemic inflammatory response syndrome and death due to multiple organ failure. Acinar cells, together with leukocytes, trigger the inflammatory cascade in response to local damage of the pancreas. Amplification of the inflammatory cascade requires up-regulation of proinflammatory cytokines and this process is mediated not only by nuclear factor κB but also by chromatinmodifying complexes and chromatin remodeling. Among the different families of histone acetyltransferases, the p300/CBP family seems to be particularly associated with the inflammatory process. cAMP activates gene expression via the cAMP-responsive element (CRE) and the transcription factor CRE-binding protein (CREB). CREB can be phosphorylated and activated by different kinases, such as protein kinase A and MAPK, and then it recruits the histone acetyltransferase co-activator CREB-binding protein (CBP) and its homologue p300. The recruitment of CBP/p300 and changes in the level of histone acetylation are required for transcription activation. Transcriptional repression is also a dynamic and essential mechanism of down-regulation of genes for resolution of inflammation, which seems to be mediated mainly by protein phosphatases (PP1, PP2A and MKP1) and histone deacetylases(HDACs) .Class HDACs are key transcriptional regulators whose activities are controlled via phosphorylationdependent nucleo/cytoplasmic shuttling. PP2A is responsible for dephosphorylation of class HDACs, triggeringnuclear localization and repression of target genes, whereas phosphorylation triggers cytoplasmic localization leading to activation of target genes. The potential benefit from treatment with phosphodiesterase inhibitors and histone deacetylase inhibitors is discussed.

  1. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam. (United States)

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid


    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src.

  2. Dephosphorylation of Centrins by Protein Phosphatase 2C and

    Directory of Open Access Journals (Sweden)

    Marie-Christin Thissen


    Full Text Available In the present study, we identified protein phosphatases dephosphorylating centrins previously phosphorylated by protein kinase CK2. The following phosphatases known to be present in the retina were tested: PP1, PP2A, PP2B, PP2C, PP5, and alkaline phosphatase. PP2C and were capable of dephosphorylating P-Thr138-centrin1 most efficiently. PP2C was inactive and the other retinal phosphatases also had much less or no effect. Similar results were observed for centrins 2 and 4. Centrin3 was not a substrate for CK2. The results suggest PP2C and to play a significant role in regulating the phosphorylation status of centrins in vivo.

  3. Recent progress on the structure of Ser/Thr protein phosphatases

    Institute of Scientific and Technical Information of China (English)

    WANG BaiJing; ZHANG Peng; WEI Quni


    PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division regulation, etc. The sequence homology between them is relatively high, and ter-tiary structure is conserved. Because of the complexity of the structure of PP2A and the diversity of its regulatory subunits, its structure is less well known than those of PP1 and PP2B. The PP2A holoen-zyme consists of a heterodimeric core enzyme, comprising a scaffolding subunit and a catalytic sub-unit, as well as a variable regulatory subunit. In this study, the subunit compositions, similarities and differences between the Ser/Thr protein phsphatases structures are summarized.

  4. Recent progress on the structure of Ser/Thr protein phosphatases

    Institute of Scientific and Technical Information of China (English)


    PP1, PP2A and PP2B, belonging to the PPP family of Ser/Thr protein phosphatases, participate in regulating many important physiological processes, such as cell cycle control, regulation of cell growth and division regulation, etc. The sequence homology between them is relatively high, and ter- tiary structure is conserved. Because of the complexity of the structure of PP2A and the diversity of its regulatory subunits, its structure is less well known than those of PP1 and PP2B. The PP2A holoen- zyme consists of a heterodimeric core enzyme, comprising a scaffolding subunit and a catalytic sub- unit, as well as a variable regulatory subunit. In this study, the subunit compositions, similarities and differences between the Ser/Thr protein phsphatases structures are summarized.

  5. Palmitate action to inhibit glycogen synthase and stimulate protein phosphatase 2A increases with risk factors for type 2 diabetes. (United States)

    Mott, David M; Stone, Karen; Gessel, Mary C; Bunt, Joy C; Bogardus, Clifton


    Recent studies have suggested that abnormal regulation of protein phosphatase 2A (PP2A) is associated with Type 2 diabetes in rodent and human tissues. Results with cultured mouse myotubes support a mechanism for palmitate activation of PP2A, leading to activation of glycogen synthase kinase 3. Phosphorylation and inactivation of glycogen synthase by glycogen synthase kinase 3 could be the mechanism for long-chain fatty acid inhibition of insulin-mediated carbohydrate storage in insulin-resistant subjects. Here, we test the effects of palmitic acid on cultured muscle glycogen synthase and PP2A activities. Palmitate inhibition of glycogen synthase fractional activity is increased in subjects with high body mass index compared with subjects with lower body mass index (r = -0.43, P = 0.03). Palmitate action on PP2A varies from inhibition in subjects with decreased 2-h plasma glucose concentration to activation in subjects with increased 2-h plasma glucose concentration (r = 0.45, P < 0.03) during oral glucose tolerance tests. The results do not show an association between palmitate effects on PP2A and glycogen synthase fractional activity. We conclude that subjects at risk for Type 2 diabetes have intrinsic differences in palmitate regulation of at least two enzymes (PP2A and glycogen synthase), contributing to abnormal insulin regulation of glucose metabolism.

  6. Role of protein phosphatases in the run down of guinea pig cardiac Cav1.2 Ca2+ channels. (United States)

    Yu, Lifeng; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Feng, Rui; Hao, Liying; Kameyama, Masaki


    This study aimed to investigate protein phosphatases involved in the run down of Cav1.2 Ca(2+) channels. Single ventricular myocytes obtained from adult guinea pig hearts were used to record Ca(2+) channel currents with the patch-clamp technique. Calmodulin (CaM) and ATP were used to restore channel activity in inside-out patches. Inhibitors of protein phosphatases were applied to investigate the role of phosphatases. The specific protein phosphatase type 1 (PP1) inhibitor (PP1 inhibitor-2) and protein phosphatase type 2A (PP2A) inhibitor (fostriecin) abolished the slow run down of Cav1.2 Ca(2+) channels, which was evident as the time-dependent attenuation of the reversing effect of CaM/ATP on the run down. However, protein phosphatase type 2B (PP2B, calcineurin) inhibitor cyclosporine A together with cyclophilin A had no effect on the channel run down. Furthermore, PP1 inhibitor-2 mainly prolonged the open time constants of the channel, specifically, the slow open time. Fostriecin primarily shortened the slow close time constants. Our data suggest that PP1 and PP2A were involved in the slow phase of Cav1.2 Ca(2+) channel run down. In addition, they exerted different effects on the open-close kinetics of the channel. All above support the view that PP1 and PP2A may dephosphorylate distinct phosphorylation sites on the Cav1.2 Ca(2+) channel.

  7. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT (United States)

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.


    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  8. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Charlene Desbonnet


    Full Text Available The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins” is reliant on the presence of class A penicillin-binding proteins (Pbps PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2 of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP. Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system.

  9. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties. (United States)

    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida


    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6) and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF) located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND) that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP). We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.

  10. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4. (United States)

    Chan, Leon Y; Amon, Angelika


    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function.

  11. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.


    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  12. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li


    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  13. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors (United States)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  14. The Role of PP2A Methylation in Susceptibility and Resistance to TBI and AD-Induced Neurodegeneration (United States)


    inside a sound-attenuating box (72cm x 51cm x 48cm). A clear Plexiglas window (2cm thick, 12cm x 20cm) will allow the experimenter to record the...C- terminal anionic construct used a nickel column with His-bind resin . The supernatant was loaded on His-Spin Protein Miniprep columns (Zymo Res...below) Retinal pigment epithelium and Choroid: 6/ 6. Normal pigmentation. Bruch’s membrane is intact. No neovascular membranes were noted. Optic Nerve: 6

  15. Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma. (United States)

    Gordon, Ira K; Lu, Jie; Graves, Christian A; Huntoon, Kristin; Frerich, Jason M; Hanson, Ryan H; Wang, Xiaoping; Hong, Christopher S; Ho, Winson; Feldman, Michael J; Ikejiri, Barbara; Bisht, Kheem; Chen, Xiaoyuan S; Tandle, Anita; Yang, Chunzhang; Arscott, W Tristram; Ye, Donald; Heiss, John D; Lonser, Russell R; Camphausen, Kevin; Zhuang, Zhengping


    Protein phosphatase 2A (PP2A) is a tumor suppressor whose function is lost in many cancers. An emerging, though counterintuitive, therapeutic approach is inhibition of PP2A to drive damaged cells through the cell cycle, sensitizing them to radiotherapy. We investigated the effects of PP2A inhibition on U251 glioblastoma cells following radiation treatment in vitro and in a xenograft mouse model in vivo. Radiotherapy alone augmented PP2A activity, though this was significantly attenuated with combination LB100 treatment. LB100 treatment yielded a radiation dose enhancement factor of 1.45 and increased the rate of postradiation mitotic catastrophe at 72 and 96 hours. Glioblastoma cells treated with combination LB100 and radiotherapy maintained increased γ-H2AX expression at 24 hours, diminishing cellular repair of radiation-induced DNA double-strand breaks. Combination therapy significantly enhanced tumor growth delay and mouse survival and decreased p53 expression 3.68-fold, compared with radiotherapy alone. LB100 treatment effectively inhibited PP2A activity and enhanced U251 glioblastoma radiosensitivity in vitro and in vivo. Combination treatment with LB100 and radiation significantly delayed tumor growth, prolonging survival. The mechanism of radiosensitization appears to be related to increased mitotic catastrophe, decreased capacity for repair of DNA double-strand breaks, and diminished p53 DNA-damage response pathway activity.

  16. Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.


    Barik, S


    The predicted amino acid sequence encoded by the open reading frame 221 (orf221) of bacteriophage lambda exhibited a high degree of similarity to the catalytic subunits of a variety of protein serine/threonine phosphatases belonging to PP1, PP2A, and PP2B groups. Cloning and expression of the orf221 gene in Escherichia coli provided direct evidence that the gene codes for a protein serine/threonine phosphatase. The single-subunit recombinant enzyme was purified in soluble form and shown to po...

  17. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. (United States)

    Umberger, Nicole L; Caspary, Tamara


    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  18. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. (United States)

    Walton, J R


    In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (paluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.

  19. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    Directory of Open Access Journals (Sweden)

    Sarma Uddipan


    Full Text Available Abstract Background The three layer mitogen activated protein kinase (MAPK signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can

  20. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells. (United States)

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle


    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.

  1. Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells

    DEFF Research Database (Denmark)

    Vuocolo, Scott; Purev, Enkhtsetseg; Zhang, Dongmei


    Levels of Rb2/p130 protein are increased 5-10-fold following all-trans-retinoic acid (ATRA) treatment of the retinoid-sensitive ovarian adenocarcinoma cell line CAOV3, but not the retinoid-resistant adenocarcinoma cell line SKOV3. We found that this increase in Rb2/p130 protein levels in ATRA......-treated CAOV3 cells was the result of an increased protein stability. Moreover, Rb2/p130 exhibited a decreased ubiquitination following ATRA treatment. Because phosphorylation frequently mediates ubiquitination of proteins, we examined the serine/threonine phosphatase activity in our CAOV3 cells following ATRA...... treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate...

  2. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. (United States)

    Hunt, Tim


    The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity. At this point, the phosphate moieties that altered the properties of hundreds of proteins to bring about the cellular reorganization are removed by protein phosphatases. At least one protein phosphatase, PP2A-B55, is completely shut off in mitosis. Depletion of this particular form of PP2A accelerates entry into mitosis, and blocks exit from mitosis. Control of this phosphatase is achieved by an inhibitor protein (α-endosulfine or ARPP-19) that becomes inhibitory when phosphorylated by a protein kinase called Greatwall, which is itself a substrate of CDK1. Failure to inhibit PP2A-B55 causes arrest of the cell cycle in G2 phase. I will discuss the role of this control mechanism in the control of mitosis.

  3. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. (United States)

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long


    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  4. Effects of Newly Synthesized DCP-LA-Phospholipids on Protein Kinase C and Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Takeshi Kanno


    Full Text Available Background/Aims: The linoleic acid derivative DCP-LA selectively activates PKCε and inhibits protein phosphatase 1 (PP1. In the present study, we have newly synthesized phosphatidyl-ethanolamine, -serine, -choline, and -inositol containing DCP-LA at the α and β position (diDCP-LA-PE, -PS, PC, and -PI, respectively, and examined the effects of these compounds on activities of PKC isozymes and protein phosphatases. Methods: Activities of PKC isozymes PKCα, -βΙ, -βΙΙ, -γ, -δ, -ε-, ι, and -ζ and protein phosphatases PP1, PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Results: All the compounds activated PKC, with the different potential, but only PKCγ inhibition was obtained with diDCP-LA-PC. Of compounds diDCP-LA-PE alone significantly activated PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI suppressed PP1 activity, but otherwise diDCP-LA-PI enhanced PP2A activity. diDCP-LA-PE, diDCP-LA-PS, and diDCP-LA-PI strongly reduced PTP1B activity, while diDCP-LA-PC enhanced the activity. Conclusion: All the newly synthesized DCP-LA-phospholipids serve as a PKC activator and of them diDCP-LA-PE alone has the potential to activate the atypical PKC isozymes PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI serve as an inhibitor for PP1 and PTP1B, diDCP-LA-PS as a PTP1B inhibitor, diDCP-LA-PI as a PP2A enhancer, and diDCP-LA-PC as a PTP1B enhancer.

  5. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming V. [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Chen, Weiqin [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Harmancey, Romain N. [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Taegtmeyer, Heinrich [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Chan, Lawrence, E-mail: [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); St. Luke' s Episcopal Hospital, Houston, TX 77030 (United States)


    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  6. Phosphatase-dependent regulation of epithelial mitogen-activated protein kinase responses to toxin-induced membrane pores.

    Directory of Open Access Journals (Sweden)

    Jorge L Aguilar

    Full Text Available Diverse bacterial species produce pore-forming toxins (PFT that can puncture eukaryotic cell membranes. Host cells respond to sublytic concentrations of PFT through conserved intracellular signaling pathways, including activation of mitogen-activated protein kinases (MAPK, which are critical to cell survival. Here we demonstrate that in respiratory epithelial cells p38 and JNK MAPK were phosphorylated within 30 min of exposure to pneumolysin, the PFT from Streptococcus pneumoniae. This activation was tightly regulated, and dephosphorylation of both MAPK occurred within 60 min following exposure. Pretreatment of epithelial cells with inhibitors of cellular phosphatases, including sodium orthovanadate, calyculin A, and okadaic acid, prolonged and intensified MAPK activation. Specific inhibition of MAPK phosphatase-1 did not affect the kinetics of MAPK activation in PFT-exposed epithelial cells, but siRNA-mediated knockdown of serine/threonine phosphatases PP1 and PP2A were potent inhibitors of MAPK dephosphorylation. These results indicate an important role for PP1 and PP2A in termination of epithelial responses to PFT and only a minor contribution of dual-specificity phosphatases, such as MAPK phosphatase-1, which are the major regulators of MAPK signals in other cell types. Epithelial regulation of MAPK signaling in response to membrane disruption involves distinct pathways and may require different strategies for therapeutic interventions.

  7. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression. (United States)

    Jakka, Siva R K; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J; Narva, Kenneth; Blanco, Carlos A; Jurat-Fuentes, Juan L


    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae.

  8. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5) (United States)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.


    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  9. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei


    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  10. 斑蝥素对草地贪夜蛾卵巢细胞凋亡基因PP2A表达的影响%The Effects of Cantharidin on the PP2A Gene Expression in the Ovarian Cell of Spodoptera frugiperda

    Institute of Scientific and Technical Information of China (English)

    张民照; 杜艳丽; 郝少东; 覃晓春; 王进忠; 张志勇


    用实时荧光定量PCR技术对草地贪夜蛾Spodoptera frugiperda卵巢组织细胞蛋白磷酸酶2A(protein phosphatase 2A,PP2A)基因表达进行分析以研究斑蝥素对其表达的影响.结果表明,PP2A相对表达量与斑蝥素浓度存在不显著的负相关性,斑蝥素各浓度下PP2A相对表达量差异都不显著(P<0.05),处理24h后对照的极显著高于用斑蝥素处理的(P<0.01).在相同斑蝥素浓度下,除25μg/mL外其他浓度处理24 h后PP2A相对定量显著高于6h的(P<0.05).研究结果说明,斑蝥素处理对卵巢细胞内的PP2A基因相对表达量有一定的影响,且与斑蝥素的浓度和处理时间有一定关系.

  11. Structural mechanisms of plant glucan phosphatases in starch metabolism. (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S


    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings.

  12. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao


    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  13. Dynamic regulation of extracellular signal-regulated kinase (ERK by protein phosphatase 2A regulatory subunit B56γ1 in nuclei induces cell migration.

    Directory of Open Access Journals (Sweden)

    Ei Kawahara

    Full Text Available Extracellular signal-regulated kinase (ERK signalling plays a central role in various biological processes, including cell migration, but it remains unknown what factors directly regulate the strength and duration of ERK activation. We found that, among the B56 family of protein phosphatase 2A (PP2A regulatory subunits, B56γ1 suppressed EGF-induced cell migration on collagen, bound to phosphorylated-ERK, and dephosphorylated ERK, whereas B56α1 and B56β1 did not. B56γ1 was immunolocalized in nuclei. The IER3 protein was immediately highly expressed in response to costimulation of cells with EGF and collagen. Knockdown of IER3 inhibited cell migration and enhanced dephosphorylation of ERK. Analysis of the time course of PP2A-B56γ1 activity following the costimulation showed an immediate loss of phosphatase activity, followed by a rapid increase in activity, and this activity then remained at a stable level that was lower than the original level. Our results indicate that the strength and duration of the nuclear ERK activation signal that is initially induced by ERK kinase (MEK are determined at least in part by modulation of the phosphatase activity of PP2A-B56γ1 through two independent pathways.

  14. Crystal Structure of Phosphatidylglycerophosphatase (PGPase), a Putative Membrane-Bound Lipid Phosphatase, Reveals a Novel Binuclear Metal Binding Site and Two Proton Wires

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran,D.; Bonnano, J.; Burley, S.; Swaminathan, S.


    Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 Angstroms resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca{sup 2+} and Mg{sup 2+}, forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed 'proton wires', is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.

  15. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke


    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  16. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T;


    Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxi......Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment...... but not AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....

  17. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I


    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.

  18. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)


    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  19. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna


    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  20. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. (United States)

    Liangpunsakul, Suthat; Rahmini, Yasmeen; Ross, Ruth A; Zhao, Zhenwen; Xu, Yan; Crabb, David W


    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation

  1. Highly sensitive detection and discrimination of LR and YR microcystins based on protein phosphatases and an artificial neural network. (United States)

    Covaci, O I; Sassolas, A; Alonso, G A; Muñoz, R; Radu, G L; Bucur, B; Marty, J-L


    The inhibition characteristics of three different protein phosphatases by three microcystin (MC) variants--LR, YR, and RR--were studied. The corresponding K (I) for each enzyme-MC couple was calculated. The toxicity of MC varies in the following order: MC-LR > MC-YR > MC-RR. The sensitivity of the enzymes increased in the following order: mutant PP2A < mutant PP1 < natural PP2A. The best limit of detection obtained was 21.2 pM MC-LR using the most sensible enzyme. Methanol, ethanol, and acetonitrile up to 2 % (v/v) may be used in inhibition measurements. An artificial neural network (ANN) was used to discriminate two MC variants--LR and YR--using the differences in inhibition percentages measured with mutant PP1 and natural PP2A. The ANN is able to analyze mixtures with concentrations ranging from 8 to 98 pM MC-LR and 31 to 373 pM MC-YR.

  2. Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. (United States)

    Brooke, G P; Parsons, K R; Howard, C J


    Recent experimental studies have greatly clarified the function of cell surface molecules in the induction and modulation of T cell responses by antigen-presenting cells (APC). However, the differences in ability to stimulate T cells evident for different types and subpopulations of the same APC, such as dendritic cell subsets, is less well understood. This report details an investigation of an antigen expressed on monocytes that is also expressed on a subset of cattle afferent lymph veiled cells (ALVC). A cDNA library derived from cattle monocytes was screened with monoclonal antibodies (mAb) for expression in COS-7 cells. Using separate mAb for screening, two cDNA were cloned, the sequences of which showed a single long open reading frame encoding a predicted type I glycoprotein of 506 amino acids that contained three immunoglobulin superfamily domains and a long 112-amino acid cytoplasmic tail. We have termed this antigen MyD-1, reflecting its myeloid and dendritic cell distribution. Analysis of the EMBL database revealed that the molecule is a member of the recently described family of signal regulatory proteins (SIRP). The outeremost Ig domain was of the adhesion/receptor I-type, suggesting that MyD-1 might bind to a ligand on another cell. Evidence for this was subsequently obtained by demonstrating that COS-7 cells transfected with MyD-1 cDNA bound CD4 T cells and this binding was blocked by specific mAb. The potential importance of this interaction was supported by the finding that the proliferation of resting memory CD4 T cells to ovalbumin-pulsed monocytes was significantly reduced in the presence of mAb to MyD-1. A role for the molecule in the modulation of the monocyte/dendritic APC response is also predicted from the existence of multiple potential tyrosine phosphorylation sites in the cytoplasmic domain, including the presence of an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the observation that the SIRP alpha family members have been

  3. Comparative DNA binding abilities and phosphatase-like activities of mono-, di-, and trinuclear Ni(II) complexes: the influence of ligand denticity, metal-metal distance, and coordinating solvent/anion on kinetics studies. (United States)

    Bhardwaj, Vimal K; Singh, Ajnesh


    Six novel Ni(II) complexes, namely, [Ni2(HL(1))(OAc)2] (1), [Ni3L(1)2]·H2O·2CH3CN (2), [Ni2(L(2))(L(3))(CH3CN)] (3), [Ni2(L(2))2(H2O)2] (4), [Ni2(L(2))2(DMF)2]2·2H2O (5), and [Ni(HL(2))2]·H2O (6), were synthesized by reacting nitrophenol-based tripodal (H3L(1)) and dipodal (H2L(2)) Schiff base ligands with Ni(II) metal salts at ambient conditions. All the complexes were fully characterized with different spectroscopic techniques such as elemental analyses, IR, UV-vis spectroscopy, and electrospray ionization mass spectrometry. The solid-state structures of 2, 3, 5, and 6 were determined using single-crystal X-ray crystallography. The compounds 1, 3, 4, and 5 are dinuclear complexes where the two Ni(II) centers have octahedral geometry with bridging phenoxo groups. Compound 2 is a trinuclear complex with two different types of Ni(II) centers. In compound 3 one of the Ni(II) centers has a coordinated acetonitrile molecule, whereas in compound 4, a water molecule has occupied one coordination site of each Ni(II) center. In complex 5, the coordinated water of complex 4 was displaced by the dimethylformamide (DMF) during its crystallization. Complex 6 is mononuclear with two amine-bis(phenolate) ligands in scissorlike fashion around the Ni(II) metal center. The single crystals of 1 and 4 could not be obtained; however, from the spectroscopic data and physicochemical properties (electronic and redox properties) it was assumed that the structures of these complexes are quite similar to other analogues. DNA binding abilities and phosphatase-like activities of all characterized complexes were also investigated. The ligand denticity, coordinated anions/solvents (such as acetate, acetonitrile, water, and DMF), and cooperative action of two metal centers play a significant role in the phosphate ester bond cleavage of 2-hydroxypropyl-p-nitropenylphosphate by transesterification mechanism. Complex 3 exhibits highest activity among complexes 1-6 with 3.86 × 10(5) times

  4. Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity.

    Directory of Open Access Journals (Sweden)

    Vikas V Dukhande

    Full Text Available Lafora Disease (LD is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs. LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.

  5. Protein phosphatase methylesterase-1 (PME-1) expression predicts a favorable clinical outcome in colorectal cancer. (United States)

    Kaur, Amanpreet; Elzagheid, Adam; Birkman, Eva-Maria; Avoranta, Tuulia; Kytölä, Ville; Korkeila, Eija; Syrjänen, Kari; Westermarck, Jukka; Sundström, Jari


    Colorectal cancer (CRC) accounts for high mortality. So far, there is lack of markers capable of predicting which patients are at risk of aggressive course of the disease. Protein phosphatase-2A (PP2A) inhibitor proteins have recently gained interest as markers of more aggressive disease in certain cancers. Here, we report the role of PP2A inhibitor PME-1 in CRC. PME-1 expression was assessed from a rectal cancer patient cohort by immunohistochemistry, and correlations were performed for various clinicopathological variables and patient survival. Rectal cancer patients with higher cytoplasmic PME-1 protein expression (above median) had less recurrences (P = 0.003, n = 195) and better disease-free survival (DFS) than the patients with low cytoplasmic PME-1 protein expression (below median). Analysis of PPME-1 mRNA expression from TCGA dataset of colon and rectal adenocarcinoma (COADREAD) patient cohort confirmed high PPME1 expression as an independent protective factor predicting favorable overall survival (OS) (P = 0.005, n = 396) compared to patients with low PPME1 expression. CRC cell lines were used to study the effect of PME-1 knockdown by siRNA on cell survival. Contrary to other cancer types, PME-1 inhibition in CRC cell lines did not reduce the viability of cells or the expression of active phosphorylated AKT and ERK proteins. In conclusion, PME-1 expression predicts for a favorable outcome of CRC patients. The unexpected role of PME-1 in CRC in contrast with the oncogenic role of PP2A inhibitor proteins in other malignancies warrants further studies of cancer-specific function for each of these proteins.

  6. Glucose-6-phosphatase deficiency.


    Labrune Philippe; Gajdos Vincent; Eberschweiler Pascale; Hubert-Buron Aurélie; Petit François; Vianey-Saban Christine; Boudjemline Alix; Piraud Monique; Froissart Roseline


    Abstract Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, betw...

  7. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, Alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders

    Directory of Open Access Journals (Sweden)

    Cox Timothy C


    Full Text Available Abstract Background Patients with Opitz GBBB syndrome present with a variable array of developmental defects including craniofacial, cardiac, and genital anomalies. Mutations in the X-linked MID1 gene, which encodes a microtubule-binding protein, have been found in ~50% of Opitz GBBB syndrome patients consistent with the genetically heterogeneous nature of the disorder. A protein highly related to MID1, called MID2, has also been described that similarly associates with microtubules. Results To identify protein partners of MID1 and MID2 we undertook two separate yeast two-hybrid screens. Using this system we identified Alpha 4, a regulatory subunit of PP2-type phosphatases and a key component of the rapamycin-sensitive signaling pathway, as a strong interactor of both proteins. Analysis of domain-specific deletions has shown that the B-boxes of both MID1 and MID2 mediate the interaction with Alpha 4, the first demonstration in an RBCC protein of a specific role for the B-box region. In addition, we show that the MID1/2 coiled-coil motifs mediate both homo- and hetero-dimerisation, and that dimerisation is a prerequisite for association of the MID-Alpha 4 complex with microtubules. Conclusions Our findings not only implicate Alpha 4 in the pathogenesis of Opitz GBBB syndrome but also support our earlier hypothesis that MID2 is a modifier of the X-linked phenotype. Of further note is the observation that Alpha 4 maps to Xq13 within the region showing linkage to FG (Opitz-Kaveggia syndrome. Overlap in the clinical features of FG and Opitz GBBB syndromes warrants investigation of Alpha 4 as a candidate for causing FG syndrome.

  8. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A (United States)

    Zhou, Lei; Le Roux, Gwenaëlle; Ducrot, Cécile; Chédin, Stéphane; Labarre, Jean; Riva, Michel; Carles, Christophe


    Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd2+) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd2+ rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd2+, but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I–Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag+ and Hg2+, which likewise perturb the Pol I–Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I–Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals. PMID:23640330

  9. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity (United States)

    Kuhn, Benjamin M.; Nodzyński, Tomasz; Errafi, Sanae; Bucher, Rahel; Gupta, Shibu; Aryal, Bibek; Dobrev, Petre; Bigler, Laurent; Geisler, Markus; Zažímalová, Eva; Friml, Jiří; Ringli, Christoph


    The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium. PMID:28165500

  10. Protein phosphatase 2A plays a critical role in interleukin-2-induced beta 2-integrin dependent homotypic adhesion in human CD4+ T cell lines

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Svejgaard, A


    Besides its function as a growth factor for T lymphocytes, interleukin 2 (IL-2) induces beta 2-integrin mediated adhesion, migration, and extravasation of T lymphocytes. It is, however, largely unknown how IL-2 receptors (IL-2R) are coupled to the beta 2-integrin adhesion pathway. Because IL-2 mo...... no inhibitory effect on cytokine induced adhesion at concentrations which strongly inhibited phosphatase activity. In conclusion, these data provide evidence that PP2A plays a critical role in IL-2-induced beta 2-integrin-dependent adhesion of human T cell lines.......Besides its function as a growth factor for T lymphocytes, interleukin 2 (IL-2) induces beta 2-integrin mediated adhesion, migration, and extravasation of T lymphocytes. It is, however, largely unknown how IL-2 receptors (IL-2R) are coupled to the beta 2-integrin adhesion pathway. Because IL-2...... modulates enzymatic activity and/or subcellular distribution of serine/threonine phosphatases 1 and 2A (PP1/PP2A) in T cells, we examined the role of these phosphatases in IL-2 induced homotypic adhesion in antigen specific human CD4+ T cell lines. We show that calyculin A, a potent inhibitor of PP1 and PP2...

  11. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Mingning, E-mail:; Liu, Lei, E-mail:; Chen, Lieqian, E-mail:; Tan, Guobin, E-mail:; Liang, Ziji, E-mail:; Wang, Kangning, E-mail:; Liu, Jianjun, E-mail:; Chen, Hege, E-mail:


    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.

  12. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. (United States)

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David


    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  13. Zanthoxylum avicennae extracts induce cell apoptosis through protein phosphatase 2A activation in HA22T human hepatocellular carcinoma cells and block tumor growth in xenografted nude mice. (United States)

    Dung, Tran Duc; Chang, Hsien-Cheh; Chen, Chung-Yu; Peng, Wen-Huang; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Chen, Li-Mien; Huang, Chih-Yang


    The use of herbs as alternative cancer therapies has attracted a great deal of attention owing to their lower toxicity. Whether Zanthoxylum avicennae (Ying Bu Bo, YBB) induces liver cancer cell apoptosis remains unclear. In this study, we investigated the effect of YBB extracts (YBBEs) on HA22T human hepatocellular carcinoma cells in vitro and in an in vivo mouse xenograft model. HA22T cells were treated with different concentrations of YBBEs and analyzed with Western blot analysis, TUNEL, JC-1 staining and siRNA transfection assays. Additionally, the HA22T-implanted xenograft nude mice model was applied to confirm the cellular effects. YBBEs-induced apoptosis, up-regulated death receptor apoptotic pathway markers as well as mitochondrial proteins, and suppressed the survival proteins in a dose-dependent manner. Pro-survival Bcl-2 family proteins were inhibited and the pro-apoptotic ones were increased. Protein phosphatase 2A (PP2A) siRNA or okadaic acid reversed the YBBEs effects, confirming the role of PP2A in YBBEs-induced HA22T apoptosis. All our experimental evidence indicates that YBBEs significantly promote HA22T apoptosis and reduce tumor sizes in xenograft nude mice via PP2A in a dose-dependent manner.

  14. [Alkaline phosphatase in Amoeba proteus]. (United States)

    Sopina, V A


    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  15. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S;


    the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4......Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...

  16. Growth hormone (GH) treatment increases serum insulin-like growth factor binding protein-3, bone isoenzyme alkaline phosphatase and forearm bone mineral content in young adults with GH deficiency of childhood onset

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, S A; Sørensen, S;


    Recent studies have demonstrated that growth hormone (GH)-deficient adults have a markedly decreased bone mineral content compared to healthy adults. However, there are conflicting results regarding the effects of GH treatment on bone mineral content in GH-deficient adults. Therefore, we evaluated...... the effect of GH treatment on a marker of bone formation (bone alkaline phosphatase), hepatic excretory function and distal forearm bone mineral content in GH-deficient adults. Growth hormone was administered subcutaneously in 21 adults (13 males and 8 females) with GH deficiency of childhood onset for 4...

  17. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2 (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal


    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  18. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2. (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal


    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  19. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice

    DEFF Research Database (Denmark)

    Costinean, Stefan; Sandhu, Sukhinder K; Pedersen, Irene M


    We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation......, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT...... a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma....

  20. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al


    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  1. Effect of okadaic acid and calyculin-A, two protein phosphatase inhibitors, on thyrotropin-stimulated triiodothyronine secretion in cultured sheep thyroid cells. (United States)

    Arufe, M C; Beckett, G J; Durán, R; Alfonso, M


    We have studied the effect of two protein phosphatase inhibitors on thyrotropin (TSH)-stimulated triiodothyronine (T3) production by sheep thyroid cells grown in primary culture. Incubation of sheep thyrocytes with okadaic acid (OA) and calyculin-A (CL-A), two potent inhibitors of type 1 (PP1) and type 2A (PP2A) protein phosphatases, resulted in an increase of TSH-stimulated T3 production. This effect was detected using concentrations as low as 0.1 pM with OA and 1 fM with CL-A. An inhibitory effect on T3 production, due to cellular death, was observed with 6 nM OA and 1 nM CL-A. In the absence of TSH, OA or CL-A had no effect on T3 production by thyrocytes. Forskoline (10 microM), an activator of adenylate cyclase, increased the basal and TSH-stimulated T3 release by sheep thyroid cells; this effect was increased by OA in cells grown in the basal state but not in the presence of TSH. These results suggest that the marine toxins OA and CL-A, two potent inhibitors of PP-1 and PP-2A, have significant stimulatory effects on T3 secretion promoted by TSH and FK. These observations indicate that these proteins could be important mediators of thyroid hormone production.

  2. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe


    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  3. Glucose-6-phosphatase deficiency. (United States)

    Froissart, Roseline; Piraud, Monique; Boudjemline, Alix Mollet; Vianey-Saban, Christine; Petit, François; Hubert-Buron, Aurélie; Eberschweiler, Pascale Trioche; Gajdos, Vincent; Labrune, Philippe


    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  4. Identification of a protein phosphatase-1/phospholamban complex that is regulated by cAMP-dependent phosphorylation.

    Directory of Open Access Journals (Sweden)

    Elizabeth Vafiadaki

    Full Text Available In human and experimental heart failure, the activity of the type 1 phosphatase is significantly increased, associated with dephosphorylation of phospholamban, inhibition of the sarco(endoplasmic reticulum Ca(2+ transport ATPase (SERCA2a and depressed function. In the current study, we investigated the molecular mechanisms controlling protein phosphatase-1 activity. Using recombinant proteins and complementary in vitro binding studies, we identified a multi-protein complex centered on protein phosphatase-1 that includes its muscle specific glycogen-targeting subunit GM and substrate phospholamban. GM interacts directly with phospholamban and this association is mediated by the cytosolic regions of the proteins. Our findings suggest the involvement of GM in mediating formation of the phosphatase-1/GM/phospholamban complex through the direct and independent interactions of GM with both protein phosphatase-1 and phospholamban. Importantly, the protein phosphatase-1/GM/phospholamban complex dissociates upon protein kinase A phosphorylation, indicating its significance in the β-adrenergic signalling axis. Moreover, protein phosphatase-1 activity is regulated by two binding partners, inhibitor-1 and the small heat shock protein 20, Hsp20. Indeed, human genetic variants of inhibitor-1 (G147D or Hsp20 (P20L result in reduced binding and inhibition of protein phosphatase-1, suggesting aberrant enzymatic regulation in human carriers. These findings provide insights into the mechanisms underlying fine-tuned regulation of protein phosphatase-1 and its impact on the SERCA2/phospholamban interactome in cardiac function.

  5. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail:; Jaraki, Dima; András, Ibolya E.; Toborek, Michal


    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  6. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction. (United States)

    Lee, Eunhee; Stafford, Walter F


    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  7. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor. (United States)

    Dounay, A B; Forsyth, C J


    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  8. Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose

    DEFF Research Database (Denmark)

    Wilkens, Casper; Auger, Kyle D.; Anderson, Nolan T.;


    The plant glucan phosphatases Starch EXcess 4 (SEX4) and Like Sex Four2 (LSF2) apply different starch binding mechanisms. SEX4 contains a carbohydrate binding module, and LSF2 has two surface binding sites (SBSs). We determined KDapp for amylopectin and amylose, and KD for β-cyclodextrin and vali...

  9. Prostatic acid phosphatase by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, G.R.; Stirton, M.S.; Liedtke, R.J.; Batjer, J.D.


    Prostatic acid phosphatase values in 98 patients with prostatic carcinoma were measured by a commmercial radioimmunoassay (RIA) and by enzymatic assay. Forty-three carcinomas were staged by rigorous pathological criteria. Patients (N = 129) with benign prostatic hyperplasia were the control group. At 94% specificity, sensitivities of the RIA vs the enzymatic assay for clinically staged patients were as follows: stage A, 22% vs 6%; B, 29% vs 10%; C, 52% vs 38%; and D, 87% vs 80%. However, none of the seven patients with pathological stage A and B disease had a positive test result, and we suggest that variability in staging criteria accounts for the discrepant sensitivity claims reported. Prostatic acid phosphatase RIA should not be used for screening but as an adjunct for staging known prostatic carcinoma.

  10. Truncated Form of the Epstein-Barr Virus Protein EBNA-LP Protects against Caspase-Dependent Apoptosis by Inhibiting Protein Phosphatase 2A▿ (United States)

    Garibal, Julie; Hollville, Émilie; Bell, Andrew I.; Kelly, Gemma L.; Renouf, Benjamin; Kawaguchi, Yasushi; Rickinson, Alan B.; Wiels, Joëlle


    The Epstein-Barr virus (EBV)-encoded leader protein, EBNA-LP, strongly activates the EBNA2-mediated transcriptional activation of cellular and viral genes and is therefore important for EBV-induced B-cell transformation. However, a truncated form of EBNA-LP is produced in cells infected with variant EBV strains lacking EBNA2 due to a genetic deletion. The function of this truncated form is unknown. We show here that some Burkitt's lymphoma cells harboring defective EBV strains are specifically resistant to the caspase-dependent apoptosis induced by verotoxin 1 (VT-1) or staurosporine. These cells produced low-molecular-weight Y1Y2-truncated isoforms of EBNA-LP, which were partly localized in the cytoplasm. The transfection of sensitive cells with constructs encoding truncated EBNA-LP isoforms, but not full-length EBNA-LP, induced resistance to caspase-mediated apoptosis. Furthermore, VT-1 induced protein phosphatase 2A (PP2A) activation in sensitive cells but not in resistant cells, in which the truncated EBNA-LP interacted with this protein. Thus, the resistance to apoptosis observed in cells harboring defective EBV strains most probably results from the inactivation of PP2A via interactions with low-molecular-weight Y1Y2-truncated EBNA-LP isoforms. PMID:17494066

  11. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A–dependent eNOS inactivation (United States)

    García, Celina; Aranda, Jorge; Arnold, Edith; Thébault, Stéphanie; Macotela, Yazmín; López-Casillas, Fernando; Mendoza, Valentín; Quiroz-Mercado, Hugo; Hernández-Montiel, Hebert Luis; Lin, Sue-Hwa; de la Escalera, Gonzalo Martínez; Clapp, Carmen


    Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies. PMID:18497878

  12. Aβ induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons. (United States)

    Yao, Wen; Zou, Hao-Jun; Sun, Da; Ren, Si-Qiang


    Beta-amyloid peptide (Aβ) has a causal role in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that Aβ can disrupt excitatory glutamatergic synaptic function at synaptic level. However, the underlying mechanisms remain obscure. In this study, we recorded evoked and spontaneous EPSCs in hippocampal CA1 pyramidal neurons via whole-cell voltage-clamping methods and found that 1 μM Aβ can induce acute depression of basal glutamatergic synaptic transmission through both presynaptic and postsynaptic dysfunction. Moreover, we also found that Aβ-induced both presynaptic and postsynaptic dysfunction can be reversed by the inhibitor of protein phosphatase 2B (PP2B), FK506, whereas only postsynaptic disruption can be ameliorated by the inhibitor of PP1/PP2A, Okadaic acid (OA). These results indicate that PP1/PP2A and PP2B have overlapping but not identical functions in Aβ-induced acute depression of excitatory glutamatergic synaptic transmission of hippocampal CA1 pyramidal neurons.

  13. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  14. [Protein phosphatases: structure and function]. (United States)

    Bulanova, E G; Budagian, V M


    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  15. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas


    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  16. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert


    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.


    Institute of Scientific and Technical Information of China (English)

    赵珺琼; 谢斯思; 陈培超; 邹立军; 刘文彬; 肖亚梅; 刘少军; 刘筠; 李万程


    蛋白磷酸酶2A是一种重要的丝氨酸/苏氨酸蛋白磷酸酶,对于调控多细胞的生命活动起重要作用.以金鱼大脑为材料,运用RT-PCR技术克隆得到PP2A调节亚基B55家族中PR55γ基因编码区部分序列.结果显示PR55γ基因eDNA长1218 bp,编码的多肽共含405个氨基酸.序列分析表明,该基因编码的蛋白与已知其他物种对应的PR55γ蛋白质均有着很高的同源性.用RT-PCR的方法检测了PR55γ基因在金鱼不同组织和胚胎发育不同时期的mRNA表达水平.结果表明,PR55γ基因表达呈现明显的组织和胚胎发育阶段差异性.在成体组织中,仅在大脑和鳍中有表达.在胚胎发育过程中,PR55γ从神经胚开始出现,整体呈现上升趋势,在出膜期达到最高水平.据此推测,PR55γ基因可能在金鱼胚胎发育中具有多种重要作用.%The reversible phosphorylation of proteins is an important posttranslational modification in eukaryotes that modulates the functional status of more than thirty percent of total cellular proteins.In the present study, we reported the molecular cloning of a partial cDNA coding for the PR55/Bγ of PP-2A from the brain of goldfish through 5' RACE PCR strategy.The partial PR55γ cDNA contained 1218 nucleotides which encoded a deduced partial protein of 405 amino acids.Sequence homology analysis showed that the PR55/Bγ of PP-2A displayed a high level of amino acid identity with the counterpart from other species including human and rat, indicating the conservation of PR55/Bγ.RT-PCR analysis revealed that PR55/Bγ mRNA was specifically expressed in the brain and fin of goldfish.Our demonstration that PR55/Bγwas expressed in the fish fin was a novel finding for the first time.This result suggested that the PP-2A with PR55/Bγ as the regulatory subunit in fish likely played an important role in swimming, balancing and sensitivity to the water environment.Moreover, during the development of goldfish, PR55/Bγ mRNA was

  18. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis. (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E


    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1.

  19. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG


    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  20. Serum prostate-specific acid phosphatase: development and validation of a specific radioimmunoassay. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Vihko, P.; Sajanti, E.; Jaenne, O.; Peltonen, L.; Vihko, R.


    We describe radioimmunoassay for human prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC in serum, with use of monospecific antisera raised in rabbits against highly purified acid phosphatase from human prostates. The antiserum did not cross react with partly purified acid phosphatases from human spleen, erythrocytes, or synovial tissues. /sup 125/I-labeled acid phosphatase was prepared by a Chloramine T method, and the bound and free antigen was separated in the assay by use of anti-rabbit gamma-globulin raised in sheep. Uniform low nonspecific binding of the (/sup 125/I)acid phosphatase was achieved by using acid-phosphatase-free serum to prepare standard curves and diluted samples of serum with high acid phosphatase activities. Concentrations of immunoreactive acid phosphatase in the serum of healthy men ranged from <1 to 10 and for 12 patients with advanced prostatic carcinoma between 100 and 500 The concentrations of the enzyme in sera of patients with benign prostatic hyperplasia were very similar to those in sera of the reference group.

  1. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives. (United States)

    Li, Ying; Lu, Liping; Zhu, Miaoli; Wang, Qingming; Yuan, Caixia; Xing, Shu; Fu, Xueqi; Mei, Yuhua


    A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV-Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC(50) at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 10(6) and 1.87 × 10(6) M(-1) at 310 K for 2 and 4, respectively.

  2. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. (United States)

    Veillette, André; Rhee, Inmoo; Souza, Cleiton Martins; Davidson, Dominique


    The proline-, glutamic acid-, serine- and threonine-rich (PEST) family of protein tyrosine phosphatases (PTPs) includes proline-enriched phosphatase (PEP)/lymphoid tyrosine phosphatase (LYP), PTP-PEST, and PTP-hematopoietic stem cell fraction (HSCF). PEP/LYP is a potent inhibitor of T-cell activation, principally by suppressing the activity of Src family protein tyrosine kinases (PTKs). This function seems to be dependent, at least in part, on the ability of PEP to bind C-terminal Src kinase (Csk), a PTK also involved in inactivating Src kinases. Interestingly, a polymorphism of LYP in humans (R620W) is a significant risk factor for autoimmune diseases including type 1 diabetes, rheumatoid arthritis, and lupus. The R620W mutation may be a 'gain-of-function' mutation. In non-hematopoietic cells, PTP-PEST is a critical regulator of adhesion and migration. This effect correlates with the aptitude of PTP-PEST to dephosphorylate cytoskeletal proteins such as Cas, focal adhesion associated-kinase (FAK), Pyk2, and PSTPIP. While not established, a similar function may also exist in immune cells. Additionally, overexpression studies provided an indication that PTP-PEST may be a negative regulator of lymphocyte activation. Interestingly, mutations in a PTP-PEST- and PTP-HSCF-interacting protein, PSTPIP1, were identified in humans with pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome and familial recurrent arthritis, two autoinflammatory diseases. These mutations abrogate the ability of PSTPIP1 to bind PTP-PEST and PTP-HSCF, suggesting that these two PTPs may be negative regulators of inflammation.

  3. Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation. (United States)

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Cai, Changmeng; Yang, Hongmei; Zhang, Xiaoping; Liu, Jihong; Balk, Steven P; Chen, Shaoyong


    The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms. We next show that PP1α binds primarily to the AR ligand binding domain and decreases its ubiquitylation and degradation. Moreover, we find that the PP1α inhibitor tautomycin increases phosphorylation of AR ubiquitin ligases including SKP2 and MDM2 at sites that enhance their activity, providing a mechanism by which PP1α may suppress AR degradation. Significantly, the tautomycin mediated decrease in AR expression was most pronounced at low androgen levels or in the presence of the AR antagonist enzalutamide. Consistent with this finding, the sensitivity of LNCaP and C4-2 PCa cells to tautomycin, as assessed by PSA synthesis and proliferation, was enhanced at low androgen levels or by treatment with enzalutamide. Together these results indicate that PP1α may contribute to stabilizing AR protein after androgen deprivation therapies, and that targeting PP1α or the AR-PP1α interaction may be effective in castration-resistant prostate cancer (CRPC).

  4. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus]. (United States)

    Sopina, V A


    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  5. Molecular field analysis (MFA) and other QSAR techniques in development of phosphatase inhibitors. (United States)

    Nair, Pramod C


    Phosphatases are well known drug targets for diseases such as diabetes, obesity and other autoimmune diseases. Their role in cancer is due to unusual expression patterns in different types of cancer. However, there is strong evidence for selective targeting of phosphatases in cancer therapy. Several experimental and in silico techniques have been attempted for design of phosphatase inhibitors, with focus on diseases such as diabetes, inflammation and obesity. Their utility for cancer therapy is limited and needs to be explored vastly. Quantitative Structure Activity relationship (QSAR) is well established in silico ligand based drug design technique, used by medicinal chemists for prediction of ligand binding affinity and lead design. These techniques have shown promise for subsequent optimization of already existing lead compounds, with an aim of increased potency and pharmacological properties for a particular drug target. Furthermore, their utility in virtual screening and scaffold hopping is highlighted in recent years. This review focuses on the recent molecular field analysis (MFA) and QSAR techniques, directed for design and development of phosphatase inhibitors and their potential use in cancer therapy. In addition, this review also addresses issues concerning the binding orientation and binding conformation of ligands for alignment sensitive QSAR approaches.

  6. Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin. (United States)

    Bertini, I; Calderone, V; Fragai, M; Luchinat, C; Talluri, E


    The inhibition of a subgroup of human serine/threonine protein phosphatases is responsible for the cytotoxicity of cantharidin and norcantharidin against tumor cells. It is shown that the anhydride rings of cantharidin and norcantharidin are hydrolyzed when bound to the catalytic domain of the human serine/threonine protein phosphatases 5 (PP5c), and the high-resolution crystal structures of PP5c complexed with the corresponding dicarboxylic acid derivatives of the two molecules are reported. Norcantharidin shows a unique binding conformation with the catalytically active Mn2PP5c, while cantharidin is characterized by a double conformation in its binding mode to the protein. Different binding modes of norcantharidin are observed depending of whether the starting ligand is in the anhydride or in the dicarboxylic acid form. All these structures will provide the basis for the rational design of new cantharidin-based drugs.

  7. Association of alkaline phosphatase phenotypes with arthritides

    Directory of Open Access Journals (Sweden)

    Padmini A


    Full Text Available Arthritides, a symmetrical polyarticular disease of the bone are a heterogenous group of disorders in which hereditary and environmental factors in combination with an altered immune response appear to play a causative and pathogenic role in its occurrence. Alkaline phosphatase (ALP is an enzyme found in all tissues, with particularly high concentrations of ALP observed in the liver, bile ducts, placenta, and bone.Alkaline phosphatase is an orthophosphoric monoester phosphohydrolase catalyzing the hydrolysis of organic esters at alkaline pH, indicating that alkaline phosphatase is involved in fundamental biological processes.1 The present study envisages on identifying the specific electromorphic association of alkaline phosphatase with arthritides. Phenotyping of serum samples was carried out by PAGE (Polyacrylamide gel electrophoresis following Davies (19642 protocol on 41 juvenile arthritis, 150 rheumatoid arthritis and 100 osteo arthritis apart from, 25 normal children and 100 adult healthy subjects. Phenotyping of alkaline phosphatase revealed an increase in preponderance of p+ and p++ phenotypes in juvenile, rheumatoid and osteo arthritic patients. However a significant association of these phenotypes was observed only with rheumatoid arthritis condition (c2:17.46. Similarly, a significant increase of p+ phenotypes in female rheumatoid arthritis patients was observed (c2:14.973, suggesting that the decrease in p° (tissue non specific synthesis/secretion of alkaline phosphatase could be associated with decreased mineralization and ossification process in arthritis condition.

  8. Allosteric Activation of the Phosphoinositide Phosphatase Sac1 by Anionic Phospholipids (United States)


    Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function. PMID:22452743

  9. Comparison of Microcystis aeruginosa (PCC7820 and PCC7806) growth and intracellular microcystins content determined by liquid chromatography-mass spectrometry, enzyme-linked immunosorbent assay anti-Adda and phosphatase bioassay. (United States)

    Ríos, V; Moreno, I; Prieto, A I; Soria-Díaz, M E; Frías, J E; Cameán, A M


    Cyanobacteria are able to produce several metabolites that have toxic effects on humans and animals. Among these cyanotoxins, the hepatotoxic microcystins (MC) occur frequently. The intracellular MC content produced by two strains of Microcystis aeruginosa, PCC7806 and PCC7820, and its production kinetics during the culture time were studied in order to elucidate the conditions that favour the growth and proliferation of these toxic strains. Intracellular MC concentrations measured by liquid chromatography (LC) coupled to electrospray ionization mass spectrometer (MS) were compared with those obtained by enzyme-linked immunosorbent assay (ELISA) anti-Adda and protein phosphatase 2A (PP2A) inhibition assays. It has been demonstrated there are discrepancies in the quantification of MC content when comparing ELISA and LC-MS results. However, a good correlation has been obtained between PP2A inhibition assay and LC-MS. Three MC were identified using LC-MS in the PCC7806 strain: MC-LR, demethylated MC-LR and a new variant detected for the first time in this strain, [L-MeSer(7)] MC-LR. In PCC7820, MC-LR, D-Asp(3)-MCLR, Dglu(OCH3)-MCLR, MC-LY, MC-LW and MC-LF were identificated. The major one was MC-LR in both strains, representing 81 and 79% of total MC, respectively. The total MC content in M. aeruginosa PCC7820 was almost three-fold higher than in PCC7806 extracts.

  10. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim


    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  11. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase. (United States)

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J


    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  12. Human Prostatic Acid Phosphatase: Structure, Function and Regulation

    Directory of Open Access Journals (Sweden)

    William G. Chaney


    Full Text Available Human prostatic acid phosphatase (PAcP is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy.

  13. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril


    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  14. Protein-tyrosine phosphatases in zebrafish gastrulation

    NARCIS (Netherlands)

    van Eekelen, M.J.L.


    Protein tyrosine phosphorylation plays a key role in relaying external stimuli and signals into the cell towards the appropriate responses. This process is mediated by protein-tyrosine kinases adding a phosphor group to a tyrosine residue and protein-tyrosine phosphatases removing a phosphor group f

  15. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.


    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  16. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J. (UMC)


    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  17. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes. (United States)

    Fulceri, R; Gamberucci, A; Scott, H M; Giunti, R; Burchell, A; Benedetti, A


    In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact microsomes. The effect of CoA required ATP and fatty acids to form fatty acyl esters. Increasing concentrations (2-50 microM) of CoA (plus ATP and 20 microM added palmitic acid) or of palmitoyl-CoA progressively decreased glucose-6-phosphatase activity to 50% of the control value. The inhibition lowered the Vmax without significantly changing the Km. A non-hydrolysable analogue of palmitoyl-CoA also inhibited, demonstrating that binding of palmitoyl-CoA rather than hydrolysis produces the inhibition. Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer demonstrated that palmitoyl-CoA alone or CoA plus ATP and palmitic acid altered the microsomal permeability to glucose 6-phosphate, but not to glucose or phosphate, indicating that T1 is the site of palmitoyl-CoA binding and inhibition of glucose-6-phosphatase activity in native microsomes. The type of inhibition found suggests that liver microsomes may comprise vesicles heterogeneous with respect to glucose-6-phosphate translocase(s), i.e. sensitive or insensitive to fatty acid ester inhibition. PMID:7733874

  18. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)]. (United States)

    Stark, K H; Zaki, I; Sobolewski, K


    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  19. Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics

    Directory of Open Access Journals (Sweden)

    Adams Brian


    Full Text Available Abstract Background Although the complete genome sequences of a large number of organisms have been determined, the exact proteomes need to be characterized. More specifically, the extent to which post-translational processes such as proteolysis affect the synthesized proteins has remained unappreciated. We examined this issue in selected protein phosphatases of the protease-rich malaria parasite, Plasmodium falciparum. Results P. falciparum encodes a number of Ser/Thr protein phosphatases (PP whose catalytic subunits are composed of a catalytic core and accessory domains essential for regulation of the catalytic activity. Two examples of such regulatory domains are found in the Ca+2-regulated phosphatases, PP7 and PP2B (calcineurin. The EF-hand domains of PP7 and the calmodulin-binding domain of PP2B are essential for stimulation of the phosphatase activity by Ca+2. We present biochemical evidence that P. falciparum generates these full-length phosphatases as well as their catalytic cores, most likely as intermediates of a proteolytic degradation pathway. While the full-length phosphatases are activated by Ca+2, the processed cores are constitutively active and either less responsive or unresponsive to Ca+2. The processing is extremely rapid, specific, and occurs in vivo. Conclusions Post-translational cleavage efficiently degrades complex full-length phosphatases in P. falciparum. In the course of such degradation, enzymatically active catalytic cores are produced as relatively stable intermediates. The universality of such proteolysis in other phosphatases or other multi-domain proteins and its potential impact on the overall proteome of a cell merits further investigation.

  20. Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase. (United States)

    Bai, Yunpeng; Yu, Zhi-Hong; Liu, Sijiu; Zhang, Lujuan; Zhang, Ruo-Yu; Zeng, Li-Fan; Zhang, Sheng; Zhang, Zhong-Yin


    Phosphatase of regenerating liver (PRL) oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of specific chemical probes. In this study, we address this issue by exploiting a unique property of PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and several analogs that disrupt PRL1 trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our results validate a trimerization-dependent signaling mechanism for PRL and offer proof of concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers. Cancer Res; 76(16); 4805-15. ©2016 AACR.

  1. Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329.

    Directory of Open Access Journals (Sweden)

    Pablo Sánchez-Martín

    Full Text Available Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780, is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin's oligomerization.

  2. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems

    Directory of Open Access Journals (Sweden)



    Full Text Available The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna. This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC, no-tillage (NT, conventional tillage (CT and pasture with Brachiaria brizantha (PBb and evaluated with acetate buffer (AB, tris-HCl buffer (TB, modified universal buffer (MUB and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP. MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils.

  3. [ATPase and phosphatase activity of drone brood]. (United States)

    Bodnarchuk, L I; Stakhman, O S


    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  4. Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1 (United States)

    Goyette, Jesse; Salas, Citlali Solis; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel A.; Allard, Jun; Dushek, Omer


    Tethered enzymatic reactions are ubiquitous in signaling networks but are poorly understood. A previously unreported mathematical analysis is established for tethered signaling reactions in surface plasmon resonance (SPR). Applying the method to the phosphatase SHP-1 interacting with a phosphorylated tether corresponding to an immune receptor cytoplasmic tail provides five biophysical/biochemical constants from a single SPR experiment: two binding rates, two catalytic rates, and a reach parameter. Tether binding increases the activity of SHP-1 by 900-fold through a binding-induced allosteric activation (20-fold) and a more significant increase in local substrate concentration (45-fold). The reach parameter indicates that this local substrate concentration is exquisitely sensitive to receptor clustering. We further show that truncation of the tether leads not only to a lower reach but also to lower binding and catalysis. This work establishes a new framework for studying tethered signaling processes and highlights the tether as a control parameter in clustered receptor signaling.

  5. Acid Phosphatase Development during Ripening of Avocado. (United States)

    Sacher, J A


    The activity and subcellular distribution of acid phosphatase were assayed during ethylene-induced ripening of whole fruit or thick slices of avocado (Persea americana Mill. var. Fuerte and Hass). The activity increased up to 30-fold during ripening in both the supernatant fraction and the Triton X-100 extract of the precipitate of a 30,000g centrifugation of tissue homogenates from whole fruit or slices ripening in moist air. Enzyme activity in the residual precipitate after Triton extraction remained constant. The development of acid phosphatase in thick slices ripened in moist air was similar to that in intact fruit, except that enzyme development and ripening were accelerated about 24 hours in the slices. The increase in enzyme activity that occurs in slices ripening in moist air was inhibited when tissue sections were infiltrated with solutions, by aspiration for 2 minutes or by soaking for 2 hours, anytime 22 hours or more after addition of ethylene. This inhibition was independent of the presence or absence of cycloheximide or sucrose (0.3-0.5m). However, the large decline in enzyme activity in the presence of cycloheximide, as compared with the controls, indicated that synthesis of acid phosphatase was occurring at all stages of ripening.

  6. Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse

    DEFF Research Database (Denmark)

    Shen, P; Canoll, P D; Sap, J


    Receptor protein tyrosine phosphatases (RPTPs) comprise a family of proteins that feature intracellular phosphatase domains and an ectodomain with putative ligand-binding motifs. Several RPTPs are expressed in the brain, including RPTP-kappa which participates in homophilic cell-cell interactions...... in vitro [Y.-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, J. Sap, Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region, Mol. Cell. Biol. 13...... processes such as axonal growth and target recognition, as has been demonstrated for certain Drosophila RPTPs. The brain distribution of RPTP-kappa-expressing cells has not been determined, however. In a gene-trap mouse model with a beta-gal+neo (beta-geo) insertion in the endogenous RPTP-kappa gene...

  7. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)


    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  8. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). (United States)

    Ishii, Tasuku; Funato, Yosuke; Miki, Hiroaki


    PRL family constitutes a unique class of phosphatases associated with metastasis. The phosphatase activity of PRL has been reported to be important for promoting metastasis, and it is inactivated by reversible oxidation of its catalytic cysteine. Here, we show that TRP32 specifically reduces PRL. Reduction of oxidized PRL in cells is inhibited by 2,4-dinitro-1-chlorobenzene, an inhibitor of TRX reductase. In vitro assays for the reduction of PRL show that only TRP32 can potently reduce oxidized PRL, whereas other TRX-related proteins linked to TRX reductase show little or no reducing activity. Indeed, TRP32 knockdown significantly prolongs the H2O2-induced oxidation of PRL. Binding analyses reveal that the unique C-terminal domain of TRP32 is required and sufficient for its direct interaction with PRL. These results suggest that TRP32 maintains the reduced state of PRL and thus regulates the biological function of PRL.

  9. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. (United States)

    Eisner, Adriana; Pazyra-Murphy, Maria F; Durresi, Ershela; Zhou, Pengcheng; Zhao, Xuesong; Chadwick, Emily C; Xu, Pin-Xian; Hillman, R Tyler; Scott, Matthew P; Greenberg, Michael E; Segal, Rosalind A


    Sonic hedgehog (Shh) signaling is critical in development and oncogenesis, but the mechanisms regulating this pathway remain unclear. Although protein phosphorylation clearly affects Shh signaling, little is known about phosphatases governing the pathway. Here, we conducted a small hairpin RNA (shRNA) screen of the phosphatome and identified Eya1 as a positive regulator of Shh signaling. We find that the catalytically active phosphatase Eya1 cooperates with the DNA-binding protein Six1 to promote gene induction in response to Shh and that Eya1/Six1 together regulate Gli transcriptional activators. We show that Eya1, which is mutated in a human deafness disorder, branchio-oto-renal syndrome, is critical for Shh-dependent hindbrain growth and development. Moreover, Eya1 drives the growth of medulloblastoma, a Shh-dependent hindbrain tumor. Together, these results identify Eya1 and Six1 as key components of the Shh transcriptional network in normal development and in oncogenesis.

  10. Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases. (United States)

    Roiko, K; Jänne, O A; Vihko, P


    Overlapping cDNA clones encoding rat prostatic acid phosphatase (rPAP) were isolated by using two human prostatic acid phosphatase (hPAP)-encoding cDNAs to screen rat prostatic cDNA libraries. The isolated cDNAs encompassed a total of 1626 nucleotides (nt), of which 1143 nt corresponded to the protein coding sequence encoding a mature polypeptide of 350 amino acids (aa) and a 31-aa long signal peptide-like sequence. The deduced Mr of the mature rPAP was 40,599. RNA blot analysis indicated the presence of three mRNA species (4.9, 2.3 and 1.5 kb in size) in the rat prostate. The deduced aa sequences of rPAP and hPAP show 75% identity, whereas the similarity between rPAP and human lysosomal acid phosphatase (hLAP) is only 45%. Furthermore, the sequence similarity between rPAP and rat lysosomal acid phosphatase (rLAP) is 46% at the aa level. Similar to hPAP, but unlike hLAP and rLAP, the rPAP sequence lacks a membrane-anchoring domain indicating the secretory character of this phosphatase. All six cysteines present in the overlapping areas of the mature rPAP, hPAP, rLAP and hLAP proteins are positionally conserved, suggesting that these residues are important for the tertiary structure of acid phosphatases (APs). The previously reported active site residues, two arginines and one histidine, are also conserved in these APs.

  11. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)


    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  12. Low serum alkaline phosphatase activity in Wilson's disease. (United States)

    Shaver, W A; Bhatt, H; Combes, B


    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  13. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. (United States)

    Saitoh, Shigeaki; Mori, Ayaka; Uehara, Lisa; Masuda, Fumie; Soejima, Saeko; Yanagida, Mitsuhiro


    Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.

  14. [Effect of VAM fungi on phosphatase activity in maize rhizosphere]. (United States)

    Song, Y; Li, X; Feng, G


    The effect of VAM fungi on phosphatase activity in maize rhizosphere was examined by pot culture experiment, in which, three-compartment-pots were used, the central compartment being separated from the outer two by a nylon net with 30 microns mesh. Plants were harvested 70 days after planting. Soil acid and alkaline phosphatase were measured at different distances from root surface. The results showed that VAM increased the activities of soil acid and alkaline phosphatase in the rhizosphere. It was found that different phosphorous sources had different effects on phosphatase activity.

  15. Zinc ions modulate protein tyrosine phosphatase 1B activity. (United States)

    Bellomo, Elisa; Massarotti, Alberto; Hogstrand, Christer; Maret, Wolfgang


    Protein tyrosine phosphatases (PTPs) are key enzymes in cellular regulation. The 107 human PTPs are regulated by redox signalling, phosphorylation, dimerisation, and proteolysis. Recent findings of very strong inhibition of some PTPs by zinc ions at concentrations relevant in a cellular environment suggest yet another mechanism of regulation. One of the most extensively investigated PTPs is PTP1B (PTPN1). It regulates the insulin and leptin signalling pathway and is implicated in cancer and obesity/diabetes. The development of novel assay conditions to investigate zinc inhibition of PTP1B provides estimates of about 5.6 nM affinity for inhibitory zinc(II) ions. Analysis of three PTP1B 3D structures (PDB id: 2CM2, 3I80 and 1A5Y) identified putative zinc binding sites and supports the kinetic studies in suggesting an inhibitory zinc only in the closed and cysteinyl-phosphate intermediate forms of the enzyme. These observations gain significance with regard to recent findings of regulatory roles of zinc ions released from the endoplasmic reticulum.

  16. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors. (United States)

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo


    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors.

  17. PTEN phosphatase-independent maintenance of glandular morphology in a predictive colorectal cancer model system. (United States)

    Jagan, Ishaan C; Deevi, Ravi K; Fatehullah, Aliya; Topley, Rebecca; Eves, Joshua; Stevenson, Michael; Loughrey, Maurice; Arthur, Kenneth; Campbell, Frederick Charles


    Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

  18. PTEN Phosphatase-Independent Maintenance of Glandular Morphology in a Predictive Colorectal Cancer Model System

    Directory of Open Access Journals (Sweden)

    Ishaan C. Jagan


    Full Text Available Organotypic models may provide mechanistic insight into colorectal cancer (CRC morphology. Three-dimensional (3D colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN coupling of cell division cycle 42 (cdc42 to atypical protein kinase C (aPKC. This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3 were ineffective. The isolated PTEN C2 domain (C2 accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na+/H+ exchanger regulatory factor-1 (NHERF-1 in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

  19. Involvement of Phosphatases in Proliferation, Maturation, and Hemoglobinization of Developing Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Eitan Fibach


    Full Text Available Production of RBCs is triggered by the action of erythropoietin (Epo through its binding to surface receptors (Epo-R on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors, including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation of the precursors into hemoglobin (Hb-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate. Adding vanadate to cultured erythroid precursors of normal donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production of fetal hemoglobin (HbF. Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease ameliorates the clinical symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a therapeutic modality for elevating HbF in patients with β-hemoglobinopathies as well as for intensifying the Epo response in other forms of anemia.

  20. Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones. (United States)

    Miliutina, Mariia; Ejaz, Syeda Abida; Khan, Shafi Ullah; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter


    New and convenient methods for the functionalization of the 4-quinolone scaffold at positions C-1, C-3 and C-6 were developed. The 4-quinolone derivatives were evaluated for their inhibitory potential on alkaline phosphatase isozymes. Most of the compounds exhibit excellent inhibitory activity and moderate selectivity. The IC50 values on tissue non-specific alkaline phosphatase (TNAP) were in the range of 1.34 ± 0.11 to 44.80 ± 2.34 μM, while the values on intestinal alkaline phosphatase (IAP) were in the range of 1.06 ± 0.32 to 192.10 ± 3.78 μM. The most active derivative exhibits a potent inhibition on IAP with a ≈14 fold higher selectivity as compared to TNAP. Furthermore, molecular docking calculations were performed for the most potent inhibitors to show their binding interactions within the active site of the respective enzymes.

  1. YbiV from E. coli K12 is a HAD phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Anne; Lee, Seok-Yong; McCullagh, Emma; Silversmith, Ruth E.; Wemmer, David E.


    The protein YbiV from Escherichia coli K12 MG1655 is a hypothetical protein with sequence homology to the haloacid dehalogenase (HAD) superfamily of proteins. Although numerous members of this family have been identified, the functions of few are known. Using the crystal structure, sequence analysis, and biochemical assays, we have characterized ybiV as a HAD phosphatase. The crystal structure of YbiV reveals a two domain protein, one with the characteristic HAD hydrolase fold, the other an inserted a/b fold. In an effort to understand the mechanism we also solved and report the structures of YbiV in complex with beryllofluoride (BeF3-) and aluminum trifluoride (AlF3) which have been shown to mimic the phosphorylated intermediate and transition state for hydrolysis, respectively, in analogy to other HAD phosphatases. Analysis of the structures reveals the substrate binding cavity, which is hydrophilic in nature. Both structure and sequence homology indicate ybiV may be a sugar phosphatase, which is supported by biochemical assays which measured the release of free phosphate on a number of sugar-like substrates. We also investigated available genomic and functional data in an effort to determine the physiological substrate.

  2. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Directory of Open Access Journals (Sweden)

    Luís Korrodi-Gregório


    Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs. In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4 that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier.

  3. Neurotrophin-3 Enhances the Synaptic Organizing Function of TrkC–Protein Tyrosine Phosphatase σ in Rat Hippocampal Neurons



    Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested t...

  4. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya


    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  5. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2. (United States)

    Giménez-Mascarell, Paula; Oyenarte, Iker; Hardy, Serge; Breiderhoff, Tilman; Stuiver, Marchel; Kostantin, Elie; Diercks, Tammo; Pey, Angel L; Ereño-Orbea, June; Martínez-Chantar, María Luz; Khalaf-Nazzal, Reham; Claverie-Martin, Felix; Müller, Dominik; Tremblay, Michel L; Martínez-Cruz, Luis Alfonso


    Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg(2+) thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.

  6. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  7. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.


    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  8. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger


    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  9. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. (United States)

    Farelli, Jeremiah D; Galvin, Brendan D; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E; Causey, Thomas B; Ali-Reynolds, Alana; Saltzberg, Daniel J; Carlow, Clotilde K S; Dunaway-Mariano, Debra; Allen, Karen N


    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.

  10. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs.

    Directory of Open Access Journals (Sweden)

    Jeremiah D Farelli


    Full Text Available Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible.

  11. Voltage-sensing phosphatase modulation by a C2 domain. (United States)

    Castle, Paul M; Zolman, Kevin D; Kohout, Susy C


    The voltage-sensing phosphatase (VSP) is the first example of an enzyme controlled by changes in membrane potential. VSP has four distinct regions: the transmembrane voltage-sensing domain (VSD), the inter-domain linker, the cytosolic catalytic domain, and the C2 domain. The VSD transmits the changes in membrane potential through the inter-domain linker activating the catalytic domain which then dephosphorylates phosphatidylinositol phosphate (PIP) lipids. The role of the C2, however, has not been established. In this study, we explore two possible roles for the C2: catalysis and membrane-binding. The Ci-VSP crystal structures show that the C2 residue Y522 lines the active site suggesting a contribution to catalysis. When we mutated Y522 to phenylalanine, we found a shift in the voltage dependence of activity. This suggests hydrogen bonding as a mechanism of action. Going one step further, when we deleted the entire C2 domain, we found voltage-dependent enzyme activity was no longer detectable. This result clearly indicates the entire C2 is necessary for catalysis as well as for modulating activity. As C2s are known membrane-binding domains, we tested whether the VSP C2 interacts with the membrane. We probed a cluster of four positively charged residues lining the top of the C2 and suggested by previous studies to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (Kalli et al., 2014). Neutralizing those positive charges significantly shifted the voltage dependence of activity to higher voltages. We tested membrane binding by depleting PI(4,5)P2 from the membrane using the 5HT2C receptor and found that the VSD motions as measured by voltage clamp fluorometry (VCF) were not changed. These results suggest that if the C2 domain interacts with the membrane to influence VSP function it may not occur exclusively through PI(4,5)P2. Together, this data advances our understanding of the VSP C2 by demonstrating a necessary and critical role for the C2 domain in

  12. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. (United States)

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid


    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.

  13. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.


    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer

  14. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)


    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  15. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Domenech


    Full Text Available Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP or phosphorylcholine (Pcho. The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs: one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.

  16. Protein tyrosine phosphatases: structure-function relationships. (United States)

    Tabernero, Lydia; Aricescu, A Radu; Jones, E Yvonne; Szedlacsek, Stefan E


    Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.

  17. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses. (United States)

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo


    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

  18. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases. (United States)

    Zhang, Zhong-Yin


    Protein tyrosine phosphatases (PTPs) are essential signaling enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation inside the cell. Proper level of tyrosine phosphorylation is important for a diverse array of cellular processes, such as proliferation, metabolism, motility, and survival. Aberrant tyrosine phosphorylation, resulting from alteration of PTP expression, misregulation, and mutation, has been linked to the etiology of many human ailments including cancer, diabetes/obesity, autoimmune disorders, and infectious diseases. However, despite the fact that PTPs have been garnering attention as compelling drug targets, they remain a largely underexploited resource for therapeutic intervention. Indeed, PTPs have been widely dismissed as "undruggable", due to concerns that (1) the highly conserved active site (i.e., pTyr-binding pocket) makes it difficult to achieve inhibitor selectivity among closely related family members, and (2) the positive-charged active site prefers negatively charged molecules, which usually lack cell permeability. To address the issue of selectivity, we advanced a novel paradigm for the acquisition of highly potent and selective PTP inhibitors through generation of bivalent ligands that interact with both PTP active site and adjacent unique peripheral pockets. To overcome the bioavailability issue, we have identified nonhydrolyzable pTyr mimetics that are sufficiently polar to bind the PTP active site, yet still capable of efficiently penetrating cell membranes. We show that these pTyr mimetics interact in the desired inhibitory fashion with the PTP active site and tethering them to appropriate molecular fragments to engage less conserved interactions outside of PTP active site can increase PTP inhibitor potency and selectivity. We demonstrate through three pTyr mimetics fragment-based approaches that it is completely feasible to obtain highly potent and selective PTP inhibitors with robust in vivo

  19. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.


    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  20. Moraxella catarrhalis synthesizes an autotransporter that is an acid phosphatase. (United States)

    Hoopman, Todd C; Wang, Wei; Brautigam, Chad A; Sedillo, Jennifer L; Reilly, Thomas J; Hansen, Eric J


    Moraxella catarrhalis O35E was shown to synthesize a 105-kDa protein that has similarity to both acid phosphatases and autotransporters. The N-terminal portion of the M. catarrhalis acid phosphatase A (MapA) was most similar (the BLAST probability score was 10(-10)) to bacterial class A nonspecific acid phosphatases. The central region of the MapA protein had similarity to passenger domains of other autotransporter proteins, whereas the C-terminal portion of MapA resembled the translocation domain of conventional autotransporters. Cloning and expression of the M. catarrhalis mapA gene in Escherichia coli confirmed the presence of acid phosphatase activity in the MapA protein. The MapA protein was shown to be localized to the outer membrane of M. catarrhalis and was not detected either in the soluble cytoplasmic fraction from disrupted M. catarrhalis cells or in the spent culture supernatant fluid from M. catarrhalis. Use of the predicted MapA translocation domain in a fusion construct with the passenger domain from another predicted M. catarrhalis autotransporter confirmed the translocation ability of this MapA domain. Inactivation of the mapA gene in M. catarrhalis strain O35E reduced the acid phosphatase activity expressed by this organism, and this mutation could be complemented in trans with the wild-type mapA gene. Nucleotide sequence analysis of the mapA gene from six M. catarrhalis strains showed that this protein was highly conserved among strains of this pathogen. Site-directed mutagenesis of a critical histidine residue (H233A) in the predicted active site of the acid phosphatase domain in MapA eliminated acid phosphatase activity in the recombinant MapA protein. This is the first description of an autotransporter protein that expresses acid phosphatase activity.

  1. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer

    NARCIS (Netherlands)

    E. Hoekstra (Elmer); L.L. Kodach (Liudmila L.); A. Mooppilmadham Das (Asha); R.R. Ruela-de-Sousa (Roberta); C.V. Ferreira (Carmen); J.C. Hardwick (James); C.J. van der Woude (Janneke); M.P. Peppelenbosch (Maikel); T.L.M. ten Hagen (Timo); G.M. Fuhler (Gwenny)


    textabstractPhosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influ

  2. [Phosphatase activity in Amoeba proteus at pH 9.0]. (United States)

    Sopina, V A


    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC

  3. Differential regulation of glycogenolysis by mutant protein phosphatase-1 glycogen-targeting subunits. (United States)

    Danos, Arpad M; Osmanovic, Senad; Brady, Matthew J


    PTG and G(L) are hepatic protein phosphatase-1 (PP1) glycogen-targeting subunits, which direct PP1 activity against glycogen synthase (GS) and/or phosphorylase (GP). The C-terminal 16 amino residues of G(L) comprise a high affinity binding site for GP that regulates bound PP1 activity against GS. In this study, a truncated G(L) construct lacking the GP-binding site (G(L)tr) and a chimeric PTG molecule containing the C-terminal site (PTG-G(L)) were generated. As expected, GP binding to glutathione S-transferase (GST)-G(L)tr was reduced, whereas GP binding to GST-PTG-G(L) was increased 2- to 3-fold versus GST-PTG. In contrast, PP1 binding to all proteins was equivalent. Primary mouse hepatocytes were infected with adenoviral constructs for each subunit, and their effects on glycogen metabolism were investigated. G(L)tr expression was more effective at promoting GP inactivation, GS activation, and glycogen accumulation than G(L). Removal of the regulatory GP-binding site from G(L)tr completely blocked the inactivation of GS seen in G(L)-expressing cells following a drop in extracellular glucose. As a result, G(L)tr expression prevented glycogen mobilization under 5 mm glucose conditions. In contrast, equivalent overexpression of PTG or PTG-G(L) caused a similar increase in glycogen-targeted PP1 levels and GS dephosphorylation. Surprisingly, GP dephosphorylation was significantly reduced in PTG-G(L)-overexpressing cells. As a result, PTG-G(L) expression permitted glycogenolysis under 5 mm glucose conditions that was prevented in PTG-expressing cells. Thus, expression of constructs that contained the high affinity GP-binding site (G(L) and PTG-G(L)) displayed reduced glycogen accumulation and enhanced glycogenolysis compared with their respective controls, albeit via different mechanisms.

  4. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase. (United States)

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar


    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  5. Cdc25 Phosphatases Are Required for Timely Assembly of CDK1-Cyclin B at the G2/M Transition* (United States)

    Timofeev, Oleg; Cizmecioglu, Onur; Settele, Florian; Kempf, Tore; Hoffmann, Ingrid


    Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr161 by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr14 and Tyr15 phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G2/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr15. In addition, Tyr15-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G2 and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr161 phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G2/M is tightly coupled and regulated by Cdc25 phosphatases. PMID:20360007

  6. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. (United States)

    Cliff, Matthew J; Harris, Richard; Barford, David; Ladbury, John E; Williams, Mark A


    Protein phosphatase 5 (Ppp5) is one of several proteins that bind to the Hsp90 chaperone via a tetratricopeptide repeat (TPR) domain. We report the solution structure of a complex of the TPR domain of Ppp5 with the C-terminal pentapeptide of Hsp90. This structure has the "two-carboxylate clamp" mechanism of peptide binding first seen in the Hop-TPR domain complexes with Hsp90 and Hsp70 peptides. However, NMR data reveal that the Ppp5 clamp is highly dynamic, and that there are multiple modes of peptide binding and mobility throughout the complex. Although this interaction is of very high affinity, relatively few persistent contacts are found between the peptide and the Ppp5-TPR domain, thus explaining its promiscuity in binding both Hsp70 and Hsp90 in vivo. We consider the possible implications of this dynamic structure for the mechanism of relief of autoinhibition in Ppp5 and for the mechanisms of TPR-mediated recognition of Hsp90 by other proteins.

  7. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    Directory of Open Access Journals (Sweden)

    Siddiqui Zaved


    Full Text Available Abstract Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile.

  8. [Phosphatase activity in Amoeba proteus at low pH]. (United States)

    Sopina, V A


    In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.

  9. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. (United States)

    Hardy, S; Uetani, N; Wong, N; Kostantin, E; Labbé, D P; Bégin, L R; Mes-Masson, A; Miranda-Saavedra, D; Tremblay, M L


    The three PRL (phosphatases of regenerating liver) protein tyrosine phosphatases (PRL-1, -2 and -3) have been identified as key contributors to metastasis in several human cancers, yet the molecular basis of their pro-oncogenic property is unclear. Among the subfamily of PRL phosphatases, overexpression of PRL-2 in breast cancer cells has been shown to promote tumor growth by a mechanism that remains to be uncovered. Here we show that PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3. We further reveal that CNNM3 is not a phosphorylated substrate of PRL-2, and that the interaction occurs through a loop unique to the CBS pair domains of CNNM3 that exists only in organisms having PRL orthologs. Supporting the role of PRL-2 in cellular magnesium transport is the observation that PRL-2 knockdown results in a substantial decrease of cellular magnesium influx. Furthermore, in PRL-2 knockout mice, serum magnesium levels were significantly elevated as compared with control animals, indicating a pivotal role for PRL-2 in regulating cellular magnesium homeostasis. Although the expression levels of CNNM3 remained unchanged after magnesium depletion of various cancer cell lines, the interaction between endogenous PRL-2 and CNNM3 was markedly increased. Importantly, xenograft tumor assays with CNNM3 and a mutant form that does not associate with PRL-2 confirm that CNNM3 is itself pro-oncogenic, and that the PRL-2/CNNM3 association is important for conferring transforming activities. This finding is further confirmed from data in human breast cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index. In summary, we demonstrate that oncogenic PRL-2 controls tumor growth by modulating intracellular magnesium levels through binding with the CNNM3 magnesium transporter.

  10. Binding Procurement (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari


    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  11. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence. (United States)

    Keum, Dongil; Kruse, Martin; Kim, Dong-Il; Hille, Bertil; Suh, Byung-Chang


    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  12. The catalytic properties of alkaline phosphatases under various conditions (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.


    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  13. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay


    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  14. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

    Directory of Open Access Journals (Sweden)

    Bryan M Zhao

    Full Text Available Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P residue, but also the Ser(P and Thr(P residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7, atypical (DUSP3, DUSP14, DUSP22 and DUSP27, viral (variola VH1, and Cdc25 (A-C. Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.

  15. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast.

    Directory of Open Access Journals (Sweden)

    Molly Godfrey


    Full Text Available Substrate dephosphorylation by the cyclin-dependent kinase (Cdk-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR network. Later on, the Mitotic Exit Network (MEN signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle.

  16. Protein phosphatase PP1γ2 in sperm morphogenesis and epididymal initiation of sperm motility

    Institute of Scientific and Technical Information of China (English)

    Rumela Chakrabarti; Lina Cheng; Pawan Puri; David Soler; Srinivasan Viiayaraghavan


    The serine/threonine phosphatase (PP1) isoform PP1γ2, predominantly expressed in the testis, is a key enzyme in spermatozoa. High PP1γ2 catalytic activity holds motility in check in immature spermatozoa. Inhibition of PP1γ2 causes motility initiation in immature spermatozoa and motility stimulation and changes in flagellar beat parameters in mature spermatozoa. The PP1γ2 isoform is present in all mammalian spermatozoa studied: mouse, rat, hamster,bovine, non-human primate and man. We have now identified at least four of its regulatory proteins that regulate distinct pools of PP1γ2 within spermatozoa. Our studies provide new insights into biochemical mechanisms underlying development and regulation of sperm motility. We hypothesize that changes in sperm PP1γ2 activity as a result of phosphorylation and reversible binding of the regulatory proteins to the catalytic subunit are critical in the development and regulation of motility and the ability of sperm to fertilize eggs. Targeted disruption of the Ppp1cc gene,which encodes the PP1γ1 or PP1γ2 isoforms, causes male infertility in mice as a result of impaired spermiogenesis.Our observations suggest that, in addition to motility, the protein phosphatase PP1γ2 might play an isoform-specific function in the development of specialized flagellar structures of mammalian spermatozoa.

  17. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry (United States)

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young


    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  18. Crystal Structure of the Catalytic Domain of a Serine Threonine Protein Phosphatase (United States)

    Swinglel, Mark; Honkanel, Richard; Ciszak, Ewa


    Reversible phosphorylation of serine and threonine residues is a well-recognized mechanism in eukaryotic cells for the regulation of cell-cycle progression, cell growth and metabolism. Human serine/threonine phosphatases can be placed into two major families, PPP and PPM. To date the structure on one PPP family member (PPl) has been determined. Here we present the structure of a 323-residue catalytic domain of a second phosphatase belonging to the PPP family of enzyme. catalytic domain of the enzyme has been determined to 1.60Angstrom resolution and refined to R=17.5 and Rfree = 20.8%. The catalytic domain possesses a unique fold consisting of a largely monolithic structure, divisible into closely-associated helical and sheet regions. The catalytic site contains two manganese ions that are involved in substrate binding and catalysis. The enzyme crystallizes as a dimer that completely buries catalytic surfaces of both monomers, Also, the structure shows evidence of some flexibility around the active site cleft that may be related to substrate specificity of this enzyme.

  19. Ultrastructural localization of acid phosphatase in nonhuman primate vaginal epithelium. (United States)

    King, B F


    The vagina of the rhesus monkey is lined by a stratified squamous epithelium. However, little is known regarding the cytochemical composition of its cell organelles and the substances found in the intercellular spaces. In this study we have examined the ultrastructural distribution of acid phosphatase in the vaginal epithelium. In basal and parabasal cells reaction product was found in some Golgi cisternae and vesicles and in a variety of cytoplasmic granules. Reaction product was also found in some, but not all, membrane-coating granules. In the upper layers of the epithelium, the membrane-coating granules extruded their contents and acid phosphatase was localized in the intercellular spaces. The possible roles of acid phosphatase in keratinization, desquamation, or modification of substances in the intercellular compartment are discussed.

  20. Association of erythrocyte acid phosphatase phenotypes with myopia

    Directory of Open Access Journals (Sweden)

    Himabindu P


    Full Text Available Acid phosphatase is a polymorphic nonspecific orthophosphate monoesterase which catalyses the cleaving of phosphoric acid and subsequent breakdown of several monophosphoric esters under acidic pH conditions. Acid phosphatase has a physiologic function as a flavin mononucleotide phosphatase (FMN and regulates the intracellular concentrations of flavin coenzymes that are electron carriers in the oxidative phosphorylation pathway. Myopia or nearsightedness is caused by both environmental and genetic factors. Myopic eyes when subjected to excessive oxidative stress results in retinal detachments .In the present study there is a significant elevation of AA phenotype in myopes when compared to controls. The AA phenotype is more susceptible to oxidative stress and its lower enzyme activity is known to be associated with increased intrauterine growth that further results in increased axial length in progressive myopia. The AA phenotype also confers risk for myopia development in males, early age group and cases with parental consanguinity.

  1. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production. (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato


    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  2. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  3. The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability. (United States)

    Choi, Myung-Suk; Min, Sang-Hyun; Jung, Haiyoung; Lee, Ju Dong; Lee, Tae Ho; Lee, Heung Kyu; Yoo, Ook-Joon


    The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as an interacting protein of PRL-3 using a yeast two-hybrid system. FKBP38 specifically binds to PRL-3 in vivo, and that the N-terminal region of FKBP38 is crucial for binding with PRL-3. FKBP38 overexpression reduces endogenous PRL-3 expression levels, whereas the depletion of FKBP38 by siRNA increases the level of PRL-3 protein. Moreover, FKBP38 promotes degradation of endogenous PRL-3 protein via protein-proteasome pathway. Furthermore, FKBP38 suppresses PRL-3-mediated p53 activity and cell proliferation. These results demonstrate that FKBP38 is a novel regulator of the oncogenic protein PRL-3 abundance and that alteration in the stability of PRL-3 can have a dramatic impact on cell proliferation. Thus, FKBP38 may play a critical role in tumorigenesis.

  4. The dual specificity phosphatase Cdc14B bundles and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Plumley, Hyekyung [ORNL; Liu, Yie [ORNL; Gomez, Marla V [ORNL; Wang, Yisong [ORNL


    The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated -tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.

  5. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S


    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...... of this signalling pathway. Specifically, recent evidence has suggested that PTP1B might be a key regulator of leptin signalling, based on the resistance to diet-induced obesity and increased leptin signalling observed in PTP1B-deficient mice. The present study was undertaken to investigate the mechanism by which...... PTP1B mediates the cessation of the leptin signal transduction. Leptin-induced activation of a STAT3 responsive reporter was dose-dependently inhibited by co-transfection with PTP1B. No inhibition was observed when a catalytically inactive mutant of PTP1B was used or when other PTPs were co...

  6. Structural basis of interaction between protein tyrosine phosphatase PCP-2 and β-catenin

    Institute of Scientific and Technical Information of China (English)

    HE; Yaqin; YAN; Hexin; DONG; Hui; ZHANG; Peng; TANG; Liang


    PCP-2 is a member of receptor-like protein tyrosine phosphatase of the MAM domain family. To investigate which part of PCP-2 was involved in its interaction with β-catenin, we constructed various deletion mutants of PCP-2. These PCP-2 mutants and wild-type PCP-2 were co-transfected into BHK-21 cells with β-catenin individually. An in vivo binding assay revealed that the expression of wild-type PCP-2, PCP-2△C1C2 (deleted PCP-2 without both PTP domains) and PCP-2△C2 (deleted PCP-2 without the second PTP domain) could be immunoprecipitated by anti-catenin antibody in every co-transfection, but PCP-2 EXT (deleted PCP-2 without the juxtamembrane region and both PTP domains) was missing, which implied that PCP-2 and β-catenin could associate directly and the juxtamembrane region in PCP-2 was sufficient for the process.

  7. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.;


    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...... the conformation and flexibility of active-site residues as well as the water-molecule network, is a key issue in understanding ligand binding and enzyme kinetics and in structure-based drug design. A 1.95 Angstrom apo PTP1B structure has been obtained, showing four highly coordinated water molecules in the active...... of PTP1B and form a novel basis for structure-based inhibitor design....

  8. Stabilization of human prostatic acid phosphatase by coupling with chondroitin sulfate. (United States)

    Luchter-Wasylewska, E; Dulińska, J; Ostrowski, W S; Torchilin, V P; Trubetskoy, V S


    Human prostatic acid phosphatase (PAP) (EC was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.

  9. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)


    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  10. Human placental alkaline phosphatase electrophoretic alleles: Quantitative studies (United States)

    Lucarelli, Paola; Scacchi, Renato; Corbo, Rosa Maria; Benincasa, Alberto; Palmarino, Ricciotti


    Human placental alkaline phosphatase (ALP) activity has been determined in specimens obtained from 562 Italian subjects. The mean activities of the three common homozygotes (Pl 2 = 4.70 ± 0.24, Pl 1 = 4.09 ± 0.08, and Pl 3 = 2.15 ± 0.71 μmol of p-nitrophenol produced) were significantly different. The differences among the various allelic forms account for 10% of the total quantitative variation of the human placental alkaline phosphatase. PMID:7072721

  11. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)


    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  12. Negative regulation of caspase 3-cleaved PAK2 activity by protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)


    The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.

  13. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation. (United States)

    Hung, H C; Chang, G G


    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N I(1) I(2) I(3) I(4) I(5) D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical

  14. Molecular dynamics simulations of interaction between protein-tyrosine phosphatase 1B and a bidentate inhibitor

    Institute of Scientific and Technical Information of China (English)

    Gui-xia LIU; Jin-zhi TAN; Chun-ying NIU; Jian-hua SHEN; Xiao-min LUO; Xu SHEN; Kai-xian CHEN; Hua-liang JIANG


    Aim: To investigate the dynamic properties of protein-tyrosine phosphatase (PTP)1B and reveal the structural factors responsible for the high inhibitory potency and selectivity of the inhibitor SNA for PTP1B. Methods: We performed molecular dynamics (MD) simulations using a long time-scale for both PTP1B and PTP1B complexed with the inhibitor SNA, the most potent and selective PTP1B inhibitor reported to date. The trajectories were analyzed by using principal component analysis. Results: Trajectory analyses showed that upon binding the ligand, the flexibility of the entire PTP1B molecule decreases. The most notable change is the movement of the WPD-loop. Our simulation results also indicated that electrostatic interactions contribute more to PTP1B-SNA complex conformation than the van der Waals interactions, and that Lys41, Arg47, and Asp48 play important roles in determining the conformation of the inhibitor SNA and in the potency and selectivity of the inhibitor. Of these, Arg47 contributed most. These results were in agreement with previous experimental results. Conclusion: The information presented here suggests that potent and selective PTP1B inhibitors can be designed by targeting the surface residues, for example the region containing Lys41,Arg47, and Asp48, instead of the second phosphate binding site (besides the active phosphate binding site).

  15. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    Amy; K; Erbe; Aleksandar; Savic; Sinisa; Dovat


    The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteration of Ikaros activity (e.g.haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells.This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia.The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation.Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization.As a consequence,the ability of Ikaros to regulate cell cycle progression,chromatin remodeling,target gene expression,and thymocyte differentiation are controlled by CK2.In addition,hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitinmediated degradation.Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization.Thus,the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor.This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.

  16. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis


    Yoon, Young-Sil; Lee, Min-Woo; Ryu, Dongryeol; Kim, Jeong Ho; MA, Hui; Seo, Woo-Young; Kim, Yo-Na; Kim, Su Sung; Lee, Chul Ho; Hunter, Tony; Choi, Cheol Soo; Montminy, Marc R.; Koo, Seung-Hoi


    Fasting promotes hepatic gluconeogenesis to maintain glucose homeostasis. The cAMP-response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) is responsible for transcriptional activation of gluconeogenic genes and is critical for conveying the opposing hormonal signals of glucagon and insulin in the liver. Here, we show that suppressor of MEK null 1 (SMEK1) and SMEK2 [protein phosphatase 4 (PP4) regulatory subunits 3a and 3b, respectively] are directly involved i...

  17. Serine / threonine protein phosphatase 5 (PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling

    Directory of Open Access Journals (Sweden)

    Bueno Manuel


    Full Text Available Abstract Background In most cells glucocorticoid receptors (GR reside predominately in the cytoplasm. Upon hormone binding, the GR translocates into the nucleus, where the hormone-activated GR-complex regulates the transcription of GR-responsive genes. Serine/threonine protein phosphatase type 5 (PP5 associates with the GR-heat-shock protein-90 complex, and the suppression of PP5 expression with ISIS 15534 stimulates the activity of GR-responsive reporter plasmids, without affecting the binding of hormone to the GR. Results To further characterize the mechanism by which PP5 affects GR-induced gene expression, we employed immunofluorescence microscopy to track the movement of a GR-green fluorescent fusion protein (GR-GFP that retained hormone binding, nuclear translocation activity and specific DNA binding activity, but is incapable of transactivation. In the absence of glucocorticoids, GR-GFP localized mainly in the cytoplasm. Treatment with dexamethasone results in the efficient translocation of GR-GFPs into the nucleus. The nuclear accumulation of GR-GFP, without the addition of glucocorticoids, was also observed when the expression of PP5 was suppressed by treatment with ISIS 15534. In contrast, ISIS 15534 treatment had no apparent effect on calcium induced nuclear translocation of NFAT-GFP. Conclusion These studies suggest that PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling, and that the GR-induced transcriptional activity observed when the expression of PP5 is suppressed by treatment with ISIS 15534 results from the nuclear accumulation of GR in a form that is capable of binding DNA yet still requires agonist to elicit maximal transcriptional activation.

  18. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2*♦ (United States)

    Giménez-Mascarell, Paula; Oyenarte, Iker; Hardy, Serge; Breiderhoff, Tilman; Stuiver, Marchel; Kostantin, Elie; Diercks, Tammo; Pey, Angel L.; Ereño-Orbea, June; Martínez-Chantar, María Luz; Khalaf-Nazzal, Reham; Claverie-Martin, Felix; Müller, Dominik; Tremblay, Michel L.


    Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities. PMID:27899452

  19. Bone alkaline phosphatase and mortality in dialysis patients

    NARCIS (Netherlands)

    C. Drechsler; M. Verduijn; S. Pilz; R.T. Krediet; F.W. Dekker; C. Wanner; M. Ketteler; E.W. Boeschoten; V. Brandenburg


    Serum alkaline phosphatase (AP) is associated with vascular calcification and mortality in hemodialysis patients, but AP derives from various tissues of origin. The aim of this study was to assess the effect of bone-specific AP (BAP) on morbidity and mortality in dialysis patients. From a prospectiv

  20. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika


    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  1. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide

    NARCIS (Netherlands)

    Kapojos, Jola Jovita; Poelstra, Klaas; Borghuis, Theo; van den Berg, Anke; Baelde, Hans J.; Klok, P.A; Bakker, W.W


    Alkaline phosphatase (AP) can be considered as a host defence molecule since this enzyme is able to detoxify bacterial endotoxin at physiological pH. The question emerged whether this anti-endotoxin principle is inducible in the glomerulus and if so, which glomerular cells might be involved in the e

  2. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;


    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  3. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E


    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4....

  4. Extralysosomal localisation of acid phosphatase in the rat kidney

    NARCIS (Netherlands)

    Rudiger, J; Kalicharan, D; Halbhuber, KJ; van der Want, JJL


    There is strong evidence that acid phosphatase (AcPase) plays an important role in the catabolism of the glomerular basement membrane (GEM) and the removal of macromolecular debris resulting from ultrafiltration. Recent enzyme histochemical investigations provide new evidence of the antithrombotic a

  5. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F


    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin i

  6. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  7. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. (United States)

    Buchser, William J; Slepak, Tatiana I; Gutierrez-Arenas, Omar; Bixby, John L; Lemmon, Vance P


    Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase alpha (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.

  8. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von


    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  9. Protein tyrosine phosphatase PTPRR isoforms in cellular signaling and trafficking

    NARCIS (Netherlands)

    Dilaver, Gönül


    Previous work has revealed the existence of two Protein Tyrosine Phosphatases in mouse, PTPBR7 and PTP-SL, that were in part identical, suggesting that they originated from the same gene, termed Ptprr (1,5,6). In this thesis, I report on the characterization of the various PTPRR isoforms in neuronal

  10. Endotoxin detoxification by alkaline phosphatase in cholestatic livers

    NARCIS (Netherlands)

    Poelstra, K; Bakker, WW; Hardonk, MJ; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C


    Increased expression of alkaline phosphatase (AP) in the liver is a hallmark of cholestasis but the pathophysiological role of this is not clear. We argue that deprotonation of carboxyl groups at the active site of the enzyme may be a prerequisite for optimal AP activity. Such a creation of negative

  11. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4. (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V


    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  12. Protein phosphatase 2A is regulated by PKCα-dependent phosphorylation of its targeting subunit B56α at Ser41

    DEFF Research Database (Denmark)

    Kirchhefer, Uwe; Heinick, Alexander; König, Simone


    with the appropriate regulatory B subunit families, namely B55, B56, PR72 or PR93/PR110. It has been suggested that additional levels of regulating PP2A function may result from the phosphorylation of B56 isoforms. In this study, we identified a novel phosphorylation site at Ser41 of B56α. This phosphoamino acid....... This interplay between PKCα and PP2A represents a new mechanism to regulate important cellular functions like cellular Ca2+ homeostasis....

  13. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M J


    A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production

  14. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines (United States)

    While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (ATP-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baselin...

  15. High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas. (United States)

    Lee, Sang-Ok; Lee, Mi-Kyung; Ku, Bonsu; Bae, Kwang-Hee; Lee, Sang Chul; Lim, Heon M; Kim, Seung Jun; Chi, Seung-Wook


    Protein tyrosine phosphatase-Basophil (PTP-Bas) is a membrane-associated protein tyrosine phosphatase with five PDZ domains and is involved in apoptosis, tumorigenesis, and insulin signaling. The interaction between PTP-Bas and tandem-PH-domain-containing protein 1/2 (TAPP1/2) plays an essential role in the regulation of insulin signaling. Despite its high sequence homology with the other PDZ domains, only the PDZ1 domain of PTP-Bas showed distinct binding specificity for TAPP1/2. Although the interaction between PTP-Bas PDZ1 and TAPP1/2 is a therapeutic target for diabetes, the structural basis for the interaction has not been elucidated. In the present study, we determined the crystal structure of the PTP-Bas PDZ1 domain at 1.6 Å resolution. In addition, we calculated the structural models of complexes of PTP-Bas PDZ1 and the C-terminal peptides of TAPP1/2 (referred to as TAPP1p/2p). Structural comparison with the PTP-Bas PDZ2/RA-GEF2 peptide complex revealed a structural basis for distinct binding specificity of PTP-Bas PDZ1 for TAPP1p/2p peptides. Our high-resolution crystal structure of PTP-Bas PDZ1 will serve as a useful template for rational structure-based design of novel anti-diabetes therapeutics.

  16. Inactivation of Protein Tyrosine Phosphatases by Peracids Correlates with the Hydrocarbon Chain Length

    Directory of Open Access Journals (Sweden)

    Alicja Kuban-Jankowska


    Full Text Available Background/Aims: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. Methods: The enzymatic activity of human CD45, PTP1B, LAR, bacterial YopH was assayed under the cell-free conditions, and activity of cellular CD45 in human Jurkat cell lysates. The molecular docking and molecular dynamics were performed to evaluate the peracids binding to the CD45 active site. Results: Here we demonstrate that peracids reduce enzymatic activity of recombinant CD45, PTP1B, LAR, YopH and cellular CD45. Our studies indicate that peracids are more potent inhibitors of CD45 than hydrogen peroxide (with an IC50 value equal to 25 nM for peroctanoic acid and 8 µM for hydrogen peroxide. The experimental data show that the inactivation caused by peracids is dependent on hydrocarbon chain length of peracids with maximum inhibitory effect of medium-chain peracids (C8-C12 acyl chain, which correlates with calculated binding affinities to the CD45 active site. Conclusion: Peracids are potent inhibitors of PTPs with the strongest inhibitory effect observed for medium-chain peracids.

  17. Use of intein-mediated phosphoprotein arrays to study substrate specificity of protein phosphatases. (United States)

    Kochinyan, Samvel; Sun, Luo; Ghosh, Inca; Barshevsky, Tanya; Xu, Jie; Xu, Ming-Qun


    Synthetic peptides incorporating various chemical moieties, for example, phosphate groups, are convenient tools for investigating protein modification enzymes, such as protein phosphatases (PPs). However, short peptides are sometimes poor substrates, and their binding to commonly used matrices is unpredictable and variable. In general, protein substrates for PPs are superior for enzymatic assays, binding to various matrices, and Western blot analysis. The preparation and characterization of phosphoproteins, however can be difficult and technically demanding. In this study, the intein-mediated protein ligation (IPL) technique was used to readily generate phosphorylated protein substrates by ligating a synthetic phosphopeptide to an intein-generated carrier protein (CP) possessing a carboxyl-terminal thioester with a one-to-one stoichiometry. The ligated phosphoprotein (LPP) substrate was treated with a PP and subsequently subjected to array or Western blot analysis with a phospho-specific antibody. This approach is highly effective in producing arrays of protein substrates containing phosphorylated amino acid residues and has been applied for screening of PPs with specificity toward phosphorylated tyrosine, serine, or threonine residues, resulting in an approximately 240-fold increase in sensitivity in dot blot analysis compared with the use of synthetic peptides. The IPL technique overcomes the disadvantages of current methods and is a versatile system for the facile production of protein substrates containing well-defined structural motifs for the study of protein modification enzymes.

  18. Effect of phenylmercuric acetate injections on phosphatase activity in chickens resistant and susceptible to Leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; Csonka, E.


    The weighted means of liver and kidney alkaline phosphatase activity was greater in three strains of chickens classified as susceptible to limphoid leukosis than in five strains classified as resistant. On the same basis, four strains classified as susceptible to Marek's disease had more liver alkaline phosphatase activity than four strains classified as resistant. The weighted means of liver and kidney acid phosphatase activity were not different among the same strains of chickens classified similarly. Kidney alkaline phosphatase activity was the most generally inhibited by phenylmercuric acetate injections, followed by liver acid and alkaline phosphatase. Kidney acid phosphatase activity was enhanced by phenylmercuric acetate injections in three strains of chickens classified as resistant to both lymphoid leukosis and Marek's disease. Liver acid phosphatase activity was depressed in three strains classed as resistant to lymphoid leukosis.

  19. Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch. (United States)

    Fei, Xiang; Holmes, Thomas; Diddle, Julianna; Hintz, Lauren; Delaney, Dan; Stock, Alex; Renner, Danielle; McDevitt, Molly; Berkowitz, David B; Soukup, Juliane K


    The glmS riboswitch is unique among gene-regulating riboswitches and catalytic RNAs. This is because its own metabolite, glucosamine-6-phosphate (GlcN6P), binds to the riboswitch and catalytically participates in the RNA self-cleavage reaction, thereby providing a novel negative feedback mechanism. Given that a number of pathogens harbor the glmS riboswitch, artificial actuators of this potential RNA target are of great interest. Structural/kinetic studies point to the 2-amino and 6-phosphate ester functionalities in GlcN6P as being crucial for this actuation. As a first step toward developing artificial actuators, we have synthesized a series of nine GlcN6P analogs bearing phosphatase-inert surrogates in place of the natural phosphate ester. Self-cleavage assays with the Bacillus cereus glmS riboswitch give a broad SAR. Two analogs display significant activity, namely, the 6-deoxy-6-phosphonomethyl analog (5) and the 6-O-malonyl ether (13). Kinetic profiles show a 22-fold and a 27-fold higher catalytic efficiency, respectively, for these analogs vs glucosamine (GlcN). Given their nonhydrolyzable phosphate surrogate functionalities, these analogs are arguably the most robust artificial glmS riboswitch actuators yet reported. Interestingly, the malonyl ether (13, extra O atom) is much more effective than the simple malonate (17), and the "sterically true" phosphonate (5) is far superior to the chain-truncated (7) or chain-extended (11) analogs, suggesting that positioning via Mg coordination is important for activity. Docking results are consistent with this view. Indeed, the viability of the phosphonate and 6-O-malonyl ether mimics of GlcN6P points to a potential new strategy for artificial actuation of the glmS riboswitch in a biological setting, wherein phosphatase-resistance is paramount.

  20. Adsorption of Acid Phosphatase on Minerals and Soil Colloids in Presence of Citrate and Phosphate

    Institute of Scientific and Technical Information of China (English)


    The aim of this work was to study the influence of phosphate and citrate, which are common inorganic andorganic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separatedfrom yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major claymineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite andoxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted tothe Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBScolloid >LS colloid>kaolin≈goethite. In the presence of phosphate or citrate, the amounts of the enzymeadsorbed followed the sequence YBS colloid>kaolin>LS colloid>goethite. The presence of ligands alsodecreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligandconcentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme werefound in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed ongoethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However,no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations.When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usuallyenhanced the adsorption of enzyme. The results obtained in this study suggested the important role ofkaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.

  1. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)


    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  2. Prostatic acid phosphatase in serum and semen of dogs


    CRF Gadelha; WRR Vicente; APC Ribeiro; Apparicio, M. [UNESP; GJ Covizzi; ACN Campos


    The incidence of prostatic malignancy has increased the use of tissue markers to detect cancer. Tissue specific antigens or differentiation antigens are found on the surface of normal cells. Clinically, these antigens are important to diagnose alterations in the tissues and for immunotherapy. The objective of the present study was to evaluate the prostatic acid phosphatase concentration in blood and seminal plasma of intact and healthy dogs at different ages. The evaluation was carried out by...

  3. phoD Alkaline Phosphatase Gene Diversity in Soil. (United States)

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K


    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  4. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase. (United States)

    Story, Sandra; Brigmon, Robin L


    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.

  5. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Zhonghui [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Felts, Richard L. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Reilly, Thomas J. [Department of Veterinary Pathobiology and Veterinary Medical Diagnostic Laboratory, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nix, Jay C. [Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Tanner, John J., E-mail: [Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States)


    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  6. PTPL1: a large phosphatase with a split personality. (United States)

    Abaan, Ogan D; Toretsky, Jeffrey A


    Protein tyrosine phosphatase, PTPL1, (also known as PTPN13, FAP-1, PTP-BAS, PTP1E) is a non-receptor type PTP and, at 270 kDa, is the largest phosphatase within this group. In addition to the well-conserved PTP domain, PTPL1 contains at least 7 putative macromolecular interaction domains. This structural complexity indicates that PTPL1 may modulate diverse cellular functions, perhaps exerting both positive and negative effects. In accordance with this idea, while certain studies suggest that PTPL1 can act as a tumor-promoting gene other experimental studies have suggested that PTPL1 may function as a tumor suppressor. The role of PTPL1 in the cancer cell is therefore likely to be both complex and context dependent with possible roles including the modulation of growth, stress-response, and cytoskeletal remodeling pathways. Understanding the nature of molecular complexes containing PTPL1, its interaction partners, substrates, regulation and subcellular localization are key to unraveling the complex personality of this protein phosphatase.

  7. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦


    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  8. The role of phosphatases in the initiation of skeletal mineralization. (United States)

    Millán, José Luis


    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

  9. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue. (United States)

    Davidoff, M S; Schulze, W; Holstein, A F


    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  10. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor


    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  11. Have We Overlooked the Importance of Serine/Threonine Protein Phosphatases in Pancreatic Beta-Cells? Role Played by Protein Phosphatase 2A in Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Esser V


    Full Text Available Genetic predisposition and environmental influences insidiously converge to cause glucose intolerance and hyperglycemia. Beta-cell compensates by secreting more insulin and when it fails, overt diabetes mellitus ensues. The need to understand the mechanisms involved in insulin secretion cannot be stressed enough. Phosphorylation of proteins plays an important role in regulating insulin secretion. In order to understand how a particular cellular process is regulated by protein phosphorylation the nature of the protein kinases and protein phosphatases involved and the mechanisms that determine when and where these enzymes are active should be investigated. While the actions of protein kinases have been intensely studied within the beta-cell, less emphasis has been placed on protein phosphatases even though they play an important regulatory role. This review focuses on the importance of protein phosphatase 2A in insulin secretion. Most of the present knowledge on protein phosphatase 2A originates from protein phosphatase inhibitor studies on islets and beta-cell lines. The ability of protein phosphatase 2A to change its activity in the presence of glucose and inhibitors provides clues to its role in regulating insulin secretion. An aggressive approach to elucidate the substrates and mechanisms of action of protein phosphatases is crucial to the understanding of phosphorylation events within the beta-cell. Characterizing protein phosphatase 2A within the beta-cell will certainly help us in understanding the mechanisms involved in insulin secretion and provide valuable information for drug development.

  12. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture. (United States)

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B


    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  13. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Kanwal [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Wang, Wen Wen; Wang, Yan Wei [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Sakamoto, Akira [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260‐8675 (Japan); Zhang, Yan Fang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Naranmandura, Hua, E-mail: [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Suzuki, Noriyuki [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260‐8675 (Japan)


    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs{sup III}) and its intermediate metabolites such as monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA{sup III} and DMA{sup III}) but not by iAs{sup III}. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA{sup III} directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA{sup III} strongly inhibited activity of PTP1B. ► DMA{sup III} directly

  14. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamprianou, Smaragda; Chatzopoulou, Elli; Thomas, Jean-Léon; Bouyain, Samuel; Harroch, Sheila (IP-Korea); (UPMC); (UMKC)


    The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.

  15. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky


    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  16. Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus. (United States)

    Guimarães, Luis Henrique Souza; Jorge, João Atilio; Terenzi, Héctor Francisco; Jamur, Maria Célia; Oliver, Constance; De Lourdes Teixeira De Moraes Polizeli, Maria


    The effect of several carbon sources on the production of alkaline phosphatase by the thermotolerant Aspergillus caespitosus was analysed. The fungus released high levels of alkaline phosphatases into the medium after being cultured for long periods with xylan or industrial residues such as wheat raw and sugar cane bagasse in the culture media. In contrast, the alkaline phosphatase activities were found only intracellulary when the fungus was cultured in glucose-supplemented media. The pH of the medium likely affects the process of enzyme secretion according to the carbon source used. Addition of xylan or industrial residues in the culture medium stimulated the secretion of phosphatases. In contrast, media supplemented with glucose or disaccharides promoted retention of these enzymes into the cells. The subcellular location activities of alkaline phosphatases were studied using histochemical and immunochemical methods and showed that alkaline phosphatases were present in the mycelial walls and septa.

  17. Characterization of the protein tyrosine phosphatase PRL from Entamoeba histolytica. (United States)

    Ramírez-Tapia, Ana Lilia; Baylón-Pacheco, Lidia; Espíritu-Gordillo, Patricia; Rosales-Encina, José Luis


    Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite Entamoeba histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism.


    Directory of Open Access Journals (Sweden)



    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  19. Radioimmunoassay for prostatic acid phosphatase in human serum. Methodologic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pradalier, N.; Canal, P.; Pujol, A.; Fregevu, Y. (Groupe de Recherches du Centre Claudius-Regaud, Toulouse (France)); Soula, G. (Faculte des Sciences Pharmaceutiques, Toulouse (France))


    We propose a double antibody radioimmunoassay for human prostatic acid phosphatase (PAP) in serum for diagnosis and management of prostatic adenocarcinoma under treatment. The antigen is purified from human prostatic fluid by a gel-filtration on Sephadex G 100 followed by affinity chromatography on Con A Sepharose. A specific antibody is raised in rabbits and purified by immunoadsorption with a female serum. The described technique offers both radioisotopic sensibility and immunologic specificity. Physiological values determined in the serum of 125 healthy males are below 2 ng/ml. No significative differences are observed with age. The proposed technique also shows significant differences between values evaluated for benign prostatic hyperplasia and prostatic adenocarcinoma.

  20. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.


    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  1. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.;


    homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....


    Directory of Open Access Journals (Sweden)



    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  3. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

    NARCIS (Netherlands)

    Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J.


    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentif

  4. Plasma calcium, magnesium, phosphorus, and alkaline phosphatase levels in normal British schoolchildren. (United States)

    Round, J M


    In a cross-sectional survey 624 schoolchildren were screened for plasma calcium, inorganic phosphate, and alkaline phosphatase levels. Plasma magnesium and alkaline phosphatase isoenzymes were also estimated in some cases.No significant difference was found between adult and childhood values for calcium and magnesium. Levels of alkaline phosphatase and inorganic phosphorus varied with both age and sex. The magnitude of these variations in normal ranges is of clear importance in assessing data from individual paediatric or adolescent patients.

  5. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe


    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  6. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems (United States)

    Sayler, Gary S.; Puziss, Marla; Silver, Martin


    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  7. Sds22, a PP1 phosphatase regulatory subunit, regulates epithelial cell polarity and shape [Sds22 in epithelial morphology

    Directory of Open Access Journals (Sweden)

    Sung Hsin-Ho


    Full Text Available Abstract Background How epithelial cells adopt their particular polarised forms is poorly understood. In a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved gene previously characterised in yeast. Results In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In addition, the mutant cells can also display altered cell polarity, forming multiple layers in follicle cells and leaving the epithelium in imaginal discs. In yeast, sds22 encodes a PP1 phosphatase regulatory subunit. Consistent with this, we show that Drosophila Sds22 binds to all four Drosophila PP1s and shares an overlapping phenotype with PP1beta9c. We also show that two previously postulated PP1 targets, Spaghetti Squash and Moesin are hyper-phosphorylated in sds22 mutants. This function is shared by the human homologue of Sds22, PPP1R7. Conclusion Sds22 is a conserved PP1 phosphatase regulatory subunit that controls cell shape and polarity.

  8. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Hume David A


    Full Text Available Abstract Background Tartrate-resistant acid phosphatases (TRAcPs, also known as purple acid phosphatases (PAPs, are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

  9. Purification and Characterization of PRL Protein Tyrosine Phosphatases

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-fa; WANG Yan; LI Qing-shan; ZHAO Zhi-zhuang Joe; FU Xue-qi; LI Yu-lin; LI Yi-lei


    PRLs constitute a subfamily of protein tyrosine phosphatases(PTPs). In the present paper are reported the molecular cloning, expression, purification, and characterization of all the three members of the PRL enzymes in human and the only PRL in C.elegans. These enzymes were expressed as glutathione S-transferase(GST) fusion proteins in DE3pLysS E.coli cells, and the recombinant fusion proteins were purified on glutathione-Sepharose affinity columns. Having been cleaved with thrombin, GST-free enzymes were further purified on an S-100 Sepharose gel filtration column. The purified proteins show single polypeptide bands on SDS-polyacrylamide gel electrophoresis. With para-nitrophenyl phosphate(p-NPP) as a substrate, PRLs exhibit classical Michaelis-Menten kinetics with Vmax values two orders of magnitude smaller than those of classic PTPs. The responses of PRLs to ionic strength, metal ions and phosphatase inhibitors are similar to those of other characterized PTPs, but their optimal pH values are different. These data thus reveal distinct common biochemical properties of PRL subfamily PTPs as well.

  10. SHP-1 phosphatase activity counteracts increased T cell receptor affinity. (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie


    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  11. Kinetic aspects of human placental alkaline phosphatase enzyme membrane. (United States)

    Roig, M G; Serrano, M A; Bello, J F; Cachaza, J M; Kennedy, J F


    The crosslinking of alkaline phosphatase of human placenta with human serum albumin has been optimized. During the physico-chemical characterization of this immobilized biocatalyst, special attention was paid to attributes such as the irreversibility of the enzyme support bonding, the stability of the catalytic activity, and the effects of pH and temperature on this activity. Regarding stability, patterns of denaturation are proposed, to account for inactivation curves over time and under storage/operation conditions. These patterns, in some cases, indicate the existence of different populations of immobilized enzyme molecules, with a different degree of sensitivity to denaturation. The activity vs pH profiles are clearly modified by the immobilization process. This is because the pH of the free homogeneous solution, measurable with a pH-meter, differs from the real pH of the immediate microenvironment of the immobilized enzyme molecules due to the effects of proton accumulation in the microenvironment (in the reaction catalysed by alkaline phosphatase, protons are produced), to limitations to the free diffusion of H+ and to the possible partition effects of H+ due to polar interactions with residues or molecules of the enzyme membrane. In the experimental working conditions, the apparent optimum temperatures are centered at 40 degrees C, inactivation (thermal denaturation) occurring above this temperature. In the temperature range 10-40 degrees C, the kinetic control over the overall activity of the immobilized enzyme was observed, causing the Arrhenius profiles to be linear.

  12. Protein phosphatase Z modulates oxidative stress response in fungi. (United States)

    Leiter, Éva; González, Asier; Erdei, Éva; Casado, Carlos; Kovács, László; Ádám, Csaba; Oláh, Judit; Miskei, Márton; Molnar, Monika; Farkas, Ilona; Hamari, Zsuzsanna; Ariño, Joaquín; Pócsi, István; Dombrádi, Viktor


    The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.

  13. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films. (United States)

    Ball, Vincent


    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  14. OB protein binds specifically to the choroid plexus of mice and rats. (United States)

    Devos, R; Richards, J G; Campfield, L A; Tartaglia, L A; Guisez, Y; van der Heyden, J; Travernier, J; Plaetinck, G; Burn, P


    Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.

  15. Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding. (United States)

    Mahmood, Akhtar; Shao, Jian-su; Alpers, David H


    Surfactant-like particles (SLP) are unilamellar secreted membranes associated with the process of lipid absorption and isolated previously only from the apical surface of enterocytes. In this paper, the intracellular membrane has been isolated from corn oil-fed animals, identified by its content of the marker protein intestinal alkaline phosphatase (IAP). Another brush-border protein, cubilin, and its anchoring protein megalin have been identified as components of extracellular SLP, but only cubilin is present to any extent in intracellular SLP. During fat absorption, IAP is modestly enriched in intracellular SLP, but full-length cubilin (migrating at 210 kDa in fat-fed mucosal fractions) falls by one-half, although fragments of cubilin are abundant in the intracellular SLP. Both IAP and cubilin colocalize to the same cells during corn oil absorption and colocalize around lipid droplets. This localization is more intense during feeding of corn oil with Pluronic L-81, a detergent that allows uptake of fatty acids and monoglycerides from the lumen, but blocks chylomicron secretion. Confocal microscopy confirms the colocalization of IAP and the ligand for cubilin, intrinsic factor. Possible roles for cubilin in intracellular SLP include facilitating movement of the lipid droplet through the cell and binding to the basolateral membrane before reverse endocytosis.

  16. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B. (United States)

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu


    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  17. Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. (United States)

    Emanuele, Michael J; Lan, Weijie; Jwa, Miri; Miller, Stephanie A; Chan, Clarence S M; Stukenberg, P Todd


    The outer kinetochore binds microtubules to control chromosome movement. Outer kinetochore assembly is restricted to mitosis, whereas the inner kinetochore remains tethered to centromeres throughout the cell cycle. The cues that regulate this transient assembly are unknown. We find that inhibition of Aurora B kinase significantly reduces outer kinetochore assembly in Xenopus laevis and human tissue culture cells, frog egg extracts, and budding yeast. In X. leavis M phase extracts, preassembled kinetochores disassemble after inhibiting Aurora B activity with either drugs or antibodies. Kinetochore disassembly, induced by Aurora B inhibition, is rescued by restraining protein phosphatase 1 (PP1) activity. PP1 is necessary for kinetochores to disassemble at the exit from M phase, and purified enzyme is sufficient to cause disassembly on isolated mitotic nuclei. These data demonstrate that Aurora B activity is required for kinetochore maintenance and that PP1 is necessary and sufficient to disassemble kinetochores. We suggest that Aurora B and PP1 coordinate cell cycle-dependent changes in kinetochore assembly though phosphorylation of kinetochore substrates.

  18. Inhibition of Alkaline Phosphatase from Pearl Oyster Pinctada fucata by o-Phthalaldehyde: Involvement of Lysine and Histidine Residues at the Active Site

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongtao; XIE Liping; YU Zhenyan; ZHANG Rongqing


    Alkaline phosphatase from Pinctada fucata was inactivated by o-phthalaldehyde (OPA). The inactivation followed pseudo first-order kinetics with a second rate constant of 0.167 (mmol/L)-1·min-1 at pH 7.5 and 25°C. A Tsou's plot analysis showed that inactivation occurred upon formation of one isoindole group. The OPA-modified enzyme lost the ability to bind with the specific affinity column and the presence of substrates or competitive inhibitors protected the enzyme from inactivation. The results revealed that the OPA-reaction site was at the enzyme substrate binding site. Prior modification of the enzyme by lysine or histidine specific reagent abolished formation of the isoindole derivatives, suggesting that lysine and histidine residues were involved in the OPA-induced inactivation. Taken together, OPA inactivated the alkaline phosphatase from Pinctada fucata by cross-linking lysine and histidine residues at the active site and formed an isoindole group at the substrate binding site of the enzyme.

  19. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. (United States)

    Hughes Hallett, James E; Luo, Xiangxia; Capaldi, Andrew P


    TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases-Gtr1, Gtr2, and Rho1-bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and ribosome synthesis genes and upregulation of 100 PP2A-dependent nitrogen assimilation and amino acid synthesis genes. Here, using bandshift assays and microarray measurements, we show that the TORC1 pathway also populates three other stress/starvation states. First, in glucose starvation conditions, the AMP-activated protein kinase (AMPK/Snf1) and at least one other factor push the TORC1 pathway into an off state, in which Sch9-branch signaling and PP2A-branch signaling are both inhibited. Remarkably, the TORC1 pathway remains in the glucose starvation (PP2A inhibited) state even when cells are simultaneously starved for nitrogen and glucose. Second, in osmotic stress, the MAPK Hog1/p38 drives the TORC1 pathway into a different state, in which Sch9 signaling and PP2A-branch signaling are inhibited, but PP2A-branch signaling can still be activated by nitrogen starvation. Third, in oxidative stress and heat stress, TORC1-Sch9 signaling is blocked while weak PP2A-branch signaling occurs. Together, our data show that the TORC1 pathway acts as an information-processing hub, activating different genes in different conditions to ensure that available energy is allocated to drive growth, amino acid synthesis, or a stress response, depending on the needs of the cell.

  20. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins. (United States)

    Ghodge, Swapnil V; Fedorov, Alexander A; Fedorov, Elena V; Hillerich, Brandan; Seidel, Ronald; Almo, Steven C; Raushel, Frank M


    L-Histidinol phosphate phosphatase (HPP) catalyzes the hydrolysis of L-histidinol phosphate to L-histidinol and inorganic phosphate, the penultimate step in the biosynthesis of L-histidine. HPP from the polymerase and histidinol phosphatase (PHP) family of proteins possesses a trinuclear active site and a distorted (β/α)(7)-barrel protein fold. This group of enzymes is closely related to the amidohydrolase superfamily of enzymes. The mechanism of phosphomonoester bond hydrolysis by the PHP family of HPP enzymes was addressed. Recombinant HPP from Lactococcus lactis subsp. lactis that was expressed in Escherichia coli contained a mixture of iron and zinc in the active site and had a catalytic efficiency of ~10(3) M(-1) s(-1). Expression of the protein under iron-free conditions resulted in the production of an enzyme with a 2 order of magnitude improvement in catalytic efficiency and a mixture of zinc and manganese in the active site. Solvent isotope and viscosity effects demonstrated that proton transfer steps and product dissociation steps are not rate-limiting. X-ray structures of HPP were determined with sulfate, L-histidinol phosphate, and a complex of L-histidinol and arsenate bound in the active site. These crystal structures and the catalytic properties of variants were used to identify the structural elements required for catalysis and substrate recognition by the HPP family of enzymes within the amidohydrolase superfamily.

  1. PTPRT regulates the interaction of Syntaxin-binding protein 1 with Syntaxin 1 through dephosphorylation of specific tyrosine residue

    Energy Technology Data Exchange (ETDEWEB)

    Lim, So-Hee; Moon, Jeonghee [Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lee, Myungkyu [Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lee, Jae-Ran, E-mail: [Biomedical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of)


    Highlights: •PTPRT is a brain-specific, expressed, protein tyrosine phosphatase. •PTPRT regulated the interaction of Syntaxin-binding protein 1 with Syntaxin 1. •PTPRT dephosphorylated the specific tyrosine residue of Syntaxin-binding protein 1. •Dephosphorylation of Syntaxin-binding protein 1 enhanced the interaction with Syntaxin 1. •PTPRT appears to regulate the fusion of synaptic vesicle through dephosphorylation. -- Abstract: PTPRT (protein tyrosine phosphatase receptor T), a brain-specific tyrosine phosphatase, has been found to regulate synaptic formation and development of hippocampal neurons, but its regulation mechanism is not yet fully understood. Here, Syntaxin-binding protein 1, a key component of synaptic vesicle fusion machinery, was identified as a possible interaction partner and an endogenous substrate of PTPRT. PTPRT interacted with Syntaxin-binding protein 1 in rat synaptosome, and co-localized with Syntaxin-binding protein 1 in cultured hippocampal neurons. PTPRT dephosphorylated tyrosine 145 located around the linker between domain 1 and 2 of Syntaxin-binding protein 1. Syntaxin-binding protein 1 directly binds to Syntaxin 1, a t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein, and plays a role as catalysts of SNARE complex formation. Syntaxin-binding protein 1 mutant mimicking non-phosphorylation (Y145F) enhanced the interaction with Syntaxin 1 compared to wild type, and therefore, dephosphorylation of Syntaxin-binding protein 1 appeared to be important for SNARE-complex formation. In conclusion, PTPRT could regulate the interaction of Syntaxin-binding protein 1 with Syntaxin 1, and as a result, the synaptic vesicle fusion appeared to be controlled through dephosphorylation of Syntaxin-binding protein 1.

  2. Phylogenetic characterization of phosphatase-expressing bacterial communities in Baltic Sea sediments

    NARCIS (Netherlands)

    Steenbergh, A.K.; Bodelier, P.L.E.; Hoogveld, H.L.; Slomp, Caroline; Laanbroek, Riks


    Phosphate release from sediments hampers the remediation of aquatic systems from a eutrophic state. Microbial phosphatases in sediments release phosphorus during organic matter degradation. Despite the important role of phosphatase-expressing bacteria, the identity of these bacteria in sediments is

  3. Alkaline phosphatase-polyresorcinol complex: characterization and application to seed coating. (United States)

    Pilar, María C; Ortega, Natividad; Perez-Mateos, Manuel; Busto, María D


    An alkaline phosphatase (EC from Escherichia coli ATCC27257 was immobilized by copolymerization with resorcinol. The phosphatase-polyresorcinol complex synthesized retained about 74% of the original enzymatic activity. The pH and temperature profile of the immobilized and free enzyme revealed a similar behavior. Kinetic parameters were determined: K(m) and K(i) values were 2.44 and 0.423 mM, respectively, for the phosphatase-polyresorcinol complex and 1.07 and 0.069 mM, respectively, for free phosphatase. The thermal and storage stabilities of the immobilized phosphatase were higher than those of the native one. On addition to soil, free enzyme was completely inactivated in 4 days, whereas the phosphatase-polyresorcinol complex was comparatively stable. Barley seed coated with the immobilized enzyme exhibited higher rhizosphere phosphatase activity. Under pot culture conditions, an increase in the soil inorganic phosphorus was detected when the seed was encapsulated with the phosphatase-polyresorcinol complex, and a positive influence on biomass and inorganic phosphorus concentration of shoot was observed.

  4. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate

    NARCIS (Netherlands)

    Peters, E; Geraci, S; Heemskerk, S; Wilmer, M J; Bilos, A; Kraenzlin, B; Gretz, N; Pickkers, P; Masereeuw, R


    BACKGROUND AND PURPOSE: Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection by alkaline phosphatase presum

  5. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J


    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  6. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M


    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to i...

  7. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica


    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  8. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D


    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  9. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Shigeki; Yonezawa, Yasushi [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Ishibashi, Matsujiro [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Tokunaga, Hiroko [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Blaber, Michael [Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300 (United States); Tokunaga, Masao [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Kuroki, Ryota, E-mail: [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan)


    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  10. Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid-phosphatase-encoding genes. (United States)

    Thaller, M C; Lombardi, G; Berlutti, F; Schippa, S; Rossolini, G M


    The gene encoding a minor phosphate-irrepressible acid phosphatase (named NapA) of Morganella morganii was cloned and sequenced, and its product characterized. NapA is a secreted acid phosphatase composed of four 27 kDa polypeptide subunits. The enzyme is active on several organic phosphate monoesters but not on diesters, and is also endowed with transphosphorylating activity from organic phosphoric acid esters to nucleosides and other compounds with free hydroxyl groups. Its activity is inhibited by EDTA, inorganic phosphate, nucleosides and Ca2+, but not by fluoride or tartrate, and is enhanced by Mg2+, Co2+ and Zn2+. At the sequence level, the NapA enzyme did not show similarities to any other sequenced bacterial phosphatases. However, a search for homologous genes in sequence databases allowed identification of two open reading frames located within sequenced regions of the Escherichia coli and Proteus mirabilis genomes respectively, encoding proteins of unknown function which are highly homologous to the Morganella enzyme. Moreover, the properties of the NapA enzyme are very similar to those reported for the periplasmic nonspecific acid phosphatase II of Salmonella typhimurium (for which no sequence data are available). These data point to the existence of a new family of bacterial acid phosphatases, which we propose designating class B bacterial acid phosphatases.

  11. Analyzing binding data. (United States)

    Motulsky, Harvey J; Neubig, Richard R


    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  12. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. (United States)

    Fernandez, Luisa E; Aimanova, Karlygash G; Gill, Sarjeet S; Bravo, Alejandra; Soberón, Mario


    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI-ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI-ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI-ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI-ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae.

  13. The wip1 phosphatase (PPM1D) antagonizes activation of the CHK2 tumor suppressor kinase

    Energy Technology Data Exchange (ETDEWEB)

    Manet, Oliva-Trastoy; Berthonaud, V.; Chevalier, A.; Ducrot, C.; Marsolier-Kergoat, M.C.; Mann, C.; Leteurtre, F. [CEA Saclay, DSV, DBJC, SBGM, Lab. du Controle du Cycle Cellulaire, 91 - Gif-sur-Yvette (France)


    adaptation). Our group previously demonstrated that type 2C protein phosphatases (PP2C) Ptc2 and Ptc3 are required for DNA checkpoint inactivation after DNA double-strand break repair or adaptation in S. cerevisiae. Here we show the conservation of this pathway in mammalian cells. In response to DNA damage, ATM (ataxia telangiectasia mutated) phosphorylates the Chk2 tumor suppressor kinase at threonine 68 (Thr68), allowing Chk2 kinase dimerization and activation by auto-phosphorylations in the T-loop. The oncogenic protein Wip1, a PP2C phosphatase, binds Chk2 and de-phosphorylates phospho-Thr68. Consequently, Wip1 opposes Chk2 activation by ATM after ionizing irradiation of cells. The recombinant Chk2 protein is fully phosphorylated and activated, due to the high protein concentrations obtained during production. In vitro, Wip 1 de-phosphorylates the phospho-T68 of Chk2, but does not reduce Chk2 kinase activity on its usual GST-CDC25C substrate. These observations suggest that Wip1 phosphatase controls Chk2 activation rather than its enzymatic activity that relies on phosphorylations in the T-loop. The physiological consequences of Wip1 overexpression were tested in human adenocarcinoma cells: the HCT15 cell line. The specificities of this cell line are (i ) the absence of functional p53 proteins, leading to a G2 delay in response to a genotoxic stress, and (ii) the absence of functional Chk2 proteins, because of one CHK2 allele being unexpressed and because the second allele codes for a mutated protein that is unstable and inactive. The HCT15 cell line was complemented by a functional form of HA-Chk2 and the selected clone expresses the protein to a level similar to that observed in other cell lines. In HCT15 colorectal cancer cells corrected for functional Chk2 activity, Wip 1 modest overexpression suppressed the contribution of Chk2 to the G2/M DNA damage checkpoint. These results indicate that Wip1 is one of the phosphatases regulating the activity of Chk2 in response to

  14. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays (United States)

    Moore, R.; McClelen, C. E.


    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  15. Purification and characterization of acid phosphatase from a germinating black gram (Vigna mungo L. seedling

    Directory of Open Access Journals (Sweden)

    Asaduzzaman A.K.M.


    Full Text Available An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55°C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.

  16. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity. (United States)

    Villamizar, Genis A Castillo; Nacke, Heiko; Daniel, Rolf


    The release of phosphate from inorganic and organic phosphorus compounds can be mediated enzymatically. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation and diagnostic analysis. Metagenomic approaches provide access to novel phosphatase-encoding genes. Here, we describe a function-based screening approach for rapid identification of genes conferring phosphatase activity from small-insert and large-insert metagenomic libraries derived from various environments. This approach bears the potential for discovery of entirely novel phosphatase families or subfamilies and members of known enzyme classes hydrolyzing phosphomonoester bonds such as phytases. In addition, we provide a strategy for efficient heterologous phosphatase gene expression.

  17. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells. (United States)

    Kent, C; Vagelos, P R


    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  18. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status (United States)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni


    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  19. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup


    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  20. Characterization of cationic acid phosphatase isozyme from rat liver mitochondria. (United States)

    Fujimoto, S; Murakami, K; Hosoda, T; Yamamoto, Y; Watanabe, K; Morinaka, Y; Ohara, A


    Acid phosphatase isozyme was highly purified from rat liver mitochondrial fraction. The enzyme showed an isoelectric point value of above 9.5 on isoelectric focusing, and the apparent molecular weight was estimated to be 32000 by Sephadex G-100 gel filtration or 16000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzed the hydrolysis of adenosine 5'-triphosphate, adenosine 5'-diphosphate, thiamine pyrophosphate, inorganic pyrophosphate, and phosphoprotein such as casein and phosvitin, but not of several phosphomonoesters, except for p-nitrophenyl phosphate and o-phosphotyrosine. The enzyme was not inhibited by L-(+)-tartrate, and was significantly activated by Fe2+ and reducing agents such as ascorbic acid, L-cysteine,and dithiothreitol. The enzyme was found to be distributed in various rat tissues including liver, spleen, kidney, small intestine, lung, stomach, brain and heart, but not in skeletal muscle.

  1. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. (United States)

    Kaliannan, Kanakaraju; Hamarneh, Sulaiman R; Economopoulos, Konstantinos P; Nasrin Alam, Sayeda; Moaven, Omeed; Patel, Palak; Malo, Nondita S; Ray, Madhury; Abtahi, Seyed M; Muhammad, Nur; Raychowdhury, Atri; Teshager, Abeba; Mohamed, Mussa M Rafat; Moss, Angela K; Ahmed, Rizwan; Hakimian, Shahrad; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth; Warren, H Shaw; Bhan, Atul K; Malo, Madhu S; Hodin, Richard A


    Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.

  2. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells. (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan


    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk.

  3. Measurement of bone alkaline phosphatase and relative study with osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiping; HUO Yanqing; SUN Guangzhi; LI Jianmin; LI Xin


    The objective of this paper is to explore the value of bone alkaline phosphatase (BALP) for diagnosing osteosarcoma,evaluating the effect of the chemotherapy,judging the prognosis and supervising the relapse and metastasis.The immunoassay was used to check the BALP of the blood serum that was from 42 primary osteosarcoma patients.Alkaline phosphatase (ALP) in blood serum was checked with auto biochemistry equipment.The biopsy tissue and the lesion resected in operation were treated with pathology and histological response was counted.The patients were followed up from five months to 49 months with an average of 24.3 months.Eighteen cases relapsed and transferred,among which,16 of them were dead,and others were survival to the end of the follow-up.BALP was more sensitive than ALP in diagnosing osteosarcoma (P = 0.015).Fifteen cases decreased to normal value in ALP after preoperative chemotherapy,and 34 cases decreased in BALP.Both ALP and BALP in all cases decreased to normal value in postoperative.There was significant difference in positive correlation between the decrease of BALP and the increase of histological response (P = 0.001,r = 0.642).In the followup,there was significant difference in BALP between the group of relapse and transfer and the group of free disease survival (P=0.000).As a check marker in blood serum,BALP,reflecting the process of ossification,has a higher sensitivity than ALP.It has applied value in the diagnosis of osteosarcoma,reflection of the effect of chemotherapy and forecast the prognosis.

  4. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification (United States)

    Chicote, Javier U.; DeSalle, Rob; García-España, Antonio


    Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs) are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP) domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i) have probably originated in the common ancestor of animals (metazoans), (ii) are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes); (iii) a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates) generated the precursors of PTPRQ and PTPRB genes, and (iv) R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins. PMID:28257417

  5. Phosphatase and tensin homologue deleted on chromosome 10

    Directory of Open Access Journals (Sweden)

    Imran Haruna Abdulkareem


    Full Text Available Phosphatase and tensin homologue deleted on chromosome 10 (PTEN is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH for the PTEN gene on chromosome 10q23. Previous studies reported that various drugs, chemicals, and foods can up-regulate PTEN mRNA and protein expression in different cell lines, and they may be useful in the future prevention and/or treatment of these cancers. PTEN has also been observed to have prognostic significance and is gradually being accepted as an independent prognostic factor. This will help in monitoring disease progression and/or recurrence, with a view to improving treatment outcomes and reducing the associated morbidity and mortality from these cancers. Neprilysin (NEP is a zinc-dependent metallopeptidase that cleaves and inactivates some biologically active peptides thus switching off signal transduction at the cell surface. Decreased NEP expression in many cancers has been reported. NEP can form a complex with PTEN and enhance PTEN recruitment to the plasma membrane as well as stabilize its phosphatase activity. MicroRNA-21 (miR-21 post-transcriptionally down-regulates the expression of PTEN and stimulates growth and invasion in non-small cell lung cancer (NSCLC (lung Ca, suggesting that this may be a potential therapeutic target in the future treatment of NSCLC. PTEN is a tumor suppressor gene associated with many human cancers. This has diagnostic, therapeutic, and prognostic significance in the management of many human cancers, and may be a target for new drug development in the future.

  6. Comparative evaluation of Schistosoma mansoni, Schistosoma intercalatum, and Schistosoma haematobium alkaline phosphatase antigenicity by the alkaline phosphatase immunoassay (APIA). (United States)

    Cesari, I M; Ballén, D E; Mendoza, L; Ferrer, A; Pointier, J-P; Kombila, M; Richard-Lenoble, D; Théron, A


    To know if alkaline phosphatase (AP) from schistosomes other than Schistosoma mansoni can be used as diagnostic marker for schistosomiasis in alkaline phosphatase immunocapture assay (APIA), we comparatively tested n-butanol extracts of adult worm membranes from a Venezuelan (JL) strain of S. mansoni (Ven/AWBE/Sm); a Cameroonian (EDEN) strain of Schistosoma intercalatum (Cam/AWBE/Si) and a Yemeni strain of Schistosoma haematobium (Yem/AWBE/Sh). APIA was evaluated with sera of patients from Venezuela, Senegal, and Gabon infected with S. mansoni, from Gabon infected with S. intercalatum or S. haematobium, from Chine infected with Schistosoma japonicum and from Cambodian patients infected with Schistosoma mekongi. Results indicate that 92.5% (37/40) of Venezuela sera, 75% (15/20) of Senegal sera, 39.5% (17/43) of S. haematobium sera, and 19.2% (5/26) S. intercalatum sera were APIA-positive with the Ven/AWBE/Sm preparation. APIA with the Cam/AWBE/Si preparation showed that 53.8% of S. intercalatum-positive sera had anti-AP antibodies, and 51.2% S. haematobium-positive sera cross-immunocapturing the S. intercalatum AP. APIA performed with Yem/AWBE/Sh showed that 55.8% S. haematobium sera were positive. Only two out of nine S. japonicum sera were APIA-positive with the Ven/AWBE/Sm and Cam/AWBE/Si, and no reaction was observed with Cambodian S. mekongi-positive sera. AP activity was shown to be present in all the schistosome species/strains studied. The use of APIA as a tool to explore the APs antigenicity and the presence of Schistosoma sp. infections through the detection of anti-Schistosoma sp. AP antibodies in a host, allowed us to demonstrate the antigenicity of APs of S. mansoni, S. intercalatum, and S. haematobium.

  7. Proteínas tirosina fosfatases: propriedades e funções biológicas Protein tyrosine phosphatases: properties and biological functions

    Directory of Open Access Journals (Sweden)

    Hiroshi Aoyama


    Full Text Available Protein phosphorylation-dephosphorylation catalyzed by the opposing and dynamic action of protein kinases and phosphatases probably, is the most crucial chemical reaction taking place in living organisms. Protein phosphatases are classified according to their substrate specificity and sensitivity to inhibitory or activator agents, into two families of protein phosphatases: serine/threonine phosphatases and tyrosine phosphatases (PTPs. PTPs can be divided into 3 groups: tyrosine specific phosphatases, dual and low molecular weight phosphatases. The role of tyrosine phosphorylation in mitogenic signaling is well documented, and one would predict that vanadate, pervanadate and other oxidant agents (protein tyrosine phosphatase inhibitors may act as a growth stimulator.

  8. Real-Time Monitoring of the Dephosphorylating Activity of Protein Tyrosine Phosphatases Using Microarrays with 3-Nitrophosphotyrosine Substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M. J.


    Phosphatases and kinases regulate the crucial phosphorylation post-translational modification. In spite of their similarly important role in many diseases and therapeutic potential, phosphatases have received arguably less attention. One reason for this is a scarcity of high-throughput phosphatase a

  9. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold

    Directory of Open Access Journals (Sweden)

    Svetlana Vladimirovna Antonyuk


    Full Text Available Phosphatases function in the production, transport and recycling of inorganic phosphorus, which is crucial for cellular metabolism and bioenergetics, as well as in bacterial killing, since they are able to generate reactive oxygen species via Fenton chemistry. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1, a glycoprotein plant purple acid phosphatase (PAP from yellow lupin seeds, contains a bimetallic Fe–Mn catalytic site which is most active at acidic pH. Unlike other plant PAPs, PPD1 cleaves the pyrophosphate bond in diphosphonucleotides and the phosphodiester bond in various phosphodiesters. The homohexameric organization of PPD1, as revealed by a 1.65 Å resolution crystal structure and confirmed by solution X-ray scattering, is unique among plant PAPs, for which only homodimers have previously been reported. A phosphate anion is bound in a bidentate fashion at the active site, bridging the Fe and Mn atoms in a binding mode similar to that previously reported for sweet potato PAP, which suggests that common features occur in their catalytic mechanisms. The N-terminal domain of PPD1 has an unexpected and unique fibronectin type III-like fold that is absent in other plant PAPs. Here, the in vitro DNA-cleavage activity of PPD1 is demonstrated and it is proposed that the fibronectin III-like domain, which `overhangs' the active site, is involved in DNA selectivity, binding and activation. The degradation of DNA by PPD1 implies a role for PPD1 in plant growth and repair and in pathogen defence.

  10. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zu-Quan [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Li, He-Ping [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zhang, Jing-Bo [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Huang, Tao [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Liu, Jin-Long; Xue, Sheng [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); Wu, Ai-Bo [Institute for Agri-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403 (China); Liao, Yu-Cai, E-mail: [Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); National Center of Plant Gene Research, Wuhan 430070 (China)


    Graphical abstract: A phage-displayed chicken scFv antibody, FvSG7, binds on the surface antigen of conidiospores and the mycelia of F. verticillioides. Its fusion with alkaline phosphatase (AP) through a 218 linker displayed a 4-fold higher affinity compared with the parent scFv antibody and efficiently detected toxigenic Fusarium pathogens in cereal grains. Highlights: ► Generation of a highly reactive scFv antibody against F. verticillioides. ► Localization of the antibody binding to the surface target of F. verticillioides. ► Expression of the antibody–alkaline phosphatase (AP) fusion linked by a 218 linker. ► The antibody–AP fusion has a higher affinity than the parental antibody. ► The antibody–AP fusion detects toxigenic Fusarium pathogens in cereal grains. -- Abstract: Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv–AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding

  11. One-step immunoassay for tetrabromobisphenol a using a camelid single domain antibody-alkaline phosphatase fusion protein. (United States)

    Wang, Jia; Majkova, Zuzana; Bever, Candace R S; Yang, Jun; Gee, Shirley J; Li, Ji; Xu, Ting; Hammock, Bruce D


    Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant, showing widespread environmental and human exposures. A variable domain of the heavy chain antibody (VHH), naturally occurring in camelids, approaches the lower size limit of functional antigen-binding entities. The ease of genetic manipulation makes such VHHs a superior choice to use as an immunoreagent. In this study, a highly selective anti-TBBPA VHH T3-15 fused with alkaline phosphatase (AP) from E. coli was expressed, showing both an integrated TBBPA-binding capacity and enzymatic activity. A one-step immunoassay based on the fusion protein T3-15-AP was developed for TBBPA in 5% dimethyl sulfoxide (DMSO)/phosphate buffered saline (PBS, pH 7.4), with a half-maximum signal inhibition concentration (IC50) of 0.20 ng mL(-1). Compared to the parental VHH T3-15, T3-15-AP was able to bind to a wider variety of coating antigens and the assay sensitivity was slightly improved. Cross-reactivity of T3-15-AP with a set of important brominated analogues was negligible (<0.1%). Although T3-15-AP was susceptible to extreme heat (90 °C), much higher binding stability at ambient temperature was observed in the T3-15-AP-based assay for at least 70 days. A simple pretreatment method of diluting urine samples with DMSO was developed for a one-step assay. The recoveries of TBBPA from urine samples via this one-step assay ranged from 96.7% to 109.9% and correlated well with a high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. It is expected that the dimerized fusion protein, VHH-AP, will show promising applications in human exposure and environmental monitoring.

  12. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major

    Directory of Open Access Journals (Sweden)

    Norris-Mullins Brianna


    Full Text Available Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5 in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.

  13. Bone marrow acid phosphatase by radioimmunoassay. [/sup 125/I; prostatic carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Belville, W.D.; Cox, H.D.; Mahan, D.E.; Olmert, J.P.; Mittemeyer, B.T.; Bruce, A.W.


    A double-antibody radioimmunoassay was developed and utilized to measure prostatic acid phosphatase in bone marrow aspirates. One hundred-eighteen patients with carcinoma of the prostate in various clinical stages, and fifty with benign prostatic hyperplasia were studied. In patients with carcinoma, levels of prostatic acid phosphatase in bone marrow aspirates were found to correlate well with increasing clinical stage of the disease. Determination of bone marrow prostatic acid phosphatase by radioimmunoassay may be a valuable adjunct to clinicopathologic staging of prostatic carcinoma.

  14. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand


    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  15. Purification of prostatic acid phosphatase (PAP) for structural and functional studies. (United States)

    Herrala, Annakaisa M; Quintero, Ileana B; Vihko, Pirkko T


    High-scale purification methods are required for several protein studies such as crystallography, mass spectrometry, circular dichroism, and function. Here we describe a purification method for PAP based on anion exchange, L-(+)-tartrate affinity, and gel filtration chromatographies. Acid phosphatase activity and protein concentration were measured for each purification step, and to collect the fractions with the highest acid phosphatase activity the p-nitrophenyl phosphate method was used. The purified protein obtained by the procedure described here was used for the determination of the first reported three-dimensional structure of prostatic acid phosphatase.

  16. Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS. (United States)

    Aguirre-García, M M; Cerbón, J; Talamás-Rohana, P


    Entamoeba histolytica contains and secretes acid phosphatase, which has been proposed as a virulence factor in some pathogenic microorganisms. In this work, we purified and characterised a membrane-bound acid phosphatase (MAP) from E. histolytica HM-1:IMSS and studied the effect of different chemical compounds on the secreted acid phosphatase and MAP activities. MAP purification was accomplished by detergent solubilisation, and affinity and ion exchange chromatographies. The enzyme showed a pI of 5.5-6.2, an optimum pH of 5.5, and a Km value of 1.14 mM with p-nitrophenyl phosphate.

  17. Does Oxidative Inactivation of CD45 Phosphatase in Rheumatoid Arthritis Underlie Immune Hyporesponsiveness?


    Rider, David A.; Bayley, Rachel; Clay, Elizabeth; Young, Stephen P


    The protein tyrosine phosphatase (PTP) CD45 is critical in regulating the earliest steps in T-cell-receptor signaling but, similar to all PTPs, it is susceptible to oxidative inactivation. Given the widely reported effects of oxidant damage associated with rheumatoid arthritis (RA), we examined whether CD45 phosphatase activity was altered in CD4+ T cells from RA patients and related this to CD4+ T-cell function and redox status. CD45 phosphatase specific activity in T cells from RA periphera...

  18. Phospholipase C-related catalytically inactive protein (PRIP regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase.

    Directory of Open Access Journals (Sweden)

    Toshiya Okumura

    Full Text Available Phosphorylation of hormone-sensitive lipase (HSL and perilipin by protein kinase A (PKA promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP, a binding partner for protein phosphatase 1 and protein phosphatase 2A (PP2A, is involved in lipolysis by regulating phosphatase activity. PRIP knockout (PRIP-KO mice displayed reduced body-fat mass as compared with wild-type mice fed with standard chow ad libitum. Most other organs appeared normal, suggesting that mutant mice had aberrant fat metabolism in adipocytes. HSL in PRIP-KO adipose tissue was highly phosphorylated compared to that in wild-type mice. Starvation of wild-type mice or stimulation of adipose tissue explants with the catabolic hormone, adrenaline, translocated both PRIP and PP2A from the cytosol to lipid droplets, but the translocation of PP2A was significantly reduced in PRIP-KO adipocytes. Consistently, the phosphatase activity associated with lipid droplet fraction in PRIP-KO adipocytes was significantly reduced and was independent of adrenaline stimulation. Lipolysis activity, as assessed by measurement of non-esterified fatty acids and glycerol, was higher in PRIP-KO adipocytes. When wild-type adipocytes were treated with a phosphatase inhibitor, they showed a high lipolysis activity at the similar level to PRIP-KO adipocytes. Collectively, these results suggest that PRIP promotes the translocation of phosphatases to lipid droplets to trigger the dephosphorylation of HSL and perilipin A, thus reducing PKA-mediated lipolysis.

  19. Activity and Tissue Expression of Tyrosine Phosphatase PTP-MEG2

    Institute of Scientific and Technical Information of China (English)

    DONG Hong-bo; LI Guo-dong; WANG Shao-feng; FU Xue-qi; ZHAO Zhi-zhuang Joe


    Protein tyrosine phosphatases(PTPs) are crucial regulators of signal transduction. Among them,PTP-MEG2 is an intracellular enzyme of 593 amino acid residues with a putative lipid-binding domain at the N-terminus. In the present study, we cloned the full-length form of the enzyme and expressed it in E. coli cells as a 6xHis-tagged protein. The majority of the expressed enzyme was found in the inclusion body of E. coli cell extracts.Upon extraction with a buffer containing urea, the recombinant enzyme was purified to near homogeneity on a single Ni-NTA-agarose column. This procedure resulted in the production of over 100 mg of purified recombinant PTP-MEG2 from 1 L E. coli cell culture. The purified protein displayed a single polypeptide band with expected molecular size on SDS-polyacrylamide gel electrophoresis under reducing conditions. Isolated under denatured conditions in urea, the purified enzyme was re-natured by dialyzing against a refolding buffer. The re-natured enzyme effectively dephosphorylated the common PTP substrate para-nitrophenylphosphate with a specific activity of 2000 units/mg. Meanwhile, the denatured enzyme was used to immunize a rabbit to produce antibodies. The resulting antiserum had extremely high sensitivity and specificity. When used for Western blot analysis, the anti-serum revealed a wide expression of PTP-MEG2 in many tissues of mice. Together, we developed a highly effective way to purify a large amount of PTP-MEG2 and generated highly sensitive antibodies that can specifically detect endogenous expression of the enzyme in tissues.

  20. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Directory of Open Access Journals (Sweden)

    Kellie Burnside

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  1. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp. (United States)

    Montgomery, D M; Dean, A C; Wiffen, P; Macaskie, L E


    The ability of a naturally occurring Citrobacter sp. to accumulate cadmium has been attributed to cellular precipitation of CdHPO4, utilizing HPO4(2-) liberated via the activity of an overproduced, Cd-resistant acid-type phosphatase. Phosphatase production and heavy metal accumulation by batch cultures of this strain (N14) and a phosphatase-deficient mutant were compared with two reference strains of Citrobacter freundii. Only strain N14 expressed a high level of acid phosphatase and accumulated lanthanum and uranyl ion enzymically. Acid phosphatase is regulated via carbon-starvation; although the C. freundii strains overexpressed phosphatase activity in carbon-limiting continuous culture, this was approximately 20-fold less than the activity of strain N14 grown similarly. Citrobacter strain N14 was originally isolated from a metal-contaminated soil environment; phosphatase overproduction and metal accumulation were postulated as a detoxification mechanism. However, application of Cd-stress, and enrichment for Cd-resistant C. freundii ('training'), reduced the phosphatase activity of this organism by about 50% as compared to Cd-unstressed cultures. The acid phosphatase of C. freundii and Citrobacter N14 had a similar pattern of resistance to some diagnostic reagents. The enzyme of the latter is similar to the PhoN acid phosphatase of Salmonella typhimurium described by other workers; the results are discussed with respect to the known phosphatases of the enterobacteria.

  2. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)


    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  3. Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling

    Directory of Open Access Journals (Sweden)

    Travis J. Jerde


    Full Text Available Phosphatase and tensin homologue (PTEN is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3, and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration.

  4. Diagnostic value of prostatic acid phosphatase as determined by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, M.P.; Osterhage, H.R.; Ackkermann, R.


    Serum concentrations of prostatic acid phosphatase (PAP) were determined with 4 different radioimmunoassays and with the standard enzymatic method (p-nitrophenylphosphate) in 35 patients with prostatic carcinoma. Staging of localized tumors was based on histopathological evaluation after radial prostatectomy and pelvic lymphnode dissection (pTsub(1-3), pN/sub 0/). In tumor lesions Tsub(1-2) N/sub 0/ M/sub 0/ elevated PAP-serum concentrations were found by RIA-determination in only one patient. Increased PAP serum levels were observed in 43-78% of carcinomas stage T/sub 3/ N/sub 0/ M/sub 0/ and in 54-83% in stage Tsub(2-4) Nsub(x) M/sub 1/ tumors, depending on the test kit used for the PAP determination. Concentrations for PAP obtained with the 4 different RIA-kits used, varied significantly and thus are not comparable. No false positive results were observed in sera of 9 patients with benign prostatic hyperplasia. Elevated PAP serum levels were found in a significantly higher frequency when determined by radioimmunoassay than by the enzymatic method. The results clearly indicate, that PAP is of no value for early recognition of carcinoma of the prostate even when measured by radioimmunoassay. However, the RIA-method seems to be of clinical importance in estimating the course of advanced local and metastasizing carcinoma of the prostate.

  5. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  6. Alkaline phosphatase in stallion semen: characterization and clinical applications. (United States)

    Turner, R M O; McDonnell, S M


    Significant amounts of alkaline phosphatase (AP) activity have been found in semen plasma from numerous species. In species in which the majority of semen plasma AP (SPAP) activity originates from the epididymis and testicle, SPAP activity can be used clinically as a marker to differentiate testicular origin azoospermia or oligospermia from ejaculatory failure. Information on SPAP activity in stallions to date has been limited. In this study, a standard clinical chemistry analyzer was used to determine AP activity in pre-ejaculatory fluid and ejaculates from groups of normal stallions. Additionally, accessory glands, epididymides, testicles and other components of the urogenital tract of normal stallions were assayed to determine which tissues contain SPAP activity. The results indicated that levels of AP activity are low in pre-ejaculatory fluid, but significantly higher in ejaculatory fluid from normal stallions. Spermatozoa were not a significant source of SPAP activity. High levels of SPAP activity were found in the testes and epididymides. These findings suggest that SPAP activity is a candidate for a sperm-independent marker for ejaculation in the stallion. Finally, AP activity was determined in ejaculatory fluid from a stallion with bilaterally blocked ampullae, both before and after relief of the blockage. While the blockage was present, AP activity in ejaculatory fluid was low. However, following relief of the blockage, AP activity in ejaculatory fluid rose dramatically, thus suggesting that AP activity will be useful as an inexpensive, simple clinical assay for differentiating ejaculatory failure or excurrent duct blockages from testicular origin azoospermia and oligospermia.




    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  8. The protein phosphatase 7 regulates phytochrome signaling in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Thierry Genoud

    Full Text Available The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA and phytochrome B (phyB but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7 are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2, a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.

  9. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. (United States)

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L


    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  10. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function

    Directory of Open Access Journals (Sweden)

    Marija Kamceva


    Full Text Available Striatal-enriched protein tyrosine phosphatase (STEP is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer’s disease, Parkinson’s disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington’s chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer’s disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer’s disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity.

  11. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)


    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  12. Phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes. (United States)

    Saha, N; Patgunarajah, N


    The phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes was investigated in three populations in the Sudan and one population in Nilgiris, India. No significant consistent association of red cell acid phosphatase phenotypes was observed with these polymorphisms. However, there was a lack of acid phosphatase AB in G6PD deficient subjects from Nilgiris. The relative quantitative expression of red cell acid phosphatase genes PA, PB, and PC was 1.0, 1.2, and 1.3, respectively. The red cell acid phosphatase activity was higher (15%) in the presence of raised haemoglobin A2 and in sickle cell anaemia (21%). Those with Hp2 had 18% higher level of acid phosphatase than those with Hp1. G6PD deficient subjects had a lower level of acid phosphatase activity (20%) than those with normal G6PD activity.

  13. Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa. (United States)

    Bucci, Diego; Giaretta, Elisa; Spinaci, Marcella; Rizzato, Giovanni; Isani, Gloria; Mislei, Beatrice; Mari, Gaetano; Tamanini, Carlo; Galeati, Giovanna


    Alkaline phosphatase (AP) has been studied in several situations to elucidate its role in reproductive biology of the male from different mammalian species; at present, its role in horse sperm physiology is not clear. The aim of the present work was to measure AP activity in seminal plasma and sperm extracts from freshly ejaculated as well as in frozen-thawed stallion spermatozoa and to verify whether relationship exists between AP activity and sperm quality parameters. Our data on 40 freshly ejaculated samples from 10 different stallions demonstrate that the main source of AP activity is seminal plasma, whereas sperm extracts contribution is very low. In addition, we found that AP activity at physiological pH (7.0) is significantly lower than that observed at pH 8.0, including the optimal AP pH (pH 10.0). Alkaline phosphatase did not exert any effect on sperm-oocyte interaction assessed by heterologous oocyte binding assay. Additionally, we observed a thermal stability of seminal plasma AP, concluding that it is similar to that of bone isoforms. Positive correlations were found between seminal plasma AP activity and sperm concentration, whereas a negative correlation was present between both spermatozoa extracts and seminal plasma AP activity and seminal plasma protein content. A significant decrease in sperm extract AP activity was found in frozen-thawed samples compared with freshly ejaculated ones (n = 21), concomitantly with the decrease in sperm quality parameters. The positive correlation between seminal plasma AP activity measured at pH 10 and viability of frozen-thawed spermatozoa suggests that seminal plasma AP activity could be used as an additional predictive parameter for stallion sperm freezability. In conclusion, we provide some insights into AP activity in both seminal plasma and sperm extracts and describe a decrease in AP after freezing and thawing.

  14. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action. (United States)

    Brautigan, D L; Brown, M; Grindrod, S; Chinigo, G; Kruszewski, A; Lukasik, S M; Bushweller, J H; Horal, M; Keller, S; Tamura, S; Heimark, D B; Price, J; Larner, A N; Larner, J


    Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.

  15. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S., E-mail: [National Cancer Institute at Frederick, Frederick, MD 21702 (United States)


    The X-ray crystal structure of human dual-specificity phosphatase 27 (DUSP27) is reported at 2.38 Å resolution. There are over 100 genes in the human genome that encode protein tyrosine phosphatases (PTPs) and approximately 60 of these are classified as dual-specificity phosphatases (DUSPs). Although many dual-specificity phosphatases are still not well characterized, novel functions have been discovered for some of them that have led to new insights into a variety of biological processes and the molecular basis for certain diseases. Indeed, as the functions of DUSPs continue to be elucidated, a growing number of them are emerging as potential therapeutic targets for diseases such as cancer, diabetes and inflammatory disorders. Here, the overexpression, purification and structure determination of DUSP27 at 2.38 Å resolution are presented.

  16. A critical evaluation of a specific radioimmunoassay for prostatic acid phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, S.L.; Silver, H.K.; Sullivan, L.D.; Morse, M.J.; Archibald, E.L.


    A radioimmunoassay (RIA) method for acid phosphatase detection was compared to a standard enzyme assay using sera from 210 normal volunteers and 285 patients with prostatic disease. Statistical and clinical comparisons were made between defined subgroups. All 55 normal females had RIA detectable serum acid phosphatase, implying that this assay cannot be entirely specific for enzyme of prostatic origin. Urinary catheterization did not affect acid phosphatase levels. In all stages of carcinoma there were more acid phosphatase elevations by the RIA method than enzyme method, but neither assay could differentiate intercapsular cancer from benign prostatic hyperplasia. A small number of patients with biopsy proven negative nodules had marginally elevated values, suggesting an obligation for closer follow-up. The RIA method may be superior for monitoring patients with more advanced malignancy. Additional practical advantages of the RIA include relative simplicity and elimination of the special serum handling required for the enzyme assay.

  17. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria. (United States)

    Macaskie, L E; Bonthrone, K M; Rouch, D A


    A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae, previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested.


    Protein phosphorylation is a posttranslational modification involved in every aspect cellular function. Levels of protein phosphotyrosine, phosphoserine and phosphothreonine are regulated by the opposing activities of kinases and phosphatases, the expression of which can be alt...

  19. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S


    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone mineral...... content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p serum alkaline...

  20. The NanoChitosan thin film: a new portable support for immobilization of Acid phosphatase

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminiaa


    Full Text Available Immobilization can enhance the economic value of enzymes and helps reusing and improves their stability. For the first time, acid phosphatase from Phaseolus vulgaris seeds was immobilized on chitosan nanoparticles thin films (CSNPs-TFs. Maximum immobilization yield of NanoChitosan thin films with 1×1cm dimensionand 3±0.1 mg (one block was ∼84%. In comparison with free enzyme, the activity of acid phosphatase was decreased 16% after immobilization. Immobilized acid phosphatase retained 51 % activity upon storage for 90 days at 4 °C and could be reused for 20 cycles with more than 88 % activity retention. The present study, immobilization of acid phosphatase on CSNPs-TF, is a new promising method which could explore a new biocompatible and eco-friendly material in enzyme immobilization, water treatment application as well as new adsorbent for occupational and environmental monitoring.

  1. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters. (United States)

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S


    1. Modification of dimeric human prostate acid phosphatase (EC by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  2. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase. (United States)

    Jeong, Myeong Seon; Kim, Eunha; Kang, Hyo Jin; Choi, Eun Joung; Cho, Alvin R; Chung, Sang J; Park, Seung Bum


    We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).

  3. Dairy products and the French paradox: Could alkaline phosphatases play a role? (United States)

    Lallès, Jean-Paul


    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  4. Barley seed coating with free and immobilized alkaline phosphatase to improve P uptake and plant growth


    Pilar Izquierdo, María Concepción; Ortega Santamaría, Natividad; Pérez Mateos, Manuel; Busto Núñez, Mª Dolores


    Coating barley seeds with free and immobilized alkaline phosphatase was investigated as a potential means to enhance plant utilization of accumulated soil phosphorus (P). Two coating techniques were studied: film-coating and pelleting. The highest phosphatase activity retention in the coating layer, ranging from 0·48 to 0·67, was observed when seeds were film-coated with phosphatase–polyresorcinol complex (PPC). The germination of seeds film-coated or pelleted with alkaline phosph...

  5. A study on the occurrence of alkaline phosphatase in the sutura interfrontalis of Wistar rats. (United States)

    Markens, I S; Oudhof, H A


    The aim of the present study was to determine the presence of alkaline phosphatase during various stages in development and closure of the sutura interfrontalis. The histological sections reveal that this enzyme could primarily be demonstrated in the dura mater of this suture. In further developmental stages, alkaline phosphatase could be observed within the intermediate zone as well as the pericranium. These findings are brought in relation with the occurrence of synostosis which can be induced under experimental conditions.

  6. Kidney alkaline phosphatase in mercuric chloride injected chicks resistant and susceptible to leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; McIntyre, J.A.; Bearse, G.E.


    Two strains of chickens were selected for resistance and susceptibility to avian leukosis. Researchers found that the resistant chicks retained two to four times as much mercury in the liver and kidneys as did the susceptible chicks following injection of mercuric chloride or phenylmercuric acetate. Differences in alkaline phosphatase in the kidneys of the resistant and susceptible chicks, and the effect of the mercuric chloride injection on the alkaline phosphatase activity were reported in this paper. 19 references, 2 tables.

  7. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Midori eShimada


    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  8. Single and Combined Effects of As (III) and Acetochlor on Phosphatase Activity in Soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; ZHANG Feng; ZHANG Guan-cai; GUAN Lian-zhu


    The actions and interactions of acetochlor and As on the soil phosphatase activity were investigated after 1, 3, 6, 10, 15, 30 and 60 d of exposure under control conditions. The soils were exposed to various concentrations of acetochlor and As individually and simultaneously. The results showed that acetochlor, As only, and combined pollution all clearly inhibited soil phosphatase activity. The maximum inhibition ratios of soil phosphatase activity by acetochlor, As only and combined pollution were 36.44, 74.12 and 61.29%, respectively. Two kinetic models,ν=c/(1+bi) (model 1) andν=c(1+ai)/(l+bi) (model 2), were used to describe the relationship between the concentrations of As and acetochlor and the activity of soil phosphatase. The semi-effect dose (ED50) values induced by As and acetochlor stress based on the inhibition of soil phosphatase were 18.1 and 33.11 mg kg-1, respectively, according to calculation by model 1. The interactive effect of acetochlor with As on soil phosphatase primarily consisted of significant antagonism effects at the higher concentrations tested. The step regression results show that the toxicity order was As (III)>acetochlor>As (III)×acetochlor throughout the incubation period.

  9. Membrane binding domains


    Hurley, James H.


    Eukaryotic signaling and trafficking proteins are rich in modular domains that bind cell membranes. These binding events are tightly regulated in space and time. The structural, biochemical, and biophysical mechanisms for targeting have been worked out for many families of membrane binding domains. This review takes a comparative view of seven major classes of membrane binding domains, the C1, C2, PH, FYVE, PX, ENTH, and BAR domains. These domains use a combination of specific headgroup inter...

  10. Cinacalcet Lowers Serum Alkaline Phosphatase in Maintenance Hemodialysis Patients (United States)

    Belozeroff, Vasily; Goodman, William G.; Ren, Lulu; Kalantar-Zadeh, Kamyar


    Background and objectives: Studies suggest an association between elevated serum alkaline phosphatase (AP) and increased mortality in hemodialysis patients, but the effect of existing therapies on AP is not fully understood. We assessed the effects of cinacalcet on AP in a secondary analysis of controlled trial data. Design, setting, participants, & measurements: This was a post hoc analysis of data from three 26-wk randomized, double-blind, placebo-controlled, phase 3 trials and a 26-wk double-blind, placebo-controlled extension trial that investigated cinacalcet in secondary hyperparathyroidism treatment in dialysis patients. Hemodialysis patients (n = 890) with intact parathyroid hormone ≥300 pg/ml and serum calcium ≥8.4 mg/dl received cinacalcet plus standard therapy or standard therapy alone for up to 52 wk. Total, not bone-specific, AP was assessed (proportion of cinacalcet/control subjects achieving a ≥20% or any AP reduction from baseline; the proportion of subjects with AP ≥120 U/L) at baseline; the end of titration; and study weeks 26, 42, and 52. Results: At 52 wk, a greater proportion of cinacalcet-treated patients had either a ≥20% (39 versus 18%) or any (58 versus 36%) AP reduction compared with control subjects, respectively. The likelihood of achieving either a ≥20% or any AP reduction (determined by relative proportion) was 2.33 (95% confidence interval 1.50 to 3.61) and 1.74 (95% confidence interval 1.31 to 2.31), respectively, at week 52. Cinacalcet treatment tended toward a decreased percentage of patients with AP ≥120 U/L (baseline, 42.6%; week 52, 30.6%) compared with control (35.0 to 48.6%, respectively). Conclusions: In this combined analysis of controlled trials of patients who were receiving hemodialysis, cinacalcet lowered total serum AP. PMID:19261825

  11. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. (United States)

    Eramo, Matthew J; Mitchell, Christina A


    The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.

  12. Binding of Clostridium botulinum C3 exoenzyme to intact cells. (United States)

    Rohrbeck, Astrid; von Elsner, Leonie; Hagemann, Sandra; Just, Ingo


    C3 from Clostridium botulinum (C3) specifically modifies Rho GTPases RhoA, RhoB, and RhoC by mono-ADP-ribosylation. The confined substrate profile of C3 is the basis for its use as pharmacological tool in cell biology to study cellular functions of Rho GTPases. Although C3 exoenzyme does not possess a cell-binding/-translocation domain, C3 is taken up by intact cells via an unknown mechanism. In the present work, binding of C3 to the hippocampus-derived HT22 cells and J774A.1 macrophages was characterized. C3 bound concentration-dependent to HT22 and J774A.1 cells. Pronase treatment of intact cells significantly reduced both C3 binding and C3 cell entry. Removal of sugar residues by glycosidase F treatment resulted in an increased binding of C3, but a reduced cell entry. To explore the involvement of phosphorylation in the binding process of C3, intact HT22 and J774A.1 cells were pre-treated with vanadate prior to incubation with C3. Inhibition of de-phosphorylation by vanadate resulted in an increased binding of C3. To differentiate between intracellular and extracellular phosphorylation, intact cells were treated with CIP (calf intestine phosphatase) to remove extracellular phosphate residues. The removal of phosphate residues resulted in a strong reduction in binding of C3 to cells. In sum, the C3 membranous binding partner is proteinaceous, and the glycosylation as well as the phosphorylation state is critical for efficient binding of C3.

  13. Analyzing radioligand binding data. (United States)

    Motulsky, Harvey; Neubig, Richard


    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  14. Centromere binding and a conserved role in chromosome stability for SUMO-dependent ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Loes A L van de Pasch

    Full Text Available The Saccharomyces cerevisiae Slx5/8 complex is the founding member of a recently defined class of SUMO-targeted ubiquitin ligases (STUbLs. Slx5/8 has been implicated in genome stability and transcription, but the precise contribution is unclear. To characterise Slx5/8 function, we determined genome-wide changes in gene expression upon loss of either subunit. The majority of mRNA changes are part of a general stress response, also exhibited by mutants of other genome integrity pathways and therefore indicative of an indirect effect on transcription. Genome-wide binding analysis reveals a uniquely centromeric location for Slx5. Detailed phenotype analyses of slx5Δ and slx8Δ mutants show severe mitotic defects that include aneuploidy, spindle mispositioning, fish hooks and aberrant spindle kinetics. This is associated with accumulation of the PP2A regulatory subunit Rts1 at centromeres prior to entry into anaphase. Knockdown of the human STUbL orthologue RNF4 also results in chromosome segregation errors due to chromosome bridges. The study shows that STUbLs have a conserved role in maintenance of chromosome stability and links SUMO-dependent ubiquitination to a centromere-specific function during mitosis.

  15. Sp1 phosphorylation by cyclin-dependent kinase 1/cyclin B1 represses its DNA-binding activity during mitosis in cancer cells. (United States)

    Chuang, J-Y; Wang, S-A; Yang, W-B; Yang, H-C; Hung, C-Y; Su, T-P; Chang, W-C; Hung, J-J


    Sp1 is important for the transcription of many genes. Our previous studies have shown that Sp1 is degraded in normal cell, but it is preserved in cancer cells during mitosis and exists a priori in the daughter cells, ready to engage in gene transcription and thereby contributes to the proliferation and survival of cancer cells. The mechanism by which Sp1 is preserved in cancer cells during mitosis remains unknown. In this study, we observed that Sp1 strongly colocalized with cyclin-dependent kinase 1 (CDK1)/cyclin B1 during mitosis. Moreover, we showed that Sp1 is a novel mitotic substrate of CDK1/cyclin B1 and is phosphorylated by it at Thr 739 before the onset of mitosis. Phospho-Sp1 reduced its DNA-binding ability and facilitated the chromatin condensation process during mitosis. Mutation of Thr739 to alanine resulted in Sp1 remaining in the chromosomes, delayed cell-cycle progression, and eventually led to apoptosis. Screening of Sp1-associated proteins during mitosis by using liquid chromatography/mass spectrometry indicated the tethering of Sp1 to myosin/F-actin. Furthermore, phospho-Sp1 and myosin/F-actin appeared to exist as a congregated ring at the periphery of the chromosome. However, at the end of mitosis and the beginning of interphase, Sp1 was dephosphorylated by PP2A and returned to the chromatin. These results indicate that cancer cells use CDK1 and PP2A to regulate the movement of Sp1 in and out of the chromosomes during cell-cycle progression, which may benefit cancer-cell proliferation.

  16. Pph1 from Myxococcus xanthus is a protein phosphatase involved in vegetative growth and development. (United States)

    Treuner-Lange, A; Ward, M J; Zusman, D R


    Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.

  17. Associations between renal hyperfiltration and serum alkaline phosphatase.

    Directory of Open Access Journals (Sweden)

    Se Won Oh

    Full Text Available Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP level is also elevated in patients with diabetes (DM or metabolic syndrome (MS, and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008-2011 was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR: >120, 90-119, 60-89, and 120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876-7.892, compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084-4.329. ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005. After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204-2.192, P = 0.002. In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05. The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.

  18. Ureaplasma urealyticum binds mannose-binding lectin. (United States)

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford


    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  19. Ligand binding mechanics of maltose binding protein. (United States)

    Bertz, Morten; Rief, Matthias


    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  20. Alkaline phosphatase expression during relapse after orthodontic tooth movement

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani


    Full Text Available Background: The increasing of osteoblast activities during bone formation will be accompanied with the increasing expression of alkaline phosphatase enzyme (ALP. ALP can be obtained from clear fluid excreted by gingival crevicular fluid (GCF. Bone turnover, especially bone formation process, can be monitored through the expression of ALP secreted by GCF during orthodontic treatment. Thus, retention period is an important period that can be monitored through the level of bone metabolism around teeth. Purpose: This research were aimed to determine the relation of distance change caused by tooth relapse and ALP activities in gingival crevicular fluid after orthodontic; and to determine ALP as a potential biomarker of bone formation during retention period. Methods: Lower incisors of 25 guinea pigs were moved 3 mm to the distally by using open coil spring. Those relapse distance were measured and the gingival crevicular fluid was taken by using paper points to evaluate ALP levels on days 0, 3, 7, 14 and 21 respectivelly by using a spectrophotometer (405 nm. t-test and ANOVA test were conducted to determine the difference of ALP activities among the time intervals. The correlation regression analysis was conducted to determine the relation of distance change caused by the relapse tooth movement and ALP activities. Results: The greatest relapse movement was occurred on day 3 after open coil spring was removed. There was significant difference of the average of distance decrease among groups A1-A5 (p<0.05. It was also known that ALP level was increased on day 3, but there was no significant difference of the average level of ALP among groups A1-A5 (p>0.05. Finally, based on the results of correlation analysis between the ALP level decreasing and the relapse distance on both right and left of mesial and distal sides, it is known that there was no relation between those two variables (p>0.05. Conclusion: It can be concluded that relapse after orthodontic

  1. Protein Binding Pocket Dynamics. (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C


    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  2. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. (United States)

    Majumder, Shyam Prasad; Das, Amal Chandra


    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.

  3. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis (United States)

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.


    Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P41212, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative. PMID:16511256

  4. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M


    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  5. Differentiating intracellular from extracellular alkaline phosphatase activity in soil by sonication.

    Directory of Open Access Journals (Sweden)

    Shuping Qin

    Full Text Available Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v and power density  =  15 watt ml(-1], the activity of alkaline phosphomonoesterase (phosphatase in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first plateau of enzyme activity was reached between 60 and 100 s, and a second higher plateau after 300 s. We also found that sonication for 100 s under optimal conditions activated most (about 80% of the alkaline phosphatase that was added to an autoclaved soil, while total bacteria number was not affected. Sonication for 300 s reduced the total bacteria number by three orders of magnitude but had no further effects on enzyme activity. Our results indicate that the first plateau of alkaline phosphatase activity was derived from extracellular enzymes attached to soil particles, and the second plateau to the combination of extracellular and intracellular enzymes after cell lysis. We conclude that our adjusted sonication method may be an alternative to the currently used physiological and chloroform-fumigation methods for differentiating intracellular from extracellular phosphatase activity in soil. Further testing is needed to find out whether this holds for other soil types.

  6. Acid- and alkaline phosphatase in amniotic fluid in normal and complicated pregnancy. (United States)

    Beckman, G; Beckman, L; Löfstrand, T


    171 samples of amniotic fluid were obtained by abdominal amniocentesis from 67 women with complicated pregnancies (isoimmunization, diabetes mellitus or toxaemia). The levels of heat-labile alkaline phosphatase (HLAP), heat-stable alkaline phosphatase (HSAP) and acid phosphatase (AcP) were determined and compared to the enzyme levels in 179 samples from women with normal pregnancies of corresponding gestational ages. HLAP showed two "peaks" of activity, one in the 5th-22nd week and the other at term. HSAP and AcP showed increased activity at term. HSAP was decreased (p less than 0.01) in isoimmunization between the 36th and 40th week. 11 cases of toxaemia with placental insufficiency showed no differences in the levels of HLAP and HSAP compared with normal pregnancy. AcP showed no differences between normal and complicated pregnancy. Samples contaminated by blood showed no significant increase in the acid- and alkaline phosphatase levels. Samples contaminated by meconium showed a complex pattern. Some samples had normal enzyme levels, some had high levels of HLAP only and some had high levels of HSAP and AcP. The origin of the enzymes is not known with certainty. HSAP in amniotic fluid is most likely not of placental but intestinal origin. Determinations of acid- and alkaline phosphatase in amniotic fluid seem to be of little values in the clinical management of complicated pregnancy.

  7. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA


    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  8. Acidic-phosphoprotein phosphatase activity of rat ventral prostate nuclei: apparent lack of effect of androgens. (United States)

    Wilson, M J; Ahmed, K; Fischbach, T J


    A protein phosphatase activity has been demonstrated in nuclei of rat ventral prostate utilizing 32P-labelled phosvitin as a model acidic phosphoprotein substrate. This phosphoprotein phosphatase has a pH optimum of 6.7, is unaffected by the sulphydryl protecting agent 2-mercaptoethanol, and requires a divalent cation for maximal activity. Of the various divalent cations tested, Mg2+ is the most effective in reactivating the EDTA-inhibited enzyme. The phosphatase is inhibited by sodium flouride, sodium oxalate, N-ethylmaleimide, ATP and ADP but is relatively insensitive to ammonium molybdate. Increased ionic strength of the reaction medium also causes a reduction in the enzyme activity, e.g., by 48% at 200 mM sodium chloride. The activity of the acidic phosphoprotein phosphatase did not change significantly at 48 h or 96 h post-orchiectomy when expressed per unit of nuclear protein. However, it is reduced by approx. 30% at these times after castration if based on DNA content. The decline in activity per nucleus reflects the decrease in the realtive nuclear protein content observed at 48 h or 96 h post-orchiectomy. This suggests that the decline in the phosphorylation of prostatic nuclear acidic proteins which occurs upon androgen withdrawal is not due to increased nuclear phosphatase activity.

  9. The modulation of phosphatase expression impacts the proliferation efficiency of HSV-1 in infected astrocytes.

    Directory of Open Access Journals (Sweden)

    Lei Yue

    Full Text Available Herpes Simplex Virus 1 (HSV-1 is a major pathogen that causes human neurological diseases, including herpes simplex encephalitis (HSE. Previous studies have shown that astrocytes are involved in HSV-1 systemic pathogenesis in the central nervous system (CNS, although the mechanism remains unclear. In this study, a high-throughput RNAi library screening method was used to analyze the effect of host phosphatase gene regulation on HSV-1 replication using Macaca mulatta primary astrocytes in an in vitro culture system. The results showed that the downregulation of five phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M significantly inhibited HSV-1 infection, suggesting that these phosphatases were needed in HSV-1 replication in rhesus astrocytes. Although statistically significant, the effect of downregulation of these phosphatases on HSV-1 replication in a human astrocytoma cell line appears to be more limited. Our results suggest that the phosphatase genes in astrocytes may regulate the immunological and pathological reactions caused by HSV-1 CNS infection through the regulation of HSV-1 replication or of multiple signal transduction pathways.

  10. Eyes absent tyrosine phosphatase activity is not required for Drosophila development or survival.

    Directory of Open Access Journals (Sweden)

    Meng Jin

    Full Text Available Eyes absent (Eya is an evolutionarily conserved transcriptional coactivator and protein phosphatase that regulates multiple developmental processes throughout the metazoans. Drosophila eya is necessary for survival as well as for the formation of the adult eye. Eya contains a tyrosine phosphatase domain, and mutations altering presumptive active-site residues lead to strongly reduced activities in ectopic eye induction, in vivo genetic rescue using the Gal4-UAS system, and in vitro phosphatase assays. However, these mutations have not been analyzed during normal development with the correct levels, timing, and patterns of endogenous eya expression. To investigate whether the tyrosine phosphatase activity of Eya plays a role in Drosophila survival or normal eye formation, we generated three eya genomic rescue (eyaGR constructs that alter key active-site residues and tested them in vivo. In striking contrast to previous studies, all eyaGR constructs fully restore eye formation as well as viability in an eya null mutant background. We conclude that the tyrosine phosphatase activity of Eya is not required for normal eye development or survival in Drosophila. Our study suggests the need for a re-evaluation of the mechanism of Eya action and underscores the importance of studying genes in their native context.

  11. Differentiating intracellular from extracellular alkaline phosphatase activity in soil by sonication. (United States)

    Qin, Shuping; Hu, Chunsheng; Oenema, Oene


    Differentiating intracellular from extracellular enzyme activity is important in soil enzymology, but not easy. Here, we report on an adjusted sonication method for the separation of intracellular from extracellular phosphatase activity in soil. Under optimal sonication conditions [soil:water ratio  =  1/8 (w/v) and power density  =  15 watt ml(-1)], the activity of alkaline phosphomonoesterase (phosphatase) in a Haplic Cambisol soil increased with sonication time in two distinct steps. A first plateau of enzyme activity was reached between 60 and 100 s, and a second higher plateau after 300 s. We also found that sonication for 100 s under optimal conditions activated most (about 80%) of the alkaline phosphatase that was added to an autoclaved soil, while total bacteria number was not affected. Sonication for 300 s reduced the total bacteria number by three orders of magnitude but had no further effects on enzyme activity. Our results indicate that the first plateau of alkaline phosphatase activity was derived from extracellular enzymes attached to soil particles, and the second plateau to the combination of extracellular and intracellular enzymes after cell lysis. We conclude that our adjusted sonication method may be an alternative to the currently used physiological and chloroform-fumigation methods for differentiating intracellular from extracellular phosphatase activity in soil. Further testing is needed to find out whether this holds for other soil types.

  12. Biochemical Properties and Inhibition Kinetics of Phosphatase from Wheat Thylakoid Membranes

    Institute of Scientific and Technical Information of China (English)


    A phosphatase that hydrolyses phosphate monoesters has been isolated from wheat thylakoid membranes.Biochemical properties and inhibition kinetics of the phosphatase were investigated using several ions, organic solvents, and inhibitors. Wheat (Triticum aestivum L. cv. PH82-2-2) thylakoid membrane phosphatase activity was activated by Mg2+, Ca2+, and Fe2+ and was inhibited by Mn2+ and Cu2+. For example, enzyme activity was activated 34.81% by 2 mmol/L Mg2+, but was inhibited 22.3% and 8.5% by 2 and 1 mmol/L Cu2+, respectively.Methanol, ethanol and glycol were all able to activate enzyme activity. Enzyme activity was activated 58.5%, 48.2%,and 8.7% by 40% ethanol, methanol and glycol, respectively. From these results, it can be seen that the degree of activation of the phosphatase was greatest for ethanol and the type of activation was uncompetitive. Moreover,the activity of the thylakoid membrane phosphatase was inhibited by molybdate, vanadate, phosphate, and fluoride and the type of inhibition produced by these elements was uncompetitive, non-competitive, competitive and mixed, respectively.

  13. Emodin inhibits migration and invasion of DLD-1 (PRL-3) cells via inhibition of PRL-3 phosphatase activity. (United States)

    Han, Young-Min; Lee, Su-Kyung; Jeong, Dae Gwin; Ryu, Seong Eon; Han, Dong Cho; Kim, Dae Keun; Kwon, Byoung-Mog


    Anthraquinones have been reported as phosphatase inhibitors. Therefore, anthraquinone derivatives were screened to identify a potent phosphatase inhibitor against the phosphatase of regenerating liver-3 (PRL-3). Emodin strongly inhibited phosphatase activity of PRL-3 with IC(50) values of 3.5μM and blocked PRL-3-induced tumor cell migration and invasion in a dose-dependent manner. Emodin rescued the phosphorylation of ezrin, which is a known PRL-3 substrate. The results of this study reveal that emodin is a PRL-3 inhibitor and a good lead molecule for obtaining a selective PRL-3 inhibitor.

  14. Vascular smooth muscle cell glycocalyx mediates shear stress-induced contractile responses via a Rho kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway. (United States)

    Kang, Hongyan; Liu, Jiajia; Sun, Anqiang; Liu, Xiao; Fan, Yubo; Deng, Xiaoyan


    The vascular smooth muscle cells (VSMCs) are exposed to interstitial flow induced shear stress that may be sensed by the surface glycocalyx, a surface layer composed primarily of proteoglycans and glycoproteins, to mediate cell contraction during the myogenic response. We, therefore, attempted to elucidate the signal pathway of the glycocalyx mechanotransduction in shear stress regulated SMC contraction. Human umbilical vein SMCs (HUVSMCs) deprived of serum for 3-4 days were exposed to a step increase (0 to 20 dyn/cm(2)) in shear stress in a parallel plate flow chamber, and reduction in the cell area was quantified as contraction. The expressions of Rho kinase (ROCK) and its downstream signal molecules, the myosin-binding subunit of myosin phosphatase (MYPT) and the myosin light chain 2 (MLC2), were evaluated. Results showed that the exposure of HUVSMCs to shear stress for 30 min induced cell contraction significantly, which was accompanied by ROCK1 up-regulation, re-distribution, as well as MYPT1 and MLC activation. However, these shear induced phenomenon could be completely abolished by heparinase III or Y-27632 pre-treatment. These results indicate shear stress induced VSMC contraction was mediated by cell surface glycocalyx via a ROCK-MLC phosphatase (MLCP) pathway, providing evidence of the glycocalyx mechanotransduction in myogenic response.

  15. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings. (United States)

    Hirai, Go; Sodeoka, Mikiko


    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  16. Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1 by hypoxia inducible factor-2 alpha.

    Directory of Open Access Journals (Sweden)

    Victoria Wang

    Full Text Available BACKGROUND: Hypoxia inducible factors (HIFs are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1. PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets factor that can bind to HIF-2alpha but not HIF-1alpha, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region. CONCLUSIONS/SIGNIFICANCE: These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.

  17. Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green. (United States)

    Riccio, M L; Rossolini, G M; Lombardi, G; Chiesurin, A; Satta, G


    A system for expression cloning of bacterial phosphatase-encoding genes has been developed, and its potential has been investigated. The system is based on histochemical screening of bacterial genomic libraries, constructed in an Escherichia coli multicopy plasmid vector, for phosphatase-producing clones using an indicator medium (named TPMG) made of Tryptose-Phosphate agar supplemented with the phosphatase substrate phenolphthalein diphosphate and the stain methyl green. To test the performance of this system, three genomic libraries were constructed from bacterial strains of different species which showed different patterns of phosphatase activity, and were screened using the TPMG medium. Following a partial screening, three different phosphatase-encoding genes (respectively encoding a class A non-specific acid phosphatase, an acid-hexose phosphatase and a non-specific alkaline phosphatase) were shotgun-cloned from the above libraries, indicating that the TPMG-based expression cloning system can be useful for rapid isolation of different bacterial phosphatase-encoding genes.

  18. Python bindings for libcloudph++


    Jarecka, Dorota; Arabas, Sylwester; Del Vento, Davide


    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python ...

  19. Python bindings for libcloudph++

    CERN Document Server

    Jarecka, Dorota; Del Vento, Davide


    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python bindings to access libcloudph++ from Fortran is presented.

  20. DNS & Bind Cookbook

    CERN Document Server

    Liu, Cricket


    The DNS & BIND Cookbook presents solutions to the many problems faced by network administrators responsible for a name server. Following O'Reilly's popular problem-and-solution cookbook format, this title is an indispensable companion to DNS & BIND, 4th Edition, the definitive guide to the critical task of name server administration. The cookbook contains dozens of code recipes showing solutions to everyday problems, ranging from simple questions, like, "How do I get BIND?" to more advanced topics like providing name service for IPv6 addresses. It's full of BIND configuration files that yo

  1. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. (United States)

    Yang, Yu; Lv, Qi-Yan; Guo, Liang-Hong; Wan, Bin; Ren, Xiao-Min; Shi, Ya-Li; Cai, Ya-Qi


    Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.

  2. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells. (United States)

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E


    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  3. Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain

    Energy Technology Data Exchange (ETDEWEB)

    Primo M. E.; Jakoncic J.; Noguera M.E.; Risso V.A.; Sosa L.; Sica M.P.; Solimena M.; Poskus E. and Ermacora M.


    ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.

  4. Protein-protein interactions in crystals of the human receptor-type protein tyrosine phosphatase ICA512 ectodomain.

    Directory of Open Access Journals (Sweden)

    María E Primo

    Full Text Available ICA512 (or IA-2 is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512 and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.

  5. PTP-S2, a nuclear tyrosine phosphatase, is phosphorylated and excluded from condensed chromosomes during mitosis

    Indian Academy of Sciences (India)

    Sundaram Nambirajan; Vegesna Radha; Shubhangi Kamatkar; Ghanshyam Swarup


    PTP-S2 is a tyrosine specific protein phosphatase that binds to DNA and is localized to the nucleus in association with chromatin. It plays a role in the regulation of cell proliferation. Here we show that the subcellular distribution of this protein changes during cell division. While PTP-S2 was localized exclusively to the nucleus in interphase cells, during metaphase and anaphase it was distributed throughout the cytoplasm and excluded from condensed chromosomes. At telophase PTP-S2 began to associate with chromosomes and at cytokinesis it was associated with chromatin in the newly formed nucleus. It was hyperphosphorylated and showed retarded mobility in cells arrested in metaphase. In vitro experiments showed that it was phosphorylated by CK2 resulting in mobility shift. Using a deletion mutant we found that CK2 phosphorylated PTP-S2 in the C-terminal non-catalytic domain. A heparin sensitive kinase from mitotic cell extracts phosphorylated PTP-S2 resulting in mobility shift. These results are consistent with the suggestion that during metaphase PTP-S2 is phosphorylated (possibly by CK2 or a CK2-like enzyme), resulting in its dissociation from chromatin.

  6. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis. (United States)

    Tekaya, Nadèje; Saiapina, Olga; Ben Ouada, Hatem; Lagarde, Florence; Ben Ouada, Hafedh; Jaffrezic-Renault, Nicole


    This study is based on the conductometric measurement of alkaline phosphatase activity (APA) from the cyanobacterium, Arthrospira platensis, called Spirulina. Cyanobacterium cells were directly immobilized, by physical adsorption, on the ceramic part of gold interdigitated transducers. This activity was inhibited in the presence of heavy metals and a variation of the local conductivity was measured after addition of the substrate. The Michaelis-Menten constant (Km) was evaluated to be 0.75 mM through a calibration curve of the substrate, disodium 4-nitrophenylphosphate p-nitrophenyl phosphate (pNPP). Inhibition of APA was observed with cadmium and mercury with a detection limit of 10(-20) M. The half maximal inhibitory concentration (IC50) was determined at 10(-19) M for Cd(2+) and 10(-17) M for Hg(2+), and the binding affinity of heavy metal (Ki) was equal to the IC50. On the sensor surface, scanning electron microscopy (SEM) images revealed a remarkable evolution of the cyanobacterium's external surface that was attributable to the first defense mechanism against toxic heavy metals in trace. This effect was also confirmed through the important increase of response time τ(90%) recorded for APA response towards the substrate pNPP after cell exposure to metallic cations. Lifetime of the Spirulina-based biosensor was estimated to be more than 25 days.

  7. Regulation of hematopoietic cell function by inhibitory immunoglobulin G receptors and their inositol lipid phosphatase effectors. (United States)

    Cady, Carol T; Rice, Jeffrey S; Ott, Vanessa L; Cambier, John C


    Numerous autoimmune and inflammatory disorders stem from the dysregulation of hematopoietic cell activation. The activity of inositol lipid and protein tyrosine phosphatases, and the receptors that recruit them, is critical for prevention of these disorders. Balanced signaling by inhibitory and activating receptors is now recognized to be an important factor in tuning cell function and inflammatory potential. In this review, we provide an overview of current knowledge of membrane proximal events in signaling by inhibitory/regulatory receptors focusing on structural and functional characteristics of receptors and their effectors Src homology 2 (SH2) domain-containing tyrosine phosphatase 1 and SH2 domain-containing inositol 5-phosphatase-1. We review use of new strategies to identify novel regulatory receptors and effectors. Finally, we discuss complementary actions of paired inhibitory and activating receptors, using Fc gammaRIIA and Fc gammaRIIB regulation human basophil activation as a prototype.

  8. Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S. (NCI)


    There are over 100 genes in the human genome that encode protein tyrosine phosphatases (PTPs) and approximately 60 of these are classified as dual-specificity phosphatases (DUSPs). Although many dual-specificity phosphatases are still not well characterized, novel functions have been discovered for some of them that have led to new insights into a variety of biological processes and the molecular basis for certain diseases. Indeed, as the functions of DUSPs continue to be elucidated, a growing number of them are emerging as potential therapeutic targets for diseases such as cancer, diabetes and inflammatory disorders. Here, the overexpression, purification and structure determination of DUSP27 at 2.38 {angstrom} resolution are presented.

  9. Kinetics of Phosphatase of Regenerating Liver-3 (PRL-3) Inhibition by Small-molecular Inhibitors

    Institute of Scientific and Technical Information of China (English)


    Phosphatase of Regenerating Liver-3 (PRL-3) is a newly identified colorectal cancer metastasis-related protein,which isa 22 kDa non-classical protein tyrosine phosphatase with a C-terminal prenylation motif. In this study, the inhibition kinetics of protein tyrosine phosphatases (PTPs) by a fluorescent substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was evaluated. PRL-3 exhibits classical Michaelis-Menten kinetics with a vmax value of the inhibitor magnolol can cause Km to increase, but does not alter the vmax value, which suggests the competitive inhibition of PRL-3. At the same time, it was found that DiFMUP is a more sensitive substrate for PRL-3 than para-nitrophenyl phosphate(pNPP) that is more frequently used at present. Furthermore, the method of screening for PTPs by the use of DiFMUP was developed, which studied the acceptance of DiFMUP by other PTPs.

  10. The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars.

    Directory of Open Access Journals (Sweden)

    Susumu Katsuma

    Full Text Available The baculovirus is a classic example of a parasite that alters the behavior or physiology of its host so that progeny transmission is maximized. Baculoviruses do this by inducing enhanced locomotory activity (ELA that causes the host caterpillars to climb to the upper foliage of plants. We previously reported that this behavior is not induced in silkworms that are infected with a mutant baculovirus lacking its protein tyrosine phosphatase (ptp gene, a gene likely captured from an ancestral host. Here we show that the product of the ptp gene, PTP, associates with baculovirus ORF1629 as a virion structural protein, but surprisingly phosphatase activity associated with PTP was not required for the induction of ELA. Interestingly, the ptp knockout baculovirus showed significantly reduced infectivity of larval brain tissues. Collectively, we show that the modern baculovirus uses the host-derived phosphatase to establish adequate infection for ELA as a virion-associated structural protein rather than as an enzyme.

  11. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. (United States)

    Tsujishita, Y; Guo, S; Stolz, L E; York, J D; Hurley, J H


    Inositol polyphosphate 5-phosphatases are central to intracellular processes ranging from membrane trafficking to Ca(2+) signaling, and defects in this activity result in the human disease Lowe syndrome. The 1.8 resolution structure of the inositol polyphosphate 5-phosphatase domain of SPsynaptojanin bound to Ca(2+) and inositol (1,4)-bisphosphate reveals a fold and an active site His and Asp pair resembling those of several Mg(2+)-dependent nucleases. Additional loops mediate specific inositol polyphosphate contacts. The 4-phosphate of inositol (1,4)-bisphosphate is misoriented by 4.6 compared to the reactive geometry observed in the apurinic/apyrimidinic endonuclease 1, explaining the dephosphorylation site selectivity of the 5-phosphatases. Based on the structure, a series of mutants are described that exhibit altered substrate specificity providing general determinants for substrate recognition.

  12. Low molecular weight protein tyrosine phosphatases control antibiotic production in Streptomyces coelicolor A3(2)

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Lieder, Sarah; Bapat, Prashant Madhusudhan


    of ACT in the ptpA over expression strain. Furthermore, a significantly earlier onset of ACT productionwas observed when ptpA was over expressed. Sco3700 overexpression had a pleiotropic effect on the cell, and thestrain exhibited lower productivities and final concentrations of antibiotics. We conclude...... that Sco3700 is indeed atyrosine phosphatase, and it contributes to regulation of antibiotic production in S. coelicolor affecting the timing ofonset of the antibiotic production......Streptomyces coelicolor A3(2) possesses a low molecular weight protein tyrosine phosphatase (LMW-PTP),PtpA, that affects the production of undecylprodigionsin (RED) and actinorhodin (ACT). In this study we identifiedanother LMW-PTP called sco3700. Tyrosine phosphatase activity of the purified Sco...

  13. Rapid assessment of acid phosphatase activity in the mycorrhizosphere and in arbuscular mycorrhizal fungal hyphae

    Institute of Scientific and Technical Information of China (English)


    A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular mycorrhizal hyphae. The pots had 5 compartments. The central root compartment was separated from the two adjacent hyphal compartments using nylon nets of 30 m m mesh, and the two hyphal compartments were separated from the two outermost compartments with 0.45 m m membranes. Red clover was grown in the root compartment and was either inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae or uninoculated. Sodium phytate was applied to all compartments. The results show that AMF can increase acid phosphatase activity of clover roots. The plant roots acquired deep red "mycorrhizal prints". The external hyphae also had obvious "hyphal prints" on the test papers, indicating the ability of mycorrhizal hyphae to release acid phosphatase.

  14. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.


    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... differing in organic matter were placed in six parallel hyphal compartments (HC) separated from the RC with a 37 mu m mesh. In the first experiment, using Glomus caledonium, hyphal length densities were measured in the HC after 31 days. Added straw increased hyphal length densities by 34 and 62% for soil...... length density was twice as high in soil with added straw compared to the two other treatments. Mycorrhizal colonization resulted in lower activity of acid phosphatase in the HC for two out of three treatments. Alkaline phosphatase activity was only decreased by mycorrhiza in soil without organic matter...

  15. Comparative analysis of eukaryotic-type protein phosphatases in two Streptomyces genomes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Zhang, Weiwen


    Summary - Inspection of the genomes of Streptomyces coelicolor and S. avermitilis reveals that each contains 55 putative eukaryotic-type protein phosphatases (PPs), the largest number ever identified from any single prokaryotic organism. Unlike most other prokaryotic genomes, that have only one or two super-families of protein phosphatases, the Streptomyces genomes possess 4 different super-families of protein phosphatases: 2 PPPs and 2 LMWPTPs in each species, 49 PPMs and 2 CPTPs in S. coelicolor, and 48 PPMs and 3 CPTPs in S. avermitilis. Sixty four percent of the PPs found in S. coelicolor have orthologs in S. avermitilis, indicating that they originated from a common ancestor and may be involved in the regulation of more conversed metabolic activities...

  16. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue


    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  17. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    Directory of Open Access Journals (Sweden)

    Kala Mrinalini


    Full Text Available Abstract Background The isozymes of alkaline phosphatase, the tissue non-specific, intestinal and placental, have similar properties and a high degree of identity. The placental isozyme (PLAP is an oncofetal antigen expressed in several malignancies including choriocarcinoma, seminoma and ovarian carcinoma. We had earlier attempted to isolate PLAP-specific scFv from a synthetic human immunoglobulin library but were unable to do so, presumably because of the similarity between the isozymes. In this work, we have employed a PLAP-specific uncompetitive inhibitor, L-Phe-Gly-Gly