WorldWideScience

Sample records for binding studies revealed

  1. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    Science.gov (United States)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  2. Systematic Synthesis and Binding Study of HIV V3 Glycopeptides Reveal the Fine Epitopes of Several Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Orwenyo, Jared; Cai, Hui; Giddens, John; Amin, Mohammed N; Toonstra, Christian; Wang, Lai-Xi

    2017-06-16

    A class of new glycan-reactive broadly neutralizing antibodies represented by PGT121, 10-1074, and PGT128 has recently been discovered that targets specific N-glycans and the peptide region around the V3 domain. However, the glycan specificity and fine epitopes of these bNAbs remain to be further defined. We report here a systematic chemoenzymatic synthesis of homogeneous V3 glycopeptides derived from the HIV-1 JR-FL strain carrying defined N-glycans at N332, N301, and N295 sites. Antibody binding studies revealed that both the nature and site of glycosylation in the context of the V3 domain were critical for high-affinity binding. It was found that antibody PGT128 exhibited specificity for high-mannose N-glycan with glycosylation site promiscuity, PGT121 showed binding specificity for glycopeptide carrying a sialylated N-glycan at N301 site, and 10-1074 was specific for glycopeptide carrying a high-mannose N-glycan at N332 site. The synthesis and binding studies permit a detailed assessment of the glycan specificity and the requirement of peptide in the context of antibody-antigen recognition. The identified glycopeptides can be used as potential templates for HIV vaccine design.

  3. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    International Nuclear Information System (INIS)

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-01

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  4. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding.

    Science.gov (United States)

    Jønsson, Rie; Liu, Bing; Struve, Carsten; Yang, Yi; Jørgensen, René; Xu, Yingqi; Jenssen, Håvard; Krogfelt, Karen A; Matthews, Steve

    2017-03-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. High-Resolution Longitudinal Study of HIV-1 Env Vaccine-Elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence.

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O'Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E; Zhu, Jiang; Xiao, Yongli; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T; Li, Yuxing

    2016-05-01

    Because of the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing Abs to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited Ab responses, we used single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques after five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third CDR of Ig H chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in Ab sequences isolated at the late immunization time point compared with the early time point. Abs with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of Ag affinity selection in Ab maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high-resolution understanding of the dynamically evolving CD4bs-specific B cell response after Env immunization in primates. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. High Resolution Longitudinal Study of HIV-1 Env Vaccine-elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence

    Science.gov (United States)

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O’Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E.; Zhu, Jiang; Xiao, Yongli; Mascola, John R.; Karlsson Hedestam, Gunilla B.; Wyatt, Richard T.; Li, Yuxing

    2016-01-01

    Due to the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing antibodies to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited antibody responses, we utilized single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques following five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third complementarity determining region (CDR3) of Ig heavy chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in antibody sequences isolated at late immunization time point compared to the early time point. Antibodies with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of antigen affinity selection in antibody maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high resolution understanding of the dynamically evolving CD4bs-specific B cell response following Env immunization in primates. PMID:27001953

  7. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  8. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  9. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  10. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics.

    Directory of Open Access Journals (Sweden)

    Donald W Lee

    Full Text Available With the development of single-particle tracking (SPT microscopy and host membrane mimics called supported lipid bilayers (SLBs, stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data

  11. Origin of the stereospecificity in binding hydroxamates of alpha- and beta-phenylalanine methylamide to thermolysin revealed by the X-ray crystallographic study.

    Science.gov (United States)

    Kim, Seung-Jun; Kim, Dong H; Park, Jung Dae; Woo, Joo-Rang; Jin, Yonghao; Ryu, Seong Eon

    2003-05-29

    Optically active N-formyl-N-hydroxy-alpha-phenylalanine methylamide (1) and N-formyl-N-hydroxy-beta-phenylalanine methylamide (2) were evaluated as inhibitors for thermolysin (TLN) to find that while the D-form is more potent than its enantiomer in the case of the hydroxamate of alpha-Phe-NHMe, in the inhibition with hydroxamate of beta-Phe-NHMe, the L-isomer (K(i)=1.66+/-0.05 microM) is more effective than its enantiomer. In order to shed light on the stereochemical preference observed in the inhibitions, X-ray crystallographic analyses of the crystalline TLN.D-1 and TLN.L-2 complexes were performed to the resolution of 2.1A. While L-2 binds TLN like substrate does with its benzyl aromatic ring occupying the S(1)' pocket, the electron density in the S(1)' pocket in the complex of TLN.D-1 is weak and could best be accounted for by the methylcarbamoyl moiety. For both inhibitors, the hydroxamate moiety coordinates the active site zinc ion in a bidentate fashion.

  12. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido

    2011-03-01

    Full Text Available Bifidobacterium longum subsp. infantis (B. infantis is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO. Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs, part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  13. NMR studies of the fifth transmembrane segment of Na+,K+-ATPase reveals a non-helical ion-binding region

    DEFF Research Database (Denmark)

    Underhaug, Jarl; Jakobsen, Louise Odgaard; Esmann, Mikael

    2006-01-01

    The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less...... transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport....... alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured...

  14. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein.

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    Full Text Available A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.

  15. Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors.

    Science.gov (United States)

    Yamashita, Tetsuo; Inaoka, Daniel Ken; Shiba, Tomoo; Oohashi, Takumi; Iwata, So; Yagi, Takao; Kosaka, Hiroaki; Miyoshi, Hideto; Harada, Shigeharu; Kita, Kiyoshi; Hirano, Katsuya

    2018-02-05

    Yeast Ndi1 is a monotopic alternative NADH dehydrogenase. Its crystal structure in complex with the electron acceptor, ubiquinone, has been determined. However, there has been controversy regarding the ubiquinone binding site. To address these points, we identified the first competitive inhibitor of Ndi1, stigmatellin, along with new mixed-type inhibitors, AC0-12 and myxothiazol, and thereby determined the crystal structures of Ndi1 in complexes with the inhibitors. Two separate binding sites of stigmatellin, STG-1 and STG-2, were observed. The electron density at STG-1, located at the vicinity of the FAD cofactor, further demonstrated two binding modes: STG-1a and STG-1b. AC0-12 and myxothiazol are also located at the vicinity of FAD. The comparison of the binding modes among stigmatellin at STG-1, AC0-12, and myxothiazol revealed a unique position for the aliphatic tail of stigmatellin at STG-1a. Mutations of amino acid residues that interact with this aliphatic tail at STG-1a reduced the affinity of Ndi1 for ubiquinone. In conclusion, the position of the aliphatic tail of stigmatellin at STG-1a provides a structural basis for its competitive inhibition of Ndi1. The inherent binding site of ubiquinone is suggested to overlap with STG-1a that is distinct from the binding site for NADH.

  16. Structural characterisation of Tpx from Yersinia pseudotuberculosis reveals insights into the binding of salicylidene acylhydrazide compounds.

    Directory of Open Access Journals (Sweden)

    Mads Gabrielsen

    Full Text Available Thiol peroxidase, Tpx, has been shown to be a target protein of the salicylidene acylhydrazide class of antivirulence compounds. In this study we present the crystal structures of Tpx from Y. pseudotuberculosis (ypTpx in the oxidised and reduced states, together with the structure of the C61S mutant. The structures solved are consistent with previously solved atypical 2-Cys thiol peroxidases, including that for "forced" reduced states using the C61S mutant. In addition, by investigating the solution structure of ypTpx using small angle X-ray scattering (SAXS, we have confirmed that reduced state ypTpx in solution is a homodimer. The solution structure also reveals flexibility around the dimer interface. Notably, the conformational changes observed between the redox states at the catalytic triad and at the dimer interface have implications for substrate and inhibitor binding. The structural data were used to model the binding of two salicylidene acylhydrazide compounds to the oxidised structure of ypTpx. Overall, the study provides insights into the binding of the salicylidene acylhydrazides to ypTpx, aiding our long-term strategy to understand the mode of action of this class of compounds.

  17. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  18. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data.

    Science.gov (United States)

    Maupin, Kevin A; Liden, Daniel; Haab, Brian B

    2012-01-01

    Glycan-binding proteins are commonly used as analytical reagents to detect the levels of specific glycan structures in biological samples. A detailed knowledge of the specificities of glycan-binding proteins is required for properly interpreting their binding data. A powerful technology for characterizing glycan-binding specificity is the glycan array. However, the interpretation of glycan-array data can be difficult due to the complex fine specificities of certain glycan-binding proteins. We developed a systematic approach, called outlier-motif analysis, for extracting fine-specificity information from glycan-array data, and we applied the method to the study of four commonly used lectins: two mannose binders (concanavalin A and Lens culinaris) and two galactose binders (Bauhinia purpurea and peanut agglutinin). The study confirmed the known, primary specificity of each lectin and also revealed new insights into their binding preferences. Lens culinaris's main specificity may be non-terminal, α-linked mannose with a single linkage at its 2' carbon, which is more restricted than previous definitions. We found broader specificity for bauhinea purpurea (BPL) than previously reported, showing that BPL can bind terminal N-acetylgalactosamine (GalNAc) and penultimate β-linked galactose under certain limitations. Peanut agglutinin may bind terminal Galβ1,3Gal, a glycolipid motif, in addition to terminal Galβ1,3GalNAc, a common O-linked glycoprotein motif. These results could be used to more accurately interpret data obtained using these well-studied lectins. Furthermore, this study demonstrates a systematic and general approach for extracting fine-specificity information from glycan-array data.

  19. A Systematic Structure-Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the Importance of a Special Oxo-Anion-Binding Motif for Gene Delivery.

    Science.gov (United States)

    Junghänel, Sandra; Karczewski, Sarah; Bäcker, Sandra; Knauer, Shirley K; Schmuck, Carsten

    2017-11-16

    We discovered a new class of artificial peptidic transfection vectors based on an artificial anion-binding motif, the guanidiniocarbonylpyrrole (GCP) cation. This new type of vector is surprisingly smaller than traditional systems, and our previous work suggested that the GCP group was important for promoting critical endosomal escape. We now present here a systematic comparison of similar DNA ligands featuring our GCP oxo-anion-binding motif with DNA ligands only consisting of naturally occurring amino acids. Structure-activity studies showed that the artificial binding motif clearly outperformed natural amino acids such as histidine, lysine, and arginine. It improved the ability to shuttle foreign genetic material into cells, yet successfully mediated endosomal escape. Also, plasmids that were complexed by our artificial ligands were stabilized against cytosolic degradation to some extent. This resulted in the successful expression of plasmid information (comparable to gold standards such as polyethyleneimine). Hence, our study clearly demonstrates the importance of the tailor-made GCP anion-binding site for efficient gene transfection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  1. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta,Y.; Nair, D.; Wharton, R.; Aggarwal, A.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.

  2. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors.

    Science.gov (United States)

    Olsen, Jeppe A; Balle, Thomas; Gajhede, Michael; Ahring, Philip K; Kastrup, Jette S

    2014-01-01

    Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+)β2(-) and α4(+)α4(-). Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.

  4. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  5. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    Science.gov (United States)

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-15

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  6. Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding

    OpenAIRE

    Riggins, Tracy

    2013-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for three years. Each year, children completed a source memory paradigm assessing memory for items and binding. Results suggest linear increases in memory for individual items (facts or sources) between 4 and 10 years of age, but that memory for correct ...

  7. DNA binding studies of tartrazine food additive.

    Science.gov (United States)

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  8. Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikeska, Ruth [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany); Wacker, Roland [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Arni, Raghuvir [Department of Physics, IBILCE/UNESP, São Jose do Rio Preto, São Paul (Brazil); Singh, Tej P. [Department of Biophysics, All India Institute of Medical Sciences, New Delhi (India); Mikhailov, Albert; Gabdoulkhakov, Azat [Institute of Crystallography of Russian Academy of Sciences, Leninsky Prospect 59, 117333 Moscow (Russian Federation); Voelter, Wolfgang [Institute of Physiological Chemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen (Germany); Betzel, Christian, E-mail: betzel@unisgi1.desy.de [Institute of Biochemistry and Food Chemistry, University of Hamburg, c/o DESY, Notkestrasse 85, Building 22a, 22603 Hamburg (Germany)

    2005-01-01

    The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chain has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.

  9. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  10. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    Energy Technology Data Exchange (ETDEWEB)

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey; (Scripps); (TTU)

    2009-04-22

    P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

  11. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  12. Longitudinal Investigation of Source Memory Reveals Different Developmental Trajectories for Item Memory and Binding

    Science.gov (United States)

    Riggins, Tracy

    2014-01-01

    The present study used a cohort-sequential design to examine developmental changes in children's ability to bind items in memory during early and middle childhood. Three cohorts of children (aged 4, 6, or 8 years) were followed longitudinally for 3 years. Each year, children completed a source memory paradigm assessing memory for items and…

  13. Mutational analysis of the pumpkin (Cucurbita maxima) phloem exudate lectin, PP2 reveals Ser-104 is crucial for carbohydrate binding.

    Science.gov (United States)

    Bobbili, Kishore Babu; Bandari, Shyam; Grobe, Kay; Swamy, Musti J

    2014-07-18

    The pumpkin phloem lectin (PP2) is an RNA-binding, defense-related, chitooligosaccharide-specific, homodimeric lectin of Mr 48 kDa expressed at high concentrations in the sieve elements and companion cells of pumpkin (Cucurbita maxima). In the present study, PP2 was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway as a prerequisite for unimpaired folding and posttranslational glycosylation of recombinant PP2. Previous computational modeling and ligand docking studies predicted a putative chitooligosaccharide-binding site on the PP2 surface, which was divided into three subsites, with two amino acid residues in each subsite identified as possible candidates for interaction with chitooligosaccharides (CHOs). In this work, mutational analysis and hemagglutination assays were employed to verify the role of the predicted residues in the carbohydrate binding activity of the protein. The results obtained revealed that mutation of Ser-104 to Ala (S104A) at subsite-2 resulted in about 90% loss of agglutination activity of the protein, indicating that Ser-104 is crucial for the binding of CHOs to PP2. Also, L100A (at subsite-1) and K200A (at subsite-3) independently decreased the lectin activity by about 40%, indicating that these two residues also contribute significantly to sugar binding by PP2. Together, these findings confirm that all the three subsites contribute to varying degrees toward PP2-carbohydrate interaction, and confirm the validity of the computational model, as proposed earlier. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  15. ERPs reveal the time-course of aberrant visual-phonological binding in developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Manon Wyn Jones

    2016-03-01

    Full Text Available New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched, frequent trials were interleaved with congruent (matched infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code.

  16. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  17. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus

    Science.gov (United States)

    Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.

    2013-01-01

    Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423

  18. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, MR; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...... the lectin complement pathway and acts as an opsonin. Recent studies suggest that MBL also modulates inflammatory responses. We report that local responses after burn in MBL null mice differ from those found in wild-type (WT) mice in the following important biological markers: spontaneous eschar separation......, thinned epidermis and dermis, upregulation of soluble factors including cytokines, chemokines, cell adhesion molecules, a growth factor-binding protein, and matrix metalloproteinases. Mice lacking C1q, C4, or C3 did not show the lack of eschar separation seen in MBL null-burn phenotype. These findings...

  20. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors.

    Science.gov (United States)

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-03-26

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients' Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.

  1. Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

    Science.gov (United States)

    Ye, Hao; Ng, Hui Wen; Sakkiah, Sugunadevi; Ge, Weigong; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2016-01-01

    Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process. PMID:27023590

  2. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies

    Science.gov (United States)

    Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh

    2008-11-01

    The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.

  3. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  4. Studies on binding of radiolabeled thyrotropin to cultured human thyroid cells

    International Nuclear Information System (INIS)

    Yamamoto, M.; Rapoport, B.

    1978-01-01

    A line of cultured human thyroid adenoma cells was used in a study designed to compare the stimulatory effect of TSH on cellular cAMP generation with the binding of radiolabeled TSH to the cells. At 37 C, specific binding of [ 125 I]TSH to suspensions of thyroid cells was maximal at 20 min and was reversed by the addition of excess TSH. Unlike the generation of cellular cAMP in response to TSH stimulation, which was maximal at pH 7.5, the binding of [ 125 ]TSH to the cells was maximal at pH 5.5 and progressively declined up to pH 8.5. Increasing NaCl concentrations progressively inhibited cellular binding of TSH; at physiological salt concentrations, almost no TSH binding was detectable. Competitive inhibition studies of [ 125 I]TSH binding to cells revealed a binding site with a dissociation constant of 5.5 x 10 -8 M at pH 7.4. GH, PRL, hCG, FSH, insulin, and glucagon did not compete with [ 125 I)TSH binding. ACTH, however, was a potent inhibitor of [ 125 I]TSH binding. Despite this inhibitory effect on TSH binding, ACTH had little or no effect on cellular cAMP generation. High concentrations of ACTH did not inhibit the biological effect of TSH on cAMP generation. Specific binding of [ 125 I]TSH to empty plastic culture dishes was time dependent, reversible, and displayed a hormonal specificity identical to binding to thyroid cells. The effects of pH and NaCl concentrations on TSH binding to dishes were similarbut not identical to those on cellular binding. This study raises serious questions as to the biological significance of [ 125 I]TSH binding to cultured human thyroid cells

  5. Nanodisc-targeted STD NMR reveals atomistic details of ligand binding to lipid environments.

    Science.gov (United States)

    Watts, Anthony

    2018-03-14

    Saturation transfer difference (STD) NMR constitutes one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information of the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g. small organic molecules, carbohydrates, or lipids) and a protein as the target, where the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD-NMR to investigate the interactions of the neurotransmitter dopamine to mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed from charged and zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry (ITC) studies, show that dopamine preferential binds to negatively charged model membranes, but also provides detailed atomistic insights into the mode of interaction of dopamine to membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine, structural analogues, and are of generic applicability to other systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    Science.gov (United States)

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  7. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  8. Structure of human stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity.

    Science.gov (United States)

    Meng, Geng; Zhao, Yanmei; Bai, Xiaoyun; Liu, Yong; Green, Todd J; Luo, Ming; Zheng, Xiaofeng

    2010-12-17

    Human secreted protein stabilin-1 interacting chitinase-like protein (SI-CLP) has been identified as a novel member of Glyco_18 domain-containing proteins that is involved in host defense and inflammatory reactions. Efficient secretion of SI-CLP is mediated by its interaction with the endocytic/sorting receptor stabilin-1. SI-CLP is expressed abundantly in macrophages and neutrophils and is up-regulated by Th2 cytokine IL-4 and glucocorticoid, which suggest that SI-CLP could be a marker for adverse effects of glucocorticoid therapy. To gain insight into the biological function of SI-CLP, we determined the crystal structure of SI-CLP at 2.7 Å resolution by x-ray crystallography and found that it featured a typical triose-phosphate isomerase barrel fold with a putative saccharide-binding cleft. Comparison with other chitinase-like proteins showed the cleft to be atypically wide and open. The saccharide-binding capacity of SI-CLP was investigated, and its ligand-binding specificity was found to relate to the length of the oligosaccharides, with preference for chitotetraose. Further investigations reveal that SI-CLP could bind LPS in vitro and neutralize its endotoxin effect on macrophages. Our results demonstrate the saccharide-binding property of SI-CLP by structure and in vitro biochemical analyses and suggest the possible roles of SI-CLP in pathogen sensing and endotoxin neutralization.

  9. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Chien, Chih-Ta Henry; Ho, Meng-Ru; Lin, Chung-Hung; Hsu, Shang-Te Danny

    2017-08-16

    Galectins are β-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8 NTD and hGal8 CTD , respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8 NTD . We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8 NTD , indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8 CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8 CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.

  10. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  11. Proteomic analysis of pig (Sus scrofa olfactory soluble proteome reveals O-GlcNAcylation of secreted odorant-binding proteins

    Directory of Open Access Journals (Sweden)

    Patricia eNAGNAN-LE MEILLOUR

    2014-12-01

    Full Text Available The diversity of olfactory binding proteins (OBPs is a key point to understand their role in molecular olfaction. Since only few different sequences were characterized in each mammalian species, they have been considered as passive carriers of odors and pheromones. We have explored the soluble proteome of pig nasal mucus, taking benefit of the powerful tools of proteomics. Combining two-dimensional electrophoresis, mass spectrometry and western-blot with specific antibodies, our analyses revealed for the first time that the pig nasal mucus is mainly composed of secreted OBP isoforms, some of them being potentially modified by O-GlcNAcylation. An ortholog gene of the glycosyltransferase responsible of the O-GlcNAc linking on extracellular proteins in Drosophila and Mouse (EOGT was amplified from tissues of pigs of different ages and sex. The sequence was used in a phylogenetic analysis, which evidenced conservation of EOGT in insect and mammalian models studied in molecular olfaction. Extracellular O-GlcNAcylation of secreted OBPs could finely modulate their binding specificities to odors and pheromones. This constitutes a new mechanism for extracellular signaling by OBPs, suggesting that they act as the first step of odor discrimination.

  12. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  13. Chirality-induced conformational preferences in peptide-metal ion binding revealed by IR spectroscopy

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide−metal ion complexes. The binding conformations of Li+, Na+, and H+ with the ll and dl stereoisomers of PhePhe were compared through IR ion

  14. Chirality-Induced Conformational Preferences in Peptide-Metal Ion Binding Revealed by IR Spectroscopy

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2011-01-01

    Chirality reversal of a residue in a peptide can change its mode of binding to a metal ion, as shown here experimentally by gas-phase IR spectroscopy of peptide metal ion complexes. The binding conformations of Li+, Na+, and H+ with the LL and DL stereoisomers of PhePhe were compared through IR ion

  15. Synthesis, Crystal Structure and in vitro DNA Binding Studies of Combretastatin A-4 Analogue

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-12-01

    Full Text Available Synthesis of a novel Combretastatin A-4 analogue using Schiff’s reaction of benzil and 4-aminoantipyrine has been achieved under solvent free conditions. The structure of compound was examined spectroscopically and confirmed from single crystal diffraction studies. The synthesized Combretastatin A-4 analogue was investigated for its DNA binding ability as the plausible mechanism for its antitumor activity. The binding propensity of the synthesized compound with calf-thymus (CT DNA was monitored with absorption and emission spectrophotometric titrations. The calculations predict a binding constant of 7.24×104 for the complex of the synthesized compound with CT DNA which is comparable in magnitude to that of DNA binding of bactericidal drug enoxacin and typical intercalation indicator ethidium bromide (EB. Competitive binding studies of the synthesized compound with EB using fluorescence titration reveal that it displaces the DNA-bound EB and binds in intercalative mode which was further supported by circular dichroism (CD spectroscopy. The probable site and binding energy of the compound with DNA was further theoretically investigated by molecular docking studies. The significant DNA binding ability of the synthesized Combretastatin A4 analogue as revealed from this study could be related to the anticancer activity of the Combretastatin A4.

  16. Context influences on TALE–DNA binding revealed by quantitative profiling

    Science.gov (United States)

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  17. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  18. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding*

    Science.gov (United States)

    Stewart, Sarah E.; Bird, Catherina H.; Tabor, Rico F.; D'Angelo, Michael E.; Piantavigna, Stefania; Whisstock, James C.; Trapani, Joseph A.; Martin, Lisandra L.; Bird, Phillip I.

    2015-01-01

    Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. PMID:26542805

  20. Glycoprotein profiles of macrophages at different stages of activation as revealed by lectin binding after electrophoretic separation.

    Science.gov (United States)

    Irimura, T; North, S M; Nicolson, G L

    1987-01-01

    Glycoprotein profiles of rat macrophages (M phi) at different stages of activation were studied by examining the reactivity of various lectins to the glycoproteins separated by polyacrylamide gel electrophoresis. Ricinus communis agglutinin 1 (RCA1) revealed several components including glycoproteins of Mr 160 kDa and 65 kDa prominent in resident M phi. A pokeweed mitogen (PWM) isolectin, Pa-4, recognizes branched poly(N-acetyllactosamine)-type carbohydrate chains, and revealed a significant increase in glycoproteins of Mr ranging from 70 kDa to 150 kDa on thioglycolate-elicited M phi. Increased reactivity of PWM to thioglycolate-elicited M phi was observed by direct binding of 125I-labeled Pa-4 to intact or glutaraldehyde-fixed M phi. Histochemical staining of formaldehyde-fixed M phi in vitro with biotinylated Pa-4 was consistent with the gel analysis, that is, resident M phi had no reactivity while thioglycolate-elicited M phi showed slight reactivity. Alveolar and intratumoral M phi bound more Pa-4 than resident or thioglycolate-elicited M phi. The PWM isolectin may therefore serve as a marker for an early stage of M phi activation.

  1. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character

    Directory of Open Access Journals (Sweden)

    Òscar Palacios

    2017-07-01

    Full Text Available After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT, we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF, Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II and Cd(II, while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I. As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II than for Zn(II, although the analysis of the Zn(II/Cd(II displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II binding. Contrarily, the analysis of their Cu(I binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.

  2. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-11-15

    Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  4. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  5. K2P2.1 (TREK-1)–activator complexes reveal a cryptic selectivity filter binding site

    Energy Technology Data Exchange (ETDEWEB)

    Lolicato, Marco; Arrigoni, Cristina; Mori, Takahiro; Sekioka, Yoko; Bryant, Clifford; Clark, Kimberly A.; Minor, Jr , Daniel L. (Ono); (UCSF)

    2017-07-10

    Polymodal thermo- and mechanosensitive two-pore domain potassium (K2P) channels of the TREK1 subfamily generate ‘leak’ currents that regulate neuronal excitability, respond to lipids, temperature and mechanical stretch, and influence pain, temperature perception and anaesthetic responses1, 2, 3. These dimeric voltage-gated ion channel (VGIC) superfamily members have a unique topology comprising two pore-forming regions per subunit4, 5, 6. In contrast to other potassium channels, K2P channels use a selectivity filter ‘C-type’ gate7, 8, 9, 10 as the principal gating site. Despite recent advances3, 11, 12, poor pharmacological profiles of K2P channels limit mechanistic and biological studies. Here we describe a class of small-molecule TREK activators that directly stimulate the C-type gate by acting as molecular wedges that restrict interdomain interface movement behind the selectivity filter. Structures of K2P2.1 (also known as TREK-1) alone and with two selective K2P2.1 (TREK-1) and K2P10.1 (TREK-2) activators—an N-aryl-sulfonamide, ML335, and a thiophene-carboxamide, ML402—define a cryptic binding pocket unlike other ion channel small-molecule binding sites and, together with functional studies, identify a cation–π interaction that controls selectivity. Together, our data reveal a druggable K2P site that stabilizes the C-type gate ‘leak mode’ and provide direct evidence for K2P selectivity filter gating.

  6. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  7. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  8. Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules.

    Science.gov (United States)

    Andreatta, Massimo; Jurtz, Vanessa I; Kaever, Thomas; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2017-10-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance of nine amino acids between the first and last residue in contact with the MHCII. While confirming that the great majority of peptides bind to the MHC using this canonical mode, we report evidence for an alternative, less common mode of interaction. A fraction of observed ligands were shown to have an unconventional spacing of the anchor residues that directly interact with the MHC, which could only be accommodated to the canonical MHC motif either by imposing a more stretched out peptide backbone (an 8mer core) or by the peptide bulging out of the MHC groove (a 10mer core). We estimated that on average 2% of peptides bind with a core deletion, and 0·45% with a core insertion, but the frequency of such non-canonical cores was as high as 10% for certain MHCII molecules. A mutational analysis and experimental validation of a number of these anomalous ligands demonstrated that they could only fit to their MHC binding motif with a non-canonical binding core of length different from nine. This previously undescribed mode of peptide binding to MHCII molecules gives a more complete picture of peptide presentation by MHCII and allows us to model more accurately this event. © 2017 John Wiley & Sons Ltd.

  9. Network Analysis Reveals the Recognition Mechanism for Mannose-binding Lectins

    Science.gov (United States)

    Zhao, Yunjie; Jian, Yiren; Zeng, Chen; Computational Biophysics Lab Team

    The specific carbohydrate binding of mannose-binding lectin (MBL) protein in plants makes it a very useful molecular tool for cancer cell detection and other applications. The biological states of most MBL proteins are dimeric. Using dynamics network analysis on molecular dynamics (MD) simulations on the model protein of MBL, we elucidate the short- and long-range driving forces behind the dimer formation. The results are further supported by sequence coevolution analysis. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  10. Machine Learning Reveals a Non-Canonical Mode of Peptide Binding to MHC class II Molecules

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Jurtz, Vanessa Isabell; Kaever, Thomas

    2017-01-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance...... of nine amino acids between the first and last residue in contact with the MHCII. While confirming that the great majority of peptides bind to the MHC using this canonical mode, we report evidence for an alternative, less common mode of interaction. A fraction of observed ligands were shown to have....... All rights reserved....

  11. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  12. EPR studies of intermolecular interactions and competitive binding of drugs in a drug-BSA binding model.

    Science.gov (United States)

    Akdogan, Y; Emrullahoglu, M; Tatlidil, D; Ucuncu, M; Cakan-Akdogan, G

    2016-08-10

    Understanding intermolecular interactions between drugs and proteins is very important in drug delivery studies. Here, we studied different binding interactions between salicylic acid and bovine serum albumin (BSA) using electron paramagnetic resonance (EPR) spectroscopy. Salicylic acid was labeled with a stable radical (spin label) in order to monitor its mobilized (free) or immobilized (bound to BSA) states. In addition to spin labeled salicylic acid (SL-salicylic acid), its derivatives including SL-benzoic acid, SL-phenol, SL-benzene, SL-cyclohexane and SL-hexane were synthesized to reveal the effects of various drug binding interactions. EPR results of these SL-molecules showed that hydrophobic interaction is the main driving force. Whereas each of the two functional groups (-COOH and -OH) on the benzene ring has a minute but detectable effect on the drug-protein complex formation. In order to investigate the effect of electrostatic interaction on drug binding, cationic BSA (cBSA) was synthesized, altering the negative net charge of BSA to positive. The salicylic acid loading capacity of cBSA is significantly higher compared to that of BSA, indicating the importance of electrostatic interaction in drug binding. Moreover, the competitive binding properties of salicylic acid, ibuprofen and aspirin to BSA were studied. The combined EPR results of SL-salicylic acid/ibuprofen and SL-ibuprofen/salicylic acid showed that ibuprofen is able to replace up to ∼83% of bound SL-salicylic acid, and salicylic acid can replace only ∼14% of the bound SL-ibuprofen. This indicates that ∼97% of all salicylic acid and ibuprofen binding sites are shared. On the other hand, aspirin replaces only ∼23% of bound SL-salicylic acid, and salicylic acid replaces ∼50% of bound SL-aspirin, indicating that ∼73% of all salicylic acid and aspirin binding sites are shared. These results show that EPR spectroscopy in combination with the spin labeling technique is a very powerful

  13. Fluorescence spectroscopic studies on binding of a flavonoid ...

    Indian Academy of Sciences (India)

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime ...

  14. Polyethyleneimine anchored copper(II) complexes: synthesis, characterization, in vitro DNA binding studies and cytotoxicity studies.

    Science.gov (United States)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    The water soluble polyethyleneimine-copper(II) complexes, [Cu(phen)(L-tyr)BPEI]ClO4 (where phen=1,10-phenanthroline, L-tyr=L-tyrosine and BPEI=branched polyethyleneimine) with various degree of copper(II) complex units in the polymer chain were synthesized and characterized by elemental analysis and electronic, FT-IR, EPR spectroscopic techniques. The binding of these complexes with CT-DNA was studied using UV-visible absorption titration, thermal denaturation, emission, circular dichroism spectroscopy and cyclic voltammetric methods. The changes observed in the physicochemcial properties indicated that the binding between the polymer-copper complexes and DNA was mostly through electrostatic mode of binding. Among these complexes, the polymer-copper(II) complex with the highest degrees of copper(II) complex units (higher degrees of coordination) showed higher binding constant than those with lower copper(II) complex units (lower degrees of coordination) complexes. The complex with the highest number of metal centre bound strongly due to the cooperative binding effect. Therefore, anticancer study was carried out using this complex. The cytotoxic activity for this complex on MCF-7 breast cancer cell line was determined adopting MTT assay, acridine orange/ethidium bromide (AO/EB) staining and comet assay techniques, which revealed that the cells were committed to specific mode of cell death either apoptosis or necrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.

    NARCIS (Netherlands)

    Mathes, T.; van Stokkum, I.H.M.; Kennis, J.T.M.

    2014-01-01

    Flavin-binding photoreceptor proteins use the isoalloxazine moiety of flavin cofactors to absorb light in the blue/UV-A wavelength region and subsequently translate it into biological information. The underlying photochemical reactions and protein structural dynamics are delicately tuned by the

  16. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, Michael R; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...

  17. Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation.

    Science.gov (United States)

    Werfel, Stanislas; Leierseder, Simon; Ruprecht, Benjamin; Kuster, Bernhard; Engelhardt, Stefan

    2017-09-29

    MicroRNAs (miRNAs) have been described to simultaneously inhibit hundreds of targets, albeit to a modest extent. It was recently proposed that there could exist more specific, exceptionally strong binding to a subgroup of targets. However, it is unknown, whether this is the case and how such targets can be identified. Using Argonaute2-ribonucleoprotein immunoprecipitation and in vivo competitive binding assays, we demonstrate for miRNAs-21, -199-3p and let-7 exceptional regulation of a subset of targets, which are characterized by preferential miRNA binding. We confirm this finding by analysis of independent quantitative proteome and transcriptome datasets obtained after miRNA silencing. Our data suggest that mammalian miRNA activity is guided by preferential binding of a small set of 3'-untranslated regions, thereby shaping a steep gradient of regulation between potential targets. Our approach can be applied for transcriptome-wide identification of such targets independently of the presence of seed complementary sequences or other predictors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  19. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.

    Science.gov (United States)

    Mitra, Sneha; Biswas, Anushua; Narlikar, Leelavati

    2018-04-23

    Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https

  20. Structural and Enzymatic Analyses Reveal the Binding Mode of a Novel Series of Francisella tularensis Enoyl Reductase (FabI) Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Hevener, Kirk E.; Truong, Kent; Boci, Teuta; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)

    2012-10-10

    Because of structural and mechanistic differences between eukaryotic and prokaryotic fatty acid synthesis enzymes, the bacterial pathway, FAS-II, is an attractive target for the design of antimicrobial agents. We have previously reported the identification of a novel series of benzimidazole compounds with particularly good antibacterial effect against Francisella tularensis, a Category A biowarfare pathogen. Herein we report the crystal structure of the F. tularensis FabI enzyme in complex with our most active benzimidazole compound bound with NADH. The structure reveals that the benzimidazole compounds bind to the substrate site in a unique conformation that is distinct from the binding motif of other known FabI inhibitors. Detailed inhibition kinetics have confirmed that the compounds possess a novel inhibitory mechanism that is unique among known FabI inhibitors. These studies could have a strong impact on future antimicrobial design efforts and may reveal new avenues for the design of FAS-II active antibacterial compounds.

  1. High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements.

    Science.gov (United States)

    Chang, Fujung; May, Caitlin D; Hoggard, Timothy; Miller, Jeremy; Fox, Catherine A; Weinreich, Michael

    2011-08-01

    In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.

  2. Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human alpha1-acid glycoprotein.

    Science.gov (United States)

    Zsila, Ferenc; Molnár, Péter; Deli, József; Lockwood, Samuel F

    2005-08-01

    Using circular dichroism (CD) and electronic absorption spectroscopy techniques, interaction of the natural dietary cis-carotenoid bixin with an important human plasma protein in vitro was demonstrated for the first time. The induced CD spectra of bixin obtained under physiological conditions (pH 7.4, 37 degrees C) revealed its binding to the serum acute-phase reactant alpha(1)-acid glycoprotein (AGP), a member of the lipocalin protein family. Spectral features of the extrinsic Cotton effects of bixin suggested the inclusion of a single, chirally distorted ligand molecule into the asymmetric protein environment. Compared with the absorption spectra obtained in ethanol and benzene, the strong red shift of the main absorption peak of AGP-bound bixin indicated that the proposed binding site was rich in aromatic residues, and also suggested that hydrophobic interactions were involved in the binding. Using the data obtained from the CD titration experiments, the association constant (Ka=4.5x10(5)M-1) and stoichiometry of the binding (0.15) were calculated. The low value of the stoichiometry was attributed to the structural polymorphism of AGP. To the authors' knowledge, the current study represents the first human lipocalin protein for which carotenoid binding affinity has been explored in vitro with these techniques.

  3. Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression.

    Directory of Open Access Journals (Sweden)

    Wendy M Gombert

    Full Text Available BACKGROUND: Insulators and domain boundaries both shield genes from adjacent enhancers and inhibit intrusion of heterochromatin into transgenes. Previous studies examined the functional mechanism of the MYC insulator element MINE and its CTCF binding sites in the context of transgenes that were randomly inserted into the genome by transfection. However, the contribution of CTCF binding sites to both gene regulation and maintenance of chromatin has not been tested at the endogenous MYC gene. METHODOLOGY/PRINCIPAL FINDINGS: To determine the impact of CTCF binding on MYC expression, a series of mutant human chromosomal alleles was prepared in homologous recombination-efficient DT40 cells and individually transferred by microcell fusion into murine cells. Functional tests reported here reveal that deletion of CTCF binding elements within the MINE does not impact the capacity of this locus to correctly organize an 'accessible' open chromatin domain, suggesting that these sites are not essential for the formation of a competent, transcriptionally active locus. Moreover, deletion of the CTCF site at the MYC P2 promoter reduces transcription but does not affect promoter acetylation or serum-inducible transcription. Importantly, removal of either CTCF site leads to DNA methylation of flanking sequences, thereby contributing to progressive loss of transcriptional activity. CONCLUSIONS: These findings collectively demonstrate that CTCF-binding at the human MYC locus does not repress transcriptional activity but is required for protection from DNA methylation.

  4. Revealing the binding medium of a Roman Egyptian painted mummy shroud

    DEFF Research Database (Denmark)

    Granzotto, Clara; Arslanoglu, Julie

    2017-01-01

    Ancient Egyptian painted artworks are usually understudied from an analytical point of view, due to their extremely fragile nature. Attention typically focuses on pigments since identification is possible with non-invasive techniques, while limited information is available in the literature...... regarding the organic binding media. Here successful determination of the binder of a Roman Egyptian painted mummy shroud (2nd–3rd century A.D.) achieved through the application of enzymatic digestion followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is reported. The high...... specificity and sensitivity of this analytical strategy not only allowed the identification of the binding medium as a mixture of two different plant gums but also allowed the discrimination of the different species sources, even though the organic material was present in very small amounts and subject...

  5. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  6. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Nikhil; Goldgur, Yehuda; Xu, Kai; Paavilainen, Sari; Nikolov, Dimitar B.; Himanen, Juha P. (MSKCC); (Turku)

    2010-09-08

    Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 {angstrom} resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.

  7. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site.

    Science.gov (United States)

    Gristick, Harry B; von Boehmer, Lotta; West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2016-10-01

    HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46-derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs.

  8. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ...

    Indian Academy of Sciences (India)

    fluoroquinolone complexes. Mohan N ... DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel ...

  9. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available α-Hemolysin (α-HL is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG, Oroxin A (ORA, and Oroxin B (ORB, when inhibiting the hemolytic activity of α-HL, could bind to the "stem" region of α-HL. This was completed using conventional Molecular Dynamics (MD simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA indicated that because of the inhibitors that bind to the "stem" region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.

  10. Simplified immunoassay for rapid Dengue serotype diagnosis, revealing insensitivity to non-specific binding interference

    Directory of Open Access Journals (Sweden)

    Fernanda C.C.L. Loureiro

    2017-04-01

    Full Text Available Proof of concept of an immunoassay, which is easy to implement, for rapid Dengue virus (DENV serotype diagnosis, in the early infection stage, is reported. The four-layer assay is immobilized onto a thin gold film and relies on a low cost, disposable polymer biochip for optical surface plasmon resonance sensing and detection. The protocol comprises Neutravidin-Biotin mediated monoclonal antibody (MAB attachment as the functionalized sensing element. Formation of the MAB-DENV complex results in a pronounced thickness change that is optically recorded in real time, employing a microfluidic set-up. Virus presence is confirmed by atomic force microscopy from the same sample. Serum samples were collected from a patient in acute febrile state. Simultaneous serological analysis by means of the reverse transcription polymerase chain reaction, independently, confirmed presence of DENV2 and DENV3. The protocol proved applicable in presence of strong non-specific binding interference that originates from, and is caused by, various blood, serum and other body fluid constituents. False positive indications for both, negative serum and blood control samples were not observed. The achievable limit of detection was estimated to be 2×104 particles/ml. Eventually, the method can be modified towards detection of other viruses by using the same protocol. Keywords: Immuno-assay, Dengue virus detection, Non-specific binding

  11. Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

    Science.gov (United States)

    Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro

    2011-07-01

    The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.

  12. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  13. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots

    Science.gov (United States)

    Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar

    2018-05-01

    In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.

  14. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.

    Science.gov (United States)

    Schlecht, Ulrich; Erb, Ionas; Demougin, Philippe; Robine, Nicolas; Borde, Valérie; van Nimwegen, Erik; Nicolas, Alain; Primig, Michael

    2008-05-01

    The autonomously replicating sequence binding factor 1 (Abf1) was initially identified as an essential DNA replication factor and later shown to be a component of the regulatory network controlling mitotic and meiotic cell cycle progression in budding yeast. The protein is thought to exert its functions via specific interaction with its target site as part of distinct protein complexes, but its roles during mitotic growth and meiotic development are only partially understood. Here, we report a comprehensive approach aiming at the identification of direct Abf1-target genes expressed during fermentation, respiration, and sporulation. Computational prediction of the protein's target sites was integrated with a genome-wide DNA binding assay in growing and sporulating cells. The resulting data were combined with the output of expression profiling studies using wild-type versus temperature-sensitive alleles. This work identified 434 protein-coding loci as being transcriptionally dependent on Abf1. More than 60% of their putative promoter regions contained a computationally predicted Abf1 binding site and/or were bound by Abf1 in vivo, identifying them as direct targets. The present study revealed numerous loci previously unknown to be under Abf1 control, and it yielded evidence for the protein's variable DNA binding pattern during mitotic growth and meiotic development.

  15. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  16. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.

    Science.gov (United States)

    Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G

    2017-11-01

    γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.

  17. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  18. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yue, E-mail: tengyue@jiangnan.edu.cn; Wang, Xiang; Zou, Luyi; Huang, Ming; Du, Xianzheng

    2015-05-15

    2-Mercaptothiazoline (MTZ) is widely utilized as a brightening and stabilization agent, corrosion inhibitor and antifungal reagent. The residue of MTZ in the environment is potentially hazardous to human health. In this study, the binding mode of MTZ with bovine serum albumin (BSA) was investigated using spectroscopic and molecular docking methods under physiological conditions. MTZ could spontaneously bind with BSA through hydrogen bond and van der Waals interactions with one binding site. The site marker displacement experiments and the molecular docking revealed that MTZ bound into site II (subdomain IIIA) of BSA, which further resulted in some backbone structures and microenvironmental changes of BSA. This work is helpful for understanding the transportation, distribution and toxicity effects of MTZ in blood. - Highlights: • The mechanism was explored by multiple spectroscopic and molecular docking methods. • MTZ can spontaneously bind with BSA at subdomain IIIA (site II). • MTZ can lead to some conformational changes of BSA.

  19. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug-binding site

    OpenAIRE

    Handing, Katarzyna B.; Shabalin, Ivan G.; Szlachta, Karol; Majorek, Karolina A.; Minor, Wladek

    2016-01-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1 ?. Cetirizine is bound in two sites ? a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizi...

  20. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    Science.gov (United States)

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    Science.gov (United States)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See

  2. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lenong; Chang, Zhenzhan; Pan, Zhiqiang; Fu, Zheng-Qing; Wang, Xiaoqiang (US-Agriculture); (SRNF); (Georgia)

    2009-01-12

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between {beta}3-2 and {beta}3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.

  3. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants.

    Science.gov (United States)

    Gallie, Daniel R; Liu, Renyi

    2014-11-25

    The poly(A)-binding protein (PABP) binds the poly(A) tail of eukaryotic mRNAs and functions to maintain the integrity of the mRNA while promoting protein synthesis through its interaction with eukaryotic translation initiation factor (eIF) 4G and eIF4B. PABP is encoded by a single gene in yeast and marine algae but during plant evolution the PABP gene family expanded substantially, underwent sequence divergence into three subclasses, and acquired tissue-specificity in gene family member expression. Although such changes suggest functional specialization, the size of the family and its sequence divergence have complicated an understanding of which gene family members may be foundational and which may represent more recent expansions of the family to meet the specific needs of speciation. Here, we examine the evolution of the plant PABP gene family to provide insight into these aspects of the family that may yield clues into the function of individual family members. The PABP gene family had expanded to two members by the appearance of fresh water algae and four members in non-vascular plants. In lycophytes, the first sequence divergence yielding a specific class member occurs. The earliest members of the gene family share greatest similarity to those modern members whose expression is confined to reproductive tissues, suggesting that supporting reproductive-associated gene expression is the most conserved function of this family. A family member sharing similarity to modern vegetative-associated members first appears in gymnosperms. Further elaboration of the reproductive-associated and vegetative-associated members occurred during the evolution of flowering plants. Expansion of the plant PABP gene family began prior to the colonization of land. By the evolution of lycophytes, the first class member whose expression is confined to reproductive tissues in higher plants had appeared. A second class member whose expression is vegetative-associated appeared in

  4. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz (Michigan); (UV)

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  5. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  6. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  7. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS genes.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Xue

    Full Text Available Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL class and the other is the CC-NBS-LRR (CNL class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL, reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL. Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  8. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  9. NMR insight into myosin-binding subunit coiled-coil structure reveals binding interface with protein kinase G-Iα leucine zipper in vascular function.

    Science.gov (United States)

    Sharma, Alok K; Birrane, Gabriel; Anklin, Clemens; Rigby, Alan C; Alper, Seth L

    2017-04-28

    Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. 15 N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Binding of an anticancer Rutaceae plant flavonoid glycoside with calf thymus DNA: Biophysical and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Sandhya; Jaldappagari, Seetharamappa, E-mail: jseetharam@yahoo.com

    2013-10-15

    In the present work, we report the interaction of a bioactive Rutaceae plant flavonoid glycoside, diosmin (DIO) with calf thymus DNA employing ethidium bromide as a fluorescence probe. The mode of binding between DIO and DNA was investigated by UV absorption, fluorescence, 3D-fluorescence, fluorescence polarization, FT-IR, circular dichroism, melting temperature (T{sub m}) measurements and differential pulse voltammogram studies. The results revealed the intercalative mode of binding between DIO and DNA. Further, the values of thermodynamic parameters, ∆H° (−388.32 kJ mol{sup −1}) and ∆S° (−1.22 kJ mol{sup −1} K{sup −1}) indicated that the van der Waals forces and hydrogen bond played a major role in the binding of DIO to DNA. The observed negative ∆G° values revealed the spontaneity of interaction process. The binding of DIO to DNA–EB was found to be stronger in the presence of coexisting substances. -- Highlights: • Mechanism of interaction of diosmin with DNA was studied by spectroscopic methods. • Ethidium bromide was used as a fluorescence probe in the present study. • The van der Waals forces and hydrogen bond played a significant role in the interaction. • Intercalative mode of binding was proposed between DIO and DNA.

  11. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  12. Analysis of the EIAV Rev-responsive element (RRE reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV.

    Directory of Open Access Journals (Sweden)

    Jae-Hyung Lee

    2008-06-01

    Full Text Available A cis-acting RNA regulatory element, the Rev-responsive element (RRE, has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1 and equine infection anemia virus (EIAV. The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1 corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE. RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB, and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of

  13. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    Science.gov (United States)

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low

  14. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates. © 2015 John Wiley & Sons A/S.

  15. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P [TAM

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-S cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a kcat/KM higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest kcat/KM of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.

  16. Spatial clustering of binding motifs and charges reveals conserved functional features in disordered nucleoporin sequences

    Science.gov (United States)

    Ando, David; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2013-03-01

    The Nuclear Pore Complex (NPC) gates the only channel through which cells exchange material between the nucleus and cytoplasm. Traffic is regulated by transport receptors bound to cargo which interact with numerous of disordered phenylalanine glycine (FG) repeat containing proteins (FG nups) that line this channel. The precise physical mechanism of transport regulation has remained elusive primarily due to the difficulty in understanding the structure and dynamics of such a large assembly of interacting disordered proteins. Here we have performed a comprehensive bioinformatic analysis, specifically tailored towards disordered proteins, on thousands of nuclear pore proteins from a variety of species revealing a set of highly conserved features in the sequence structure among FG nups. Contrary to the general perception that these proteins are functionally equivalent to homogeneous polymers, we show that biophysically important features within individual nups like the separation, spatial localization and ordering along the chain of FG and charge domains are highly conserved. Our current understanding of NPC structure and function should therefore be revised to account for these common features that are functionally relevant for the underlying physical mechanism of NPC gating.

  17. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles.

    Directory of Open Access Journals (Sweden)

    Javaid Ali Gadahi

    Full Text Available Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.

  18. Covalent binding of aniline to humic substances. 1. Kinetic studies

    Science.gov (United States)

    Weber, E.J.; Spidle, D.L.; Thorn, K.A.

    1996-01-01

    The reaction kinetics for the covalent binding of aniline with reconstituted IHSS humic and fulvic acids, unfractionated DOM isolated from Suwannee River water, and whole samples of Suwannee River water have been investigated. The reaction kinetics in each of these systems can be adequately described by a simple second-order rate expression. The effect of varying the initial concentration of aniline on reaction kinetics suggested that approximately 10% of the covalent binding sites associated with Suwannee River fulvic acid are highly reactive sites that are quickly saturated. Based on the kinetic parameters determined for the binding of aniline with the Suwannee River fulvic and humic acid isolates, it was estimated that 50% of the aniline concentration decrease in a Suwannee River water sample could be attributed to reaction with the fulvic and humic acid components of the whole water sample. Studies with Suwannee River fulvic acid demonstrated that the rate of binding decreased with decreasing pH, which parallels the decrease in the effective concentration of the neutral form, or reactive nucleophilic species of aniline. The covalent binding of aniline with Suwannee River fulvic acid was inhibited by prior treatment of the fulvic acid with hydrogen sulfide, sodium borohydride, or hydroxylamine. These observations are consistent with a reaction pathway involving nucleophilic addition of aniline to carbonyl moieties present in the fulvic acid.

  19. Thermodynamics of Ligand Binding to Acyl-Coenzyme A Binding Protein Studied by Titration Calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils Joakim; Sigurskjold, Bent Walther; Kragelund, Birthe B.

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  20. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  1. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.

    2006-01-01

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites...... as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile......, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in a-amylases....

  2. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells.

    Science.gov (United States)

    Li, Siting; Chen, Minghai; Xiong, Qian; Zhang, Jia; Cui, Zongqiang; Ge, Feng

    2016-10-07

    Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.

  3. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    SYNOPSIS. Synthesis and characterization of four mononuclear eight coordinated cadmium(II) complexes with newly explored carboxamide derivatives and study of interaction with calf-thymus DNA are reported. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, ...

  4. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA

    Science.gov (United States)

    Paul, Puja; Suresh Kumar, Gopinatha

    2013-04-01

    In this study a detailed characterization of the binding aspects of three phenothiazinium dyes, toluidine blue O (TBO), azure A and azure B with herring testes DNA is presented employing spectroscopic techniques. The absorbance and fluorescence properties of these dyes have been remarkably modified upon binding with DNA and the interaction is manifested through noncooperative binding as revealed form non-linear Scatchard plots with negative slopes at all binding ratios. The binding clearly revealed the high preference of TBO to DNA followed by the other two dyes azure A and azure B. The affinity of TBO was higher by about two times than that of the azures. From the series of studies using absorption, steady-state emission, the effect of ferrocyanide ion-induced steady-state fluorescence quenching, fluorescence polarization anisotropy, circular dichroism, the mode of binding of these dyes to the DNA double helix has been substantiated to be principally intercalative in nature. The stoichiometry of the association of these dyes to DNA was determined by the continuous variation analysis of Job from fluorescence data. The conformational aspects of the interaction was delineated from circular dichroism studies wherein higher perturbation was observed with TBO. Hydrodynamic study using viscosity measurements of linear rod like DNA confirmed that the binding was intercalative and strongest for TBO and weaker for azure A and azure B. The utility of the present work lies in exploring the potential binding applicability of these dyes to DNA for their development as effective therapeutic agents.

  5. Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    Science.gov (United States)

    Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.

  6. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site.

    Science.gov (United States)

    Nevskaya, N; Tishchenko, S; Nikulin, A; al-Karadaghi, S; Liljas, A; Ehresmann, B; Ehresmann, C; Garber, M; Nikonov, S

    1998-05-29

    S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.

  7. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host

    Science.gov (United States)

    Palma-Millanao, Rubén; Yáñez, Osvaldo; Rojas, Maximiliano; Mutis, Ana; Venthur, Herbert; Quiroz, Andrés; Ramírez, Claudio C.

    2016-01-01

    Hylamorpha elegans (Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs in H. elegans as well as six new volatiles released by its native host Nothofagus obliqua (Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. obliqua revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies. PMID:27012867

  8. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    International Nuclear Information System (INIS)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana; Mingarro, Ismael; Pallas, Vicente

    2005-01-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed

  9. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  10. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  11. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.

    Directory of Open Access Journals (Sweden)

    Hermann Hämmerle

    Full Text Available In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A(15 and ADP were shown to bind to tripartite binding motifs (ARE circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65 in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.

  12. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    Science.gov (United States)

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  13. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data...... set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr...

  14. Studies of Fibronectin-Binding Proteins of Streptococcus equi

    OpenAIRE

    Lannergård, Jonas; Flock, Margareta; Johansson, Staffan; Flock, Jan-Ingmar; Guss, Bengt

    2005-01-01

    Streptococcus equi subsp. equi is the causative agent of strangles, a disease of the upper respiratory tract in horses. The initiation of S. equi subsp. equi infection is likely to involve cell surface-anchored molecules mediating bacterial adhesion to the epithelium of the host. The present study describes the cloning and characterization of FNEB, a fibronectin-binding protein with cell wall-anchoring motifs. FNEB can thus be predicted as cell surface located, contrary to the two previously ...

  15. Chromatin immunoprecipitation assays revealed CREB and serine 133 phospho-CREB binding to the CART gene proximal promoter.

    Science.gov (United States)

    Rogge, George A; Shen, Li-Ling; Kuhar, Michael J

    2010-07-16

    Both over expression of cyclic AMP response element binding protein (CREB) in the nucleus accumbens (NAc), and intra-accumbal injection of cocaine- and amphetamine-regulated transcript (CART) peptides, have been shown to decrease cocaine reward. Also, over expression of CREB in the rat NAc increased CART mRNA and peptide levels, but it is not known if this was due to a direct action of P-CREB on the CART gene promoter. The goal of this study was to test if CREB and P-CREB bound directly to the CRE site in the CART promoter, using chromatin immunoprecipitation (ChIP) assays. ChIP assay with anti-CREB antibodies showed an enrichment of the CART promoter fragment containing the CRE region over IgG precipitated material, a non-specific control. Forskolin, which was known to increase CART mRNA levels in GH3 cells, was utilized to show that the drug increased levels of P-CREB protein and P-CREB binding to the CART promoter CRE-containing region. A region of the c-Fos promoter containing a CRE cis-regulatory element was previously shown to bind P-CREB, and it was used here as a positive control. These data suggest that the effects of CREB over expression on blunting cocaine reward could be, at least in part, attributed to the increased expression of the CART gene by direct interaction of P-CREB with the CART promoter CRE site, rather than by some indirect action. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.

    Science.gov (United States)

    Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin

    2015-12-01

    The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Calorimetric study of binding of some disaccharides with crown ethers

    International Nuclear Information System (INIS)

    Davydova, Olga I.; Lebedeva, Nataliya Sh.; Parfenyuk, Elena V.

    2004-01-01

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of β-lactose, α,α-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and β-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between α,α-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  18. Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study

    Directory of Open Access Journals (Sweden)

    Swarup Roy

    2017-02-01

    Full Text Available Interaction between bovine serum albumin (BSA and phosphorus heterocycles (PHs was studied using multi-spectroscopic techniques. The results indicated the high binding affinity of PHs to BSA as it quenches the intrinsic fluorescence of BSA. The experimental data suggested the fluorescence quenching mechanism between PHs and BSA as a dynamic quenching. From the UV–vis studies, the apparent association constant (Kapp was found to be 9.25×102, 1.27×104 and 9.01×102 L/mol for the interaction of BSA with PH-1, PH-2 and PH-3 respectively. According to the Förster's non-radiation energy transfer (FRET theory, the binding distances between BSA and PHs were calculated. The binding distances (r of PH-1, PH-2 and PH-3 were found to be 2.86, 3.03, and 5.12 nm, respectively, indicating energy transfer occurs between BSA and PHs. The binding constants of the PHs obtained from the fluorescence quenching data were found to be decreased with increase of temperature. The negative values of the thermodynamic parameters ΔH, ΔS and ΔG at different temperatures revealed that the binding process is spontaneous; hydrogen bonds and van der Waals interaction were the main force to stabilize the complex. The microenvironment of the protein-binding site was studied by synchronous fluorescence and circular dichroism (CD techniques and data indicated that the conformation of BSA changed in the presence of PHs. Finally, we studied the BSA-PHs docking using Autodock and results suggest that PHs is located in the cleft between the domains of BSA.

  19. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  1. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  2. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Energy Technology Data Exchange (ETDEWEB)

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  3. Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Lu, Zhaoxin; Yang, Wancai; Bie, Xiaomei

    2015-01-01

    Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins that were involved in SBP1-mediated anti-cancer effects in tumor tissues. We identified 132 differentially expressed proteins, among them, 53 proteins were upregulated and 79 proteins were downregulated. Importantly, many of the differentially altered proteins were associated with lipid/glucose metabolism, which were also linked to Glycolysis, MAPK, Wnt, NF-kB, NOTCH and epithelial-mesenchymal transition (EMT) signaling pathways. These results have revealed a novel mechanism that SBP1-mediated cancer inhibition is through altering lipid/glucose metabolic signaling pathways.

  4. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns.

    Science.gov (United States)

    Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun

    2017-04-01

    Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  6. Photoaffinity studies of the tubulin-colchicine binding site

    International Nuclear Information System (INIS)

    Hahn, K.M.

    1987-01-01

    A variety of colchicine derivatives were synthesized and coupled with 3,3,3-trifluoro-2-diazapropionyl chloride (TFDP-Cl) to produce colchicine photoaffinity analogs for use in tubulin labelling studies. Photoaffinity analogs of allocolchicine and podophylotoxin were also made using the same photoreactive moiety. Several labels were found to be effective inhibitors of tubulin polymerization. The approximate tubulin binding constants of the labels, calculated from polymerization inhibition data, varied between 2.2 x 10 5 to 2.5 x 10 3 M -1 . The labels chosen for use in tubulin labelling experiments were (N-TFDP) deacetyl-thiocolchicine 1, (O-TFDP)thiocolchifoline 2, and (O-TFDP)-2-demethylthiocolchicine 3. Compound 1 was found to bind tubulin reversibly and to competitively inhibit colchicine binding. Methods for the incorporation of tritium and 14 C in these labels were developed. Conditions were found which caused labels to insert into solvent without photorearrangement of the colchicine skeleton. Catalytic base caused the α-diazo amide of 1 to rearrange to a triazole

  7. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    International Nuclear Information System (INIS)

    Ebersole, B.L.J.

    1985-01-01

    The localization of [ 3 H]-d-lysergic acid diethylamide ([ 3 H]LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with [ 3 H]LSD in vitro revealed substantial specific [ 3 H]LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received [ 3 H]LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies of brain areas from mice that received injections of [ 3 H]LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free [ 3 H]LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of [ 3 H]LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of [ 3 H]LSD binding in hippocampus was attributable to a lower density of sites labeled by [ 3 H]LSD. The pharmacological identify of [ 3 H]LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens

  8. DNA-binding cytotoxic alkaloids: comparative study of the energetics of binding of berberine, palmatine, and coralyne.

    Science.gov (United States)

    Bhadra, Kakali; Maiti, Motilal; Kumar, Gopinatha Suresh

    2008-12-01

    Deoxyribonucleic acid is the site of storage and retrieval of genetic information through interaction with proteins and other small molecules. In the present study, the interaction of two natural cytotoxic protoberberine plant alkaloids, berberine and palmatine, and a synthetic derivative, coralyne, with mammalian herring testis DNA was investigated using a combination of isothermal titration calorimetry, differential scanning calorimetry, and optical melting experiments to characterize the energetics of their binding. The binding constants of these alkaloids to DNA under identical conditions were evaluated from the UV melting data, and the enthalpy of binding was elucidated from isothermal titration studies. The binding constants of berberine, palmatine, and coralyne to DNA were found to be 1.15 x 10(4), 2.84 x 10(4), and 3.5 x 10(6) M(-1) at 20 degrees C in buffer of 20 mM [Na+]. Parsing of the free energy change of the interaction observed into polyelectrolytic and nonpolyelectrolytic components suggested that although these alkaloids are charged, the major contributor of about 75% of the binding free energy arises from the nonpolyelectrolytic forces. The binding in case of palmatine and coralyne was predominantly enthalpy driven with favoring smaller entropy terms, while that of berberine was favored by both negative enthalpy and positive entropy changes. Temperature dependence of the binding enthalpies determined from ITC studies in the range 20-40 degrees C was used to calculate the binding-induced change in heat capacity (DeltaC(o)(p)) values as -117, -135, and -157 cal/mol K, respectively, for berberine, palmatine, and coralyne. Taken together, the results suggest that the DNA binding of the planar synthetic coralyne is stronger and thermodynamically more favored compared to the buckled natural berberine and palmatine.

  9. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  10. UPF201 archaeal specific family members reveal structural similarity to RNA-binding proteins but low likelihood for RNA-binding function.

    Directory of Open Access Journals (Sweden)

    Krishnamurthy N Rao

    Full Text Available We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54 to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40% and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel beta-sheet and five alpha-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  11. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  12. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.

    Science.gov (United States)

    Hrle, Ajla; Maier, Lisa-Katharina; Sharma, Kundan; Ebert, Judith; Basquin, Claire; Urlaub, Henning; Marchfelder, Anita; Conti, Elena

    2014-01-01

    Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.

  13. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein.

    Science.gov (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V

    2013-11-29

    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo-fei; Wang, Yu; Xi, Lei; Liu, Jin; Wang, Hao; Du, Lin-fang, E-mail: dulinfang@scu.edu.cn

    2015-03-15

    The interaction of propyl gallate (PG) with human serum albumin (HSA) was investigated by fluorescence, far-UV CD and FT-IR spectroscopic methods as well as molecular docking. Fluorescence emission spectra demonstrated that the HSA fluorescence was quenched by PG through static quenching and energy transfer with the binding constants in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−29.64 KJ mol{sup −1}, ΔS=2.7 J mol{sup −1} K{sup −1}) indicated that both hydrophobic force and hydrogen bond interactions played a leading role in the formation of PG–HSA complex. The results also showed the existence of a single binding site, which was located in subdomain IIA (site I) as revealed by molecular docking and competitive binding experiments. Molecular docking studies further showed the participation of several amino acids in PG–HSA complexation, which stabilized by H-bonding systems. The synchronous fluorescence spectra showed that the binding of drug caused the environment of tryptophan residues became more polar. FT-IR and CD spectroscopic further showed that drug complexation altered protein conformation by a major reduction of α-helix inducing a partial protein destabilization. - Highlights: • The interaction between propyl gallate and HSA has been investigated. • HSA fluorescence is quenched by propyl gallate through static quenching mechanism. • Both hydrophobic force and hydrogen bond play major role in the binding process. • Site I of the HSA is found to be the main binding site for propyl gallate. • The structure of HSA has been changed upon the interaction with propyl gallate.

  15. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    Science.gov (United States)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  16. Binding Studies of Lamotrigine with Sera of Different Animal Species

    African Journals Online (AJOL)

    Erah

    into the mechanism of interaction, evaluate the effect of dielectric constant on binding affinity, and to determine the effect of ..... Physico-chemical aspects of protein binding of nimesulide, Ind J. Pharm Sci, 2005; 2: 243-246. 10. Dutta, SK, Basu, SK, Sen KK. Binding of diclofenac sodium with bovine serum albumin at different ...

  17. NMR studies on DNA binding specificity of the lac repressor

    NARCIS (Netherlands)

    Kopke Salinas, Roberto

    2005-01-01

    The thesis describes NMR structures of two protein-DNA complexes. The first structure shows how the protein, the DNA binding domain of lac repressor, recognizes its natural DNA binding site, by adaptation and read out of the nucleotide sequence. The second one shows how the DNA binding specificity

  18. Preliminary studies of 99mTc-PQQ-NMDAR binding and effect of specificity binding by mannitol

    International Nuclear Information System (INIS)

    Xingqin Zhou; Yanyan Kong; Guoxian Cao; Jiankang Zhang

    2013-01-01

    Pyrroloquinoline quinone (PQQ) is a powerful neuroprotectant that specifically binds to brain NMDA receptors and inhibits excitotoxicity. Imaging this binding reaction in the brain remains a long sought goal in this field of study, and one of the primary challenges remaining is enabling soluble labeled PQQ to pass the blood-brain barrier (BBB). Previously, our group successfully labeled PQQ with Technetium-99m ( 99m Tc), a metastable nuclear isomer used in radioactive isotope medical tests. In this work, we determined the specific binding of 99m Tc-PQQ and NMDAR by radioligand receptor assay. Ebselen (EB) and MK-801 both effectively inhibited 99m Tc-PQQ binding. We then investigated methods of opening the BBB using mannitol to enable entry to the brain by 99m Tc-PQQ. Our results showed that 7.5 mL/kg of 20 % mannitol effectively opened the BBB and 20 min was the optimum treatment time. Competition studies showed that mannitol did not affect the specific binding between 99m Tc-PQQ and NMDA receptors. Using this method, the amount of 99m Tc-PQQ uptake and retention was increased most significantly in the hippocampus and cortex, and re-opening the BBB did not affect binding. Together, our results demonstrate that the use of mannitol to open the BBB may contribute significantly to improving image quality by increasing the uptake amount of a water-soluble agent in brain. (author)

  19. Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-05-01

    Highlights: • The affinity of DCP to HSA is higher than DQ. • DCP and DQ have quenched the fluorescence emission spectrum of HSA by static quenching mechanism. • Electrostatic interactions are very important in HSA-DCP and HSA-DQ complexes. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of DQ changes the conformation of protein, on the contrary to DCP. - Abstract: The interactions of dichlorprop (DCP) and diquat dibromide (DQ) herbicides with human serum albumin (HSA) protein were studied by UV absorption, fluorescence, synchronous fluorescence and circular dichroism (CD) spectroscopy. Both DCP and DQ quenched the fluorescence emission spectrum of HSA through the static quenching mechanism. The Stern–Volmer quenching constant, binding constant, the number of binding sites and thermodynamic parameters were determined at 288 K, 298 K, 310 K and 318 K. In HSA-DCP and HSA-DQ systems, an increase in temperature led to a decrease in the Stern–Volmer quenching constant and binding constant. One binding site was obtained for DCP and DQ on HSA. It was found that DCP can bind to HSA with higher affinity than DQ. Negative ΔH and positive ΔS values were obtained for the binding processes between protein and herbicide molecules. This result displayed that electrostatic interactions play a major role in the formation of HSA-DCP and HSA-DQ complexes. The binding processes were exothermic reactions and spontaneous. In addition, synchronous fluorescence and CD spectra of HSA revealed that the binding of DCP to HSA did not cause a significant conformational change in protein, but the interaction of DQ with HSA led to an alteration in the protein structure.

  20. Identification of novel allosteric modulator binding sites in NMDA receptors: A molecular modeling study.

    Science.gov (United States)

    Kane, Lucas T; Costa, Blaise M

    2015-09-01

    The dysfunction of N-methyl-d-Aspartate receptors (NMDARs), a subtype of glutamate receptors, is correlated with schizophrenia, stroke, and many other neuropathological disorders. However, not all NMDAR subtypes equally contribute towards these disorders. Since NMDARs composed of different GluN2 subunits (GluN2A-D) confer varied physiological properties and have different distributions in the brain, pharmacological agents that target NMDARs with specific GluN2 subunits have significant potential for therapeutic applications. In our previous research, we have identified a family of novel allosteric modulators that differentially potentiate and/or inhibit NMDARs of differing GluN2 subunit composition. To further elucidate their molecular mechanisms, in the present study, we have identified four potential binding sites for novel allosteric modulators by performing molecular modeling, docking, and in silico mutations. The molecular determinants of the modulator binding sites (MBS), analysis of particular MBS electrostatics, and the specific loss or gain of binding after mutations have revealed modulators that have strong potential affinities for specific MBS on given subunits and the role of key amino acids in either promoting or obstructing modulator binding. These findings will help design higher affinity GluN2 subunit-selective pharmaceuticals, which are currently unavailable to treat psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  2. Mutagenesis of Ly49B reveals key structural elements required for promiscuous binding to MHC class I molecules and new insights into the molecular evolution of Ly49s.

    Science.gov (United States)

    Mickiewicz, Katarzyna M; Gays, Frances; Lewis, Richard J; Brooks, Colin G

    2014-02-15

    Ly49B is a potentially important immunoregulator expressed on mouse myeloid cells, and it is thus an unusual member of the wider Ly49 family whose members are ordinarily found on NK cells. Ly49B displays substantial sequence divergence from other Ly49s and in particular shares virtually no amino acid sequence identity with the residues that have been reported to bind to MHC class I (cI) ligands in other Ly49s. Despite this, we show in this study that the BALB/c, but not the C57, isoform of Ly49B displays promiscuous cI binding. Binding was not significantly affected by inactivation of any of the four predicted N-linked glycosylation sites of Ly49B, nor was it affected by removal of the unique 20-aa C-terminal extension found in Ly49B. However, transfer of these C-terminal 20 aa to Ly49A inhibited cI binding, as did the addition of a hemagglutinin tag to the C terminus of Ly49B, demonstrating unexpectedly that the C-terminal region of Ly49s can play a significant role in ligand binding. Systematic exchange of BALB/c and C57 residues revealed that Trp(166), Asn(167), and Cys(251) are of major importance for cI binding in Ly49B. These residues are highly conserved in the Ly49 family. Remarkably, however, Ly49B(BALB) variants that have C57 residues at positions 166 or 167, and are unable to bind cI multimers, regain substantial cI binding when amino acid changes are made at distal positions, providing an explanation of how highly divergent Ly49s that retain the ability to bind cI molecules might have evolved.

  3. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems

    Science.gov (United States)

    Shang, Xiaoran; Orr, Mona W.; Goodson, Jonathan R.; Galperin, Michael Y.; Yildiz, Fitnat H.; Lee, Vincent T.

    2015-01-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  4. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  5. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  6. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Science.gov (United States)

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  7. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Sanket Kaushik

    Full Text Available The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  8. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2014-03-01

    Full Text Available Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  9. Small world network strategies for studying protein structures and binding.

    Science.gov (United States)

    Taylor, Neil R

    2013-01-01

    Small world network concepts provide many new opportunities to investigate the complex three dimensional structures of protein molecules. This mini-review explores the published literature on using small-world network approaches to study protein structure, with emphasis on the different combinations of descriptors that have been tested, on studies involving ligand binding in protein-ligand complexes, and on protein-protein complexes. The benefits and success of small world network approaches, which change the focus from specific interactions to the local environment, even to non-local phenomenon, are described. The purpose is to show the different ways that small world network concepts have been used for building new computational models for studying protein structure and function, and for extending and improving existing modelling approaches.

  10. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  11. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X...... of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region...... ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications...

  12. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  13. Natural alkaloid Luotonin A and its affixed acceptor molecules: Serum albumin binding studies.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Kumar, Gujuluva Gangatharan Vinoth; Anitha, Kandasamy; Ravi, Lokesh; Raja, Jeyaraj Dhaveethu; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban

    2017-08-01

    Effective interaction of natural alkaloid Luotonin A (L) and its affixed acceptor molecules 1 and 2 with donor molecule as Bovine serum albumin (BSA) at various pH (4.0, 7.4 and 10.0) medium have been demonstrated using various conventional spectroscopic techniques. These analyses provide some valuable features on the interaction between BSA and acceptor molecules (L, 1 and 2). From the absorption and fluorescence spectral titration studies, the formation of ground-state complexes between the acceptor molecules (L, 1 and 2) and the BSA have been confirmed. The results of the afore titrations analysis reveal that, the strong binding of receptor 1 with BSA (K app 5.68×10 4 M -1 ; K SV 1.86×10 6 Lmol -1 ; K a 6.42×10 5 Lmol -1 ; K ass 8.09×10 6 M -1 ; ΔG -33.35kJ/mol) at physiological pH medium (7.4) than other receptor molecules 2 and L. The Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residues of BSA and acceptor molecules L, 1 and 2 during the interaction, are 28.85, 85.24 and 53.25 % respectively. The superior binding efficacy of acceptor 1 at physiological pH condition has been further confirmed by FT-IR and Raman spectral analysis methods. Moreover, theoretical docking studies of acceptors L, 1 and 2 towards HSA have been demonstrated to differentiate their binding behaviours. It reveals that, acceptor 1 has the strongest binding ability with HSA through two hydrogen bonding and the Atomic contact energy (ACE) value of -483.96kcal/mol. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcriptomic analyses of RNA-binding proteins reveal eIF3c promotes cell proliferation in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Tangjian; Li, Shengli; Chen, Di; Chen, Bing; Yu, Tao; Zhao, Fangyu; Wang, Qifeng; Yao, Ming; Huang, Shenglin; Chen, Zhiao; He, Xianghuo

    2017-05-01

    RNA-binding proteins (RBPs) play fundamental roles in the RNA life cycle. The aberrant expression of RBPs is often observed in human disease, including cancer. In this study, we screened for the expression levels of 1542 human RBPs in The Cancer Genome Atlas liver hepatocellular carcinoma samples and found 92 consistently upregulated RBP genes in HCC compared with normal samples. Additionally, we undertook a Kaplan-Meier analysis and found that high expression of 15 RBP genes was associated with poor prognosis in patients with HCC. Furthermore, we found that eIF3c promotes HCC cell proliferation in vitro as well as tumorigenicity in vivo. Gene Set Enrichment Analysis showed that high eIF3c expression is positively associated with KRAS, vascular endothelial growth factor, and Hedgehog signaling pathways, all of which are closely associated with specific cancer-related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which eIF3c promotes the development and progression of HCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry.

    Science.gov (United States)

    Zhang, Hui-Min; Yu, Xiu; Greig, Michael J; Gajiwala, Ketan S; Wu, Joe C; Diehl, Wade; Lunney, Elizabeth A; Emmett, Mark R; Marshall, Alan G

    2010-04-01

    Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution-phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT-KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild-type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.

  16. Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses.

    Directory of Open Access Journals (Sweden)

    Filipe G Vieira

    Full Text Available Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains, the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i the number of different OBPs can vary greatly between species; (ii the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.

  17. Receptor binding and cell entry of Old World arenaviruses reveal novel aspects of virus-host interaction.

    Science.gov (United States)

    Kunz, Stefan

    2009-05-10

    Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

  18. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides

    Science.gov (United States)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-01

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 106 M-1 to poly(A).poly(U), and 105 M-1 to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U) > poly(C).poly(G) > poly(I).poly(C) for both dyes.

  19. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A

    2015-01-01

    Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three...... specific nicotinic acetylcholine receptor interfaces....... by introduction of three point mutations, R104H, L112Q, and M114T, into the binding pocket of Lymnaea stagnalis acetylcholine-binding protein (Ls-AChBP). Cocrystallization with two agonists possessing distinct pharmacologic profiles, NS3920 [1-(6-bromopyridin-3-yl)-1,4-diazepane] and NS3573 [1-(5-ethoxypyridin-3...

  20. Synthesis, characterization, crystal structure and DNA-binding study ...

    Indian Academy of Sciences (India)

    BOLIN

    The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, cationic complexes 1a and 1b interact with DNA via weak intercalative or groove binding mode. (NOTE: See more examples of Graphical Abstracts in Journal website, http://www.ias.ac.in/chemsci/index.html under ...

  1. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple

  2. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  3. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    Science.gov (United States)

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  4. Homology modeling and docking of AahII-Nanobody complexes reveal the epitope binding site on AahII scorpion toxin.

    Science.gov (United States)

    Ksouri, Ayoub; Ghedira, Kais; Ben Abderrazek, Rahma; Shankar, B A Gowri; Benkahla, Alia; Bishop, Ozlem Tastan; Bouhaouala-Zahar, Balkiss

    2018-02-19

    Scorpion envenoming and its treatment is a public health problem in many parts of the world due to highly toxic venom polypeptides diffusing rapidly within the body of severely envenomed victims. Recently, 38 AahII-specific Nanobody sequences (Nbs) were retrieved from which the performance of NbAahII10 nanobody candidate, to neutralize the most poisonous venom compound namely AahII acting on sodium channels, was established. Herein, structural computational approach is conducted to elucidate the Nb-AahII interactions that support the biological characteristics, using Nb multiple sequence alignment (MSA) followed by modeling and molecular docking investigations (RosettaAntibody, ZDOCK software tools). Sequence and structural analysis showed two dissimilar residues of NbAahII10 CDR1 (Tyr27 and Tyr29) and an inserted polar residue Ser30 that appear to play an important role. Indeed, CDR3 region of NbAahII10 is characterized by a specific Met104 and two negatively charged residues Asp115 and Asp117. Complex dockings reveal that NbAahII17 and NbAahII38 share one common binding site on the surface of the AahII toxin divergent from the NbAahII10 one's. At least, a couple of NbAahII10 - AahII residue interactions (Gln38 - Asn44 and Arg62, His64, respectively) are mainly involved in the toxic AahII binding site. Altogether, this study gives valuable insights in the design and development of next generation of antivenom. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. DNA binding and cleavage studies of copper(II) complexes with 2'-deoxyadenosine modified histidine moiety.

    Science.gov (United States)

    Borowska, Justyna; Sierant, Malgorzata; Sochacka, Elzbieta; Sanna, Daniele; Lodyga-Chruscinska, Elzbieta

    2015-09-01

    This work is focused on the study of DNA binding and cleavage properties of 2'-deoxyadenosines modified with ester/amide of histidine (his(6)dA ester, his(6)dA amide) and their copper(II) complexes. To determine the coordination mode of the complex species potentiometric and spectroscopic (UV-visible, CD, EPR) studies have been performed. The analysis of electronic absorption and fluorescence spectra has been used to find the nature of the interactions between the compounds and calf thymus DNA (CT-DNA). There is significant influence of the -NH2 and -OCH3 groups on binding of the ligands or the complexes to DNA. Only amide derivative and its complex reveal intercalative ability. In the case of his(6)dA ester and Cu(II)-his(6)dA ester the main interactions can be groove binding. DNA cleavage activities of the compounds have been examined by gel electrophoresis. The copper complexes have promoted the cleavage of plasmid DNA, but none of the ligands exhibited any chemical nuclease activity. The application of different scavengers of reactive oxygen species provided a conclusion that DNA cleavage caused by copper complexes might occur via hydrolytic pathway.

  6. Binding of carbendazim to bovine serum albumin: Insights from experimental and molecular modeling studies

    Science.gov (United States)

    Li, Jinhua; Zhang, Yulei; Hu, Lin; Kong, Yaling; Jin, Changqing; Xi, Zengzhe

    2017-07-01

    Carbendazim (CBZ) is a widely used benzimidazole fungicide in agriculture to control a wide range of fruit and vegetable pathogens, which may lead to potential health hazards. To evaluate the potential toxicity of CBZ, the binding mechanism of bovine serum albumin (BSA) with CBZ was investigated by the fluorescence quenching technology, UV absorbance spectra, circular dichroism (CD), and molecular modeling. The fluorescence titration and UV absorbance spectra revealed that the fluorescence quenching mechanism of BSA by CBZ was a combined quenching process. In addition, the studies of CD spectra suggested that the binding of CBZ to BSA changed the secondary structure of protein. Furthermore, the thermodynamic functions of enthalpy change (ΔH0) and entropy change (ΔS0) for the reaction were calculated to be 24.87 kJ mol-1 and 162.95 J mol-1 K-1 according to Van't Hoff equation. These data suggested that hydrophobic interaction play a major role in the binding of CBZ to BSA, which was in good agreement with the result of molecular modeling study.

  7. Comparison of the Fibronectin-Binding Protein FNE from Streptococcus equi Subspecies equi with FNZ from S. equi Subspecies zooepidemicus Reveals a Major and Conserved Difference

    Science.gov (United States)

    Lindmark, Hans; Nilsson, Martin; Guss, Bengt

    2001-01-01

    The gene fnz from Streptococcus equi subspecies zooepidemicus encodes a cell surface protein that binds fibronectin (Fn). Fifty tested isolates of S. equi subspecies equi all contain DNA sequences with similarity to fnz. This work describes the cloning and sequencing of a gene, designated fne, with similarity to fnz from two S. equi subspecies equi isolates. The DNA sequences were found to be identical in the two strains, and sequence comparison of the fne and fnz genes revealed only minor differences. However, one base deletion was found in the middle of the fne gene and eight base pairs downstream of the altered reading frame there is a stop codon. An Fn-binding protein was purified from the growth medium of a subspecies equi culture. Determination of the NH2-terminal amino acid sequence and molecular mass, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that the purified protein is the gene product of the 5′-terminal half of fne. Fn-binding activity has earlier only been found in the COOH-terminal half of FNZ. By the use of a purified recombinant protein containing the NH2 half of FNZ, we provide here evidence that this half of the protein also harbors an Fn-binding domain. PMID:11292736

  8. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  9. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  10. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions.

    Science.gov (United States)

    Bryan, Louise C; Weilandt, Daniel R; Bachmann, Andreas L; Kilic, Sinan; Lechner, Carolin C; Odermatt, Pascal D; Fantner, Georg E; Georgeon, Sandrine; Hantschel, Oliver; Hatzimanikatis, Vassily; Fierz, Beat

    2017-10-13

    Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding.

    Science.gov (United States)

    Lambert, Abigail R; Sussman, Django; Shen, Betty; Maunus, Robert; Nix, Jay; Samuelson, James; Xu, Shuang-Yong; Stoddard, Barry L

    2008-04-01

    The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.

  12. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  13. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Nelson Laura D

    2012-06-01

    Full Text Available Abstract Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024. EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated

  14. Structural and binding studies of a C-type galactose-binding lectin from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sartim, Marco A; Pinheiro, Matheus P; de Pádua, Ricardo A P; Sampaio, Suely V; Nonato, M Cristina

    2017-02-01

    BJcuL is a snake venom galactoside-binding lectin (SVgalL) isolated from Bothrops jararacussu and is involved in a wide variety of biological activities including triggering of pro-inflammatory response, disruption of microbial biofilm structure and induction of apoptosis. In the present work, we determined the crystallographic structure of BJcuL, the first holo structure of a SVgalL, and introduced the fluorescence-based thermal stability assay (Thermofluor) as a tool for screening and characterization of the binding mechanism of SVgalL ligands. BJcuL structure revealed the existence of a porous and flexible decameric arrangement composed of disulfide-linked dimers related by a five-fold symmetry. Each monomer contains the canonical carbohydrate recognition domain, a calcium ion required for BJcuL lectinic activity and a sodium ion required for protein stabilization. BJcuL thermostability was found to be induced by calcium ion and galactoside sugars which exhibit hyperbolic saturation profiles dependent on ligand concentration. Serendipitously, the gentamicin group of aminoglycoside antibiotics (gAGAs) was also identified as BJcuL ligands. On contrast, gAGAs exhibited a sigmoidal saturation profile compatible with a cooperative mechanism of binding. Thermofluor, hemagglutination inhibition assay and molecular docking strategies were used to identify a distinct binding site in BJcuL localized at the dimeric interface near the fully conserved intermolecular Cys86-Cys86 disulfide bond. The hybrid approach used in the present work provided novel insights into structural behavior and functional diversification of SVgaLs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump.

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm; Amler, Evzen

    2017-01-01

    Hydrolysis of ATP by Na + /K + -ATPase, a P-Type ATPase, catalyzing active Na + and K + transport through cellular membranes leads transiently to a phosphorylation of its catalytical α -subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp 369 to allow the transfer of ATP's terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ -phosphate group of ATP to the Asp 369 is achieved, analogous molecular modeling of the M 4 -M 5 loop of ATPase was performed using the crystal data of Na + /K + -ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr 338 and Ile 760 of the α 2 -subunit of Na + /K + -ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe 475 in the N-domain, the other one close to Asp 369 in the P-domain. However, binding of Mg 2+ •ATP to any of these sites in the "open conformation" may not lead to phosphorylation of Asp 369 . Additional conformations of the cytoplasmic loop were found wobbling between "open conformation"  "semi-open conformation  "closed conformation" in the absence of 2Mg 2+ •ATP. The cytoplasmic loop's conformational change to the "semi-open conformation"-characterized by a hydrogen bond between Arg 543 and Asp 611 -triggers by binding of 2Mg 2+ •ATP to a single ATP site and conversion to the "closed conformation" the phosphorylation of Asp 369 in the P-domain, and hence the start of Na + /K + -activated ATP hydrolysis.

  16. MxaJ structure reveals a periplasmic binding protein-like architecture with unique secondary structural elements.

    Science.gov (United States)

    Myung Choi, Jin; Cao, Thinh-Phat; Wouk Kim, Si; Ho Lee, Kun; Haeng Lee, Sung

    2017-07-01

    MxaJ is a component of type II methanol dehydrogenase (MDH) that mediates electron transfer during methanol oxidation in methanotrophic bacteria. However, little is known about how MxaJ structurally cooperates with MDH and Cytochrome c L . Here, we report for the first time the crystal structure of MxaJ. MxaJ consists of eight α-helices and six β-strands, and resembles the "bi-lobate" folding architecture found in periplasmic binding proteins. Distinctive features of MxaJ include prominent loops and a β-strand around the hinge region supporting the ligand-binding cavity, which might provide a more favorable framework for interacting with proteins rather than small molecules. Proteins 2017; 85:1379-1386. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites.

    Science.gov (United States)

    Radka, Christopher D; DeLucas, Lawrence J; Wilson, Landon S; Lawrenz, Matthew B; Perry, Robert D; Aller, Stephen G

    2017-07-01

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.

  18. NMR-based modelling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids

    NARCIS (Netherlands)

    Tomasell, S.; Ragona, L.; Zetta, L.; Assfalg, M.; Ferranti, P.; Longhi, R.; Bonvin, A.M.J.J.; Molinari, H.

    2007-01-01

    Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the

  19. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase "Asian" variant.

    Science.gov (United States)

    Larson, Heather N; Weiner, Henry; Hurley, Thomas D

    2005-08-26

    Mitochondrial aldehyde dehydrogenase (ALDH2) is the major enzyme that oxidizes ethanol-derived acetaldehyde. A nearly inactive form of the enzyme, ALDH2*2, is found in about 40% of the East Asian population. This variant enzyme is defined by a glutamate to lysine substitution at residue 487 located within the oligomerization domain. ALDH2*2 has an increased Km for its coenzyme, NAD+, and a decreased kcat, which lead to low activity in vivo. Here we report the 2.1 A crystal structure of ALDH2*2. The structure shows a large disordered region located at the dimer interface that includes much of the coenzyme binding cleft and a loop of residues that form the base of the active site. As a consequence of these structural changes, the variant enzyme exhibits rigid body rotations of its catalytic and coenzyme-binding domains relative to the oligomerization domain. These structural perturbations are the direct result of the inability of lysine 487 to form important stabilizing hydrogen bonds with arginines 264 and 475. Thus, the elevated Km for coenzyme exhibited by this variant probably reflects the energetic penalty for reestablishing this site for productive coenzyme binding, whereas the structural alterations near the active site are consistent with the lowered Vmax.

  20. Atomic model of human Rcd-1 reveals an armadillo-like-repeat protein with in vitro nucleic acid binding properties.

    Science.gov (United States)

    Garces, Robert G; Gillon, Wanda; Pai, Emil F

    2007-02-01

    Rcd-1, a protein highly conserved across eukaryotes, was initially identified as a factor essential for nitrogen starvation-invoked differentiation in fission yeast, and its Saccharomyces cerevisiae homolog, CAF40, has been identified as part of the CCR4-NOT transcription complex, where it interacts with the NOT1 protein. Mammalian homologs are involved in various cellular differentiation processes including retinoic acid-induced differentiation and hematopoetic cell development. Here, we present the 2.2 A X-ray structure of the highly conserved region of human Rcd-1 and investigate possible functional abilities of this and the full-length protein. The monomer is made up of six armadillo repeats forming a solvent-accessible, positively-charged cleft 21-22 A wide that, in contrast to other armadillo proteins, stays fully exposed in the dimer. Prompted by this finding, we established that Rcd-1 can bind to single- and double-stranded oligonucleotides in vitro with the affinity of G/C/T > A. Mutation of an arginine residue within the cleft strongly reduced or abolished oligonucleotide binding. Rcd-1's ability to bind to nucleic acids, in addition to the previously reported protein-protein interaction with NOT1, suggests a new feature in Rcd-1's role in regulation of overall cellular differentiation processes.

  1. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  2. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    International Nuclear Information System (INIS)

    Hu, Dong; Wu, Jing; Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan; Xiao, Jian; Hu, Fengyu; Yang, Yabo; Zhang, Rongbo

    2015-01-01

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy

  3. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong, E-mail: austhudong@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wu, Jing, E-mail: wujing8008@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Wang, Wan; Mu, Min; Zhao, Runpeng; Xu, Xuewei; Chen, Zhaoquan [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Hu, Fengyu; Yang, Yabo [Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Rongbo, E-mail: lory456@126.com [Institute of Infection and Immunology, Department of Medical Immunology, Medical School, Anhui University of Science and Technology, Huainan (China)

    2015-05-29

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domain and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.

  4. The Crystal Structure of Rv0813c from Mycobacterium tuberculosis Reveals a New Family of Fatty Acid-Binding Protein-Like Proteins in Bacteria▿

    Science.gov (United States)

    Shepard, William; Haouz, Ahmed; Graña, Martin; Buschiazzo, Alejandro; Betton, Jean-Michel; Cole, Stewart T.; Alzari, Pedro M.

    2007-01-01

    The gene Rv0813c from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is conserved within the order Actinomycetales but absent elsewhere. The crystal structure of Rv0813c reveals a new family of proteins that resemble the fatty acid-binding proteins (FABPs) found in eukaryotes. Rv0813c adopts the 10-stranded β-barrel fold typical of FABPs but lacks the double-helix insert that covers the entry to the binding site in the eukaryotic proteins. The barrel encloses a deep cavity, at the bottom of which a small cyclic ligand was found to bind to the hydroxyl group of Tyr192. This residue is part of a conserved Arg-X-Tyr motif much like the triad that binds the carboxylate group of fatty acids in FABPs. Most of the residues forming the internal surface of the cavity are conserved in homologous protein sequences found in CG-rich prokaryotes, strongly suggesting that Rv0813c is a member of a new family of bacterial FABP-like proteins that may have roles in the recognition, transport, and/or storage of small molecules in the bacterial cytosol. PMID:17172346

  5. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  6. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    International Nuclear Information System (INIS)

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-01-01

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg 2+ . • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg 2+ , which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics

  7. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  8. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO

    DEFF Research Database (Denmark)

    Diehl, Carl; Akke, Mikael; Bekker-Jensen, Simon

    2016-01-01

    We have recently discovered that the ZZ zinc finger domain represents a novel small ubiquitin-like modifier (SUMO) binding motif. In this study we identify the binding epitopes in the ZZ domain of CBP (CREB-binding protein) and SUMO1 using NMR spectroscopy. The binding site on SUMO1 represents a ...

  9. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  10. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA

    Science.gov (United States)

    Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad

    2018-03-01

    DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH analysis, viscosity measurements and molecular docking.

  11. Experimental strategies for studying transcription factor-DNA binding specificities.

    Science.gov (United States)

    Geertz, Marcel; Maerkl, Sebastian J

    2010-12-01

    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.

  12. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts.

    Science.gov (United States)

    Pelkonen, Laura; Tengvall-Unadike, Unni; Ruponen, Marika; Kidron, Heidi; Del Amo, Eva M; Reinisalo, Mika; Urtti, Arto

    2017-11-15

    Melanin pigment is a negatively charged polymer found in pigmented human tissues. In the eye, iris, ciliary body, choroid and retinal pigment epithelium (RPE) are heavily pigmented. Several drug molecules are known to bind to melanin, but larger sets of drugs have not been compared often in similar test conditions. In this study, we introduce a powerful tool for screening of melanin binding. The binding of a set of 34 compounds to isolated porcine RPE melanin was determined by cassette (n-in-one) dosing in rapid equilibrium dialysis inserts and the binding was quantitated with LC-MS/MS analytics. The compounds represented large variety in melanin binding (from 8.6%, ganciclovir) to over 95% bound (ampicillin and ciprofloxacin). The data provides information on melanin binding of small molecular weight compounds that are used for ocular (e.g. brinzolamide, ganciclovir) and systemic (e.g. tizanidine, indomethacin) therapy. Interestingly, competition among compounds was seen for melanin binding and the binding did not show any correlation with plasma protein binding. These results increase the understanding of melanin binding of ocular drugs and can be further exploited to predict pharmacokinetics in the eye. Pigment binding provides an interesting option for improved drug distribution to retina and choroid that are difficult target tissues in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site

    Energy Technology Data Exchange (ETDEWEB)

    Mochalkin, Igor; Lightle, Sandra; Narasimhan, Lakshmi; Bornemeier, Dirk; Melnick, Michael; VanderRoest, Steven; McDowell, Laura (Pfizer)

    2008-04-02

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 {angstrom} resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC{sub 50} - 18 {mu}M in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.

  14. Missense mutation in the second RNA binding domain reveals a role for Prkra (PACT/RAX during skull development.

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    Full Text Available Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.

  15. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains.

    Science.gov (United States)

    Yuan, Yuan; Cao, Duanfang; Zhang, Yanfang; Ma, Jun; Qi, Jianxun; Wang, Qihui; Lu, Guangwen; Wu, Ying; Yan, Jinghua; Shi, Yi; Zhang, Xinzheng; Gao, George F

    2017-04-10

    The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.

  16. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  17. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  18. Binding of ciprofloxacin by humic substances: a molecular dynamics study.

    Science.gov (United States)

    Aristilde, Ludmilla; Sposito, Garrison

    2010-01-01

    A comprehensive assessment of the potential impacts of antimicrobials released into the environment requires an understanding of their sequestration by natural particles. Of particular interest are the strong interactions of antimicrobials with natural organic matter (NOM), which are believed to reduce their bioavailability, retard their abiotic and biotic degradation, and facilitate their persistence in soils and aquatic sediments. Molecular dynamics (MD) relaxation studies of a widely used fluoroquinolone antibiotic, ciprofloxacin (Cipro), interacting with a model humic substance (HS) in a hydrated environment, were performed to elucidate the mechanisms of these interactions. Specifically, a zwitterionic Cipro molecule, the predominant species at circumneutral pH, was reacted either with protonated HS or deprotonated HS bearing Ca, Mg, or Fe(II) cations. The HS underwent conformational changes through rearrangements of its hydrophobic and hydrophilic regions and disruption of its intramolecular H-bonds to facilitate favorable intermolecular H-bonding interactions with Cipro. Complexation of the metal cations with HS carboxylates appeared to impede binding of the positively charged amino group of Cipro with these negatively charged HS complexation sites. On the other hand, an outer-sphere complex between Cipro and the HS-bound cation led to ternary Cipro-metal-HS complexes in the case of Mg-HS and Fe(II)-HS, but no such bridging interaction occurred with Ca-HS. The results suggested that the ionic potential (valence/ionic radius) of the divalent cation may be a determining factor in the formation of the ternary complex, with high ionic potential favoring the bridging interaction. Environ. Toxicol. Chem. 2010;29:90-98. (c) 2009 SETAC.

  19. Studies on folate binding and a radioassay for serum and whole blood folate using goat milk as binding agent

    International Nuclear Information System (INIS)

    Piyasena, R.D.; Weerasekera, D.A.; Hettiaratchi, N.; Wikramanayake, T.W.; Sri Lanka Univ., Peradeniya Campus. Nuclear Medicine Unit)

    1977-01-01

    Preparations of cow, goat, buffalo, and human milk in addition to pig plasma were tested for folate binding properties. Of these, only pig plasma and goat milk showed sufficient binding to enable use as binding agents in a radioassay for serum and whole blood folate. The binding of folate by cow mild preparations in particular was found to be very poor. (orig.) [de

  20. Study of Binding between Protein A and Immunoglobulin G Using a Surface Tension Probe

    OpenAIRE

    Yang, L.; Biswas, M. E.; Chen, P.

    2003-01-01

    Molecular interactions and binding are one of the most important and fundamental properties in the study of biochemical and biomedical systems. The understanding of such interactions and binding among biomolecules forms the basis for the design and processing of many biotechnological applications, such as bioseparation and immunoadsorption. In this study, we present a novel method to probe molecular interactions and binding based on surface tension measurement. This method complements convent...

  1. Fluorescence spectroscopic studies on binding of a flavonoid ...

    Indian Academy of Sciences (India)

    Unknown

    Human serum albumin; bovine serum albumin; quercetin; energy transfer; binding constant. 1. Introduction. Serum albumins are abundantly found in blood plasma and are often termed transport proteins.1–4 They are circulated in the body several times and act as carri- ers for numerous exogenous and endogenous com-.

  2. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    Science.gov (United States)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  3. Crystal Structure of the Ubiquitin-like Domain-CUT Repeat-like Tandem of Special AT-rich Sequence Binding Protein 1 (SATB1) Reveals a Coordinating DNA-binding Mechanism*

    Science.gov (United States)

    Wang, Zheng; Yang, Xue; Guo, Shuang; Yang, Yin; Su, Xun-Cheng; Shen, Yuequan; Long, Jiafu

    2014-01-01

    SATB1 is essential for T-cell development and growth and metastasis of multitype tumors and acts as a global chromatin organizer and gene expression regulator. The DNA binding ability of SATB1 plays vital roles in its various biological functions. We report the crystal structure of the N-terminal module of SATB1. Interestingly, this module contains a ubiquitin-like domain (ULD) and a CUT repeat-like (CUTL) domain (ULD-CUTL tandem). Detailed biochemical experiments indicate that the N terminus of SATB1 (residues 1–248, SATB1(1–248)), including the extreme 70 N-terminal amino acids, and the ULD-CUTL tandem bind specifically to DNA targets. Our results show that the DNA binding ability of full-length SATB1 requires the contribution of the CUTL domain, as well as the CUT1-CUT2 tandem domain and the homeodomain. These findings may reveal a multiple-domain-coordinated mechanism whereby SATB1 recognizes DNA targets. PMID:25124042

  4. Crystal structure of the ubiquitin-like domain-CUT repeat-like tandem of special AT-rich sequence binding protein 1 (SATB1) reveals a coordinating DNA-binding mechanism.

    Science.gov (United States)

    Wang, Zheng; Yang, Xue; Guo, Shuang; Yang, Yin; Su, Xun-Cheng; Shen, Yuequan; Long, Jiafu

    2014-10-03

    SATB1 is essential for T-cell development and growth and metastasis of multitype tumors and acts as a global chromatin organizer and gene expression regulator. The DNA binding ability of SATB1 plays vital roles in its various biological functions. We report the crystal structure of the N-terminal module of SATB1. Interestingly, this module contains a ubiquitin-like domain (ULD) and a CUT repeat-like (CUTL) domain (ULD-CUTL tandem). Detailed biochemical experiments indicate that the N terminus of SATB1 (residues 1-248, SATB1((1-248))), including the extreme 70 N-terminal amino acids, and the ULD-CUTL tandem bind specifically to DNA targets. Our results show that the DNA binding ability of full-length SATB1 requires the contribution of the CUTL domain, as well as the CUT1-CUT2 tandem domain and the homeodomain. These findings may reveal a multiple-domain-coordinated mechanism whereby SATB1 recognizes DNA targets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies.

    Science.gov (United States)

    Raffel, David M; Chen, Wei

    2004-07-01

    The norepinephrine transporter (NET) is the carrier that drives the neuronal norepinephrine uptake mechanism (uptake1) in mammalian hearts. The radioligand [3H]mazindol binds with high affinity to NET. In this study, the kinetics of [3H]mazindol binding to NET were measured using a rat heart membrane preparation. Results from these studies were used to set up saturation binding assays designed to measure cardiac NET densities (Bmax) and competitive inhibition assays designed to measure inhibitor binding affinities (KI) for NET. Saturation binding assays measured NET densities in rat, rabbit, and canine hearts. Assay reproducibility was assessed and the effect of NaCl concentration on [3H]mazindol binding to NET was studied using membranes from rat and canine hearts. Specificity of [3H]mazindol binding to NET was determined in experiments in which the neurotoxin 6-hydroxydopamine (6-OHDA) was used to selectively destroy cardiac sympathetic nerve terminals in rats. Competitive inhibition studies measured KI values for several NET inhibitors and substrates. In kinetic studies using rat heart membranes, [3H]mazindol exhibited a dissociation rate constant koff=0.0123+/-0.0007 min(-1) and an association rate constant kon=0.0249+/-0.0019 nM(-1)min(-1). In saturation binding assays, [3H]mazindol binding was monophasic and saturable in all cases. Increasing the concentration of NaCl in the assay buffer increased binding affinity significantly, while only modestly increasing Bmax. Injections of 6-OHDA in rats decreased measured cardiac NET Bmax values in a dose-dependent manner, verifying that [3H]mazindol binds specifically to NET from sympathetic nerve terminals. Competitive inhibition studies provided NET inhibitor and substrate KI values consistent with previously reported values. These studies demonstrate the high selectivity of [3H]mazindol binding for the norepinephrine transporter in membrane preparations from mammalian hearts.

  6. Marine natural products acting on the acetylcholine-binding protein and nicotinic receptors: from computer modeling to binding studies and electrophysiology.

    Science.gov (United States)

    Kudryavtsev, Denis; Makarieva, Tatyana; Utkina, Natalia; Santalova, Elena; Kryukova, Elena; Methfessel, Christoph; Tsetlin, Victor; Stonik, Valentin; Kasheverov, Igor

    2014-03-28

    For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([¹²⁵I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (K(i) 0.5-1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [¹²⁵I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (K(i) ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.

  7. Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology

    Directory of Open Access Journals (Sweden)

    Denis Kudryavtsev

    2014-03-01

    Full Text Available For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP, a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs, was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5–1.3 μM. With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.

  8. Substance P: binding properties and studies on cellular responses in guinea pig macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, H.P.; Wolters, K.; Toyka, K.V.

    1986-05-15

    The neuropeptide Substance P (SP) has been recognized to modulate functional activities of inflammatory cells. The authors have previously shown that it mediates macrophage activation. In this study they examined binding characteristics of SP and searched for additional evidence of heightened metabolic activity of guinea pig peritoneal macrophages upon challenge with this peptide. Radioligand studies indicated the existence of a homogeneous class of specific binding sites with high affinity for SP on macrophages. Scatchard analysis yielded an apparent K/sub D/ of 1.9 +/- 0.4 x 10/sup -8/ M (range: 1.4 to 2.4 x 10/sup -8/ M), which was confirmed by kinetic studies. Binding was dose related, saturable, reversible, and could be inhibited by the SP antagonist (D-Pro/sup 2/, D-Phe/sup 7/, D-Trp/sup 9/)-SP. Examination of peptide structural requirements revealed that both the COOH- and NH/sub 2/-terminus contribute to receptor-ligand interaction. Other members of the tachykinin group of peptides were devoid of stimulatory action on macrophages. Cellular responses after engagement of the receptor sites by SP included downregulation of the membrane-associated enzyme 5'-nucleotidase and stimulation of synthesis and release of arachidonic acid metabolites, as well as of the lysosomal enzyme ADGase. These actions were specific as evidenced by immunoabsorption experiments. The findings demonstrate that macrophage activation afforded by SP is effected through a receptor-mediated mechanism. Liberation of proinflammatory and immunomodulating substances in response to SP may be relevant to the pathogenesis of neuroinflammatory disease.

  9. Synthesis, Characterization, and Saccharide Binding Studies of Bile Acid − Porphyrin Conjugates

    Directory of Open Access Journals (Sweden)

    Vladimír Král

    2007-01-01

    Full Text Available Synthesis and characterization of bile acid-porphyrin conjugates (BAPs are reported. Binding of saccharides with BAPs in aqueous methanol was studied by monitoring changes in the visible absorption spectral of the porphyrin-moieties. Although these studies clearly showed absorbance changes, suggesting quite high if non-selective binding, the mass spectral studies do not unambiguously support these results.

  10. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    Science.gov (United States)

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  11. Molecular simulations of lactose-bound and unbound forms of the FaeG adhesin reveal critical amino acids involved in sugar binding.

    Science.gov (United States)

    Baker, Joseph L; Jafri, Heba

    2016-11-01

    F4 fimbriae are protein filaments found in enterotoxigenic Escherichia coli cells and are implicated in the process of bacterial infection due to their function as bacterial adhesins. These filaments are comprised from several proteins, but the bacterial adhesin FaeG, which is a lactose-binding protein, is the major subunit comprising F4 fimbriae. Crystal structures for three variants of the FaeG protein were recently solved, including the ad variant of FaeG that was crystallized in complex with lactose. However, the dynamics of the FaeG protein bound to lactose have not been explored previously using molecular dynamics simulations. Therefore, in order to study the dynamical interactions between the FaeG ad variant and lactose, we have carried out the first all-atom molecular dynamics simulations of this system. We have also probed the role of crystallographic water molecules on the stability of lactose in the FaeG binding site, and have simulated seven FaeG mutants to probe the influence of amino acid substitutions on the ability of FaeG to bind lactose effectively. Our simulations agree well with experimental results for the influence of mutations on lactose binding, provide dynamical insights into the interactions of FaeG with lactose, and also suggest the possibility of additional regions of the FaeG protein that may act as secondary lactose binding sites. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study.

    Science.gov (United States)

    Das, Somnath; Islam, Md Maidul; Jana, Gopal Chandra; Patra, Anirudha; Jha, Pradeep K; Hossain, Maidul

    2017-07-01

    In this paper, the comparative binding behavior of antimalarial drug azure A, azure B and azure C with bovine serum albumin (BSA) has been studied. The interaction has been confirmed by multispectroscopic (UV, fluorescence, Fourier transform infrared (FT-IR), and circular dichroism) and molecular docking techniques. The experimental results show that azure B has the highest BSA binding affinity followed by azure A and azure C. The experimental evidence of binding showed a static quenching mechanism in the interaction azures with BSA. The isothermal titration calorimetry result reveals that the binding was exothermic with positive entropy contribution in each case. The thermodynamic parameters ΔH, ΔG, and ΔS at 25°C were calculated, which indicates that the weak van der Waals forces and hydrogen bonding rather than the hydrophobic effect played an important role in the interaction. According to the theory of Förster nonradiative energy transfer, the distance (r) between the donor (BSA) and acceptor azures found to be azures-BSA system. Overall, experimental studies characterize the interaction dynamics and energetics of the binding of three toxic analogs towards the physiologically relevant serum albumins. We hope, the outcome of this work will be most helpful for synthesizing a new type of phenothiazinium derivatives of the better therapeutic application. Copyright © 2017 John Wiley & Sons, Ltd.

  13. New silver(I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies

    Science.gov (United States)

    Movahedi, Elaheh; Rezvani, Ali Reza

    2017-07-01

    A novel diazafluorene based complex with silver, [Ag(dian)2 ] NO3 , where dian is N-(4,5-diazafluoren-9-ylidene)aniline, has been prepared and characterized by elemental analysis, IR spectroscopy, 1HNMR, UV-Vis spectroscopy and cyclic voltammetry. In order to explore the relationship between the structure and biological properties, DNA binding propensity and in vitro antibacterial property have also been studied. The mode of DNA-complex interaction has been investigated by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation, circular dichroism spectroscopy and cyclic voltammetry. The results reveal that the complex binds to CT-DNA in a moderate intercalation capability with the partial insertion of a planar dian ligand between the base stacks of double-stranded DNA with binding constant (Kb) of 2.4 × 105 M-1. The viscosities and CD spectra of the DNA provide strong evidence for the intercalation. An in vitro antibacterial efficacy of the Ag(I) complex on a series of Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) indicates that the complex exhibits a marked antibacterial activity. The minimum inhibitory concentrations of the complex indicate that it exhibits much higher antibacterial effect on standard bacterial strains of Escherichia coli and Staphylococcus aureus than those of silver nitrate, silver sulfadiazine. The bacterial inhibitions of the silver(I) complex are closely agreed to its DNA binding affinities.

  14. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    OpenAIRE

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Tw...

  15. The screening and functional study of proteins binding with the BmNPV polyhedrin promoter.

    Science.gov (United States)

    Yu, Wei; Li, Jia; Wang, Meihui; Quan, Yanping; Chen, Jian; Nie, Zuoming; Lv, Zhengbing; Zhang, Yaozhou

    2012-05-06

    The polyhedrin gene promoter has an essential role in regulating foreign gene expression in baculovirus expression vector systems (BEVS); however, the high-level transcription mechanism is still unknown. One-hybrid screening in yeast is a powerful way of identifying rapidly heterologous transcription factors that can interact with the polyhedrin promoter DNA sequence. In the current study, total RNA was extracted from the fat bodies of fifth-instar silkworm larvae that had been infected with Bombyx mori nuclear polyhedrosis virus (BmNPV) for 5 days; complementary DNA (cDNA) was then generated using reverse-transcription (RT)-PCR to construct a silkworm gene expression library. Key polyhedrin promoter bait sequences were synthesized to generate a bait yeast strain, which was used to screen the one-hybrid cDNA library. In total, 12 positive yeast colonies were obtained from the SD/-Leu/AbA plates; sequencing analysis showed that they belong to two different protein cDNA colonies. Positive colonies underwent bioinformatics analysis, which revealed one colony to be ribosomal proteins [B. mori ribosomal protein SA (BmRPSA)] and the other to be NPV DNA-binding proteins (DBP). To further verify the regulatory function of these two protein groups, transient expression vectors (pSK-IE-dbp and pSK-IE-BmRPSA) were constructed. The recombinant plasmids were then transfected into cultured B. mori N (BmN) cells, which had been infected with a recombinant bacmid containing the gene encoding luciferase (luc). The results showed that overexpression of either dbp or BmRPSA upregulated the polh promoter-driven transcription of luc in BmN cells. In addition, dbp or BmRPSA RNA interference (RNAi) resulted in the downregulation of luciferase reporter expression in BmN cells, demonstrating that DBP and BmRPSA are important for luc transcription. EMSA results further confirmed that DBP could directly bind to the conserved single-stranded polh promoter region in intro. However, EMSA

  16. The screening and functional study of proteins binding with the BmNPV polyhedrin promoter

    Directory of Open Access Journals (Sweden)

    Yu Wei

    2012-05-01

    Full Text Available Abstract Background The polyhedrin gene promoter has an essential role in regulating foreign gene expression in baculovirus expression vector systems (BEVS; however, the high-level transcription mechanism is still unknown. One-hybrid screening in yeast is a powerful way of identifying rapidly heterologous transcription factors that can interact with the polyhedrin promoter DNA sequence. In the current study, total RNA was extracted from the fat bodies of fifth-instar silkworm larvae that had been infected with Bombyx mori nuclear polyhedrosis virus (BmNPV for 5 days; complementary DNA (cDNA was then generated using reverse-transcription (RT-PCR to construct a silkworm gene expression library. Key polyhedrin promoter bait sequences were synthesized to generate a bait yeast strain, which was used to screen the one-hybrid cDNA library. Results In total, 12 positive yeast colonies were obtained from the SD/-Leu/AbA plates; sequencing analysis showed that they belong to two different protein cDNA colonies. Positive colonies underwent bioinformatics analysis, which revealed one colony to be ribosomal proteins [B. mori ribosomal protein SA (BmRPSA] and the other to be NPV DNA-binding proteins (DBP. To further verify the regulatory function of these two protein groups, transient expression vectors (pSK-IE-dbp and pSK-IE-BmRPSA were constructed. The recombinant plasmids were then transfected into cultured B. mori N (BmN cells, which had been infected with a recombinant bacmid containing the gene encoding luciferase (luc. The results showed that overexpression of either dbp or BmRPSA upregulated the polh promoter-driven transcription of luc in BmN cells. In addition, dbp or BmRPSA RNA interference (RNAi resulted in the downregulation of luciferase reporter expression in BmN cells, demonstrating that DBP and BmRPSA are important for luc transcription. EMSA results further confirmed that DBP could directly bind to the conserved single-stranded polh

  17. Binding of the Galanthus nivalis Agglutinin to Thymocytes Reveals Alterations in Surface Glycosylation during T-Cell Development

    Czech Academy of Sciences Publication Activity Database

    Šinkora, Jiří; Kolínská, Jiřina; Řeháková, Zuzana; Černý, J.; Doubravská, L.

    2002-01-01

    Roč. 55, - (2002), s. 196-203 ISSN 0300-9475 R&D Projects: GA ČR GA303/99/0197 Institutional research plan: CEZ:AV0Z5020903 Keywords : thymocytes reveals * agglutinin * lymphocytes Subject RIV: EE - Microbiology, Virology Impact factor: 1.782, year: 2002

  18. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  19. Comparative study of the human ficolins reveals unique features of Ficolin-3 (Hakata antigen)

    DEFF Research Database (Denmark)

    Hummelshoj, Tina; Fog, Lea Munthe; Madsen, Hans O

    2007-01-01

    The ficolins and mannose-binding lectin (MBL) are collagen-like defence proteins that serve as recognition molecules in lectin complement pathway. Differential features that may indicate diverse functions of these proteins are poorly understood. In this study we compared important biological...... features of the ficolins and MBL. We investigated the tissue distribution of the FCN1-3 and the MBL2 genes encoding the ficolins and MBL by quantitative PCR. Recombinant proteins were produced and structural and biological characteristics were investigated and compared. Our main findings were that FCN3 m......RNA was highly expressed in the liver and lung compared with the other genes revealing the lung as the tissue with the highest FCN3 expression pattern. Ficolin-3 revealed higher complement activating capacity compared with Ficolin-2, MBL and Ficolin-1 and was highly resistant to bacterial collagenase treatment...

  20. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A.

    2013-07-01

    Tamoxifen (TMX) is widely used for the breast cancer treatment and is known as chemopreventive agent. Curcumin (CUR) is natural phenolic compound with broad spectrum of biological activity e.g. anti-inflammatory, antimicrobial, antiviral, antifungal and chemopreventive. Combination of tamoxifen and curcumin could be more effective with lower toxicity than each agent alone in use for the treatment or chemoprevention of breast cancer. Binding of drugs to serum albumin is an important factor, which determines toxicity and therapeutic dosage of the drugs. When two drugs are administered together the competition between them for the binding site on albumin can result in a decrease in bound fraction and an increase in the concentration of free biologically active fraction of drug.

  1. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun

    2015-07-16

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  2. Structural study of LEDGF/p75 binding partners

    Czech Academy of Sciences Publication Activity Database

    Těšina, Petr; Čermáková, Kateřina; Procházková, Kateřina; Hořejší, Magdalena; Christ, F.; De Rijck, J.; Veverka, Václav; Řezáčová, Pavlína

    2013-01-01

    Roč. 20, č. 1 (2013), s. 12-12 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] R&D Projects: GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : LEDGF/p75 * HIV * integrase-binding domain Subject RIV: EB - Genetics ; Molecular Biology

  3. EPR studies of cooperative binding of Cu (II) to hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Tabak, M.

    1983-07-01

    The investigation of the relative affinities of the two pairs of hemoglobin copper sites by monitoring the EPR spectra of the complexes formed by the reaction of copper with deoxyhemoglobin is reported. A model in which two sites are assumed to accept copper ions in a noncooperative way is not able to predict the experimental results. Thus it is conclude that the binding of these ions to hemoglobin is a cooperative phenomenon. (Author) [pt

  4. A molecular dynamics study of human serum albumin binding sites.

    Science.gov (United States)

    Artali, Roberto; Bombieri, Gabriella; Calabi, Luisella; Del Pra, Antonio

    2005-01-01

    A 2.0 ns unrestrained Molecular Dynamics was used to elucidate the geometric and dynamic properties of the HSA binding sites. The structure is not stress affected and the rmsds calculated from the published crystallographic data are almost constant for all the simulation time, with an averaged value of 2.4A. The major variability is in the C-terminus region. The trajectory analysis of the IIA binding site put in evidence fast oscillations for the Cgamma@Leu203...Cgamma@Leu275 and Cgamma@Leu219...Cgamma@Leu260 distances, with fluctuations around 250 ps, 1000 ps and over for the first, while the second is smoothly increasing with the simulation time from 7 to 10A. These variations are consistent with a volume increase up to 20% confirmed by the inter-domain contacts analysis, in particular for the pair O@Pro148...Ogamma@Ser283, representing the change of distance between IB-h9 and IIA-h6, O@Glu149...Ogamma@Ser189 for sub-domains IB-h9/IIA-h1 and N@Val339...Odelta2@Asp447 sub-domains IIB-h9/IIIA-h1. These inter-domain motions confirm the flexibility of the unfatted HSA with possible binding site pre-formation.

  5. PHD finger of the SUMO ligase Siz/PIAS family in rice reveals specific binding for methylated histone H3 at lysine 4 and arginine 2.

    Science.gov (United States)

    Shindo, Heisaburo; Suzuki, Rintaro; Tsuchiya, Wataru; Taichi, Misako; Nishiuchi, Yuji; Yamazaki, Toshimasa

    2012-06-21

    We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. The binding study advice in medical education: a 2-year experience.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Goorden, R.; Bosch, W.J.H.M. van den; Hopman, M.T.E.

    2015-01-01

    To improve the effectiveness of higher education, Dutch universities implemented the binding study advice at medical faculties. Accordingly, medicine students of Radboud University need to gain >/= 42 out of 60 European Credit Transfer System (ECTS) credits to obtain a positive binding study advice

  7. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  8. The binding study advice in medical education: a 2-year experience.

    Science.gov (United States)

    Eijsvogels, Thijs M H; Goorden, Ronald; van den Bosch, Wil; Hopman, Maria T E

    2015-02-01

    To improve the effectiveness of higher education, Dutch universities implemented the binding study advice at medical faculties. Accordingly, medicine students of Radboud University need to gain ≥ 42 out of 60 European Credit Transfer System (ECTS) credits to obtain a positive binding study advice and to continue their study programme. In case of a negative advice, the student is obliged to terminate the study, and he/she cannot register for the same study programme in the Netherlands within the next three years. The purpose of this manuscript is to evaluate the effect of implementation of the binding study advice on study outcomes. First, the binding study advice did not impact on student performance, as the average ECTS credits were comparable before and after its introduction. Second, study progress improved 8 % with 93 % of the students obtaining access to the second year of the study programme after binding study advice implementation. Third, the binding study advice did not impact propaedeutic graduation rates. These data demonstrate that the implementation of the binding study advice in medical faculties has only a small impact on study outcomes. The high performance levels of medical students compared with peers at other faculties are likely to contribute to these findings and suggest a 'ceiling effect' in the potential improvement of study outcomes at medical faculties.

  9. Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guowen, E-mail: gwzhang@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang, Jiangxi 330047 (China); Fu, Peng; Pan, Junhui [State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang, Jiangxi 330047 (China)

    2013-02-15

    The mechanism of paeoniflorin binding to calf thymus DNA in physiological buffer (pH 7.4) was investigated by multispectroscopic methods including UV-vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, coupled with viscosity measurements and DNA melting techniques. The results suggested that paeoniflorin molecules could bind to DNA via groove binding mode as evidenced by no significant change in iodide quenching effect, increase in single-stranded DNA (ssDNA) quenching effect, and almost unchanged relative viscosity and melting temperature of DNA. The observed changes in CD signals revealed that DNA remains in the B-conformation. Further, the displacement experiments with Hoechst 33258 probe and the results of FT-IR spectra indicated that paeoniflorin mainly binds in the region of rich A-T base pairs of DNA. The thermodynamic parameters, enthalpy change ({Delta}H Degree-Sign ) and entropy change ({Delta}S Degree-Sign ) were calculated to be -30.09{+-}0.18 kJ mol{sup -1} and -14.07{+-}0.61 J mol{sup -1} K{sup -1} by the van't Hoff equation, suggesting that hydrogen bond and van der Waals forces play a predominant role in the binding of paeoniflorin to DNA. - Highlights: Black-Right-Pointing-Pointer The binding mode of paeoniflorin to calf thymus DNA is the minor groove binding. Black-Right-Pointing-Pointer Paeoniflorin mainly binds in the region of rich A-T base pairs of DNA. Black-Right-Pointing-Pointer The binding does not alter the native B-conformation of DNA. Black-Right-Pointing-Pointer The binding is driven mainly by hydrogen bonds and van der Waals forces.

  10. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse

    Directory of Open Access Journals (Sweden)

    Barbora Kuntová

    2018-02-01

    Full Text Available Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE, and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO. Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14 and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.

  11. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    ., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution...... experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B...

  12. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  13. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    Science.gov (United States)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  14. Promoter engineering reveals the importance of heptameric direct repeats for DNA-binding by SARP-LAL regulators inStreptomyces.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-03-02

    The biosynthesis of small size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A SARP-LAL regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3 nucleotide spacer, both located in the promoter region of its unique target gene pimM Similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here we have used promoter engineering and quantitative transcriptional analyses to determine the contribution of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays have been used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. A cooperative binding of PimR SARP appears to be the mechanism involved in binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE: Here we have shown that modulation of the production of antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM Expression of this gene is controlled by the SARP-LAL regulator PimR, which binds a series of heptameric direct repeats in its promoter

  15. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site.

    Science.gov (United States)

    Singh, Harkewal; Arentson, Benjamin W; Becker, Donald F; Tanner, John J

    2014-03-04

    Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004-residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal an elaborate and dynamic tunnel system featuring a 75-Å-long tunnel that links the two active sites and six smaller tunnels that connect the main tunnel to the bulk medium. The locations of these tunnels and their responses to ligand binding and flavin reduction suggest hypotheses about how proline, water, and quinones enter the tunnel system and where L-glutamate exits. Kinetic measurements show that glutamate production from proline occurs without a lag phase, consistent with substrate channeling and implying that the observed tunnel is functionally relevant. Furthermore, the structure of reduced PutA complexed with menadione bisulfite reveals the elusive quinone-binding site. The benzoquinone binds within 4.0 Å of the flavin si face, consistent with direct electron transfer. The location of the quinone site implies that the concave surface of the PutA dimer approaches the membrane. Altogether, these results provide insight into how PutAs couple proline oxidation to quinone reduction.

  16. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS.

    Science.gov (United States)

    Yang, Wenhua; Tu, Zongcai; Wang, Hui; Zhang, Lu; Kaltashov, Igor A; Zhao, Yunlong; Niu, Chendi; Yao, Honglin; Ye, Wenfeng

    2018-01-24

    Bovine β-lactoglobulin (β-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of β-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated β-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm -1 for 60 μs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of β-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of β-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of β-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for β-Lg desensitization.

  17. Phenylbutazone and ketoprofen binding to serum albumin. Fluorescence study.

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata

    2014-10-01

    A combination of phenylbutazone (PBZ) and ketoprofen (KP) is popular in therapy of rheumatoid arthritis (RA) but could be unsafe due to the uncontrolled growth of toxicity. Quenching fluorescence of serum albumin in the presence of the both drugs has been characterized by dynamic KQ [M(-1)], static V [M(-1)] quenching constants and also association constants Ka [M(-1)]. The quenching of tryptophanyl residues fluorescence by the KP and PBZ indicates the capability of these drugs to accept the energy from Trp-214 and Trp-135. Strong displacement of KP and PBZ bound to albumin cause by the binding of the second drug to SA close to Trp-214 (subdomain IIA) has been obtained. The displacement was also confirmed on the basis of quenching and association constants. The conclusion, that both PBZ and KP form a binding site in the same subdomains (IIA or/and IB), points to the necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Binding of naringin and naringenin with hen egg white lysozyme: A spectroscopic investigation and molecular docking study

    Science.gov (United States)

    Das, Sourav; Ghosh, Pooja; Koley, Sudipta; Singha Roy, Atanu

    2018-03-01

    The interactions of naringenin (NG) and naringin (NR) with Hen Egg White Lysozyme (HEWL) in aqueous medium have been investigated using UV-vis spectroscopy, steady-state fluorescence, circular dichroism (CD), Fourier Transform infrared spectroscopy (FT-IR) and molecular docking analyses. Both NG and NR can quench the intrinsic fluorescence of HEWL via static quenching mechanism. At 300 K, the value of binding constant (Kb) of HEWL-NG complex (5.596 ± 0.063 × 104 M- 1) was found to be greater than that of HEWL-NR complex (3.404 ± 0.407 × 104 M- 1). The negative ΔG° values in cases of both the complexes specify the spontaneous binding. The binding distance between the donor (HEWL) and acceptor (NG/NR) was estimated using the Försters theory and the possibility of non-radiative energy transfer from HEWL to NG/NR was observed. The presence of metal ions (Ca2 +, Cu2 + and Fe2 +) decreased the binding affinity of NG/NR towards HEWL. Synchronous fluorescence studies indicate the change in Trp micro-environment due to the incorporation of NG/NR into HEWL. CD and FT-IR studies indicated that the α-helicity of the HEWL was slightly enhanced due to ligand binding. NG and NR inhibited the enzymatic activity of HEWL and exhibited their affinity for the active site of HEWL. Molecular docking studies revealed that both NG and NR bind in the close vicinity of Trp 62 and Trp 63 residues which is vital for the catalytic activity.

  19. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes

    Science.gov (United States)

    Ragheb, Mohamed A.; Eldesouki, Mohamed A.; Mohamed, Mervat S.

    2015-03-01

    This work was focused on a study of the DNA binding and cleavage properties of lomefloxacin (LMF) and its ternary transition metal complexes with glycine. The nature of the binding interactions between compounds and calf thymus DNA (CT-DNA) was studied by electronic absorption spectra, fluorescence spectra and thermal denaturation experiments. The obtained results revealed that LMF and its complexes could interact with CT-DNA via partial/moderate intercalative mode. Furthermore, the DNA cleavage activities of the compounds were investigated by gel electrophoresis. Mechanistic studies of DNA cleavage suggest that singlet oxygen (1O2) is likely to be the cleaving agent via an oxidative pathway, except for Cu(II) complex which proceeds via both oxidative and hydrolytic pathways. Antimicrobial and antitumor activities of the compounds were also studied against some kinds of bacteria, fungi and human cell lines.

  20. Binding of alpha2ML1 to the low density lipoprotein receptor-related protein 1 (LRP1 reveals a new role for LRP1 in the human epidermis.

    Directory of Open Access Journals (Sweden)

    Marie-Florence Galliano

    Full Text Available BACKGROUND: The multifunctional receptor LRP1 has been shown to bind and internalize a large number of protein ligands with biological importance such as the pan-protease inhibitor alpha2-macroglobulin (alpha2M. We recently identified Alpha2ML1, a new member of the alpha2M gene family, expressed in epidermis. alpha2ML1 might contribute to the regulation of desquamation through its inhibitory activity towards proteases of the chymotrypsin family, notably KLK7. The expression of LRP1 in epidermis as well as its ability to internalize alpha2ML1 was investigated. METHODS AND PRINCIPAL FINDINGS: In human epidermis, LRP1 is mainly expressed within the granular layer of the epidermis, which gathers the most differentiated keratinocytes, as shown by immunohistochemistry and immunofluorescence using two different antibodies. By using various experimental approaches, we show that the receptor binding domain of alpha2ML1 (RBDl is specifically internalized into the macrophage-like cell line RAW and colocalizes with LRP1 upon internalization. Coimmunoprecipitation assays demonstrate that RBDl binds LRP1 at the cell surface. Addition of RAP, a universal inhibitor of ligand binding to LRP1, prevents RBDl binding at the cell surface as well as internalization into RAW cells. Silencing Lrp1 expression with specific siRNA strongly reduces RBDl internalization. CONCLUSIONS AND SIGNIFICANCE: Keratinocytes of the upper differentiated layers of epidermis express LRP1 as well as alpha2ML1. Our study also reveals that alpha2ML1 is a new ligand for LRP1. Our findings are consistent with endocytosis by LRP1 of complexes formed between alpha2ML1 and proteases. LRP1 may thus control desquamation by regulating the biodisponibility of extracellular proteases.

  1. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  2. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  3. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2017-08-01

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10  L mol -1  s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5  M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  4. Structural characterization of binding mode of smoking cessation drugs to nicotinic acetylcholine receptors through study of ligand complexes with acetylcholine-binding protein.

    Science.gov (United States)

    Rucktooa, Prakash; Haseler, Claire A; van Elk, René; Smit, August B; Gallagher, Timothy; Sixma, Titia K

    2012-07-06

    Smoking cessation is an important aim in public health worldwide as tobacco smoking causes many preventable deaths. Addiction to tobacco smoking results from the binding of nicotine to nicotinic acetylcholine receptors (nAChRs) in the brain, in particular the α4β2 receptor. One way to aid smoking cessation is by the use of nicotine replacement therapies or partial nAChR agonists like cytisine or varenicline. Here we present the co-crystal structures of cytisine and varenicline in complex with Aplysia californica acetylcholine-binding protein and use these as models to investigate binding of these ligands binding to nAChRs. This analysis of the binding properties of these two partial agonists provides insight into differences with nicotine binding to nAChRs. A mutational analysis reveals that the residues conveying subtype selectivity in nAChRs reside on the binding site complementary face and include features extending beyond the first shell of contacting residues.

  5. Epitope mapping of the major allergen from Atlantic cod in Spanish population reveals different IgE-binding patterns.

    Science.gov (United States)

    Perez-Gordo, Marina; Pastor-Vargas, Carlos; Lin, Jing; Bardina, Ludmilla; Cases, Barbara; Ibáñez, Maria Dolores; Vivanco, Fernando; Cuesta-Herranz, Javier; Sampson, Hugh A

    2013-07-01

    IgE-epitope mapping of allergens reveal important information about antigen components involved in allergic reactions. The peptide-based microarray immunoassay has been used to map epitopes of some food allergens. We developed a peptide microarray immunoassay to map allergenic epitopes in parvalbumin from Atlantic cod (Gad m 1), the most consumed cod species in Spain. Sera from 13 fish-allergic patients with specific IgE to cod parvalbumin were used. A library of overlapping peptides was synthesized, representing the primary sequence of Gad m 1. Peptides were used to analyze allergen-specific IgE antibodies in patient sera. 100% of the patients recognized one antigenic region of 15 amino acids in length in Gad m 1. This region only partially correlated with one of the three antigenic determinants of Gad c 1 (Allergen M), parvalbumin from Baltic cod (Gadus callarias). In the 3D model of the protein, this region was located on the surface of the protein. We have identified a relevant antigenic region in Gad m 1. This epitope could be considered as a severity marker and provides additional information to improve fish allergy diagnosis and the design of safe immunotherapeutic tools. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dielectric and gravimetric studies of water binding to lysozyme

    International Nuclear Information System (INIS)

    Bone, S.

    1996-01-01

    Time domain dielectric spectroscopy and hydration isotherm measurements as a function of temperature have been applied to hydrated lysozyme powder. Two dielectric dispersions were identified, the first centred at approximately 8 MHz and a second above 1 GHz. The higher dispersion is considered to be the result of rotational relaxation of water molecules bound to the enzyme. In this case the results indicate the existence of a population of 32 water molecules per lysozyme molecule which are irrotationally bound to the lysozyme structure. A larger population of water molecules is relatively free to respond to the electric field and exhibits a dipole moment close to that of vapour phase water molecules. Multi-temperature hydration isotherm measurements are used to calculate enthalpies and entropies associated with the binding of water to lysozyme. Discontinuities both in dielectric and in thermodynamic characteristics in the range 10-14% hydration are interpreted as a re-ordering of the water structure on the enzyme surface

  7. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    Science.gov (United States)

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was

  8. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

    Science.gov (United States)

    Gao, Jingjing; Yao, Licheng; Xia, Tingting; Liao, Xuebin; Zhu, Deyu; Xiang, Ye

    2018-04-01

    The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

  9. Vanadium-binding protein in a vanadium-rich ascidian Ascidia sydneiensissamea: CW and pulsed EPR studies.

    Science.gov (United States)

    Fukui, Kôichi; Ueki, Tatsuya; Ohya, Hiroaki; Michibata, Hitoshi

    2003-05-28

    Some of the ascidians belonging to the suborder Phlebobranchia accumulate vanadium ion efficiently from seawater. Clarification of the mechanism of this surprisingly efficient metal-accumulation system is desirable. Two mutually similar vanadium-binding proteins (vanabin1 and vanabin2) have recently been isolated from a vanadium-rich ascidian Ascidia sydneiensis samea. In this study, the vanadium-binding properties of vanabin2 have been investigated by X-band CW EPR and pulsed EPR spectroscopy. CW EPR spectra of samples containing various ratios of VO2+ and vanabin2 invariably exhibited a usual mononuclear-type VO2+ EPR signal with the intensity dependent on the ratio [vanabin]/[V]. EPR titration has shown that vanabin2 can bind up to approximately 23.9 vanadium ions per one molecule, almost all of which ( approximately 84%) are in a mononuclear VO2+ state as estimated by EPR quantitation. Electron spin-echo envelope modulation (ESEEM) spectra of VO-vanabin2 exhibited reasonably intense peaks attributable to amine nitrogen. This is consistent with the fact that vanabin2 is a lysine-rich protein (14 lysines out of 91 amino acids). The present study reveals the uniqueness of vanabin2, which can bind a large number of metal ions in a mononuclear fashion in contrast to the situation for ferritin and metallothionein.

  10. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  11. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    ) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate...

  12. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  13. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5[prime] end

    Energy Technology Data Exchange (ETDEWEB)

    Corson, G.M.; Chalberg, S.C.; Charbonneau, N.L.; Sakai, L.Y. (Oregon Health Sciences Univ., Portland (United States)); Dietz, H.C. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1993-08-01

    Fibrillin is an important structural protein of the extracellular matrix. It is a large cysteine-rich glycoprotein with extensive intrachain disulfide bonds, likely contributed by multiple EGF-like repeats. The authors have previously published 6.9 kb of FBN1 cDNA sequence. FBN1 cDNA clones that extend the sequence 3089 bp in the 5[prime] direction are described in this report. The deduced primary structure suggests that fibrillin in composed of multiple domains. The most predominant features the presence of 43 calcium binding EGF-like repeats. They demonstrate here that fibrillin molecules bind calcium. In addition, three alternatively spliced exons at the 5[prime] end are described. Analysis of 5.8 kb of surrounding genomic sequence revealed a 1.8-kb CpG island spanning the alternatively spliced exons and the next downstream exon. Since FBN1 is the gene responsible for Marfan syndrome, the information presented here will be useful in identifying new mutations and in understanding the function of fibrillin in the pathogenesis of the disease. 42 refs., 7 figs.

  14. Antigenic Characterization of the HCMV gH/gL/gO and Pentamer Cell Entry Complexes Reveals Binding Sites for Potently Neutralizing Human Antibodies.

    Directory of Open Access Journals (Sweden)

    Claudio Ciferri

    2015-10-01

    Full Text Available Human Cytomegalovirus (HCMV is a major cause of morbidity and mortality in transplant patients and in fetuses following congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer are required for HCMV entry in fibroblasts and endothelial/epithelial cells, respectively, and are targeted by potently neutralizing antibodies in the infected host. Using purified soluble forms of gH/gL/gO and Pentamer as well as a panel of naturally elicited human monoclonal antibodies, we determined the location of key neutralizing epitopes on the gH/gL/gO and Pentamer surfaces. Mass Spectrometry (MS coupled to Chemical Crosslinking or to Hydrogen Deuterium Exchange was used to define residues that are either in proximity or part of neutralizing epitopes on the glycoprotein complexes. We also determined the molecular architecture of the gH/gL/gO- and Pentamer-antibody complexes by Electron Microscopy (EM and 3D reconstructions. The EM analysis revealed that the Pentamer specific neutralizing antibodies bind to two opposite surfaces of the complex, suggesting that they may neutralize infection by different mechanisms. Together, our data identify the location of neutralizing antibodies binding sites on the gH/gL/gO and Pentamer complexes and provide a framework for the development of antibodies and vaccines against HCMV.

  15. Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding.

    Science.gov (United States)

    Machida, Satoru; Yuan, Y Adam

    2013-07-01

    Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis Dawdle, determined by multiple-wavelength anomalous dispersion method at 1.7-Å resolution. DDL FHA structure displays a seven-stranded β-sandwich architecture that contains a unique structural motif comprising two long anti-parallel strands. Strikingly, crystal packing of the DDL FHA domain reveals that a glutamate residue from the symmetry-related DDL FHA domain, a structural mimic of the phospho-threonine, is specifically recognized by the structurally conserved phospho-threonine binding cleft. Consistently with the structural observations, co-immuno-precipitation experiments performed in Nicotiana benthamiana show that the DDL FHA domain co-immuno-precipitates with DCL1 fragments containing the predicted pThr+3(Ile/Val/Leu/Asp) motif. Taken together, we count the recognition of the target residue by the canonical binding cleft of the DDL FHA domain as the key molecular event to instate FHA domain-mediated protein-protein interaction in plant miRNA processing.

  16. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  17. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  18. Crystal structure of Mycobacterium tuberculosis CarD, an essential RNA polymerase binding protein, reveals a quasidomain-swapped dimeric structural architecture.

    Science.gov (United States)

    Kaur, Gundeep; Dutta, Dipak; Thakur, Krishan Gopal

    2014-05-01

    Mycobacterium tuberculosis (Mtb) CarD is an essential transcriptional regulator that binds RNA polymerase and plays an important role in reprogramming transcription machinery under diverse stress conditions. Here, we report the crystal structure of CarD at 2.3 Å resolution, that represents the first structural description of CarD/CdnL-Like family of proteins. CarD adopts an overall bi-lobed structural architecture where N-terminal domain resembles 'tudor-like' domain and C-terminal domain adopts a novel five helical fold that lacks the predicted leucine zipper structural motif. The structure reveals dimeric state of CarD resulting from β-strand swapping between the N-terminal domains of each individual subunits. The structure provides crucial insights into the possible mode(s) of CarD/RNAP interactions. Copyright © 2013 Wiley Periodicals, Inc.

  19. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  20. Ethiopian population dermatoglyphic study reveals linguistic stratification of diversity.

    Directory of Open Access Journals (Sweden)

    Seile Yohannes

    Full Text Available The manifestation of ethnic, blood type, & gender-wise population variations regarding Dermatoglyphic manifestations are of interest to assess intra-group diversity and differentiation. The present study reports on the analysis of qualitaive and quantitative finger Dermatoglyphic traits of 382 individuals cross-sectionally sampled from an administrative region of Ethiopia, consisting of five ethnic cohorts from the Afro-Asiatic & Nilo-Saharan affiliations. These Dermatoglyphic parameters were then applied in the assessment of diversity & differentiation, including Heterozygosity, Fixation, Panmixia, Wahlund's variance, Nei's measure of genetic diversity, and thumb & finger pattern genotypes, which were inturn used in homology inferences as summarized by a Neighbour-Joining tree constructed from Nei's standard genetic distance. Results revealed significant correlation between Dermatoglyphics & population parameters that were further found to be in concordance with the historical accounts of the ethnic groups. Such inductions as the ancient north-eastern presence and subsequent admixure events of the Oromos (PII= 15.01, the high diversity of the Amharas (H= 0.1978, F= 0.6453, and P= 0.4144, and the Nilo-Saharan origin of the Berta group (PII= 10.66 are evidences to this. The study has further tested the possibility of applying Dermatoglyphics in population genetic & anthropologic research, highlighting on the prospect of developing a method to trace back population origins & ancient movement patterns. Additionally, linguistic clustering was deemed significant for the Ethiopian population, coinciding with recent genome wide studies that have ascertained that linguistic clustering as to being more crucial than the geographical patterning in the Ethiopian context. Finally, Dermatoglyphic markers have been proven to be endowed with a strong potential as non-invasive preliminary tools applicable prior to genetic studies to analyze ethnically sub

  1. Ethiopian population dermatoglyphic study reveals linguistic stratification of diversity.

    Science.gov (United States)

    Yohannes, Seile; Bekele, Endashaw

    2015-01-01

    The manifestation of ethnic, blood type, & gender-wise population variations regarding Dermatoglyphic manifestations are of interest to assess intra-group diversity and differentiation. The present study reports on the analysis of qualitaive and quantitative finger Dermatoglyphic traits of 382 individuals cross-sectionally sampled from an administrative region of Ethiopia, consisting of five ethnic cohorts from the Afro-Asiatic & Nilo-Saharan affiliations. These Dermatoglyphic parameters were then applied in the assessment of diversity & differentiation, including Heterozygosity, Fixation, Panmixia, Wahlund's variance, Nei's measure of genetic diversity, and thumb & finger pattern genotypes, which were inturn used in homology inferences as summarized by a Neighbour-Joining tree constructed from Nei's standard genetic distance. Results revealed significant correlation between Dermatoglyphics & population parameters that were further found to be in concordance with the historical accounts of the ethnic groups. Such inductions as the ancient north-eastern presence and subsequent admixure events of the Oromos (PII= 15.01), the high diversity of the Amharas (H= 0.1978, F= 0.6453, and P= 0.4144), and the Nilo-Saharan origin of the Berta group (PII= 10.66) are evidences to this. The study has further tested the possibility of applying Dermatoglyphics in population genetic & anthropologic research, highlighting on the prospect of developing a method to trace back population origins & ancient movement patterns. Additionally, linguistic clustering was deemed significant for the Ethiopian population, coinciding with recent genome wide studies that have ascertained that linguistic clustering as to being more crucial than the geographical patterning in the Ethiopian context. Finally, Dermatoglyphic markers have been proven to be endowed with a strong potential as non-invasive preliminary tools applicable prior to genetic studies to analyze ethnically sub-divided populations and

  2. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  3. Studies on the competitive binding of cleviprex and flavonoids to plasma protein by multi-spectroscopic methods: A prediction of food-drug interaction.

    Science.gov (United States)

    Wang, Xin; Guo, Xue-Yuan; Xu, Liang; Liu, Bin; Zhou, Ling-Ling; Wang, Xiao-Fang; Wang, Dan; Sun, Ting

    2017-10-01

    Cleviprex is a short-acting dihydropyridine calcium channel antagonist used as an antihypertensive drug. In this work, the binding characterization of cleviprex to human serum albumin (HSA) and the competitive binding to HSA between cleviprex and two flavonoids, baicalin and rutin, were studied using multi-spectroscopic techniques and molecular docking method. The fluorescence quenching of HSA by cleviprex was initiated by the formation of HSA-cleviprex complex, which was confirmed by UV-vis spectra measurements. The results of thermodynamic analysis and molecular docking revealed that the hydrophobic interactions and hydrogen bonding were the major acting forces in stabilizing HSA-cleviprex complex. The results of substitution experiments and molecular docking demonstrated that cleviprex was mainly situated within the site I of HSA. Baicalin and rutin could reduce the values of binding constant and enhance the values of binding distance of cleviprex binding to HSA because they bind to the same binding site. The results of synchronous fluorescence and CD spectra suggested that the binding reaction of cleviprex to HSA could give rise to the changes of protein conformation and the combined actions of cleviprex and flavonoids could cause further changes of HSA conformation. Consequently, the intakes of flavonoid-rich foods and beverages should be lessened under the treatment of cleviprex to avoid food-drug interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structure/Function Studies of the Androgen Receptor DNA-Binding Region

    National Research Council Canada - National Science Library

    Rastinejad, Fraydoon

    2004-01-01

    .... The research goals associated with this study are to characterize the structural and functional aspects of the AR in order to uncover the potential of its domains, and in particular the DNA-binding...

  5. Structure/Function Studies of the Androgen Receptor DNA-Binding Region

    National Research Council Canada - National Science Library

    Rastinejad, Fraydoon

    2003-01-01

    .... The research goals associated with this study are to characterize the structural and functional aspects of the AR in order to uncover the potential of its domains, and in particular the DNA-binding...

  6. Spectroscopic studies on the binding interaction of phenothiazinium dyes, azure A and azure B to double stranded RNA polynucleotides.

    Science.gov (United States)

    Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2016-01-05

    This manuscript presents spectroscopic characterization of the interaction of two phenothiazinium dyes, azure A and azure B with double stranded (ds) ribonucleic acids, poly(A).poly(U), poly(C).poly(G) and poly(I).poly(C). Absorbance and fluorescence studies revealed that these dyes bind to the RNAs with binding affinities of the order 10(6)M(-1) to poly(A).poly(U), and 10(5)M(-1) to poly(C).poly(G) and poly(I).poly(C), respectively. Fluorescence quenching and viscosity data gave conclusive evidence for the intercalation of the dyes to these RNA duplexes. Circular dichroism results suggested that the conformation of the RNAs was perturbed on interaction and the dyes acquired strong induced optical activity on binding. Azure B bound to all the three RNAs stronger than azure A and the binding affinity varied as poly(A).poly(U)>poly(C).poly(G)>poly(I).poly(C) for both dyes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Kang, Xiaohui [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Wang, Ruiqiang [The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Rui; Dou, Huanjing; Wu, Jing; Song, Chuanjun [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China)

    2013-06-15

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported.

  8. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    International Nuclear Information System (INIS)

    Wang, Ruiyong; Kang, Xiaohui; Wang, Ruiqiang; Wang, Rui; Dou, Huanjing; Wu, Jing; Song, Chuanjun; Chang, Junbiao

    2013-01-01

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported

  9. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  10. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.

    Science.gov (United States)

    Huang, Li-Shar; Cobessi, David; Tung, Eric Y; Berry, Edward A

    2005-08-19

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 A resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cytochrome b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density, the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alphaA helix.

  11. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids.

    Directory of Open Access Journals (Sweden)

    Flavien Pillet

    Full Text Available Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.

  12. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    P. V. G. M. Rathnayake

    2017-01-01

    Full Text Available The use of gene therapeutics, including short interfering RNA (siRNA, is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules.

  13. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  14. Determination of structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC

    Science.gov (United States)

    Wu, Wei; Park, Kyung-Tae; Holyoak, Todd; Lutkenhaus, Joe

    2011-01-01

    Summary The three Min proteins spatially regulate Z ring positioning in E. coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP-dependency of MinC and MinE binding to MinD. PMID:21231967

  15. Photophysical and calorimetric studies on the binding of 9-O-substituted analogs of the plant alkaloid berberine to double stranded poly(A).

    Science.gov (United States)

    Basu, Anirban; Jaisankar, Parasuraman; Kumar, Gopinatha Suresh

    2013-08-05

    This interaction of four novel 9-O-substituted analogs of the plant alkaloid berberine with double stranded poly(A) was studied using a variety of biophysical techniques. Remarkably higher binding of two 9-O-ω-amino alkyl ether analogs compared to the two 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs was observed. Quantum efficiency values suggested that energy was transferred from the adenine base pairs to the analogs on binding. Ferrocyanide quenching and viscosity studies revealed the binding mode to be intercalative for these analogs. Circular dichroism studies showed that these analogs induced significant conformational changes in the secondary structure of ds poly(A). Energetics of the binding suggested that 9-O-N-aryl/arylalkyl amino carbonyl methyl berberines bound very weakly to ds poly(A). The binding of 9-O-ω-amino alkyl ether analogs was entropy dominated with a smaller but favorable enthalpic contribution to the Gibbs energy. Increasing the temperature resulted in weaker binding; the enthalpic contribution increased and the entropic contribution decreased. A small negative heat capacity change with significant enthalpy-entropy compensation established the involvement of multiple weak noncovalent interactions in the binding process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  17. Human PD-1 binds differently to its human ligands: a comprehensive modeling study.

    Science.gov (United States)

    Viricel, Clement; Ahmed, Marawan; Barakat, Khaled

    2015-04-01

    Programmed death-1 (PD-1) is a potent inhibitory receptor of T cells which binds to two different ligands, namely PD-L1 and PD-L2, and upon binding, it inhibits T cell activation, differentiation, and proliferation, leading to a state of immune tolerance. Blocking these interactions recently emerged as a 'game changer' approach in immunotherapy. Despite the significant therapeutic potential of targeting the PD-1 pathway, the interaction between human PD-1 and its two human ligands is not fully understood. Current crystal structures describe the interactions of mouse PD-1 with human PD-L1 or mouse PD-L2. However, recent mutational and nuclear magnetic resonance (NMR) analyses suggest that human PD-1 binds its human ligands differently compared to their mouse counterparts. No detailed model is currently available to consistently fit these data. The lack of these accurate structures constitutes a high barrier against rationally developing more effective and safer agents targeting these interactions. Here we describe for the first time two accurate models for human PD-1 bound to its two human ligands. Our methodology involved combining molecular dynamics (MD) simulations with protein-protein docking and binding energy analysis to predict the most probable binding conformations for PD1 to its ligands. Our results confirm the available experimental NMR and mutational data and reveal the most accurate atomistic details so far of how human PD-1 binds to human PD-Ls and why the two ligands bind with different affinities to the same receptor. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Studies of the Binding of Modest Modulators of the Human Enzyme, Sirtuin 6, by STD NMR.

    Science.gov (United States)

    Bolívar, Beatriz E; Welch, John T

    2017-05-18

    Pyrazinamide (PZA), an essential constituent of short-course tuberculosis chemotherapy, binds weakly but selectively to Sirtuin 6 (SIRT6). Despite the structural similarities between nicotinamide (NAM), PZA, and pyrazinoic acid (POA), these inhibitors modulate SIRT6 by different mechanisms and through different binding sites, as suggested by saturation transfer difference (STD) NMR. Available experimental evidence, such as that derived from crystal structures and kinetic experiments, has been of only limited utility in elucidation of the mechanistic details of sirtuin inhibition by NAM or other inhibitors. For instance, crystallographic structural analysis of sirtuin binding sites does not help us understand important differences in binding affinities among sirtuins or capture details of such dynamic process. Hence, STD NMR was utilized throughout this study. Our results not only agreed with the binding kinetics experiments but also gave a qualitative insight into the binding process. The data presented herein suggested some details about the geometry of the binding epitopes of the ligands in solution with the apo- and holoenzyme. Recognition that SIRT6 is affected selectively by PZA, an established clinical agent, suggests that the rational development of more potent and selective NAM surrogates might be possible. These derivatives might be accessible by employing the malleability of this scaffold to assist in the identification by STD NMR of the motifs that interact with the apo- and holoenzymes in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dopamine receptors in the guinea-pig heart. A binding study

    International Nuclear Information System (INIS)

    Sandrini, M.; Benelli, A.; Baraldi, M.

    1984-01-01

    The binding of dopaminergic agonists and antagonists to guinea-pig myocardial membrane preparations was studied using 3 H-dopamine and 3 H-spiperone as radioligand. 3 H-Dopamine bound specifically to heart membranes while 3 H-spiperone did not. A Scatchard analysis of 3 H-dopamine binding showed a curvilinear plot indicating the presence of two dopamine receptor populations that we have termed high- (K/sub d/ = 1.2 nM, B/sub mx/ = 52.9 fmol/mg prot.) and low- (K/sub d/ = 11.8 nM, B/sub mx/ = 267.3 fmol/gm prot.) affinity binding sites, respectively. The charactization of the high-affinity component of 3 H-dopamine binding indicated that the binding is rapid, saturable, stereospecific, pH- and temperature-dependent, and displaced by dopaminergic agonists and antagonists known to act similarly in vivo. The finding that pretreatment with dibenamine (which has been described as an α-adrenoceptor irreversible blocker) did not affect the binding of dopamine to cardiac membrane preparations suggests that α-adrenoceptors and dopamine receptors have separate recognition sites in the heart. It is concluded that 3 H-dopamine binds to specific dopamine receptors in the heart of guinea-pigs

  20. Lethal factor VII deficiency due to novel mutations in the F7 promoter: functional analysis reveals disruption of HNF4 binding site.

    Science.gov (United States)

    Giansily-Blaizot, Muriel; Lopez, Estelle; Viart, Victoria; Chafa, Ouerdia; Tapon-Bretaudière, Jacqueline; Claustres, Mireille; Taulan, Magali

    2012-08-01

    Hereditary factor VII (FVII) deficiency is a rare autosomal recessive disorder. Deleterious mutations that prevent the synthesis of any amount of functional FVII have been associated with life-threatening haemorrhage in neonates. Here we report two infants, of Maghrebian origin, who suffered a fatal spontaneous cerebral haemorrhage. Investigation of the molecular basis for their severe FVII deficiency revealed novel mutations in a homozygous state within the F7 gene promoter: a single nucleotide substitution (c.-65G>C) and a 2bp deletion (c.-60_-59delTT). To determine whether these promoter variants were responsible for the FVII deficiency, computer-assisted sequence analyses were performed. The data predicted a disrupted binding of both HNF4 and COUP-TF transcription factors with each variant. Concordantly, experimental results revealed an altered HNF4-induced transactivation in the promoter mutated variants. The execution of functional tests is critical to ensuring a complete understanding of the effect of any promoter mutant on FVII deficiency. Only then can an accurate molecular diagnosis be made and further genetic counselling and prenatal diagnosis be offered.

  1. Crystal structures of Pseudomonas putida esterase reveal the functional role of residues 187 and 287 in substrate binding and chiral recognition.

    Science.gov (United States)

    Dou, Shuai; Kong, Xu-Dong; Ma, Bao-Di; Chen, Qi; Zhang, Jie; Zhou, Jiahai; Xu, Jian-He

    2014-04-18

    A recombinant carboxylesterase (rPPE) from Pseudomonas putida ECU1011 was previously cloned and engineered to give a potential application for resolving chiral α-hydroxy acids including mandelic acids and derivatives. Two variants rPPEW187H and rPPED287A showed a ∼100-fold increase in activity towards rac-2-acetoxy-2-(2'-chlorophenyl) acetate (rac-AcO-CPA), but rPPED287A had a significant decrease in enantioselectivity (E=8.7) compared to rPPEW187H and the wild-type rPPE (rPPEWT) (E>200). Here we report the crystal structures of rPPEWT and rPPEW187H, both by themselves and in complex with the substrate, to elucidate the structural basis of this phenomenon. An inactive mutation of nucleophile residue S159A was introduced to obtain the structure of rPPES159A/W187H complexed with (S)-AcO-CPA. The structural analysis reveals that the side chain of residue Asp287 in rPPEWT would have a potential steric conflict with (S)-AcO-CPA when the substrate binds at the active site of the enzyme. However, the mutation W187H could facilitate the relocation of Asp287, while D287A directly eliminates the hindrance of Asp287, both of which offer sufficient space for the binding and hydrolysis of substrate. Moreover, Asp287 generates one site of the "three-point attachment model" as a hydrogen-bond donor that determines the excellent enantioselectivity of rPPE in chiral recognition, and D287A would obviously destroy the hydrogen bond and result in the low enantioselectivity of rPPED287A. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DNA binding affinity of a macrocyclic copper(II) complex: Spectroscopic and molecular docking studies.

    Science.gov (United States)

    Shahabadi, Nahid; Hakimi, Mohammad; Morovati, Teimoor; Fatahi, Navid

    2017-08-03

    The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO 4 ) 2 ] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.1 6,10 ]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (K b ) was determined as 1.25 × 10 4 M -1 , which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.

  3. Synthesis, biological investigation, calf thymus DNA binding and docking studies of the sulfonyl hydrazides and their derivatives

    Science.gov (United States)

    Murtaza, Shahzad; Shamim, Saima; Kousar, Naghmana; Tahir, Muhammad Nawaz; Sirajuddin, Muhammad; Rana, Usman Ali

    2016-03-01

    The present study describes the syntheses and biological investigations of sulfonyl hydrazides and their novel derivatives. The detailed investigations involved the characterization of the newly synthesized compounds using FTIR, NMR, mass spectrometry and by single crystal X-Ray diffraction (XRD) analysis techniques. The binding tendencies of these compounds with CT-DNA (calf thymus DNA) have been explored by electronic absorption (UV) spectroscopy and viscosity measurement. The binding constant (K) and Gibb's free energy (ΔG) values were also calculated accordingly. In addition, we also investigated the biological activities such as antioxidant, antibacterial, enzyme inhibition and DNA interactions. The antioxidant activity was assayed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, while antibacterial activity was investigated against four bacterial strains (viz. Escherichia coli, Crynibacteria bovius, Staphylococcus auras and Bacillus antherasis) by employing the common disc diffusion method. Enzyme inhibition activity of the synthesized compounds was examined against butyrylcholinestrase. The results of enzyme inhibition activity and the DNA binding interaction studies were also collected through molecular docking program using computational analysis. Our study reveals that the newly synthesized compounds possess moderate to good biological activities.

  4. Investigation of the binding mechanism and inhibition of bovine liver catalase by quercetin: Multi-spectroscopic and computational study.

    Science.gov (United States)

    Rashtbari, Samaneh; Dehghan, Gholamreza; Yekta, Reza; Jouyban, Abolghasem

    2017-01-01

    Introduction: The study on the side effects of various drugs and compounds on enzymes is a main issue for monitoring the conformational and functional changes of them. Quercetin (3,5,7,3',4'-pentahydroxyflavone, QUE), a polyphenolic flavonoid, widely found in fruits, vegetables and it is used as an ingredient in foods and beverages. The interaction of bovine liver catalase (BLC) with QUE has been studied in this research by using different spectroscopic methods. Methods: In this work, the interaction of QUE with BLC was investigated using different spectroscopic methods including ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) and fluorescence spectroscopy and molecular docking studies. Results: Fluorescence data at different temperatures, synchronous fluorescence and CD studies revealed conformational changes in the BLC structure in the presence of different concentration of QUE. Also, the fluorescence quenching data showed that QUE can form a non-fluorescent complex with BLC and quench its intrinsic emission by a static process. The binding constant (Ka) for the interaction was 104, and the number of binding site was obtained ~1. The ∆H, ∆S and ∆G changes were obtained, indicating that hydrophobic interactions play a main role in the complex formation. In vitro kinetic studies revealed that QUE can inhibit BLC activity through non-competitive manner. Molecular docking study results were in good agreement with experimental data, confirming only one binding site on BLC for QUE at a cavity among the wrapping domain, threating arm and β-barrel. Conclusion: Inhibition of BLC activity upon interaction with QUE demonstrated that in addition to their beneficial effects, they should not be overlooked for their side effects.

  5. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  6. Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

    Science.gov (United States)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2017-09-01

    Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA-ZnO. From fluorescence quenching spectral analysis the binding constant ( K a ), number of binding sites ( n), and thermodynamic properties, were determined. The quenching constants ( K sv) and binding constant ( K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van't Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA-ZnO due to adsorption of CGA on the surface of ZnO NPs

  7. A comparative study of procedures for binding of aflatoxin M1 to Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Assaf, Jean Claude; Atoui, Ali; Khoury, André El; Chokr, Ali; Louka, Nicolas

    Several strains of lactic acid bacteria (LAB), frequently used in food fermentation and preservation, have been reported to bind different types of toxins in liquid media. This study was carried out to investigate the effect of different concentrations of Lactobacillus rhamnosus GG (ATCC 53103) to bind aflatoxin M1 (AFM1) in liquid media. AFM1 binding was tested following repetitive washes or filtration procedures in combination with additional treatments such as heating, pipetting, and centrifugation. The mixture of L. rhamnosus GG and AFM1 was incubated for 18h at 37°C and the binding efficiency was determined by quantifying the unbound AFM1 using HPLC. The stability of the complexes viable bacteria-AFM1 and heat treated bacteria-AFM1 was tested. Depending on the bacterial concentration and procedure used, the percentages of bound AFM1 by L. rhamnosus GG varied from as low as undetectable to as high as 63%. The highest reduction in the level of unbound AFM1 was recorded for the five washes procedure that involved heating and pipetting. Results also showed that binding was partially reversible and AFM1 was released after repeated washes. These findings highlight the effect of different treatments on the binding of AFM1 to L. rhamnosus GG in liquid matrix. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Andrew V Oleinikov

    2009-04-01

    Full Text Available Plasmodium falciparum-infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLbetaC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLbetaC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2betaC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2betaC2(PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLbetaC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLbetaC2 domain. DBL2betaC2(PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2betaC2(PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.

  9. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ...

    Indian Academy of Sciences (India)

    ofloxacin and sparfloxacin with diverse metal ions.9–17. In continuation of our previous work,18 this paper ... minimum inhibitory concentration (MIC) study has been performed by means of laminar air flow cabinet ..... the volume has been adjusted with artificial seawater to. 2.5 mL per vial. After 24 h. the number of survivors.

  10. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence

    Directory of Open Access Journals (Sweden)

    Susanna K. P. Lau

    2017-06-01

    Full Text Available Talaromyces marneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host’s immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.

  11. Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies

    Directory of Open Access Journals (Sweden)

    Artur Jabłoński

    2017-11-01

    Full Text Available Fluorescent pyrene–linker–nucleobase (nucleobase = thymine, adenine conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene–C(OCH2CH2–thymine (2 conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base–base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA10–T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

  12. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation

    Directory of Open Access Journals (Sweden)

    Mukerji Joya

    2012-06-01

    Full Text Available Abstract Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3. We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6, an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of

  13. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  14. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    Science.gov (United States)

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding. PMID:27559340

  15. Genome-wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    Directory of Open Access Journals (Sweden)

    Eunyoung Seo

    2016-08-01

    Full Text Available Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR immune receptors are known play critical roles in effector-triggered immunity (ETI plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analyses and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analyses of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  16. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants.

    Science.gov (United States)

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analysis and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL) subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analysis of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  17. Phenylarsine Oxide Binding Reveals Redox-Active and Potential Regulatory Vicinal Thiols on the Catalytic Subunit of Protein Phosphatase 2A

    Science.gov (United States)

    Melideo, Scott L.; Healey, Adriana E.; Lucas, Eugene J.; Koval, Jason A.

    2011-01-01

    Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo. PMID:21080067

  18. High resolution Chromatin Immunoprecipitation (ChIP) sequencing reveals novel bindings targets and prognostic role for SOX11 in Mantle cell lymphoma

    Science.gov (United States)

    Kuo, Pei-Yu; Leshchenko, Violetta V.; Fazzari, Melissa J.; Perumal, Deepak; Gellen, Tobias; He, Tianfang; Iqbal, Javeed; Baumgartner-Wennerholm, Stefanie; Nygren, Lina; Zhang, Fan; Zhang, Weijia; Suh, K. Stephen; Goy, Andre; Yang, David T.; Chan, Wing-Chung; Kahl, Brad S.; Verma, Amit K.; Gascoyne, Randy D.; Kimby, Eva; Sander, Birgitta; Ye, B. Hilda; Melnick, Ari M.; Parekh, Samir

    2015-01-01

    SOX11 (Sex determining region Y-box 11) expression is specific for MCL as compared to other Non-Hodgkin's lymphomas. However, the function and direct binding targets of SOX11 in MCL are largely unknown. We used high-resolution ChIP-Seq to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11 target genes. qCHIP and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency (BCCA). Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11 target genes may help explain the impact of SOX11 expression on patient outcomes. PMID:24681958

  19. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma.

    Science.gov (United States)

    Kuo, P-Y; Leshchenko, V V; Fazzari, M J; Perumal, D; Gellen, T; He, T; Iqbal, J; Baumgartner-Wennerholm, S; Nygren, L; Zhang, F; Zhang, W; Suh, K S; Goy, A; Yang, D T; Chan, W-C; Kahl, B S; Verma, A K; Gascoyne, R D; Kimby, E; Sander, B; Ye, B H; Melnick, A M; Parekh, S

    2015-03-05

    Sex determining region Y-box 11 (SOX11) expression is specific for mantle cell lymphoma (MCL) as compared with other non-Hodgkin's lymphomas. However, the function and direct-binding targets of SOX11 in MCL are largely unknown. We used high-resolution chromatin immunoprecipitation sequencing to identify the direct target genes of SOX11 in a genome-wide, unbiased manner and elucidate its functional significance. Pathway analysis identified WNT, PKA and TGF-beta signaling pathways as significantly enriched by SOX11-target genes. Quantitative chromatin immunoprecipitation sequencing and promoter reporter assays confirmed that SOX11 directly binds to individual genes and modulates their transcription activities in these pathways in MCL. Functional studies using RNA interference demonstrate that SOX11 directly regulates WNT in MCL. We analyzed SOX11 expression in three independent well-annotated tissue microarrays from the University of Wisconsin (UW), Karolinska Institute and British Columbia Cancer Agency. Our findings suggest that high SOX11 expression is associated with improved survival in a subset of MCL patients, particularly those treated with intensive chemotherapy. Transcriptional regulation of WNT and other biological pathways affected by SOX11-target genes may help explain the impact of SOX11 expression on patient outcomes.

  20. Crystal Structures of Beryllium Fluoride-Free and Beryllium Fluoride-Bound CheY in Complex with the Conserved C-Terminal Peptide of CheZ Reveal Dual Binding Modes Specific to CheY Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Guhaniyogi,J.; Robinson, V.; Stock, A.

    2006-01-01

    Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ{sub C}), an indispensable structural component of the functional CheZ protein. To understand how the CheZ{sub C} helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ{sub 200-214}) at resolutions ranging from 2.0 Angstroms to 2.3 Angstroms. These structures provide a detailed view of the CheZC peptide interaction both in the presence and absence of the phosphoryl analog, BeF{sub 3}{sup -}. Our studies reveal that two different modes of binding the CheZ{sub 200-214} peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ{sub C} helix binds to a 'meta-active' conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

  1. Interference of anaesthetics with radioligand binding in neuroreceptor studies

    Energy Technology Data Exchange (ETDEWEB)

    Elfving, Betina; Knudsen, Gitte Moos [Neurobiology Research Unit N9201, University hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen (Denmark); Bjoernholm, Berith [Department of Computational Chemistry, H. Lundbeck A/S, Copenhagen-Valby (Denmark)

    2003-06-01

    Evaluations of new emission tomography ligands are usually carried out in animals. In order to keep the animals in a restricted position during the scan session, anaesthesia is almost inevitable. In ex vivo rat studies we investigated the interference of ketamine/xylazine, zoletile mixture, isoflurane and halothane with the serotonin re-uptake site, the serotonin{sub 2A} receptor and the dopamine re-uptake site by use of [{sup 3}H]-(S)-citalopram, [{sup 18}F]altanserin and [{sup 125}I]PE2I, respectively. Ketamine/xylazine decreased the target-to-background ratio (mean {+-} SD) of [{sup 3}H]-(S)-citalopram from 1.5{+-}0.19 to 0.81{+-}0.19 (P<0.05), whereas isoflurane and halothane increased the ratio from 1.5{+-}0.19 to 1.9{+-}0.24 and 2.1{+-}0.13 (P<0.05), respectively. Only with the zoletile mixture did the ratio remain unaltered. None of the tested anaesthetics affected the target-to-background ratio of [{sup 18}F]altanserin. The [{sup 125}I]PE2I target-to-background ratio decreased with both ketamine/xylazine (from 12.4{+-}0.81 to 10.1{+-}1.4, P<0.05) and isoflurane (from 12.4{+-}0.81 to 9.5{+-}1.1, P<0.05) treated rats, whereas treatment with zoletile mixture and halothane left the ratio unaltered. It is concluded that prior to performance of neuroreceptor radioligand studies, the possible interaction between radioligands and anaesthetics should be carefully evaluated. (orig.)

  2. Synthesis of schiff bases of pyridine-4-carbaldehyde and their antioxidant and DNA binding studies

    International Nuclear Information System (INIS)

    Shamim, S.; Murtaza, S.; Nazar, M.F.

    2016-01-01

    A series of Schiff bases of pyridine-4-carbaldehyde with 3-aminobenzoic acid, 2-aminobenzoic acid, 4-aminobenzoic acid, 1,3-phenylenediamine, 1,2-phenylenediamine, 2-aminothiophenol, 4-aminoantipyrene, 2-aminophenol and naphthalene-1-amine was synthesized and compounds were characterized by FTIR, NMR and mass spectrometry. The synthesized compounds were evaluated for their antioxidant and DNA binding interaction studies. DPPH scavenging method was used to evaluate the antioxidant activities of synthesized Schiff bases at six gradually increasing concentrations of 0.5-5mg/ml. 2-((pyridin-4-ylmethylidene)amino)phenol came out to be the most efficient antioxidant at a concentration of 4mg/ml with 74% inhibition of free radicals generated by DPPH. The DNA binding interaction of the synthesized Schiff bases was determined using UV-Vis absorption titration method. Both the hypochromic and hyperchromic effects were observed along the series. The values for the binding constant (K) and free energy change (G) were calculated and most of the Schiff bases have high positive K values which indicate the efficient binding of Schiff bases with DNA. Molecular docking studies as carried out using PatchDock molecular algorithm software also indicated the high values for geometrical shape complementarity score suggesting the stabilities of Schiff bases/DNA complex. Docking studies also suggested the minor groove binding of the Schiff bases with DNA. Drug-likeness of the synthesized compounds was also tested in silico and the results are accordingly discussed. (author)

  3. Studying protein binding to conjugated gold nanospheres; application of Mie light scattering to reaction kinetics.

    Science.gov (United States)

    Lunt, E A M; Pitter, M C; Somekh, M G; O'Shea, P

    2008-09-01

    The study of protein interactions is an area of much interest, particularly towards obtaining more detailed information about biological processes. Current methods involve the use of complicated, specialised techniques which are beyond the scope of most laboratories. Here, we show how information about the binding of proteins to conjugated gold nanospheres can be obtained using straightforward experimental techniques. A Perkin Elmer LS 55 luminescence spectrometer was used to observe the changes in light scattering caused by the binding of complementary proteins to conjugated nanoparticles, measured by the intensity change over time. Mie theory simulations have been used to predict the expected observations and to quantify the changes in intensity as a function of surface coverage. Further kinetic studies have been carried out at 530 nm to obtain more detailed information about the processes involved in the binding reaction. Thus, we have demonstrated that the interaction of proteins can be studied using a straightforward method which provides information about surface coverage and reaction kinetics.

  4. Synthesis, crystal structure, DNA binding and molecular docking studies of zinc(II) carboxylates

    Science.gov (United States)

    Muhammad, Niaz; Ikram, Muhammad; Wadood, Abdul; Rehman, Sadia; Shujah, Shaukat; Erum; Ghufran, Mehreen; Rahim, Shahnaz; Shah, Muzamil; Schulzke, Carola

    2018-02-01

    New zinc(II) carboxylate complexes [Zn(3-F-C6H4CH2COO)2]n (1), [Zn3(3-F-C6H4CH2COO)6(Phen)2] (2) and [Zn3(3-F-C6H4CH2COO)6(bipy)2] (3) were synthesized and characterized by atomic absorption, single crystal structural analysis and IR studies. Complex 1 crystallizes as a coordination polymer constituting a web of μ - η1,η1 carboxylate bridged tetrahedral zinc centers. Complexes 2 and 3 comprise trinuclear zinc centers with two terminal fivefold coordinated slightly distorted square-pyramidal and central sixfold coordinated octahedral zinc centers. The complexes were also assessed for their DNA binding ability by UV/- Vis spectroscopy and their behavior rationalized theoretically by molecular docking studies. A DNA binding study has shown groove binding interactions with the complexes.

  5. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  6. Phosphate binders affect vitamin K concentration by undesired binding, an in vitro study.

    Science.gov (United States)

    Neradova, A; Schumacher, S P; Hubeek, I; Lux, P; Schurgers, L J; Vervloet, M G

    2017-05-02

    Vascular calcification is a major contributing factor to mortality in end stage renal disease (ESRD). Despite the efficacy of phosphate binders to improve hyperphosphatemia, data on vascular calcification are less clear. There seems to be a difference in attenuation or delay in progression between different binders. In this in vitro experiment we tested whether phosphate binders could limit bioavailability of vitamin K2 by undesired binding. Vitamin K-deficiency limits activation of the vascular tissue mineralization inhibitor matrix γ-carboxyglutamate (Gla) protein (MGP) thereby exacerbating vascular calcification. In this experiment vitamin K2 (menaquinone-7; MK-7) binding was assessed by adding 1 mg of vitamin K2 to a medium with pH 6 containing 67 mg phosphate binder with either 7 mg of phosphate or no phosphate. Five different phosphate binders were tested. After five and a half hours vitamin K was analyzed by HPLC. All experiments were performed in triplicate. Sucroferric-oxyhydroxide and sevelamer carbonate did not significantly bind vitamin K2, both in solution only containing vitamin K2 or in combination with phosphate. Calcium acetate/magnesium carbonate binds vitamin K2 strongly both in absence (p = 0.001) and presence of phosphate (p = 0.003). Lanthanum carbonate significantly binds vitamin K2 in solution containing only vitamin K2 (p = 0.005) whereas no significant binding of vitamin K2 was observed in the solution containing vitamin K2 and phosphate (p = 0.462). Calcium carbonate binds vitamin K2 significantly in a solution with vitamin K2 and phosphate (p = 0.009) whereas without phosphate no significant binding of vitamin K2 was observed (p = 0.123). Sucroferric-oxyhydroxide and sevelamer carbonate were the only binders of the five binders studied that did not bind vitamin K2 in vitro. The presence or absence of phosphate significantly interferes with vitamin K2 binding so phosphate binders could potentially limit

  7. Spectroscopic and molecular modeling based approaches to study on the binding behavior of DNA with a copper (II) complex.

    Science.gov (United States)

    Vahdati Rad, Fatemeh; Housaindokht, Mohammad Reza; Jalal, Razieh; Eshtiagh Hosseini, Hossein; Verdian Doghaei, Asma; Sadeghi Goghari, Sadegh

    2014-07-01

    Blocking the division of tumor cells by small-molecules is currently of great interest for the design of new antitumor drugs. The interaction of a new metal complex with DNA was investigated through several techniques. Absorption spectroscopy and gel electrophoresis studies on the interaction of the Cu-complex of (2a-4mpyH)2 [Cu(pyzdc)2 (H2O)2].6 H2O with DNA have shown that this complex can bind to CT-DNA with binding constant 3.99 × 10(5) M(-1). The cyclic voltammetry (CV) responses of the metal complex in the presence of CT-DNA have shown that the metal complex can bind to CT-DNA through partial intercalation mode and this is consistent with molecular docking analysis, quenching process and thermal denaturation experiments. The cytotoxicity of this complex has been evaluated by MTT assay. The results of cell viability assay on DU145 cell line revealed that the metal complex had cytotoxic effects.

  8. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  9. Structure of the unique SEFIR domain from human interleukin 17 receptor A reveals a composite ligand-binding site containing a conserved α-helix for Act1 binding and IL-17 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Oklahoma State University, Stillwater, OK 74078 (United States); Liu, Caini; Qian, Wen [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Han, Yue [Oklahoma State University, Stillwater, OK 74078 (United States); Li, Xiaoxia, E-mail: lix@ccf.org [Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Deng, Junpeng, E-mail: lix@ccf.org [Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-05-01

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminal extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.

  10. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG 0 and ΔS interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.

  11. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites -current status

    International Nuclear Information System (INIS)

    Pike, V.W.; Osman, S.; Shah, F.; Turton, D.R.; Waters, S.L.; Crouzel, C.; Nutt, D.J.

    1993-01-01

    The status of the radiochemical development and biological evaluation of radioligands for PET studies of central benzodiazepine (BZ) receptors and the so-called peripheral benzodiazepine binding sites, here discriminated and referred to as PK binding sites, is reviewed against current pharmacological knowledge, indicating those agents with present value and those with future potential. Practical recommendations are given for the preparation of two useful radioligands for PET studies, [N-methyl- 11 C]flumazenil for central BZ receptors, and [N-methyl- 11 C]PK 11195 for PK binding sites. Quality assurance and plasma metabolite analysis are also reviewed for these radioligands and practical recommendations are given on methodology for their performance. (Author)

  12. A capture method based on the VC1 domain reveals new binding properties of the human receptor for advanced glycation end products (RAGE

    Directory of Open Access Journals (Sweden)

    Genny Degani

    2017-04-01

    Full Text Available The Advanced Glycation and Lipoxidation End products (AGEs and ALEs are a heterogeneous class of compounds derived from the non-enzymatic glycation or protein adduction by lipoxidation break-down products. The receptor for AGEs (RAGE is involved in the progression of chronic diseases based on persistent inflammatory state and oxidative stress. RAGE is a pattern recognition receptor (PRR and the inhibition of the interaction with its ligands or of the ligand accumulation have a potential therapeutic effect. The N-terminal domain of RAGE, the V domain, is the major site of AGEs binding and is stabilized by the adjacent C1 domain. In this study, we set up an affinity assay relying on the extremely specific biological interaction AGEs ligands have for the VC1 domain. A glycosylated form of VC1, produced in the yeast Pichia pastoris, was attached to magnetic beads and used as insoluble affinity matrix (VC1-resin. The VC1 interaction assay was employed to isolate specific VC1 binding partners from in vitro generated AGE-albumins and modifications were identified/localized by mass spectrometry analysis. Interestingly, this method also led to the isolation of ALEs produced by malondialdehyde treatment of albumins. Computational studies provided a rational-based interpretation of the contacts established by specific modified residues and amino acids of the V domain. The validation of VC1-resin in capturing AGE-albumins from complex biological mixtures such as plasma and milk, may lead to the identification of new RAGE ligands potentially involved in pro-inflammatory and pro-fibrotic responses, independently of their structures or physical properties, and without the use of any covalent derivatization process. In addition, the method can be applied to the identification of antagonists of RAGE-ligand interaction.

  13. Study of Binding Properties Between Two New Ibuprofen and Naproxen Based Acyl Hydrazone Derivatives and Trypsin.

    Science.gov (United States)

    Gökoğlu, Elmas; Yılmaz, Esra; Gökoğlu, Esra; Baran, Ayşe Uzgören

    2016-01-01

    Two acyl hydrazone derivatives, AHI and AHN,made from ibuprofen and naproxen-derived hydrazides, were prepared and studied of binding properties with serine protease trypsin by UV-vis absorption and fluorescence quenching at pH 7.4. The results suggest that both hydrazones can interact strongly with trypsin and there are the formation of trypsin-hydrazone complexes. The Stern-Volmer constants, binding constants,binding sites and the corresponding thermodynamic parameters ΔH°, ΔS° and ΔG° were calculated at different temperatures.The effect of common metal ions on the constants was also discussed. The binding modes can be explained on the basis of hydrogen bonds and van der Waals forces. The binding distance(r) ~3 nm between the donor (trypsin) and acceptors (AHI and AHN) was obtained according to Förster's non-radiative energy transfer theory. Moreover, LOD and LOQ of hydrazones were calculated in the presence of trypsin.

  14. Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method.

    Science.gov (United States)

    Shen, J; Wendoloski, J

    1995-03-01

    Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications at X, Y, and R moieties using finite difference solution to the Poisson-Boltzmann equation. A method has been developed to include the solvation entropy changes due to binding different ligands to a macromolecule. We demonstrate that the electrostatic energy and empirically derived solvation entropy can account for most of the binding energy differences in this series. By analyzing the binding contribution from individual residues, we show that the energy of a hydrogen bond is not confined to the donor and acceptor. In particular, the positive charges on Zn and Arg 203, which are not the acceptors, contribute significantly to the hydrogen bonds between two amides of ZGpLL and the thermolysin.

  15. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study.

    Science.gov (United States)

    Maciążek-Jurczyk, M; Sułkowska, A; Równicka-Zubik, J

    2016-01-05

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and (1)HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the (1)HNMR technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Study on Bone Mass in Elderly Chinese Foot-Binding Women

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2013-01-01

    Full Text Available The aim of this study is to understand the influences of the social custom of foot binding on female osteoporosis by means of comparing and analyzing the lumbar vertebrae and hip bone mass differences between the foot-binding aged women and unbound women of the same age at Qujing District of Yunnan Province. Of the examined people, 81.37% suffer from osteoporosis on the basis of lumbar vertebra (L1–L4 and femoral neck BMD, of which 82.14% for the foot-binding group and 80.44% for the unbound group. There is no statistical difference for the osteoporosis morbidity of the two groups. Compare the BMD value for various vertebrae, femoral neck, and rehabilitation of the two groups and find the BMD value for the other parts have no statistical difference except the BMD value of L1 centrum, which shows that foot binding does not significantly influence the overall bone mineral density of foot-binding women.

  17. Synthesis and receptor binding studies of (+/-)1-iodo-MK-801

    International Nuclear Information System (INIS)

    Yang, D.J.; Ciliax, B.J.; Van Dort, M.E.; Gildersleeve, D.; Pirat, J.L.; Young, A.B.; Wieland, D.M.

    1989-01-01

    The glutamate analogue N-methyl-D-aspartate (NMDA) binds to a subset of glutamate receptors that are coupled to a voltage-sensitive cation channel. This NMDA-linked channel is the likely binding locus of the potent anticonvulsant MK-801. To develop single-photon emission computed tomography (SPECT) probes of this brain channel, we synthesized (+/)1-iodo-MK-801 and (+/-)1-[ 125 I]iodo-MK-801. The effect of (+/-)1-iodo-MK-801 on ligand binding to the NMDA-linked glutamate receptor site was assessed using a rat brain homogenate assay. (+/-)1-Iodo-MK-801 displaced the dissociative anesthetic ligand [ 3 H]N-[1-(2-thienyl)cyclohexyl]piperidine ([ 3 H]TCP) binding with an IC50 of 1 microM, which is a 10-fold lower binding affinity than that of (+/-)MK-801. In in vivo autoradiographic studies, (+/-)MK-801 failed to block selective uptake of (+/-)1-iodo-MK-801 in rat brain. These results suggest that (+/-)1-iodo-MK-801 may not be a suitable ligand for mapping NMDA-linked glutamate receptor channels

  18. Studies of the Interaction between Isoimperatorin and Human Serum Albumin by Multispectroscopic Method: Identification of Possible Binding Site of the Compound Using Esterase Activity of the Protein

    Directory of Open Access Journals (Sweden)

    Samira Ranjbar

    2013-01-01

    Full Text Available Isoimperatorin is one of the main components of Prangos ferulacea as a linear furanocoumarin and used as anti-inflammatory, analgesic, antispasmodic, and anticancer drug. Human serum albumin (HSA is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Since the carrying of drug by HSA may affect on its structure and action, we decided to investigate the interaction between HSA and isoimperatorin using fluorescence and UV spectroscopy. Fluorescence data indicated that isoimperatorin quenches the intrinsic fluorescence of the HSA via a static mechanism and hydrophobic interaction play the major role in the drug binding. The binding average distance between isoimperatorin and Trp 214 of HSA was estimated on the basis of the theory of Förster energy transfer. Decrease of protein surface hydrophobicity (PSH was also documented upon isoimperatorin binding. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Site marker compettive and fluorescence experiments revealed that the binding of isoimperatorin to HSA occurred at or near site I. Finally, the binding details between isoimperatorin and HSA were further confirmed by molecular docking and esterase activity inhibition studies which revealed that drug was bound at subdomain IIA.

  19. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard

    2012-01-01

    epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...... sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic...... of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro....

  20. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... of transcription factors. In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding...... at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly...

  1. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    Science.gov (United States)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  2. Short term memory for single surface features and bindings in ageing: A replication study.

    Science.gov (United States)

    Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo

    2015-06-01

    In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    Directory of Open Access Journals (Sweden)

    Alessandra Ammazzalorso

    2016-10-01

    Full Text Available Matrix metalloproteinases (MMPs are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.

  4. Studying binding specificities of peptide recognition modules by high-throughput phage display selections.

    Science.gov (United States)

    Huang, Haiming; Sidhu, Sachdev S

    2011-01-01

    Peptide recognition modules (PRMs) play critical roles in cellular processes, including differentiation, proliferation and cytoskeleton organization. PRMs normally bind to short linear motifs in protein ligands, and by so doing recruit proteins into signaling complexes. Based on the binding specificity profile of a PRM, one can predict putative natural interaction partners by searching genome databases. Candidate interaction partners can in turn provide clues to assemble potential in vivo protein complexes that the PRM may be involved with. Combinatorial peptide libraries have proven to be effective tools for profiling the binding specificities of PRMs. Herein, we describe high-throughput methods for the expression and purification of PRM proteins and the use of peptide-phage libraries for PRM specificity profiling. These high-throughput methods greatly expedite the study of PRM families on a genome-wide scale.

  5. Binding of phosphorus-containing inhibitors to thermolysin studied by the Poisson-Boltzmann method.

    OpenAIRE

    Shen, J.; Wendoloski, J.

    1995-01-01

    Zinc endopeptidase thermolysin can be inhibited by a series of phosphorus-containing peptide analogues, Cbz-Gly-psi (PO2)-X-Leu-Y-R (ZGp(X)L(y)R), where X = NH, O, or CH2; Y = NH or O; R = Leu, Ala, Gly, Phe, H, or CH3. The affinity correlation as well as an X-ray crystallography study suggest that these inhibitors bind to thermolysin in an identical mode. In this work, we calculate the electrostatic binding free energies for a series of 13 phosphorus-containing inhibitors with modifications ...

  6. Iron hexacyanide/cytochrome-C - intramolecular electron transfer and binding constants - (pulse radiolytic study). Progress report

    International Nuclear Information System (INIS)

    Ilan, Y.; Shafferman, A.

    Internal oxidation and reduction rates of horse cytochrome-c in the complexes, CII.Fe/sup III/(CN) -3 6 and CIII.Fe/sup II/(CN) -4 6 , are 4.6.10 4 s -1 and 3.3.10 2 s -1 , respectively. The binding sites of the iron hexacyanide ions on either CII or CIII are kinetically almost indistinguishable; binding constants range from 0.87.10 3 to 2.10 3 M -1 . The present pulse radiolytic kinetic data are compared with that from N.M.R, T-jump and equilibrium dialysis studies

  7. Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells*

    Science.gov (United States)

    Meyrand, Mickael; Guillot, Alain; Goin, Mélodie; Furlan, Sylviane; Armalyte, Julija; Kulakauskas, Saulius; Cortes-Perez, Naima G.; Thomas, Ginette; Chat, Sophie; Péchoux, Christine; Dupres, Vincent; Hols, Pascal; Dufrêne, Yves F.; Trugnan, Germain; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells

  8. Study on the thermodynamics of the binding of iminium and alkanolamine forms of the anticancer agent sanguinarine to human serum albumin

    International Nuclear Information System (INIS)

    Hossain, Maidul; Khan, Asma Yasmeen; Suresh Kumar, Gopinatha

    2012-01-01

    Highlights: ► Energetics of sanguinarine–human serum albumin has been elucidated. ► The alkanolamine binds stronger than iminium. ► Enthalpy driven binding for iminium was revealed. ► Alkanolamine form binding was favored by negative enthalpy and entropy changes. ► Spectroscopic results support calorimetry data. - Abstract: Sanguinarine is an anticancer plant alkaloid that can exist in the charged iminium and neutral alkanolamine forms. The thermodynamics of the interaction of the two forms with human serum albumin was investigated using calorimetric techniques, and the data supplemented with circular dichroism and spectrofluorimetric studies. The thermodynamic results show that there is only one class of binding for sanguinarine on HSA. The equilibrium constant was four times higher for the alkanolamine (K a = 2.18 · 10 5 M −1 ) than for iminium (K a = 5.97 · 10 4 M −1 ). The binding was enthalpy driven for iminium and favoured by both a negative enthalpy and a stronger favourable entropy contribution for the alkanolamine. Temperature dependent calorimetric data yielded values of ΔC p ∘ that are consistent with the involvement of different molecular forces in the complexation of the two forms of sanguinarine to HSA. The fluorescence quenching data suggest a static quenching mechanism. Synchronous fluorescence and circular dichroic data are consistent with a conformational change in the protein on binding that was also higher for the alkanolamine form.

  9. Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays.

    Science.gov (United States)

    Fuhrmann, U; Slater, E P; Fritzemeier, K H

    1995-01-01

    Gestodene is a novel progestin used in oral contraceptives with an increased separation of progestogenic versus androgenic activity and a distinct antimineralocorticoid activity. This specific pharmacological profile of gestodene is defined by its pattern of binding affinities to a variety of steroid hormone receptors. In the present study the affinity of gestodene to the progesterone receptor (PR), the androgen receptor (AR), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR) and the estrogen receptor (ER) was re-evaluated by steroid binding assays and compared to those obtained for 3-keto-desogestrel and progesterone. The two synthetic progestins displayed identical high affinity to rabbit PR and similar marked binding to rat AR and GR, while progesterone showed high affinity to PR but only low binding to AR and GR. Furthermore, 3-keto-desogestrel exhibited almost no binding to MR, whereas gestodene, similar to progesterone, showed marked affinity to this receptor. In addition to receptor binding studies, transactivation assays were carried out to investigate the effects of gestodene on AR-, GR- and MR-mediated induction of transcription. In contrast to progesterone, which showed antiandrogenic activity, gestodene and 3-keto-desogestrel both exhibited androgenic activity. Furthermore, all three progestins exhibited weak GR-mediated antagonistic activity. In contrast to progesterone, which showed almost no glucocorticoid activity, gestodene and 3-keto-desogestrel showed weak glucocorticoid action. In addition, gestodene inhibited the aldosterone-induced reporter gene transcription, similar to progesterone, whereas unlike progesterone, gestodene did not induce reporter gene transcription. 3-Keto-desogestrel showed neither antimineralocorticoid nor mineralocorticoid action.

  10. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, Alyn [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a 13C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  11. Binding Studies of a Spin-Labelled Oxidized Coenzyme to Bovine-Liver Glutamate Dehydrogenase

    NARCIS (Netherlands)

    Zantema, Alt; Trommer, Wolfgang E.; Wenzel, Herbert; Robillard, George T.

    1977-01-01

    NAD+ with a nitroxide piperidine ring linked to the NH2 group of the adenine possesses full coenzymatic activity with glutamate dehydrogenase. Electron spin resonance spectra in the presence of glutamate dehydrogenase show mixtures of free and strongly immobilized spin-label. Binding studies in

  12. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  13. A model for the study of electrostatic binding between a pair of ...

    African Journals Online (AJOL)

    A model for the study of electrostatic binding between a pair of molecules at large distances. A Umar, G Hussin. Abstract. No Abstract. Nigerian Journal of Chemical Research Vol 5 2000: 1-9. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Protein binding studies with radiolabeled compounds containing radiochemical impurities. Equilibrium dialysis versus dialysis rate determination

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    The influence of radiochemical impurities in dialysis experiments with high-affinity ligands is investigated. Albumin binding of labeled decanoate (97% pure) is studied by two dialysis techniques. It is shown that equilibrium dialysis is very sensitive to the presence of impurities resulting...

  15. Studies on two calcium-binding proteins from squid optic lobe

    International Nuclear Information System (INIS)

    Sheldon, A.

    1988-01-01

    Investigations focused on the physicochemical and functional properties of squid calcium-binding protein (SCaBP) and squid calmodulin (SCaM). The physiochemical studies included characterization of Ca 2+ - and Mg 2+ -binding properties, and the effects of metal ion-binding on protein conformation. These studies were performed using various ionic conditions, including those physiological for the squid. Ca 2+ -binding by SCaBP, SCaM, and bovine brain calmodulin (BCaM) (for comparison) was measured by equilibrium dialysis. All three proteins bound 4 Ca 2+ per mol protein under each set of ionic conditions. Under conditions physiological for the squid, both the squid proteins bound Ca 2+ over a similar range of free Ca 2+ concentrations. Ca 2+ - and Mg 2+ -induced changes in the conformation of the proteins were studied by polyacrylamide gel electrophoresis, fluphenazine-Sepharose affinity chromatography, and ultraviolet absorption difference spectroscopy. The functional studies focused on the identification of squid optic lobe proteins which interacted with SCaBP and SCaM in a Ca 2+ - dependent manner. These proteins were identified by SCaBP- and SCaM-Sepharose affinity chromatography, an immunoblotting technique using a polyclonal anti-SCaBP antibody, and a 125 I-calmodulin overlay procedure

  16. Characterization of binding mode of action of a blocking anti-platelet-derived growth factor (PDGF)-B monoclonal antibody, MOR8457, reveals conformational flexibility and avidity needed for PDGF-BB to bind PDGF receptor-β.

    Science.gov (United States)

    Kuai, Jun; Mosyak, Lidia; Brooks, Jon; Cain, Michael; Carven, Gregory J; Ogawa, Shinji; Ishino, Tetsuya; Tam, May; Lavallie, Edward R; Yang, Zhiyong; Ponsel, Dirk; Rauchenberger, Robert; Arch, Robert; Pullen, Nick

    2015-03-17

    Platelet derived growth factor-BB (PDGF-BB) is an important mitogen and cell survival factor during development. PDGF-BB binds PDGF receptor-β (PDGFRβ) to trigger receptor dimerization and tyrosine kinase activation. We present the pharmacological and biophysical characterization of a blocking PDGF-BB monoclonal antibody, MOR8457, and contrast this to PDGFRβ. MOR8457 binds to PDGF-BB with high affinity and selectivity, and prevents PDGF-BB induced cell proliferation competitively and with high potency. The structural characterization of the MOR8457-PDGF-BB complex indicates that MOR8457 binds with a 2:1 stoichiometry, but that binding of a single MOR8457 moiety is sufficient to prevent binding to PDGFRβ. Comparison of the MOR8457-PDGF-BB structure with that of the PDGFRβ-PDGF-BB complex suggested the potential reason for this was a substantial bending and twisting of PDGF-BB in the MOR8457 structure, relative to the structures of PDGF-BB alone, bound to a PDGF-BB aptamer or PDGFRβ, which makes it nonpermissive for PDGFRβ binding. These biochemical and structural data offer insights into the permissive structure of PDGF-BB needed for agonism as well as strategies for developing specific PDGF ligand antagonists.

  17. Studies on folate binding and a radioassay for serum and whole-blood folate using goat milk as binding agent

    International Nuclear Information System (INIS)

    Piyasena, R.D.; Weerasekera, D.A.; Hettiaratchi, N.; Wikramanayake, T.W.

    1978-01-01

    Preparations of cow, goat, buffalo and human milk in addition to pig plasma were tested for folate binding properties. Of these, only pig plasma and goat milk showed sufficient binding to enable them to be used as binding agents in a radioassay for serum and whole-blood folate. The binding of folate by cow milk preparations in particular was found to be very poor. Goat milk was preferred to pig plasma as a binder for folate radioassay for reasons of convenience, economy and greater stability, and because pteroylglutamic acid (PGA) can be used both as tracer and standard. Where pig plasma is used with the inclusion of folate-free serum in the standard tubes, differences were observed between the standard and serum blanks which themselves varied from sample to sample. By contrast, with goat milk, all blank readings were normally 3% or less. Five out of eight samples of goat milk were seen to contain 'releasing factor' necessary to liberate folate from endogenous binder (FABP). Where present, the factor was found to be stable for at least three months when the partially purified milk was stored freeze dried at 4 0 C. Goat milk binder was found unable to distinguish between PGA and methyltetrahydrofolic acid (MTFA) at pH9.3. This enabled PGA rather than the more unstable MTFA to be used as tracer and standard. The assay employs a one-step incubation procedure at room temperature. It is sensitive to about 0.1 ng of PGA and is reproducible to less than 5% variation. The mean % recovery of inactive added folate was 101+-4%. (author)

  18. Studies on the digitalis binding site in Na, K-ATPase

    International Nuclear Information System (INIS)

    Ahmed, K.; McParland, R.; Becker, R.; From, A.; Schimerlik, M.; Fullerton, D.S.

    1986-01-01

    Na, K-ATPase is believed to be the receptor for digitalis glycosides. The authors have previously documented that C17 side group of the cardenolide molecule is crucial to α subunit receptor binding. They have attempted to identify the structure of this binding site by labelling the enzyme with a 3 H-labelled photoactive probe localized in the C17 side group of the genin molecule. 3 H-α-subunit was purified and subjected to tryptic digestion. The digest was fractionated by gel filtration on Sephadex G-100. Fractions containing 3 H-labelled peptide were pooled and rechromatographed. The central peak fractions of 3 H-peptide were pooled, analyzed by SDS-PAGE, and subjected to amino acid sequence analysis. The tryptic peptide containing the 3 H-probe showed considerable sequence heterogeneity. Comparison of the sequence data with the published cDNA-based α-subunit sequence revealed that this peptide material was indeed a mixture of two tryptic peptides of nearly identical size containing the sequences from residue 68 through residue 146, and residues 263 through 342. The latter peptide contains the sequence ... glu tyr thr try leu glu ... speculated by Shull et al. as a possible ouabain binding site

  19. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Specific Changes in the Local Flexibility of Plasminogen Activator Inhibitor 1 upon Binding to the Somatomedin B Domain of Vitronectin

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Hirschberg, Daniel; Jansson, Anna

    2012-01-01

    and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected...... against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1...

  20. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity.

    Science.gov (United States)

    Gao, Jie; Lin, Lianzhu; Sun, Baoguo; Zhao, Mouming

    2017-11-08

    Our previous study has suggested that the crude polysaccharide obtained from Laminaria japonica by acid assisted extraction (LP-A) have significant bile acid-binding capacity, which probably ascribed to its specific structure characterization. The relationship between structure characterization and bile acid-binding capacity of the purified LP-A fractions are still unknown. This paper conducted a comparison study on the structure characterization and bile acid-binding capacity of three LP-A fractions (LP-A4, LP-A6, and LP-A8). The results indicated that LP-A4, LP-A6, and LP-A8, characterized as mannoglucan, fucomannoglucan, and fucogalactan, had significantly different structure characterization. Furthermore, the bile acid-binding capacity of LP-A8 was obviously higher than the other fractions, which may be attributed to its highly branched structure, abundant sulfate, fucose, and galactose in chemical composition and denser interconnected macromolecule network in molecular morphology. This study provides scientific evidence for the potential utilization of LP-A8 as an attractive functional food supplement candidate for the hyperlipidemia population.

  1. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    DEFF Research Database (Denmark)

    Skovstrup, Soren; David, Laurent; Taboureau, Olivier

    2012-01-01

    , dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter...... to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues...... in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary...

  2. Protein binding of psychotropic agents

    International Nuclear Information System (INIS)

    Hassan, H.A.

    1990-01-01

    Based upon fluorescence measurements, protein binding of some psychotropic agents (chlorpromazine, promethazine, and trifluoperazine) to human IgG and HSA was studied in aqueous cacodylate buffer, PH7. The interaction parameters determined from emission quenching of the proteins. The interaction parameters determined include the equilibrium constant (K), calculated from equations derived by Borazan and coworkers, the number of binding sites (n) available to the monomer molecules on a single protein molecule. The results revealed a high level of affinity, as reflected by high values of K, and the existence of specific binding sites, since a limited number of n values are obtained. 39 tabs.; 37 figs.; 83 refs

  3. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition.

    Science.gov (United States)

    Datta, S; Ganesh, N; Chandra, Nagasuma R; Muniyappa, K; Vijayan, M

    2003-02-15

    RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition. Copyright 2003 Wiley

  4. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  5. Ligand binding and conformational dynamics in a flavin-based electron-bifurcating enzyme complex revealed by Hydrogen-Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Demmer, Julius K; Rupprecht, Fiona A; Eisinger, Martin L; Ermler, Ulrich; Langer, Julian D

    2016-12-01

    Flavin-based electron bifurcation (FBEB) is a novel mechanism of energy coupling used by anaerobic microorganisms to optimize their energy metabolism efficiency. The first high-resolution structure of a complete FBEB enzyme complex, the NADH-dependent reduced ferredoxin: NADP + -oxidoreductase (NfnAB) of Thermotoga maritima, was recently solved. However, no experimental evidence for the NADPH-binding site and conformational changes during the FBEB reaction are available. Here we analyzed ligand binding and the conformational dynamics of oxygen-sensitive NfnAB using Hydrogen-Deuterium Exchange Mass-Spectrometry, including a customized anaerobic workflow. We confirmed the NADH and the previously postulated NADPH-binding site. Furthermore, we observed an NfnA-NfnB rearrangement upon NADPH binding which supports the proposed FBEB mechanism. © 2016 Federation of European Biochemical Societies.

  6. Microscopic study reveals the singular origins of growth

    Science.gov (United States)

    Yaari, G.; Nowak, A.; Rakocy, K.; Solomon, S.

    2008-04-01

    Anderson [Science 177, 293 (1972)] proposed the concept of complexity in order to describe the emergence and growth of macroscopic collective patterns out of the simple interactions of many microscopic agents. In the physical sciences this paradigm was implemented systematically and confirmed repeatedly by successful confrontation with reality. In the social sciences however, the possibilities to stage experiments to validate it are limited. During the 90's a series of dramatic political and economic events have provided the opportunity to do so. We exploit the resulting empirical evidence to validate a simple agent based alternative to the classical logistic dynamics. The post-liberalization empirical data from Poland confirm the theoretical prediction that the dynamics is dominated by singular rare events which insure the resilience and adaptability of the system. We have shown that growth is led by few singular “growth centers" (Fig. 1), that initially developed at a tremendous rate (Fig. 3), followed by a diffusion process to the rest of the country and leading to a positive growth rate uniform across the counties. In addition to the interdisciplinary unifying potential of our generic formal approach, the present work reveals the strong causal ties between the “softer" social conditions and their “hard" economic consequences.

  7. Cytochrome P450 2C9 Type II Binding Studies on Quinoline-4-carboxamide Analogs

    Science.gov (United States)

    Peng, Chi-Chi; Cape, Jonathan L.; Rushmore, Tom; Crouch, Gregory J.; Jones, Jeffrey P.

    2009-01-01

    CYP2C9 is a significant P450 protein responsible for drug metabolism. With the increased use of heterocyclic compounds in drug design, a rapid and efficient pre-drug screening of these potential type II binding compounds is essential to avoid adverse drug reactions. To understand binding modes, we use quinoline-4-carboxamide analogs to study the factors that determine the structure-activity relationships. The results of this study suggest that the more accessible pyridine with the nitrogen para to the linkage can coordinate directly with the ferric heme iron, but this is not seen for the meta or ortho isomers. The π-cation interaction of the naphthalene moiety and Arg 108 residue may also assist in stabilizing substrate binding within the active-site cavity. The type II substrate binding affinity is determined by the combination of steric, electrostatic, and hydrophobicity factors; meanwhile, it is enhanced by the strength of lone pair electrons coordination with the heme iron. PMID:19053752

  8. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Autolytic Activity and Plasma Binding Study of Aap, a Novel Minor Autolysin of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Ramina Mahboobi

    2016-04-01

    Full Text Available Pneumococcal autolysins are enzymes involved in cell wall turnover and cellular division physiologically. They have been found to be involved in the pneumococcus pathogenesis. The aim of this study was to identify the autolytic activity of Spr1754 as a novel protein of Streptococcus pneumoniae. Moreover, the binding of the recombinant protein to plasma proteins was also determined. The spr1754 gene was amplified by PCR and cloned into the pET21a(+ prokaryotic expression vector. The constructed pET21a(+/spr1754 recombinant plasmid was transformed into E. coli Origami (DE3 and induced using IPTG. The recombinant protein of Spr1754 was purified by Ni-NTA affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using anti-His tag monoclonal antibody. Autolytic activity and the ability of the recombinant protein in binding to plasma proteins were performed using zymogram analysis and western blot, respectively. The spr1754 with expected size was cloned and overexpressed in Escherichia coli Origami (DE3, successfully. After purification of the Spr1754 recombinant protein, the autolytic activity was observed by zymography. Of the four plasma proteins used in this study, binding of lactoferrin to Spr1754 recombinant protein was shown. The Spr1754 recombinant protein has a bifunctional activity, i.e., as being autolysin and lactoferrin binding and designated as Aap (autolytic/ adhesion/ pneumococcus. Nevertheless, characterization of the Aap needs to be followed using gene inactivation and cell wall localization.

  10. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution.

    Science.gov (United States)

    Liu, Yan-Yan; Yang, Ke-Zhen; Wei, Xiao-Xin; Wang, Xiao-Quan

    2016-11-01

    Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding.

    Science.gov (United States)

    Cetinkol, Ozgül Persil; Hud, Nicholas V

    2009-02-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T(m) approximately 60 degrees C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K(a) >10(7) M(-1)), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson-Crick and A.A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand 'critical concentration'. The ligands described here may also find biological or medicinal applications, owing to the 3'-polyadenylation of mRNA in living cells.

  12. Implementing Japanese Lesson Study in Foreign Countries: Misconceptions Revealed

    Science.gov (United States)

    Fujii, Toshiakira

    2014-01-01

    This paper is based on data gathered during visits to Uganda and Malawi, conducted by the International Math-teacher Professionalization Using Lesson Study (IMPULS) project and the Japanese International Cooperation Agency (JICA). The author's observations and experiences highlighted misconceptions about lesson study. The paper concludes that some…

  13. Study Reveals Brain Biology behind Self-Control

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  14. Human islet amyloid polypeptide fibril binding to catalase: a transmission electron microscopy and microplate study.

    Science.gov (United States)

    Milton, Nathaniel G N; Harris, J Robin

    2010-05-18

    The diabetes-associated human islet amyloid polypeptide (IAPP) is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-beta (A-beta) and prion protein (PrP) fibrils. Previous studies have shown that catalase binds to A-beta fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM)-based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77 nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu-like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, A-beta, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  15. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  16. Inferences on radiation carcinogenesis revealed by selected studies in animals

    International Nuclear Information System (INIS)

    Bustad, L.K.; Goldman, M.; Rosenblatt, L.

    1976-01-01

    Studies of heterogeneous populations of animals with long lives and humans, exposed to various radionuclides and particularly those related to the nuclear energy fuel cycle, are instructive for deriving inferences relative to the cinogenic risk of energy-related radiation. Dose-response curves for various radionuclides [with varying half-lives, qualities of radiation (LET), and metabolic characteristics] provide similarities regardless of the species studied or the tissues at risk

  17. Experimental and theoretical studies on the DNA-binding of cationic yttrium(III) complex containing 2,2‧-bipyridine

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Akbari, Alireza; Mirkazehi-Rigi, Sohaila

    2015-03-01

    The interaction of DNA with [Y(bpy)(OH2)6]+3, where bpy is 2,2‧-bipyridine has been studied at physiological pH in Tris-HCl buffer. Fluorescence and absorption spectroscopy, agarose gel electrophoresis as well as EB quenching experiments are used to study DNA binding of the complex. The results reveal that DNA have the strong ability to bind with Y(III) complex. The binding constant, Kb and the Stern-Volmer quenching constant, KSV are determined. For characterization of the binding mode between the Y(III) complex and DNA various procedures such as: iodide quenching assay, salt effect and thermodynamical investigation are used. The results suggest that minor groove binding should be the interaction mode of complex to DNA. A gel electrophoresis assay demonstrates the ability of the complex to cleave the DNA via oxidative pathway. Electronic structure of [Y(bpy)(OH2)6]+3 was also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.

  18. Synthesis, characterization, DNA binding and cleavage studies of mixed-ligand copper (II complexes

    Directory of Open Access Journals (Sweden)

    M. Sunita

    2017-05-01

    Full Text Available New two copper complexes of type [Cu(Bzimpy(LH2O]SO4 (where L = 2,2′ bipyridine (bpy, and ethylene diamine (en, Bzimpy = 2,6-bis(benzimidazole-2ylpyridine have been synthesized and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. Based on elemental and spectral studies six coordinated geometries were assigned to the two complexes. DNA-binding properties of these metal complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation methods. Experimental studies suggest that the complexes bind to DNA through intercalation. These complexes also promote the cleavage of plasmid pBR322, in the presence of H2O2.

  19. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Structural and kinetic study of an internal substrate binding site in dehaloperoxidase-hemoglobin A from Amphitrite ornata.

    Science.gov (United States)

    Zhao, Jing; de Serrano, Vesna; Zhao, Junjie; Le, Peter; Franzen, Stefan

    2013-04-09

    X-ray crystal structures of dehaloperoxidase-hemoglobin A (DHP A) from Amphitrite ornata soaked with substrate, 2,4,6-tribromophenol (2,4,6-TBP), in buffer solvent with added methanol (MeOH), 2-propanol (2-PrOH), and dimethyl sulfoxide (DMSO) reveal an internal substrate binding site deep in the distal pocket above the α-edge of the heme that is distinct from the previously determined internal inhibitor binding site. The peroxidase function of DHP A has most often been studied using 2,4,6-trichlorophenol (2,4,6-TCP) as a substrate analogue because of the low solubility of 2,4,6-TBP in an aqueous buffer solution. Previous studies at low substrate concentrations pointed to the binding of substrate 2,4,6-TCP at an external site near the exterior heme β- or δ-edge as observed in the class of heme peroxidases. Here we report that the turnover frequencies of both substrates 2,4,6-TCP and 2,4,6-TBP deviate from Michaelis-Menten kinetics at high concentrations. The turnover frequency reaches a maximum in the range of 1400-1700 μM, with a decrease in rate at higher concentrations that is both substrate- and solvent-dependent. The X-ray crystal structure is consistent with the presence of an internal active site above the heme α-edge, in which the substrate would be oxidized in two consecutive steps inside the enzyme, followed by attack by H2O via a water channel in the protein. The physiological role of the internal site may involve interactions with any of a number of aromatic toxins found in benthic ecosystems where A. ornata resides.

  1. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery.

    Directory of Open Access Journals (Sweden)

    Claude Nogues

    Full Text Available BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65 and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody

  2. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Silveira, Marina B.; Santos, Raquel G. dos; Dias, Consuelo L. Fortes; Cassali, Geovanni D.

    2009-01-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  3. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Santos, Raquel G. dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Consuelo L. Fortes [Fundacao Ezequiel Dias (FUNED), Belo Horizonte, MG (Brazil)], e-mail: consuelo@pq.cnpq.br; Cassali, Geovanni D. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Patologia Comparada], e-mail: cassalig@icb.ufmg.br

    2009-07-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  4. Developmental palaeontology of Reptilia as revealed by histological studies.

    Science.gov (United States)

    Scheyer, Torsten M; Klein, Nicole; Sander, P Martin

    2010-06-01

    Among the fossilized ontogenetic series known for tetrapods, only more basal groups like temnospondyl amphibians have been used extensively in developmental studies, whereas reptilian and synapsid data have been largely neglected so far. However, before such ontogenetic series can be subject to study, the relative age and affiliation of putative specimens within a series has to be verified. Bone histology has a long-standing tradition as being a source of palaeobiological and growth history data in fossil amniotes and indeed, the analysis of bone microstructures still remains the most important and most reliable tool for determining the absolute ontogenetic age of fossil vertebrates. It is also the only direct way to reconstruct life histories and growth strategies for extinct animals. Herein the record of bone histology among Reptilia and its application to elucidate and expand fossilized ontogenies as a source of developmental data are reviewed. (c) 2009 Elsevier Ltd. All rights reserved.

  5. In silico study of binding motifs in squalene synthase enzyme of secondary metabolic pathway of solanaceae [corrected].

    Science.gov (United States)

    Sanchita; Singh, Garima; Sharma, Ashok

    2014-11-01

    Solanaceae is an important family with several plants of medicinal importance. These medicinal plants have distinctive pathways for secondary metabolite biosynthesis. In most of the plants, two important compounds, dimethylallyl diphosphate and isopentenyl diphosphate, synthesize isoprenoid or terpenoids. Squalene synthase (SQS) is a key enzyme of the biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) → squalene). Withania somnifera (ashwagandha), an important medicinal plant of family solanaceae produces withanolides. Withanolides are secondary metabolites synthesized through isoprenoid pathway. In this study, 13 SQS protein sequences from the plants of solanacae family and Arabidopsis thaliana were analyzed. The conserved domains in corresponding sequences were searched. The multiple sequence alignment of conserved domains revealed the important motifs and identified the residue substitution in each motif. Our result further indicated that residue substitution in motifs might not lead to functional variation, although it may affect the binding affinity of Mg(++), FPP and NAD(P)H. In addition, the homology modelling of SQS enzyme of W. somnifera was done for the prediction of three-dimensional structure. Molecular docking study of considered substrates with WsSQS was performed and the docked structure were analyzed further. The docked structures showed binding affinity for motif 2 of WsSQS. Our analysis revealed that 29 residues of motif 2 might be important for catalytic/functional activity of SQS enzyme of W. somnifera. This study may provide an understanding of metabolic pathways responsible for the production of secondary metabolites. The motifs may play a key role in regulating the pathway towards enhanced production of metabolites.

  6. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  7. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gerlits, Oksana O. [UT/ORNL; Coates, Leighton [Biology; Woods, Robert J. [Complex; Kovalevsky, Andrey [Biology

    2017-08-30

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.

  8. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  9. Unbiased mutagenesis of MHV68 LANA reveals a DNA-binding domain required for LANA function in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Clinton R Paden

    2012-09-01

    Full Text Available The Latency-Associated Nuclear Antigen (LANA, encoded by ORF73, is a conserved gene among the γ2-herpesviruses (rhadinoviruses. The Kaposi's Sarcoma-Associated Herpesvirus (KSHV LANA is consistently expressed in KSHV-associated malignancies. In the case of the rodent γ2-herpesvirus, murine gammaherpesvirus 68 (MHV68, the LANA homolog (mLANA is required for efficient virus replication, reactivation from latency and immortalization of murine fetal liver-derived B cells. To gain insights into mLANA function(s, knowing that KSHV LANA binds DNA and can modulate transcription of a variety of promoters, we sought out and identified a mLANA-responsive promoter which maps to the terminal repeat (TR of MHV68. Notably, mLANA strongly repressed activity from this promoter. We extended these analyses to demonstrate direct, sequence-specific binding of recombinant mLANA to TR DNA by DNase I footprinting. To assess whether the DNA-binding and/or transcription modulating function is important in the known mLANA phenotypes, we generated an unbiased library of mLANA point mutants using error-prone PCR, and screened a large panel of mutants for repression of the mLANA-responsive promoter to identify loss of function mutants. Notably, among the mutant mLANA proteins recovered, many of the mutations are in a predicted EBNA-1-like DNA-binding domain. Consistent with this prediction, those tested displayed loss of DNA binding activity. We engineered six of these mLANA mutants into the MHV68 genome and tested the resulting mutant viruses for: (i replication fitness; (ii efficiency of latency establishment; and (iii reactivation from latency. Interestingly, each of these mLANA-mutant viruses exhibited phenotypes similar to the mLANA-null mutant virus, indicating that DNA-binding is critical for mLANA function.

  10. Insight of the Iron Binding and Transport in Dke1 - A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Hrvoje Brkić

    2015-12-01

    Full Text Available Acetylacetone dioxygenase from Acinetobacter johnsonii (Dke1 is a non-heme Fe2+ dependent enzyme which catalyzes the oxidative degradation of β-dicarbonyl compounds. It is a homotetramer with four active sites, each containing single metal ion. Since the active site is buried, knowledge on transport of the metal ion and reactants (products is essential for understanding the enzyme mechanism. The goal of this study was to assess the influence of several point mutations on the enzyme activity. The point mutations of hydrophilic amino acid residues (Tyr70, Arg80 and Glu98 that were shown to be important for metal binding and reactants stabilization were of the particular interest. Computational study enabled us to determine the preferred metal ion binding sites as well, as the pathways it utilizes to enter the enzyme active site. Besides, influence of the point mutations on the hydrogen bond network within enzyme was determined.

  11. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    Science.gov (United States)

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′

    Directory of Open Access Journals (Sweden)

    Jennifer Hochscherf

    2017-12-01

    Full Text Available Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM is 5-isopropyl-4-(3-methylbut-2-enyl-oxy-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p. Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.

  13. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity.

    Science.gov (United States)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J; Jørgensen, Frank G; Als, Thomas D; Le Hellard, Stephanie; Espeseth, Thomas; Sullivan, Patrick F; Hultman, Christina M; Kjærgaard, Peter C; Schierup, Mikkel H; Mailund, Thomas

    2016-10-01

    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R 2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country. Copyright © 2016 by the Genetics Society of America.

  14. New study reveals twice as many asteroids as previously believed

    Science.gov (United States)

    2002-05-01

    The ISO satellite Credits: ESA ISO An artist's impression of the ISO spacecraft. The ISO Deep Asteroid Search indicates that there are between 1.1 million and 1.9 million 'space rocks' larger than 1 kilometre in diameter in the so-called 'main asteroid belt', about twice as many as previously believed. However, astronomers think it is premature to revise current assessments of the risk of the Earth being hit by an asteroid. Despite being in our own Solar System, asteroids can be more difficult to study than very distant galaxies. With sizes of up to one thousand kilometres in diameter, the brightness of these rocky objects may vary considerably in just a few minutes. They move very quickly with respect to the stars - they have been dubbed 'vermin of the sky' because they often appear as trails on long exposure images. This elusiveness explains why their actual number and size distribution remains uncertain. Most of the almost 40,000 asteroids catalogued so far (1) orbit the Sun forming the 'main asteroid belt', between Mars and Jupiter, too far to pose any threat to Earth. However, space-watchers do keep a closer eye on another category of asteroids, the 'Near Earth Asteroids' or 'NEAs', which are those whose orbits cross, or are likely to cross, that of our planet. The ISO Deep Asteroid Search (IDAS), the first systematic search for these objects performed in infrared light, focused on main belt asteroids. Because it is impossible to simply point the telescope at the whole main belt and count, astronomers choose selected regions of the belt and then use a theoretical model to extrapolate the data to the whole belt. Edward Tedesco (TerraSystems, Inc., New Hampshire, United States) and François-Xavier Desert (Observatoire de Grenoble, France) observed their main belt selected areas in 1996 and 1997 with ESA's ISO. They found that in the middle region of the belt the density of asteroids was 160 asteroids larger than 1 kilometre per square degree - an area of the

  15. Binding studies of costunolide and dehydrocostuslactone with HSA by spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Gao Wenhua; Li Nana; Chen Gaopan; Xu Yanping; Chen Yaowen; Hu Shunlin; Hu Zhide

    2011-01-01

    Human serum albumin (HSA), a major plasma protein and plasma-derived therapeutic, interacts with a wide variety of drugs and native plasma metabolites. In this study the interactions of costunolide (CE) and dehydrocostuslactone (DE) with HSA were investigated by molecule modeling, atomic force microscopy (AFM), and different optical techniques. In the mechanism discussion, it was proved that fluorescence quenching of HSA by both of the drugs is a result of the formation of drug-HSA complexes. Binding parameters for the reactions were determined according to the Stern-Volmer equation and static quenching. The results of thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 at different temperatures indicated that hydrogen bonding interactions play a major role in the drug-HSA associations process. The binding properties were further studied by quantitative analysis of CD, FTIR, and Raman spectra. Furthermore, AFM results showed that the dimension of HSA molecules became more swollen after binding with the drugs. - Highlights: → Interactions of costunolide and dehydrocostuslactone with HSA have been investigated for the first time. → Raman spectra were used to analyze the drug-HSA interactions. → Atomic force microscopy has been used to study the topography change of HSA by addition of the drugs. → These results are important for the drugs containing costunolide and dehydrocostuslactone distribution and metabolism.

  16. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies.

    Science.gov (United States)

    Moine, H; Cachia, C; Westhof, E; Ehresmann, B; Ehresmann, C

    1997-03-01

    The RNA binding site of ribosomal protein S8 of Escherichia coli is confined to a small region within the stem of a hairpin in 16S rRNA (nt 588-605/633-651), and thus represents a model system for understanding RNA/protein interaction rules. The S8 binding site on 16S rRNA was suspected to contain noncanonical features difficult to prove with classical genetical or biochemical means. We performed in vitro iterative selection of RNA aptamers that bind S8. For the different aptamers, the interactions with the protein were probed with hydroxyl radicals. Aptamers that were recognized according to the same structural rules as wild-type RNA, but with variations not found in nature, were identified. These aptamers revealed features in the S8 binding site that had been concealed during previous characterizations by the high base conservation throughout evolution. Our data demonstrate that the core structure of the S8 binding site is composed of three interdependent bases (nt 597/641/643), with an essential intervening adenine nucleotide (position 642). The other elements important for the binding site are a base pair (598/640) above the three interdependent bases and a bulged base at position 595, the identity of which is not important. Possible implications on the geometry of the S8 binding site are discussed with the help of a three-dimensional model.

  17. Computational studies on receptor-ligand interactions between novel buffalo (Bubalus bubalis) nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants and muramyl dipeptide (MDP).

    Science.gov (United States)

    Brahma, Biswajit; Patra, Mahesh Chandra; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Maharana, Jitendra; Vats, Ashutosh; Ahlawat, Sonika; Datta, Tirtha Kumar; De, Sachinandan

    2016-04-01

    Nucleotide binding and oligomerization domain 2 (NOD2), a member of intracellular NOD-like receptors (NLRs) family, recognizes the bacterial peptidoglycan, muramyl dipeptide (MDP) and initiates host immune response. The precise ligand recognition mechanism of NOD2 has remained elusive, although studies have suggested leucine rich repeat (LRR) region of NOD2 as the possible binding site of MDP. In this study, we identified multiple transcripts of NOD2 gene in buffalo (buNOD2) and at least five LRR variants (buNOD2-LRRW (wild type), buNOD2-LRRV1-V4) were found to be expressed in buffalo peripheral blood mononuclear cells. The newly identified buNOD2 transcripts were shorter in lengths as a result of exon-skipping and frame-shift mutations. Among the variants, buNOD2-LRRW, V1, and V3 were expressed more frequently in the animals studied. A comparative receptor-ligand interaction study through modeling of variants, docking, and molecular dynamics simulation revealed that the binding affinity of buNOD2-LRRW towards MDP was greater than that of the shorter variants. The absence of a LRR segment in the buNOD2 variants had probably affected their affinity toward MDP. Notwithstanding a high homology among the variants, the amino acid residues that interact with MDP were located on different LRR motifs. The binding free energy calculation revealed that the amino acids Arg850(LRR4) and Glu932(LRR7) of buNOD2-LRRW, Lys810(LRR3) of buNOD2-LRRV1, and Lys830(LRR3) of buNOD2-LRRV3 largely contributed towards MDP recognition. The knowledge of MDP recognition and binding modes on buNOD2 variants could be useful to understand the regulation of NOD-mediated immune response as well as to develop next generation anti-inflammatory compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns1

    Science.gov (United States)

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-01-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes. PMID:26839128

  19. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns.

    Science.gov (United States)

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-04-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  1. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function

    DEFF Research Database (Denmark)

    Follin, Elna; Karlsson, Maria; Lundegaard, Claus

    2013-01-01

    compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1–α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate...

  2. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described. The...

  3. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiongying; Latham, John A.; Klema, Valerie J.; Evans III, Robert L.; Li, Chao; Klinman, Judith P.; Wilmot, Carrie M. (UMM); (UCB)

    2017-08-19

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.

  4. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Wang, Jun; DeGrado, William F. [Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143 (United States); Moroz, Yurii S.; Korendovych, Ivan V. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zanni, Martin [Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  5. dNTP binding to HIV-1 reverse transcriptase and mammalian DNA polymerase beta as revealed by affinity labeling with a photoreactive dNTP analog.

    Science.gov (United States)

    Lavrik, O I; Prasad, R; Beard, W A; Safronov, I V; Dobrikov, M I; Srivastava, D K; Shishkin, G V; Wood, T G; Wilson, S H

    1996-09-06

    The dNTP binding pocket of human immunodeficiency virus type 1 reverse transcriptase (RT) and DNA polymerase beta (beta-pol) were labeled using a photoreactive analog of dCTP, exo-N-[beta-(p-azidotetrafluorobenzamido)-ethyl]-deoxycytidine-5'- triphosphate (FABdCTP). Two approaches of photolabeling were utilized. In one approach, photoreactive FABdCTP and radiolabeled primer-template were UV-irradiated in the presence of each enzyme and resulted in polymerase radiolabeling. In an alternate approach, FABdCTP was first UV-cross-linked to enzyme; subsequently, radiolabeled primer-template was added, and the enzyme-linked dCTP analog was incorporated onto the 3'-end of the radiolabeled primer. The results showed strong labeling of the p66 subunit of RT, with only minor labeling of p51. No difference in the intensity of cross-linking was observed with either approach. FABdCTP cross-linking was increased in the presence of a dideoxyterminated primer-template with RT, but not with beta-pol, suggesting a significant influence of prior primer-template binding on dNTP binding for RT. Mutagenesis of beta-pol residues observed to interact with the incoming dNTP in the crystal structure of the ternary complex resulted in labeling consistent with kinetic characterization of these mutants and indicated specific labeling of the dNTP binding pocket.

  6. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    International Nuclear Information System (INIS)

    Ghosh, Ayanjeet; Gai, Feng; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs

  7. Structure of bacteriophage SPN1S endolysin reveals an unusual two-module fold for the peptidoglycan lytic and binding activity.

    Science.gov (United States)

    Park, Yangshin; Lim, Jeong-A; Kong, Minsuk; Ryu, Sangryeol; Rhee, Sangkee

    2014-04-01

    Bacteriophage SPN1S infects the pathogenic Gram-negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane-permeabilized Gram-negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram-negative bacteria background, the α-helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane-permeabilized Escherichia coli. The three-helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane-permeabilized E. coli and was therefore proposed as the peptidoglycan-binding domain. These structural and functional features suggest that endolysin from a Gram-negative bacterial background has peptidoglycan-binding activity and performs glycoside hydrolase activity through the catalytic dyad. © 2014 John Wiley & Sons Ltd.

  8. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif.

    Science.gov (United States)

    Alenton, Rod Russel R; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-04-04

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation.

  9. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida.

    Science.gov (United States)

    Tu, Xiongying; Latham, John A; Klema, Valerie J; Evans, Robert L; Li, Chao; Klinman, Judith P; Wilmot, Carrie M

    2017-10-01

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn 2+ , Mg 2+ , Cu 2+ , and Zn 2+ . These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn 2+ . Our data support a key role for this motif in dimerization.

  10. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  11. Structural Studies on Dinuclear Ruthenium(II) Complexes That Bind Diastereoselectively to an Antiparallel Folded Human Telomere Sequence

    Science.gov (United States)

    2013-01-01

    We report DNA binding studies of the dinuclear ruthenium ligand [{Ru(phen)2}2tpphz]4+ in enantiomerically pure forms. As expected from previous studies of related complexes, both isomers bind with similar affinity to B-DNA and have enhanced luminescence. However, when tested against the G-quadruplex from human telomeres (which we show to form an antiparallel basket structure with a diagonal loop across one end), the ΛΛ isomer binds approximately 40 times more tightly than the ΔΔ, with a stronger luminescence. NMR studies show that the complex binds at both ends of the quadruplex. Modeling studies, based on experimentally derived restraints obtained for the closely related [{Ru(bipy)2}2tpphz]4+, show that the ΛΛ isomer fits neatly under the diagonal loop, whereas the ΔΔ isomer is unable to bind here and binds at the lateral loop end. Molecular dynamics simulations show that the ΔΔ isomer is prevented from binding under the diagonal loop by the rigidity of the loop. We thus present a novel enantioselective binding substrate for antiparallel basket G-quadruplexes, with features that make it a useful tool for quadruplex studies. PMID:24088028

  12. A histochemical study of the microglial cells in the brain of Salamandra salamandra by lectin binding.

    Science.gov (United States)

    Franceschini, V; Ciani, F

    1992-01-01

    Seven biotinylated lectins were utilized as histochemical markers for the study of microglial cells in the brain of Salamandra salamandra. It has been demonstrated that SBA, BSA-I, BSA-I-B4 and RCA120 label the microglial cells and, on the basis of the binding selectivity of the single lectins for specific carbohydrates, it was found that alpha-galactosyl residues are present in high density on the microglial membrane of S. salamandra. The reaction was localized not only to the ramified microglial cells, but also to other round cells without extensions, interpreted as ameboid microglial cells. The results show that lectin binding is a reliable molecular probe for identifying microglial cells in urodels.

  13. Synthesis of 4,4-ditritio-(+)-nicotine: comparative binding and distribution studies with natural enantiomer

    Energy Technology Data Exchange (ETDEWEB)

    Vincek, W.C.; Martin, B.R.; Aceto, M.D.; Tripathi, H.L.; May, E.L.; Harris, L.S.

    1981-11-01

    The preparation of 4,4-ditritio-(+)-nicotine (Vb) (specific activity 10.3 Ci/mmole)from (+)-nicotine (Ib) via (-) 4,4-dibromocotinine (IIIb) is described. Although Ib is 10-30 times less potent than (-)-nicotine (Ia) in the CNS, its binding affinity for the crude mitochondrial or nuclear fraction of whole rat brain is only three times less than that of Ia. However, distribution studies showed that the maximum brain levels of (-)-(3H) nicotine are nearly twice those of (+)-(3H)-nicotine following administration of a 2-micrograms/kg dose. Binding affinity and disposition of the stereoisomers account for a portion of the pharmacological stereospecificity of nicotine.

  14. EO-199, a specific antagonist of antiarrhythmic drugs: Assessment by binding experiments and in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, E.; Harel, G.; Lipinsky, D.; Sarne, Y. (Tel-Aviv Univ. (Israel))

    1991-01-01

    EO-199, a demethylated analog of the novel class I antiarrhythmic drug EO-122 was found to antagonize the antiarrhythmic activity of EO-122 and that of procainamide (Class I{sub A}). EO-199 did not block significantly the activity of a class I{sub B} antiarrhythmic agent, lidocaine. EO-199 also displaced the specific binding of ({sup 3}H)EO-122 to rate heart membranes similarly to procainamide whereas lidocaine did not. The correlation between binding experiments and pharmacological effects points to a possible subclassification of these drugs; the two chemical analogs EO-199 and EO-122, as well as procainamide (I{sub A}) but not lidocaine (I{sub B}), compete at the same site or the same state of the sodium channel. The availability of a specific antagonist might be useful for studying the mechanism of action of antiarrhythmic drugs as well as an antidote in cases of antiarrhythmics overdose intoxication.

  15. Study on the binding mode of zinc(II) protoporphyrin and ctDNA in water

    Science.gov (United States)

    Tong, Ai-jun; Tong, Chun-yuan; Yang, Qing-yi

    2003-11-01

    Spectroscopic property of a commercially available luminescent reagent Zinc(II) protoporphyrin (ZnPP) was studied. Dissociation constants of the two protons on the peripheral groups of porphyrin ring of ZnPP were determined as p Ka1=6.31, p Ka2=9.37. Binding evidence of ZnPP with ctDNA was found by the phosphorescence intensity change on a filter paper around pH 6.5-9.3 with the association constant being 9.1×10 3 dm 3/mol. A novel binding mode for ZnPP and calf thymus DNA (ctDNA) suggested that the monomer ZnPP which has no axial coordination, slips into the groove of DNA and interacts with the bases of polynucleotide by zinc coordination and hydrogen bonding between H atom on carboxyl group of ZnPP and O atom on the bases.

  16. Synthesis of 4,4-ditritio-(+)-nicotine: comparative binding and distribution studies with natural enantiomer

    International Nuclear Information System (INIS)

    Vincek, W.C.; Martin, B.R.; Aceto, M.D.; Tripathi, H.L.; May, E.L.; Harris, L.S.

    1981-01-01

    The preparation of 4,4-ditritio-(+)-nicotine (Vb) (specific activity 10.3 Ci/mmole)from (+)-nicotine (Ib) via (-) 4,4-dibromocotinine (IIIb) is described. Although Ib is 10-30 times less potent than (-)-nicotine (Ia) in the CNS, its binding affinity for the crude mitochondrial or nuclear fraction of whole rat brain is only three times less than that of Ia. However, distribution studies showed that the maximum brain levels of (-)-[3H] nicotine are nearly twice those of (+)-[3H]-nicotine following administration of a 2-micrograms/kg dose. Binding affinity and disposition of the stereoisomers account for a portion of the pharmacological stereospecificity of nicotine

  17. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods

    Science.gov (United States)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6 × 105 M- 1from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7 °C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.

  18. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Luis [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Berrios, Cristhian [Laboratorio de Electrocatalisis, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Yanez, Mauricio [Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Casilla-160 C, Concepcion (Chile); Cardenas-Jiron, Gloria I., E-mail: gloria.cardenas@usach.cl [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile)

    2009-11-26

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  19. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    International Nuclear Information System (INIS)

    Cortez, Luis; Berrios, Cristhian; Yanez, Mauricio; Cardenas-Jiron, Gloria I.

    2009-01-01

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  20. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  1. Isothermal titration calorimetric and computational studies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin.

    Science.gov (United States)

    Narahari, Akkaladevi; Singla, Hitesh; Nareddy, Pavan Kumar; Bulusu, Gopalakrishnan; Surolia, Avadhesha; Swamy, Musti J

    2011-04-14

    The interaction of chitooligosaccharides [(GlcNAc)(2-6)] with pumpkin phloem exudate lectin (PPL) was investigated by isothermal titration calorimetry and computational methods. The dimeric PPL binds to (GlcNAc)(3-5) with binding constants of 1.26-1.53 × 10(5) M(-1) at 25 °C, whereas chitobiose exhibits approximately 66-fold lower affinity. Interestingly, chitohexaose shows nearly 40-fold higher affinity than chitopentaose with a binding constant of 6.16 × 10(6) M(-1). The binding stoichiometry decreases with an increase in the oligosaccharide size from 2.26 for chitobiose to 1.08 for chitohexaose. The binding reaction was essentially enthalpy driven with negative entropic contribution, suggesting that hydrogen bonds and van der Waals' interactions are the main factors that stabilize PPL-saccharide association. The three-dimensional structure of PPL was predicted by homology modeling, and binding of chitooligosaccharides was investigated by molecular docking and molecular dynamics simulations, which showed that the protein binding pocket can accommodate up to three GlcNAc residues, whereas additional residues in chitotetraose and chitopentaose did not exhibit any interactions with the binding pocket. Docking studies with chitohexaose indicated that the two triose units of the molecule could interact with different protein binding sites, suggesting formation of higher order complexes by the higher oligomers of GlcNAc by their simultaneous interaction with two protein molecules.

  2. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    the quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...

  3. Differential scanning calorimetry study on the binding of nucleic acids to dimyristoylphosphatidylcholine-sphingosine liposomes.

    Science.gov (United States)

    Kõiv, A; Mustonen, P; Kinnunen, P K

    1994-03-31

    Binding of DNA and RNA to sphingosine-containing dimyristoylphosphatidylcholine (DMPC) liposomes was characterized by differential scanning calorimetry. The thermal phase behaviour of neat DMPC liposomes was unaffected by the presence of the nucleic acids. However, significant alterations in the melting profiles of the DMPC/sphingosine composite membranes were produced by DNA and RNA, thus revealing their binding to the liposomes. For example, for 79:21 (molar ratio) DMPC/sphingosine liposomes a single endotherm at 29.1 degrees C with an enthalpy of 6.3 kcal/mol lipid was observed. In the presence of DNA at the nucleotide/sphingosine ratio of 0.6 this endotherm separated into three distinct peaks at 28.0, 31.4 and 35.1 degrees C, together with an approximately 22% reduction in the total enthalpy. Further increase in DNA concentration up to 1.5 nucleotides per sphingosine led to complete loss of the original heat absorption peak of the DMPC/sphingosine liposomes, while an endotherm at 34.3 degrees C with delta H of 2.7 kcal/mol developed. By visual inspection, rapid and extensive aggregation of the liposomes due to DNA was evident. Evidence for DNA-induced phase separation was also provided by compression isotherms of sphingosine containing DMPC monolayers recorded over an aqueous buffer both in the presence and absence of DNA. The effects of RNA on the thermal phase behaviour of the composite liposomes were qualitatively similar to those described above for DNA. Notably, the presence of eggPA abolished the nucleic acid induced heat capacity changes for DMPC/sphingosine liposomes probably because of neutralization of the positive charge of sphingosine. The binding of DNA to DMPC/sphingosine liposomes occurred both below and above the lipid phase transition temperature, as shown by fluorescence resonance energy transfer utilizing adriamycin-labelled DNA as a quencher and membrane incorporated pyrene-labelled phospholipid as a donor. However, the apparent binding to

  4. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J; Pomper, Martin G [Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hammoud, Dima A, E-mail: endres@jhmi.edu [Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD (United States)

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [{sup 11}C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k{sup r}{sub 2}) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP{sub ND}). Compared with standard SRTM, either coupling of k{sup r}{sub 2} across regions or constraining k{sup r}{sub 2} to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP{sub ND} between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k{sup r}{sub 2} to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the

  5. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling; Robinson, Howard; Varnum, Susan M.

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR

  6. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.

  7. Study on dopamine D{sub 2} binding capacity in vascular parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Terashi, Hiroo; Nagata, Ken; Hirata, Yutaka; Hatazawa, Jun [Research Inst. for Brain and Blood Vessels, Akita (Japan); Utsumi, Hiroya [Tokyo Medical Coll. (Japan)

    2001-10-01

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [{sup 11}C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D{sub 2} receptor (k{sub 3}) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D{sub 2} receptor binding [%k{sub 3}] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k{sub 3} did not correspond to that of the parkinsonism. Thus, the striatal dopamine D{sub 2} receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D{sub 2} receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  8. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  9. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  10. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun [College of Chemistry, Changchun Normal University, Changchun 130032 (China)], E-mail: sy_bi@sina.com; Sun Yantao [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Qiao Chunyu; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Chunming [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2009-05-15

    The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (K{sub A}) were 9.66x10{sup 3}, 2.08x10{sup 3}, 8.20x10{sup 2} and 7.50x10{sup 3} L mol{sup -1} for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 deg. C. The thermodynamic functions such as enthalpy change ({delta}H), entropy change ({delta}S) and Gibbs free-energy change ({delta}G) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Foester theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.

  11. Towards Binding Mechanism of Cu2+ on Creatine Kinase from Pelodiscus sinensis: Molecular Dynamics Simulation Integrating Inhibition Kinetics Study.

    Science.gov (United States)

    Cai, Yan; Lee, Jinhyuk; Wang, Wei; Park, Yong-Doo; Qian, Guo-Ying

    2017-01-01

    Cu2+ is well known to play important roles in living organisms having bifacial distinction: essential microelement that is necessary for a wide range of metabolic processes but hyper-accumulation of Cu2+ can be toxic. The physiological function of Cu2+ in ectothermic animals such as Pelodiscus sinensis (Chinese soft-shelled turtle) has not been elucidated. In this study, we elucidated effect of Cu2+ on the energy producing metabolic enzyme creatine kinase (CK), which might directly affect energy metabolism and homeostasis of P. sinensis. We first conducted molecular dynamics (MD) simulations between P-CK and Cu2+ and conducted the inactivation kinetics including spectrofluorimetry study. MD simulation showed that Cu2+ blocked the binding site of the ATP cofactor, indicating that Cu2+ could directly inactivate P-CK. We prepared the muscle type of CK (P-CK) and confirmed that Cu2+ conspicuously inactivated the activity of P-CK (IC50 = 24.3 μM) and exhibited non-competitive inhibition manner with creatine and ATP in a first-order kinetic process. This result was well matched to the MD simulation results that Cu2+-induced non-competitive inactivation of P-CK. The spectrofluorimetry study revealed that Cu2+ induced tertiary structure changes in PCK accompanying with the exposure of hydrophobic surfaces. Interestingly, the addition of osmolytes (glycine, proline, and liquaemin) effectively restored activity of the Cu2+-inactivated P-CK. Our study illustrates the Cu2+-mediated unfolding of P-CK with disruption of the enzymatic function and the protective restoration role of osmolytes on P-CK inactivation. This study provides information of interest on P-CK as a metabolic enzyme of ectothermic animal in response to Cu2+ binding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. H19-DMR allele-specific methylation analysis reveals epigenetic heterogeneity of CTCF binding site 6 but not of site 5 in head-and-neck carcinomas

    DEFF Research Database (Denmark)

    De Castro Valente Esteves, Leda Isabel; De Karla Cervigne, Nilva; Do Carmo Javaroni, Afonso

    2006-01-01

    of CTCF binding sites 5 and 6 using methylation-sensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic...... observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing...... polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially...

  13. Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study

    International Nuclear Information System (INIS)

    Bou-Abdallah, Fadi; Sprague, Samuel E.; Smith, Britannia M.; Giffune, Thomas R.

    2016-01-01

    Highlights: • The binding affinity of Diclofenac and Naproxen to BSA and HSA is on the order of 10 4 –10 6 M −1 . • Two Diclofenac molecules bind per BSA or HSA but only 0.75 and 3 Naproxen molecules bind to BSA and HSA, respectively. • Drugs binding to BSA is only enthalpically favored and both enthalpically and entropically favored for HSA. • Fluorescence quenching data suggest dynamic collisions and the formation of ground-state protein-drug complexes. • DSC data show multiple sequential unfolding events and strong drug stabilization effects. - Abstract: Serum albumins are ubiquitous proteins able to bind a variety of exogenous and endogenous ligands including hydrophobic pharmaceuticals. Most drugs bind to two very active binding regions located within sub-domains IIA and IIIA of the protein, also known as Sudlow’s sites. The drug binding mode of serum albumin provides important pharmacological information and influences drug solubility, efficacy, biological distribution, and excretion. Here, the binding thermodynamics of Diclofenac and Naproxen, two non-steroidal anti-inflammatory drugs (NSAIDs) to bovine and human serum albumins (BSA and HSA, respectively) were studied by isothermal titration calorimetry (ITC), fluorescence spectroscopy and differential scanning calorimetry (DSC). The ITC data show that the binding affinity (K) of Diclofenac to BSA and HSA is on the order of 10 4 M −1 with a binding stoichiometry (n) of 2 drug molecules per protein. Naproxen binding to the two proteins exhibits a different profile with K and n values on the order of 10 6 M −1 and 0.75 for BSA, and 10 5 M −1 and 3 for HSA, respectively. The binding of the two drugs to HSA is found to be both enthalpically and entropically favored suggesting the formation of hydrogen bonds and van der Waals hydrophobic effects. Binding of the two drugs to BSA is only enthalpically favored with an unfavorable entropy term. Significant enthalpy–entropy compensation

  14. Hydrogen/deuterium exchange mass spectrometry reveals specific changes in the local flexibility of plasminogen activator inhibitor 1 upon binding to the somatomedin B domain of vitronectin.

    Science.gov (United States)

    Trelle, Morten Beck; Hirschberg, Daniel; Jansson, Anna; Ploug, Michael; Roepstorff, Peter; Andreasen, Peter A; Jørgensen, Thomas J D

    2012-10-16

    The native fold of plasminogen activator inhibitor 1 (PAI-1) represents an active metastable conformation that spontaneously converts to an inactive latent form. Binding of the somatomedin B domain (SMB) of the endogenous cofactor vitronectin to PAI-1 delays the transition to the latent state and increases the thermal stability of the protein dramatically. We have used hydrogen/deuterium exchange mass spectrometry to assess the inherent structural flexibility of PAI-1 and to monitor the changes induced by SMB binding. Our data show that the PAI-1 core consisting of β-sheet B is rather protected against exchange with the solvent, while the remainder of the molecule is more dynamic. SMB binding causes a pronounced and widespread stabilization of PAI-1 that is not confined to the binding interface with SMB. We further explored the local structural flexibility in a mutationally stabilized PAI-1 variant (14-1B) as well as the effect of stabilizing antibody Mab-1 on wild-type PAI-1. The three modes of stabilizing PAI-1 (SMB, Mab-1, and the mutations in 14-1B) all cause a delayed latency transition, and this effect was accompanied by unique signatures on the flexibility of PAI-1. Reduced flexibility in the region around helices B, C, and I was seen in all three cases, which suggests an involvement of this region in mediating structural flexibility necessary for the latency transition. These data therefore add considerable depth to our current understanding of the local structural flexibility in PAI-1 and provide novel indications of regions that may affect the functional stability of PAI-1.

  15. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.; Lawrenz, Matthew B.; Perry, Robert D.; Aller, Stephen G.

    2017-06-30

    Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.

  16. Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    OpenAIRE

    Seo, Eunyoung; Kim, Seungill; Yeom, Seon-In; Choi, Doil

    2016-01-01

    Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors are known play critical roles in effector-triggered immunity (ETI) plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267...

  17. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  18. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Philip D Townsend

    Full Text Available The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.

  19. Studies on the binding of growth hormone to rabbit liver membranes

    International Nuclear Information System (INIS)

    Hughes, J.P.

    1979-01-01

    The specific binding of rat (r) and rabbit (rb) [ 125 I]iodo-growth hormone (GH) was studied in liver membrane preparations isolated from male, virgin female, late pregnant and midlactating rabbits. Overall, these studies suggest that heterologous radioreceptor assays which use rabbit liver membranes do not provide valid estimates of the potencies of various GH preparations. Furthermore, many assays which measure forms of GH from the same species as the purified standard do not constitute homologous assays since the different forms are not bound in a manner similar to the standard. This latter point is interesting since it suggests that the various forms of rGH may initiate different biological actions

  20. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Directory of Open Access Journals (Sweden)

    Andrea D Coviello

    Full Text Available Sex hormone-binding globulin (SHBG is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106, PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11, GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16, ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09, JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35, SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08, NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12, ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14, TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14, LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07, BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08, and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06. These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08, women p = 0.66, heterogeneity p = 0.003. Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion

  1. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC Transporter Gene Family in Pineapple (Ananas comosus (L. Merr. Reveal the Role of AcABCG38 in Pollen Development

    Directory of Open Access Journals (Sweden)

    Piaojuan Chen

    2017-12-01

    Full Text Available Pineapple (Ananas comosus L. cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs. Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  2. Phenanthrene binding by humic acid–protein complexes as studied by passive dosing technique

    International Nuclear Information System (INIS)

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Highlights: • Phenanthrene binding capability followed an order: HA-5>HA-2>BSA>pepsin>lysozyme. • Phenanthrene binding to HA-BSA was enhanced relative to individual HA and BSA. • Binding enhancement to HA-BSA was observed under all tested solution conditions. • The enhancement is related to BSA unfolding, size reduction and HA-BSA complexation. -- Phenanthrene binding to HA-BSA complexes is much higher than the sum to individual HA and BSA while there was no binding enhancement to HA-pepsin or HA-lysozyme

  3. Tight binding simulation study on zigzag single-walled carbon nanotubes

    Science.gov (United States)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  4. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  5. DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(ii) terpyridine complexes.

    Science.gov (United States)

    Lazić, Dejan; Arsenijević, Aleksandar; Puchta, Ralph; Bugarčić, Živadin D; Rilak, Ana

    2016-03-21

    In this study, two representatives of previously synthesized ruthenium(ii) terpyridine complexes, i.e., [Ru(Cl-tpy)(en)Cl][Cl] (1) and [Ru(Cl-tpy)(dach)Cl][Cl] (2), were chosen and a detailed study of the kinetic parameters of their reactivity toward l-histidine (l-His), using the UV-Vis and (1)H NMR techniques, was developed. The inner molecular rearrangement from N3-coordinated l-His to the N1 bound isomer, observable in the NMR data, was corroborated by DFT calculations favoring N1 coordination by nearly 4 kcal mol(-1). These two ruthenium(ii) terpyridine complexes were investigated for their interactions with DNA employing UV-Vis spectroscopy, DNA viscosity measurements and fluorescence quenching measurements. The high binding constants obtained in the DNA binding studies (Kb = 10(4)-10(5) M(-1)) suggest a strong binding of the complexes to calf thymus (CT) DNA. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv = 1.5-2.5 × 10(4) M(-1)). In fact, the results indicate that these complexes can bind to DNA covalently and non-covalently. In order to gain insight of the behavior of a neutral compound, besides the four previously synthesized cationic complexes [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)(dach)Cl][Cl] (2), [Ru(Cl-tpy)(bpy)Cl][Cl] (3) and [Ru(tpy)Cl3] (P2), a new complex, [Ru(Cl-tpy)(pic)Cl] (4), was used in the biological studies. Their cytotoxicity was investigated against three different tumor cell lines, i.e., A549 (human lung carcinoma cell line), HCT116 (human colon carcinoma cell line), and CT26 (mouse colon carcinoma cell line), by the MTT assay. Complexes 1 and 2 showed higher activity than complexes 3, 4 and P2 against all the selected cell lines. The results on in vitro anticancer activity confirmed that only compounds that hydrolyze the monodentate ligand at a reasonable rate show moderate activity, provided that the chelate ligand is a hydrogen bond

  6. Study of the nucleotide binding site of the yeast Schizosaccharomyces pombe plasma membrane H+-ATPase using formycin triphosphate-terbium complex

    International Nuclear Information System (INIS)

    Ronjat, M.; Lacapere, J.J.; Dufour, J.P.; Dupont, Y.

    1987-01-01

    The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H 2 O by D 2 O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex

  7. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1.

    OpenAIRE

    Henriksson, G; Salumets, A; Divne, C; Pettersson, G

    1997-01-01

    The binding isotherm to cellulose of cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium has been compared with that of cellobiohydrolase 1 (CBH 1) from Trichoderma reesei. CDH binds more strongly but more sparsely to cellulose than does CBH 1. In a classical Scatchard analysis, a better fit to a one-site binding model was obtained for CDH than for CBH 1. The binding of both enzymes decreased in the presence of ethylene glycol, increased in the presence of ammonium sulphate and wa...

  8. A combined spectroscopic and molecular docking study on site selective binding interaction of Toluidine blue O with Human and Bovine serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Selva Sharma, Arumugam [Department of Chemistry, Bharathiar University, Coimbatore 641046 (India); Anandakumar, Shanmugam [Department of Bioinformatics, Bharathiar University, Coimbatore 641046 (India); Ilanchelian, Malaichamy, E-mail: chelian73@yahoo.com [Department of Chemistry, Bharathiar University, Coimbatore 641046 (India)

    2014-07-01

    In the present investigation the interaction of a biologically active photodynamic therapeutic agent Toluidine blue O (TBO) with Serum albumins viz Human serum albumin (HSA) and Bovine serum albumin (BSA) was studied using absorption, emission, circular dichroism spectroscopy and molecular docking experiments. The emission titration experiments between HSA/BSA and TBO revealed the existence of strong interactions between TBO and the proteins. The site competitive experiment of HSA and BSA showed that the primary binding site of TBO is located in site I of HSA/BSA involving hydrophobic, hydrogen bonding and electrostatic interaction. To ascertain the results of site competitive experiments, molecular docking was utilized to characterize the binding models of TBO–HSA/BSA complexes. From the molecular docking studies, free energy calculations were undertaken to examine the energy contributions and the role of various amino acid residues of HSA/BSA in TBO binding. The existence of Forster Resonance Energy Transfer (FRET) between the ligand and the protein was utilized to calculate the donor–acceptor distance of TBO and protein. The TBO induced conformational changes of HSA/BSA was established using synchronous emission, three dimensional emission and circular dichroism studies. - Highlights: • Site selective binding interaction of TBO with HSA and BSA were investigated. • TBO quenches the intrinsic fluorescence of HSA/BSA by static quenching process. • Computational studies of TBO with HSA/BSA substantiate the experimental findings. • 3D and CD spectral studies of TBO–HSA/BSA revealed structural changes in protein. • The distance (r) between TBO and HSA/BSA were estimated from FRET theory.

  9. Two distinct allosteric binding sites at α4β2 nicotinic acetylcholine receptors revealed by NS206 and NS9283 give unique insights to binding activity-associated linkage at Cys-loop receptors.

    Science.gov (United States)

    Olsen, Jeppe A; Kastrup, Jette S; Peters, Dan; Gajhede, Michael; Balle, Thomas; Ahring, Philip K

    2013-12-13

    Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.

  10. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    International Nuclear Information System (INIS)

    Arnold, John

    2015-01-01

    The uranyl cation (UO 2 2+ ) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  11. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    Science.gov (United States)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable