WorldWideScience

Sample records for binding sites alpha

  1. Demonstration of specific binding sites for /sup 3/H-RRR-alpha-tocopherol on human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for /sup 3/H-RRR-alpha-tocopherol (/sup 3/H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for /sup 3/H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for /sup 3/H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane.

  2. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  3. Nonequivalence of alpha-bungarotoxin binding sites in the native nicotinic receptor molecule

    International Nuclear Information System (INIS)

    Conti-Tronconi, B.M.; Tang, F.; Walgrave, S.; Gallagher, W.

    1990-01-01

    In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR. We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX

  4. Uncoupling of stem cell inhibition from monocyte chemoattraction in MIP-1alpha by mutagenesis of the proteoglycan binding site.

    Science.gov (United States)

    Graham, G J; Wilkinson, P C; Nibbs, R J; Lowe, S; Kolset, S O; Parker, A; Freshney, M G; Tsang, M L; Pragnell, I B

    1996-12-02

    We have studied the role of proteoglycans in the function of Macrophage Inflammatory Protein-1 alpha (MIP-1alpha), a member of the proteoglycan binding chemokine family. Sequence and peptide analysis has identified a basic region within MIP-1alpha which appears to be the major determinant of proteoglycan binding and we have now produced a mutant of MIP-1alpha lacking the basic charges on two of the amino acids within this proteoglycan binding site. This mutant (Hep Mut) appears to have lost the ability to bind to proteoglycans. Bioassay of Hep Mut indicates that it has retained stem cell inhibitory properties but has a compromised activity as a monocyte chemoattractant, thus suggesting uncoupling of these two properties of MIP-1alpha. Receptor studies have indicated that the inactivity of Hep Mut on human monocytes correlates with its inability to bind to CCR1, a cloned human MIP-1alpha receptor. In addition, studies using proteoglycan deficient cells transfected with CCR1 have indicated that the proteoglycan binding site in MIP-1alpha is a site that is also involved in the docking of MIP-1alpha to the monocyte receptor. The site for interaction with the stem cell receptor must therefore be distinct, suggesting that MIP-1alpha utilizes different receptors for these two different biological processes.

  5. Evidence for alpha-MSH binding sites on human scalp hair follicles: preliminary results

    NARCIS (Netherlands)

    Nanninga, P. B.; Ghanem, G. E.; Lejeune, F. J.; Bos, J. D.; Westerhof, W.

    1991-01-01

    Alpha-MSH, considered an important pigmentation hormone, binds to melanocytes and is thought to stimulate melanogenesis through a cyclic-AMP-dependent mechanism. The binding of alpha-MSH to follicular melanocytes has been investigated in human hair of different colors, ranging from black to blond

  6. Binding of (3H)dihydroergocryptine to an alpha-adrenergic site in the stalk median eminence of the steer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.T.; Roberts, J.M.; Weiner, R.I.

    1981-12-01

    Dihydroergocryptine (DHE), a potent dopamine agonist and alpha-adrenergic antagonist, has been used as a radioligand to characterize both dopamine and alpha-adrenergic receptors. In the present study, the binding of (3H)DHE to particulate fractions of the steer stalk median eminence was characterized using a filtration assay. Specific binding was defined by the presence of 10 microM phentolamine or by an iterative nonlinear hyperbolic curve-fitting program. Scatchard analysis of equilibrium isotherms of specific binding defined a single high affinity (Kd . 1.78 +/- 0.22 nM), saturable (maximum binding, 481 +/- 39 fmol/mg protein), stereoselective binding site. The Kd, calculated from the ratio of the rate constants k2 and k1, was 2.8 +/- 0.14 nM. The rank order of potency of agonists to compete for (3H)DHE binding (l-epinephrine greater than l-norepinephrine greater than dopamine greater than l-isoproterenol) was consistent with interactions at an alpha-adrenergic site. The rank order of potency of alpha-antagonists (phentolamine greater than yohimbine greater than prazosin) suggested that this was an alpha 2-adrenergic receptor. The affinity of dopamine agonists for the (3H)DHE-binding site was 10-fold lower relative to their potency at known dopamine receptors, while the affinity of dopaminergic antagonists was 100-fold lower. Furthermore, Scatchard analysis of specific (3H)DHE binding in the presence of a concentration of spiperone which should saturate dopamine receptors, only decreased the number of binding sites by 9%. These data demonstrate the presence of large numbers of alpha-adrenergic receptors in the stalk median eminence of the steer. Only a small number of dopaminergic binding sites for (3H)DHE appeared to be present.

  7. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor.

    Science.gov (United States)

    Kasheverov, Igor E; Zhmak, Maxim N; Fish, Alexander; Rucktooa, Prakash; Khruschov, Alexey Yu; Osipov, Alexey V; Ziganshin, Rustam H; D'hoedt, Dieter; Bertrand, Daniel; Sixma, Titia K; Smit, August B; Tsetlin, Victor I

    2009-11-01

    alpha-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. alpha-Conotoxins blocking muscle-type or alpha7 nAChRs compete with alpha-bungarotoxin. However, alpha-conotoxin ImII, a close homolog of the alpha7 nAChR-targeting alpha-conotoxin ImI, blocked alpha7 and muscle nAChRs without displacing alpha-bungarotoxin (Ellison et al. 2003, 2004), suggesting binding at a different site. We synthesized alpha-conotoxin ImII, its ribbon isomer (ImIIiso), 'mutant' ImII(W10Y) and found similar potencies in blocking human alpha7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [(125)I]-alpha-bungarotoxin from human alpha7 nAChRs in the cell line GH(4)C(1) (IC(50) 17 and 23 microM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC(50) 2.0-9.0 microM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized alpha-bungarotoxin (K(d) and IC(50) 2.5-8.2 microM). On Torpedo nAChR, alpha-conotoxin [(125)I]-ImII(W10Y) revealed specific binding (K(d) 1.5-6.1 microM) and could be displaced by alpha-conotoxin ImII, ImIIiso and ImII(W10Y) with IC(50) 2.7, 2.2 and 3.1 microM, respectively. As alpha-cobratoxin and alpha-conotoxin ImI displaced [(125)I]-ImII(W10Y) only at higher concentrations (IC(50)> or = 90 microM), our results indicate that alpha-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.

  8. [3H]idazoxan and some other alpha 2-adrenergic drugs also bind with high affinity to a nonadrenergic site

    NARCIS (Netherlands)

    Michel, M. C.; Brodde, O. E.; Schnepel, B.; Behrendt, J.; Tschada, R.; Motulsky, H. J.; Insel, P. A.

    1989-01-01

    We compared the pharmacological properties of the alpha 2-adrenergic radioligand [3H]idazoxan with those of [3H]rauwolscine in rat and [3H]yohimbine in human renal cortical membranes. The density of "specific" [3H]idazoxan binding sites (defined by 100 microM tolazoline) was twice as high as that of

  9. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong

    2009-01-01

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  10. Three complement-like repeats compose the complete alpha2-macroglobulin binding site in the second ligand binding cluster of the low density lipoprotein receptor-related protein.

    Science.gov (United States)

    Dolmer, Klavs; Gettins, Peter G W

    2006-11-10

    Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.

  11. [(3)H]Epibatidine photolabels non-equivalent amino acids in the agonist binding site of Torpedo and alpha4beta2 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Srivastava, Shouryadeep; Hamouda, Ayman K; Pandhare, Akash; Duddempudi, Phaneendra K; Sanghvi, Mitesh; Cohen, Jonathan B; Blanton, Michael P

    2009-09-11

    Nicotinic acetylcholine receptor (nAChR) agonists, such as epibatidine and its molecular derivatives, are potential therapeutic agents for a variety of neurological disorders. In order to identify determinants for subtype-selective agonist binding, it is important to determine whether an agonist binds in a common orientation in different nAChR subtypes. To compare the mode of binding of epibatidine in a muscle and a neuronal nAChR, we photolabeled Torpedo alpha(2)betagammadelta and expressed human alpha4beta2 nAChRs with [(3)H]epibatidine and identified by Edman degradation the photolabeled amino acids. Irradiation at 254 nm resulted in photolabeling of alphaTyr(198) in agonist binding site Segment C of the principal (+) face in both alpha subunits and of gammaLeu(109) and gammaTyr(117) in Segment E of the complementary (-) face, with no labeling detected in the delta subunit. For affinity-purified alpha4beta2 nAChRs, [(3)H]epibatidine photolabeled alpha4Tyr(195) (equivalent to Torpedo alphaTyr(190)) in Segment C as well as beta2Val(111) and beta2Ser(113) in Segment E (equivalent to Torpedo gammaLeu(109) and gammaTyr(111), respectively). Consideration of the location of the photolabeled amino acids in homology models of the nAChRs based upon the acetylcholine-binding protein structure and the results of ligand docking simulations suggests that epibatidine binds in a single preferred orientation within the alpha-gamma transmitter binding site, whereas it binds in two distinct orientations in the alpha4beta2 nAChR.

  12. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1...

  13. Chemical shifts as a novel measure of interactions between two binding sites of symmetric dialkyldimethylammonium bromides to {alpha}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Funasaki, Noriaki [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan)]. E-mail: funasaki@mb.kyoto-phu.ac.jp; Ishikawa, Seiji [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); Hirota, Shun [Department of Physical Chemistry, Faculty of Pharmaceutical Sciences, 21st Century COE Program, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2006-01-12

    Complex formation of {alpha}-cyclodextrin ({alpha}-CD) with decyltrimethylammonium (DeTAB), N,N-dioctyldimethylammonium (DOAB), and N,N-didecyldimethylammonium bromides (DDeAB) was investigated by proton NMR spectroscopy. Analysis of chemical shifts yielded macroscopic 1:1 and 1:2 binding constants (K {sub 1} and K {sub 2}) and chemical shift differences ({delta}{delta} {sub SD} and {delta}{delta} {sub SD2}) for the 1:1 and 1:2 complexes of DeTAB, DOAB, and DDeAB with {alpha}-CD. The K {sub 1} and K {sub 2} values of DDeAB were quantitatively explained on the basis of the assumption that the microscopic 1:1 binding constant of DDeAB is identical to the observed K {sub 1} value of DeTAB. The K {sub 2} value of DDeAB was also explained in terms of its observed K {sub 1} value and the independent binding of two alkyl chains. Furthermore, the {delta}{delta} {sub SD} and {delta}{delta} {sub SD2} values for protons of DDeAB and {alpha}-CD were quantitatively explained on the basis of the assumption that the geometry of the decyl group of DDeAB in an {alpha}-CD cavity is identical to that of DeTAB. The {delta}{delta} {sub SD} value was also explicable on the basis of the same geometric assumption and the observed {delta}{delta} {sub SD2} value for this system. Similar results were obtained for the 1:1 and 1:2 DOAB-{alpha}-CD complexes.

  14. Localization of the 5-phospho-alpha-D-ribosyl-1-pyrophosphate binding site of human hypoxanthine-guanine phosphoribosyltransferase.

    Science.gov (United States)

    Keough, D T; Emmerson, B T; de Jersey, J

    1991-02-22

    Human erythrocyte hypoxanthine-guanine phosphoribosyltransferase (HPRT) is inactivated by iodoacetate in the absence, but not in the presence, of the substrate, 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRib-PP). Treatment of HPRT with [14C]iodoacetate followed by tryptic digestion, peptide separation and sequencing has shown that Cys-22 reacts with iodoacetate only in the absence of PRib-PP; this strongly suggests that Cys-22 is in or near the PRib-PP binding site. In contrast, Cys-105 reacts with [14C]iodoacetate both in the presence and absence of PRib-PP. Carboxymethylation of Cys-22 resulted in an increase in the Km for PRib-PP, but no change in Vmax. Storage of HPRT also resulted in an increase in the Km for PRib-PP and a decrease in its susceptibility to inactivation by iodoacetate. Dialysis of stored enzyme against 1 mM dithiothreitol resulted in a marked decrease in Km for PRib-PP. The stoichiometry of the reaction of [14C]iodoacetate with Cys-22 in HPRT leading to inactivation (approx. 1 residue modified per tetramer) showed that, in this preparation of HPRT purified from erythrocytes, only about 25% of the Cys-22 side chains were present as free and accessible thiols. Titration of thiol groups [with 5,5'-dithiobis(2-nitrobenzoic acid)] and the effect of dithiothreitol on Km for PRib-PP indicate that oxidation of thiol groups occurs on storage of HPRT, even in the presence of 1 mM beta-mercaptoethanol.

  15. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  16. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.

    Science.gov (United States)

    Nielsen, Morten M; Bozonnet, Sophie; Seo, Eun-Seong; Mótyán, János A; Andersen, Joakim M; Dilokpimol, Adiphol; Abou Hachem, Maher; Gyémánt, Gyöngyi; Naested, Henrik; Kandra, Lili; Sigurskjold, Bent W; Svensson, Birte

    2009-08-18

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)(8)-barrel and the noncatalytic C-terminal domain, respectively. Site-directed mutagenesis of Trp(278) and Trp(279), stacking onto adjacent ligand glucosyl residues at SBS1, and of Tyr(380) and His(395), making numerous ligand contacts at SBS2, suggested that SBS1 and SBS2 act synergistically in degradation of starch granules. While SBS1 makes the major contribution to binding and hydrolysis of starch granules, SBS2 exhibits a higher affinity for the starch mimic beta-cyclodextrin. Compared to that of wild-type AMY1, the K(d) of starch granule binding by the SBS1 W278A, W279A, and W278A/W279A mutants thus increased 15-35 times; furthermore, the k(cat)/K(m) of W278A/W279A was 2%, whereas both affinity and activity for Y380A at SBS2 were 10% of the wild-type values. Dual site double and triple SBS1/SBS2 substitutions eliminated binding to starch granules, and the k(cat)/K(m) of W278A/W279A/Y380A AMY1 was only 0.4% of the wild-type value. Surface plasmon resonance analysis of mutants showed that beta-cyclodextrin binds to SBS2 and SBS1 with K(d,1) and K(d,2) values of 0.07 and 1.40 mM, respectively. A model that accounts for the observed synergy in starch hydrolysis, where SBS1 and SBS2 bind ordered and free alpha-glucan chains, respectively, thus targeting the enzyme to single alpha-glucan chains accessible for hydrolysis, is proposed. SBS1 and SBS2 also influence the kinetics of hydrolysis for amylose and maltooligosaccharides, the degree of multiple attack on amylose, and subsite binding energies.

  17. Identification of an Allosteric Binding Site on Human Lysosomal Alpha-Galactosidase Opens the Way to New Pharmacological Chaperones for Fabry Disease.

    Directory of Open Access Journals (Sweden)

    Valentina Citro

    Full Text Available Personalized therapies are required for Fabry disease due to its large phenotypic spectrum and numerous different genotypes. In principle, missense mutations that do not affect the active site could be rescued with pharmacological chaperones. At present pharmacological chaperones for Fabry disease bind the active site and couple a stabilizing effect, which is required, to an inhibitory effect, which is deleterious. By in silico docking we identified an allosteric hot-spot for ligand binding where a drug-like compound, 2,6-dithiopurine, binds preferentially. 2,6-dithiopurine stabilizes lysosomal alpha-galactosidase in vitro and rescues a mutant that is not responsive to a mono-therapy with previously described pharmacological chaperones, 1-deoxygalactonojirimycin and galactose in a cell based assay.

  18. Convulxin binds to native, human glycoprotein Ib alpha.

    Science.gov (United States)

    Kanaji, Sachiko; Kanaji, Taisuke; Furihata, Kenichi; Kato, Kazunobu; Ware, Jerry L; Kunicki, Thomas J

    2003-10-10

    Convulxin (CVX), a C-type snake protein from Crotalus durissus terrificus venom, is the quintessential agonist for studies of the collagen receptor, glycoprotein VI (GPVI) and its role in platelet adhesion to collagens. In this study, CVX, purified from venom, behaves as expected, i.e. it binds to platelet GPVI and recombinant human GPVI, induces platelet aggregation and platelet prothrombinase activity, and binds uniquely to GPVI in ligand blots of SDS-denatured proteins. Nonetheless, we find that CVX has a dual specificity for both GPVI and native but not denatured human GPIb alpha. First, CVX binds to human GPIb alpha expressed on the surface of CHO cells. Second, CVX binds weakly to murine platelet GPIb alpha but more strongly to human platelet GPIb alpha, as evidenced by comparative binding to wild-type, GPVI(-/-), FcR gamma (-/-), and human GPIb transgenic mice. Third, the binding of CVX to human GPIb alpha is inhibited by soluble, recombinant human GPVI. Fourth, CVX binding to GPIb alpha is disrupted by phenylalanine substitutions at GPIb alpha tyrosine-276, tyrosine-278, and tyrosine-279, which also disrupts von Willebrand factor and alpha-thrombin binding to GPIb alpha. Fifth, CVX binding to GPIb alpha on Chinese hamster ovary cell transfectants is inhibited by function-blocking murine monoclonal anti-GPIb alpha antibodies. Lastly, CVX fails to bind to denatured GPIb alpha in detergent extracts of platelets. Three separate preparations of CVX (two purified by the authors; one obtained commercially) produced equivalent results. These results indicate that CVX exhibits dual specificity for both native GPIb alpha and GPVI. Furthermore, the binding site on GPIb alpha for CVX may be close to that for von Willebrand factor. Therefore, a contribution of GPIb alpha to CVX-induced platelet responses needs to be carefully re-evaluated.

  19. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Fish, A.; Rucktooa, P.; Khruschov, A.Y.; Osipov, A.V.; Ziganshin, R.H.; D'Hoedt, D.; Bertrand, D.; Sixma, T.K.; Smit, A.B.; Tsetlin, V.I.

    2009-01-01

    α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7

  20. Congenital heart block: identification of autoantibody binding site on the extracellular loop (domain I, S5-S6) of alpha(1D) L-type Ca channel.

    Science.gov (United States)

    Karnabi, Eddy; Qu, Yongxia; Wadgaonkar, Raj; Mancarella, Salvatore; Yue, Yuankun; Chahine, Mohamed; Clancy, Robert M; Buyon, Jill P; Boutjdir, Mohamed

    2010-03-01

    Congenital heart block (CHB) is an autoimmune disease associated with autoantibodies against intracellular ribonucleoproteins SSB/La and SSA/Ro. The hallmark of CHB is complete atrioventricular block. We have recently established that anti-SSA/Ro -SSB/La autoantibodies inhibit alpha(1D) L-type Ca current, I(Ca-L), and cross-react with the alpha(1D) Ca channel protein. This study aims at identifying the possible binding sites on alpha(1D) protein for autoantibodies from sera of mothers with CHB children. GST fusion proteins of the extracellular regions between the transmembrane segments (S5-S6) of each of the four alpha(1D) Ca channel protein domains I-IV were prepared and tested for reactivity with sera from mothers with CHB children and controls using ELISA. Sera containing anti-Ro/La autoantibodies from 118 mothers with CHB children and from 15 mothers with anti-Ro/La autoantibodies but have healthy children, and from 28 healthy mothers without anti-Ro/La autoantibodies and healthy children were evaluated. Seventeen of 118 (14.4%) sera from mothers with CHB children reacted with the extracellular loop of domain I S5-S6 region (E1). In contrast, only 2 of 28 (7%) of sera from healthy mothers (-anti-Ro/La) and healthy children reacted with E1 loop and none (0 of 15) of sera from healthy mothers (+anti-Ro/La) and healthy children reacted with the E1 loop. Preincubation of E1 loop with the positive sera decreased the O.D reading establishing the specificity of the response. Electrophysiological characterization of the ELISA positive sera and purified IgG showed inhibition (44.1% and 49.8%, respectively) of the alpha(1D) I(Ca-L) expressed in tsA201 cells. The inhibition was abolished when the sera were pre-incubated with E1 fusion protein. The results identified the extracellular loop of domain I S5-S6 of L-type Ca channel alpha(1D) subunit as a target for autoantibodies from a subset of mothers with CHB children. This novel finding provides insights into the

  1. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  2. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    /EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together......Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...

  3. Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat

    Directory of Open Access Journals (Sweden)

    Jin Hong

    2009-12-01

    Full Text Available Abstract Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain is its distant relative, α-dystrobrevin. The α-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most α-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse α-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms α-dystrobrevin-4 and -5 are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the α-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the α-dystrobrevins (and therefore the dystrophin glycoprotein complexes of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof.

  4. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    International Nuclear Information System (INIS)

    Marks, M.J.; Collins, A.C.

    1982-01-01

    The binding of [ 3 H]nicotine to mouse brain has been measured and subsequently compared with the binding of [ 125 I]alpha-bungarotoxin (alpha-BTX) and L-[ 3 H]quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed at 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl 2 , or MgSO 4 to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors

  5. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    Energy Technology Data Exchange (ETDEWEB)

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.; Thorn, Katherine J.; Christianson, David W. (MIT); (Episcopal U); (Rutgers); (Drexel); (Penn)

    2011-10-21

    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.

  6. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob......, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  7. Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography

    International Nuclear Information System (INIS)

    Gillberg, P.-G.; Aquilonius, S.-M.

    1985-01-01

    Binding sites for the receptor ligands 3 H-quinuclidinylbenzilate, 3 H-alpha-bungarotoxin ( 3 H-alpha-Btx), 3 H-etorphine and 3 H-strychnine were localized autoradiographically at cervical, thoracic and lumbar levels of spinal cords from post-mortem human control subjects and subjects with amyotrophic lateral sclerosis (ALS). The highest densities of muscarinic binding sites were found in the motor neuron areas and in the substantia gelatinosa, while the grey matter binding was very low within Clarke's column. Both 3 H-alpha-Btx and opioid receptor binding sites were numerous within the substantia gelatinosa, while glycine receptor binding sites were more uniformly distribute within the spinal grey matter. In ALS cases, muscarinic receptor binding sites were markedly reduced in motor neuron areas and slightly reduced in the dorsal horn, while the other binding sites studied were relatively unchanged. (author)

  8. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    Energy Technology Data Exchange (ETDEWEB)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. (State Univ. of New York, Buffalo (USA))

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

  9. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    International Nuclear Information System (INIS)

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J.

    1989-01-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with 125 I-labeled HSMSL or 125 I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of [ 125 I]alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch

  10. Binding properties of alpha-1 adrenergic receptors in rat cerebral cortex: similarity to smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Minneman, K.P.

    1983-12-01

    The characteristics of alpha-1 adrenergic receptors in rat cerebral cortex were examined using the radioiodinated alpha-1 adrenergic receptor antagonist ((/sup 125/I)BE). (/sup 125/I)BE labeled a single class of high-affinity binding sites in a particulate fraction of rat cerebral cortex with mass action kinetics and a KD of 57 pM. The binding of (/sup 125/I)BE was inhibited by various alpha adrenergic receptor antagonists, partial agonists and full agonists. The potency of these compounds in competing for the (/sup 125/I)BE binding sites suggested that (/sup 125/I)BE was labeling alpha-1 adrenergic receptors in rat cerebral cortex. In the absence of a physiological concentration of NaCl in the assay medium there was a small (20%) decrease in the density of (/sup 125/I)BE binding sites with no effect on the KD value. The absence of NaCl also caused a 4-fold increase in the potency of norepinephrine in competing for (/sup 125/I)BE binding sites. All drugs competed for (/sup 125/I) BE binding sites with Hill coefficients greater than 0.86, except for oxymetazoline which had a Hill coefficient of 0.77. Scatchard analysis of specific (/sup 125/I)BE binding in the presence of various competing drugs showed that the inhibition by both agonists and antagonists was purely competitive, but the inhibition by oxymetazoline was complex. Treatment of the particulate fraction of rat cerebral cortex with 0.2 to 200 nM phenoxybenzamine for 10 min caused a dose-dependent decrease in the density of (/sup 125/I) BE binding sites which could be mostly blocked by the presence of norepinephrine during the phenoxybenzamine exposure.

  11. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  12. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  13. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein.

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    Full Text Available A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.

  14. Binding matrix: a novel approach for binding site recognition.

    Science.gov (United States)

    Kim, Jan T; Gewehr, Jan E; Martinetz, Thomas

    2004-06-01

    Recognition of protein-DNA binding sites in genomic sequences is a crucial step for discovering biological functions of genomic sequences. Explosive growth in availability of sequence information has resulted in a demand for binding site detection methods with high specificity. The motivation of the work presented here is to address this demand by a systematic approach based on Maximum Likelihood Estimation. A general framework is developed in which a large class of binding site detection methods can be described in a uniform and consistent way. Protein-DNA binding is determined by binding energy, which is an approximately linear function within the space of sequence words. All matrix based binding word detectors can be regarded as different linear classifiers which attempt to estimate the linear separation implied by the binding energy function. The standard approaches of consensus sequences and profile matrices are described using this framework. A maximum likelihood approach for determining this linear separation leads to a novel matrix type, called the binding matrix. The binding matrix is the most specific matrix based classifier which is consistent with the input set of known binding words. It achieves significant improvements in specificity compared to other matrices. This is demonstrated using 95 sets of experimentally determined binding words provided by the TRANSFAC database.

  15. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  16. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence......ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  17. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Ethylene binding site affinity in ripening apples

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, S.M. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Horticultural Science); Sisler, E.C. (North Carolina State Univ., Raleigh, NC (United States))

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  19. Tissue specificity of endothelin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. (BioMega, Inc., Laval, Quebec (Canada))

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  20. Ribosome binding site recognition using neural networks

    Directory of Open Access Journals (Sweden)

    Márcio Ferreira da Silva Oliveira

    2004-01-01

    Full Text Available Pattern recognition is an important process for gene localization in genomes. The ribosome binding sites are signals that can help in the identification of a gene. It is difficult to find these signals in the genome through conventional methods because they are highly degenerated. Artificial Neural Networks is the approach used in this work to address this problem.

  1. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, S.L.; Balster, R.L.; Martin, B.R. (Virginia Commonwealth Univ., Richmond (USA))

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  2. Enzyme binding selectivity prediction: alpha-thrombin vs trypsin inhibition.

    Science.gov (United States)

    Mlinsek, G; Novic, M; Kotnik, M; Solmajer, T

    2004-01-01

    In the present work we explore the possibility of an in-depth computational analysis of available experimental X-ray structures in the specific case of a series of alpha-thrombin and trypsin complexes with their respective inhibitors for the development of a novel scoring function based on molecular electrostatic potential computed at the contact surface in the enzyme-inhibitor molecular complex. We subsequently employ the chemometrical approach to determine which are the interactions in the large volume of data that determine the resulting experimental binding constant between ligand and receptor. The results of the model evaluated with molecules in the independent validation set show that a reasonable average error of 1.30 log units of the difference between experimental and calculated binding constants was achieved in the system thrombin-trypsin, which is comparable with those of methods from the literature. Furthermore, by a careful preparation of the Kohonen top layer in the artificial neural network approach that is normally perceived as a "black box device", we have been able to follow the implications of the structure of the inhibitor-enzyme complex for the inhibitor's binding constant. The method appears to be suitable for evaluation of selectivity in structurally similar enzymatic systems, which is currently an important problem in drug design. Copyright 2004 American Chemical Society

  3. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  4. Beta-endorphin and alpha-n-acetyl beta-endorphin; synthesis, conformation and binding parameter

    Energy Technology Data Exchange (ETDEWEB)

    Lovegren, E.S.

    1986-01-01

    Beta-endorphin (EP) is a 31-residue opioid peptide found in many tissues, including the pituitary, brain and reproductive tract. Alpha-amino-acetyl beta-endorphin (AcEP) was characterized spectroscopically by proton nuclear magnetic resonance (NMR) and circular dichroism in deuterated water and trifluoroethanol (TFE). Both EP and AcEP bind to neuroblastoma N2a cells. This binding was not mediated through opiate receptors, and both peptides seemed to bind at common sites. Ovarian immunoreactive-EP levels were determined for immature and mature rates. These levels were found to be responsive to exogenous gonadotropin treatment in immature animals. A large percentage of the immunoreactive-EP is present in follicular fluid, and most of the endorphin-like peptides were acetylated, as measured by radioimmunoassay. Chromatogaphic analysis suggested at least three EP-like species: EP, a carboxy-terminally cleaved and an amino-terminally acetylated EP.

  5. Protein kinase Calpha contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities.

    Science.gov (United States)

    Slater, S J; Ho, C; Kelly, M B; Larkin, J D; Taddeo, F J; Yeager, M D; Stubbs, C D

    1996-03-01

    Based on marked differences in the enzymatic properties of diacylglycerols compared with phorbol ester-activated protein kinase C (PKC), we recently proposed that activation induced by these compounds may not be equivalent (Slater, S. J., Kelly, M. B., Taddeo, F. J., Rubin, E., and Stubbs, C. D. (1994) J. Biol. Chem. 269, 17160-17165). In the present study, direct evidence is provided showing that phorbol esters and diacylglycerols bind simultaneously to PKC alpha. Using a novel binding assay employing the fluorescent phorbol ester, sapintoxin-D (SAPD), evidence for two sites of high and low affinity was obtained. Thus, both binding and activation dose-response curves for SAPD were double sigmoidal, which was also observed for dose-dependent activation by the commonly used phorbol ester, 4beta-12-O-tetradecanoylphorbol-13-acetate (TPA). TPA removed high affinity SAPD binding and also competed for the low affinity site. By contrast with TPA, low affinity binding of SAPD was inhibited by sn-1,2-dioleoylglycerol (DAG), while binding to the high affinity site was markedly enhanced. Again contrasting with both TPA and DAG, the potent PKC activator, bryostatin-I (B-I), inhibited SAPD binding to its high affinity site, while low affinity binding was unaffected. Based on these findings, a model for PKC activation is proposed in which binding of one activator to the low affinity site allosterically promotes binding of a second activator to the high affinity site, resulting in an enhanced level of activity. Overall, the results provide direct evidence that PKCalpha contains two distinct binding sites, with affinities that differ for each activator in the order: DAG > phorbol ester > B-I and B-I > phorbol ester > DAG, respectively.

  6. The CK2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg

    2008-01-01

    . Inhibition kinetic studies corroborate the dual binding mode of the inhibitor. Structural comparisons reveal a surprising conformational plasticity of human CK2 alpha around both DRB binding sites. After local rearrangement, the allosteric site serves as a CK2 beta interface. This opens the potential......, selective CK2 inhibitors are required. An often-used CK2 inhibitor is 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). In a complex structure with human CK2 alpha, DRB binds to the canonical ATP cleft, but additionally it occupies an allosteric site that can be alternatively filled by glycerol...

  7. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  8. Binding sites analyser (BiSA: software for genomic binding sites archiving and overlap analysis.

    Directory of Open Access Journals (Sweden)

    Matloob Khushi

    Full Text Available Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA, for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net.

  9. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    Energy Technology Data Exchange (ETDEWEB)

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W. (Vanderbilt)

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  10. Binding site graphs: a new graph theoretical framework for prediction of transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Timothy E Reddy

    2007-05-01

    Full Text Available Computational prediction of nucleotide binding specificity for transcription factors remains a fundamental and largely unsolved problem. Determination of binding positions is a prerequisite for research in gene regulation, a major mechanism controlling phenotypic diversity. Furthermore, an accurate determination of binding specificities from high-throughput data sources is necessary to realize the full potential of systems biology. Unfortunately, recently performed independent evaluation showed that more than half the predictions from most widely used algorithms are false. We introduce a graph-theoretical framework to describe local sequence similarity as the pair-wise distances between nucleotides in promoter sequences, and hypothesize that densely connected subgraphs are indicative of transcription factor binding sites. Using a well-established sampling algorithm coupled with simple clustering and scoring schemes, we identify sets of closely related nucleotides and test those for known TF binding activity. Using an independent benchmark, we find our algorithm predicts yeast binding motifs considerably better than currently available techniques and without manual curation. Importantly, we reduce the number of false positive predictions in yeast to less than 30%. We also develop a framework to evaluate the statistical significance of our motif predictions. We show that our approach is robust to the choice of input promoters, and thus can be used in the context of predicting binding positions from noisy experimental data. We apply our method to identify binding sites using data from genome scale ChIP-chip experiments. Results from these experiments are publicly available at http://cagt10.bu.edu/BSG. The graphical framework developed here may be useful when combining predictions from numerous computational and experimental measures. Finally, we discuss how our algorithm can be used to improve the sensitivity of computational predictions of

  11. Autoradiographic localization of benzomorphan binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Crain, B.J.; Kwenjen Chang; McNamara, J.O.; Valdes, F.

    1985-07-17

    The benzomorphan subpopulation of opiate binding sites was labeled by (TH)diprenorphine in the presence of unlabeled ligands selected to quench and delta opiate binding sites. The distribution of benzomorphan binding sites was then localized autoradiographically. The distribution differs from the distributions of , delta and kappa opiate binding and is quite similar to the distribution of US -endorphin immunoreactivity. These observations support the hypothesis, based on biochemical studies in brain membranes, that benzomorphan binding sites may represent the ligand recognition sites of putative epsilon receptors. (Auth.). 34 refs.; 3 figs.

  12. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  13. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K; Chen, P-Y; Lee, Tony J F; Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Chen, M-F [Neuro-Medical Scientific Center, Tzu Chi General Hospital, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Ho, Y-P [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China)], E-mail: chaoji@mail.tcu.edu.tw

    2008-05-21

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin ({alpha}-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor ({alpha}7-nAChR). The electrostatic binding of cND-{alpha}-BTX was mediated by the negative charge of the cND and the positive charge of the {alpha}-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that {alpha}-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled {alpha}-BTX presented a yellow color at the same location, which indicated that {alpha}-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human {alpha}7-nAChR proteins by microinjection with {alpha}7-nAChR mRNA. The cND-{alpha}-BTX complexes were bound to {alpha}7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked {alpha}7-nAChR-mediated inward currents of the oocytes were blocked by cND-{alpha}-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-{alpha}-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated {alpha}-BTX still preserves its biological activity in blocking the function of {alpha}7-nAChR, and provide a visual

  14. Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species.

    OpenAIRE

    Kilian, M; Nyvad, B

    1990-01-01

    A collection of 144 viridans group streptococcal strains recently characterized as part of a taxonomic study was examined for the ability to bind salivary alpha-amylase. This property was found in most strains of Streptococcus gordonii and Streptococcus mitis and in occasional strains of Streptococcus anginosus and Streptococcus salivarius. In contrast, all strains of Streptococcus sanguis, Streptococcus oralis, Streptococcus vestibularis, and Streptococcus mutans lacked alpha-amylase-binding...

  15. Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2 by site-directed mutagenesis.

    Science.gov (United States)

    Ueki, Tatsuya; Kawakami, Norifumi; Toshishige, Masaaki; Matsuo, Koichi; Gekko, Kunihiko; Michibata, Hitoshi

    2009-10-01

    Vanabins are a unique protein family of vanadium-binding proteins with nine disulfide bonds. Possible binding sites for VO2+ in Vanabin2 from a vanadium-rich ascidian Ascidia sydneiensis samea have been detected by nuclear magnetic resonance study, but the metal selectivity and metal-binding ability of each site was not examined. In order to reveal functional contribution of each binding site, we prepared several mutants of Vanabin2 by in vitro site-directed mutagenesis and analyzed their metal selectivity and affinity by immobilized metal-ion affinity chromatography and Hummel Dreyer method. Mutation at K10/R60 (site 1) markedly reduced the affinity for VO2+. Mutation at K24/K38/R41/R42 (site 2) decreased the maximum binding number, but only slightly increased the overall affinity for VO2+. Secondary structure of both mutants was the same as that of the wild type as assessed by circular dichroism spectroscopy. Mutation in disulfide bonds near the site 1 did not affect its high affinity binding capacity, while those near the site 2 decreased the overall affinity for VO2+. These results suggested that the site 1 is a high affinity binding site for VO2+, while the site 2 composes a moderate affinity site for multiple VO2+.

  16. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Incorporating evolution of transcription factor binding sites into annotated alignments. 841. J. Biosci. 32(5), August 2007. 1. Introduction. A majority of computational approaches that aim to predict transcription factor binding sites employ cross- species comparison to focus on conserved locations. Such a comparison helps in ...

  17. Druggability of methyl-lysine binding sites

    Science.gov (United States)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  18. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  19. No effect of genetic obesity and mazindol on imidazoline I2 binding sites in the brain of Zucker rats.

    Science.gov (United States)

    Miralles, A; Ribas, C; Olmos, G; García-Sevilla, J A

    1993-10-26

    The density and affinity states of imidazoline I2 binding sites as well as the density of alpha 2-adrenoceptors were quantitated in the brain of lean and obese Zucker rats. No significant differences were obtained between Zucker phenotypes for these receptors in the cerebral cortex and hypothalamus. Moreover, chronic treatment with the anorexic imidazoline derivative, mazindol, did not alter the density of brain imidazoline I2 binding sites. It is concluded that this genetic model of obesity is not associated with abnormal imidazoline I2 binding sites.

  20. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  1. Binding of carbohydrates and protein inhibitors to the surface of alpha-amylases

    DEFF Research Database (Denmark)

    Bozonnet, Sophie; Bønsager, Birgit Christine; Kramhoft, B.

    2005-01-01

    This review on barley alpha-amylases 1 (AMY1) and 2 (AMY2) addresses rational mutations at distal subsites to the catalytic site, polysaccharide hydrolysis, and interactions with proteinaceous inhibitors. Subsite mapping of barley alpha-amylases revealed 6 glycone and 4 aglycone substrate subsites...

  2. Accurate prediction of peptide binding sites on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Evangelia Petsalaki

    2009-03-01

    Full Text Available Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.

  3. Characterization of nicotine binding to the rat brain P2 preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    International Nuclear Information System (INIS)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P 2 preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) have been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-[ 3 H]nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-[ 3 H]nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine

  4. Salt-mediated two-site ligand binding by the cocaine-binding aptamer.

    Science.gov (United States)

    Neves, Miguel A D; Slavkovic, Sladjana; Churcher, Zachary R; Johnson, Philip E

    2017-02-17

    Multisite ligand binding by proteins is commonly utilized in the regulation of biological systems and exploited in a range of biochemical technologies. Aptamers, although widely utilized in many rationally designed biochemical systems, are rarely capable of multisite ligand binding. The cocaine-binding aptamer is often used for studying and developing sensor and aptamer-based technologies. Here, we use isothermal titration calorimetry (ITC) and NMR spectroscopy to demonstrate that the cocaine-binding aptamer switches from one-site to two-site ligand binding, dependent on NaCl concentration. The high-affinity site functions at all buffer conditions studied, the low-affinity site only at low NaCl concentrations. ITC experiments show the two ligand-binding sites operate independently of one another with different affinities and enthalpies. NMR spectroscopy shows the second binding site is located in stem 2 near the three-way junction. This ability to control ligand binding at the second site by adjusting the concentration of NaCl is rare among aptamers and may prove a useful in biotechnology applications. This work also demonstrates that in vitro selected biomolecules can have functions as complex as those found in nature. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil

    DEFF Research Database (Denmark)

    Nielsen, B B; Kastrup, J S; Rasmussen, H

    1997-01-01

    Tetranectin is a plasminogen kringle 4-binding protein. The crystal structure has been determined at 2.8 A resolution using molecular replacement. Human tetranectin is a homotrimer forming a triple alpha-helical coiled coil. Each monomer consists of a carbohydrate recognition domain (CRD) connected...... the third is present only in long-form CRDs. Tetranectin represents the first structure of a long-form CRD with intact calcium-binding sites. In tetranectin, the third disulfide bridge tethers the CRD to the long helix in the coiled coil. The trimerization of tetranectin as well as the fixation of the CRDs...... relative to the helices in the coiled coil indicate a demand for high specificity in the recognition and binding of ligands....

  6. Influences of energization and nucleotide binding on the reaction of Lucifer Yellow vinyl sulfone with the alpha subunits of the chloroplast ATP synthase.

    Science.gov (United States)

    Cunningham, K M; McCarty, R E

    2000-04-18

    The catalytic portion of the chloroplast ATP synthase (CF(1)) consists of five different polypeptides in the stoichiometry alpha(3)beta(3)gammadeltaepsilon and is structurally asymmetric. Asymmetry is readily apparent in the properties of the six nucleotide binding sites and the single-copy, smaller subunits. Asymmetry is also detected in the alpha subunits by the rapid and covalent binding of Lucifer Yellow vinyl sulfone (LY) to one of the three chemically identical alpha subunits. The binding of LY to a single alpha subunit has allowed the investigation of whether asymmetry in the alpha subunits is a permanent feature of CF(1). The development of an electrochemical proton gradient across illuminated thylakoid membranes and the preincubation of CF(1) in solution with Mg(2+)-ATP were found to alter the LY distribution such that multiple alpha subunits were labeled with LY. Illumination of thylakoid membranes doubled the extent of LY labeling, and fluorescence resonance energy transfer measurements indicated that LY was bound to more than one alpha subunit. Since the change in LY distribution was inhibited by proton ionophores (uncouplers), alteration of alpha conformation by illumination is a result of the generation of a proton gradient. Preincubation of CF(1) in solution with Mg(2+)-ATP had no effect on the extent of LY labeling but resulted in multiple alpha subunits binding LY as determined by fluorescence resonance energy transfer measurements. Adenine nucleotides at substrate level concentrations inhibit the reaction of LY with the alpha subunits. No increase in LY labeling was observed when thylakoids were illuminated under conditions in which CF(1) was catalytically active.

  7. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  8. Ability to bind salivary alpha-amylase discriminates certain viridans group streptococcal species.

    Science.gov (United States)

    Kilian, M; Nyvad, B

    1990-01-01

    A collection of 144 viridans group streptococcal strains recently characterized as part of a taxonomic study was examined for the ability to bind salivary alpha-amylase. This property was found in most strains of Streptococcus gordonii and Streptococcus mitis and in occasional strains of Streptococcus anginosus and Streptococcus salivarius. In contrast, all strains of Streptococcus sanguis, Streptococcus oralis, Streptococcus vestibularis, and Streptococcus mutans lacked alpha-amylase-binding capacity. A rapid and easy assay described in this paper may be an important supplementary test for identification of oral streptococci. PMID:2254435

  9. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  10. Localization of gonadotropin binding sites in human ovarian neoplasms

    International Nuclear Information System (INIS)

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A.

    1989-01-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms

  11. Spectroscopic Signature of a Ubiquitous Metal Binding Site in the Metallo-beta-lactamase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    V Campos-Bermudez; J Gonzalez; D Tierney; A Vila

    2011-12-31

    The metallo-{beta}-lactamase (M{beta}L) superfamily is a functionally diverse group of metalloproteins sharing a distinctive {alpha}{beta}/{alpha}{beta} fold and a characteristic metal binding motif. A large number of open reading frames identified in genomic sequencing efforts have been annotated as members of this superfamily through sequence comparisons. However, structural and functional studies performed on purified proteins are normally needed to unequivocally include a newly discovered protein in the M{beta}L superfamily. Here we report the spectroscopic characterization of recombinant YcbL, a gene product annotated as a member of the M{beta}L superfamily whose function in vivo remains unknown. By taking advantage of the structural features characterizing the M{beta}L superfamily metal binding motif, we performed spectroscopic studies on Zn(II)- and Co(II)-substituted YcbL to structurally interrogate the metal binding site. The dinuclear center in Co(II)-YcbL was shown to display characteristic electronic absorption features in the visible region, which were also observed in an engineered M{beta}L aimed at mimicking this metal site. Thus, the spectroscopic features reported herein can be employed as a signature to readily identify and characterize the presence of these ubiquitous metal binding sites.

  12. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Science.gov (United States)

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  13. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  14. Molecular mechanism of DNA recognition by the alpha subunit of the Oxytricha telomere binding protein.

    Science.gov (United States)

    Laporte, L; Benevides, J M; Thomas, G J

    1999-01-12

    Interactions between telomeric DNA and the alpha subunit of the heterodimeric telomere binding protein of Oxytricha nova have been probed by Raman spectroscopy, CD spectroscopy, and nondenaturing gel electrophoresis. Telomeric sequences investigated include the Oxytricha 3' overhang, d(T4G4)2, and the related sequence dT6(T4G4)2, which incorporates a 5'-thymidylate leader. Corresponding nontelomeric isomers, d(TG)8 and dT6(TG)8, have also been investigated. Both d(T4G4)2 and dT6(T4G4)2 form stable hairpins that contain Hoogsteen G.G base pairs [Laporte, L., and Thomas, G. J., Jr. (1998) J. Mol. Biol. 281, 261-270]. The alpha subunit binds specifically and stoichiometrically to the dT6(T4G4)2 hairpin and alters its secondary structure by inducing conformational changes in the 5'-thymidylate leader without extensive disruption of G.G base pairing. Conversely, binding of the alpha subunit to d(T4G4)2 eliminates G.G pairing and unfolds the hairpin. DNA unfolding is accompanied by conformational changes affecting both the backbone and dG residues, as evidenced by Raman and CD spectra. Interestingly, the alpha subunit also forms complexes with the nontelomeric isomers, d(TG)8 and dT6(TG)8, evidenced by altered electrophoretic mobility in nondenaturing gels; however, Raman and CD spectra of complexes of the alpha subunit with nontelomeric DNA suggest no significant changes in backbone or deoxynucleoside conformations. Similarly, the alpha subunit binds to but does not appreciably alter the secondary structure of duplex DNA. The present results show that while the alpha subunit has the capacity to bind to Watson-Crick and different non-Watson-Crick motifs, DNA refolding is specific to the Oxytricha telomeric hairpin and the retention of G.G pairing is specific to the telomeric sequence incorporating the 5' leading sequence. A model is proposed for alpha subunit binding to telomeric DNA, and the physiological role of the alpha subunit in telomere organization is discussed.

  15. Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells.

    Science.gov (United States)

    Maemura, M; Akiyama, S K; Woods, V L; Dickson, R B

    1995-07-01

    We examined the expression and ligand specificity of the alpha 2 beta 1 integrin on human mammary epithelial cells (HMEC) and a panel of breast carcinoma cell lines in vitro. We found that the alpha 2 beta 1 integrin was universally, but quite variably expressed on these cells by FACS analysis. No significant correlation was observed between its expression and other known cellular phenotypes. Substrate attachment assays using blocking antibodies demonstrated that alpha 2 beta 1 integrin served as a receptor for collagen on HMEC and almost all breast carcinoma cells. However, its contribution to laminin binding of these cells appeared to be related to cellular differentiation as evaluated by sex steroid receptor status and by markers of epithelial-mesenchymal transition, i.e. loss of E-cadherin and expression of vimentin. Two different populations of non-malignant immortalized HMEC (184A1N4 and MCF-10A) contained cells capable of using alpha 2 beta 1 integrin as a laminin receptor. Breast cancer cell lines positive for estrogen receptor (ER) and E-cadherin (MCF-7, T47D, ZR75-1) could also use alpha 2 beta 1 integrin as a laminin receptor. Conversely, alpha 2 beta 1 integrin appeared to be incapable of binding to laminin or to be a very minor receptor for laminin on metastatic ER-negative breast carcinoma cells that expressed vimentin (MDA-MB 231, MDA-MB 435, and MDA-MB 436). These findings suggest that the ligand specificity of alpha 2 beta 1 integrin, i.e. its function as a laminin receptor, may be regulated during the malignant progression of breast carcinoma cells. A reduced contribution of alpha 2 beta 1 integrin to the cellular laminin binding appears to be associated with an increased malignant phenotype and with an epithelial-mesenchymal transition of breast carcinoma cells.

  16. Two classes of ouabain binding sites in ferret heart and two forms of Na+-K+-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Y.C.; Akera, T.

    1987-05-01

    In partially purified Na+-K+-adenosinetriphosphatase (ATPase) obtained from ferret heart, ouabain produced a monophasic inhibition curve; however, the curve spanned over 5 logarithmic units, indicating the presence of more than one classes of enzyme. (/sup 3/H)ouabain binding studies revealed high-and low-affinity binding sites in approximately equal abundance, with apparent dissociation constants of 10 and 230 nM, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphoenzyme formed from (gamma-/sup 32/P)ATP showed two distinct K+-sensitive bands of approximately 100,000 molecular weight. Phosphoenzyme formation from the high-molecular-weight alpha(+) form was selectively inhibited by N-ethylmaleimide. Ouabain caused a 50% inhibition of phosphorylation of the alpha(+) form at 40 nM and the lower-molecular-weight alpha form at 300 nM. In papillary muscle preparations, 1-30 nM ouabain produced a modest positive inotropic effect that reached an apparent plateau at 30 nM. Further increases in ouabain concentrations, however, produced additional and prominent inotropic effects at 0.1-10 microM. These results indicate for the first time in cardiac muscle that the high- and low-affinity ouabain binding sites are associated with the alpha(+) and alpha forms of the Na+-K+-ATPase, respectively, and that binding of ouabain to either of these sites causes enzyme inhibition and the positive inotropic effect.

  17. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  18. (-)PPAP: a new and selective ligand for sigma binding sites.

    Science.gov (United States)

    Glennon, R A; Battaglia, G; Smith, J D

    1990-11-01

    Most agents employed for the investigation of sigma (sigma) binding sites display relatively low affinity for these sites, bind both at sigma sites and at either phencyclidine (PCP) sites or dopamine receptors with similar affinity, and/or produce some dopaminergic activity in vivo. We describe a new agent, (-)PPAP or R(-)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane hydrochloride, that binds with high affinity and selectivity at sigma (IC50 = 24 nM) versus either PCP sites (IC50 greater than 75,000 nM) or D1 and D2 dopamine receptors (IC50 greater than 5,000 nM). The sigma affinity of this agent is comparable to that of the standard ligands (+)-3-PPP and DTG. Furthermore, although (-)PPAP is structurally related to amphetamine, it neither produces nor antagonizes amphetamine-like stimulus effect in rats trained to discriminate 1 mg/kg of S(+)amphetamine from saline.

  19. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  20. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  1. Binding sites for gonadotropins in human postmenopausal ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, R.; Shima, K.; Yamoto, M.; Kobayashi, M.; Nishimori, K.; Hiraoka, J.

    1989-02-01

    The binding of human LH and human FSH to postmenopausal ovarian tissue from 21 patients with cervical carcinoma was analyzed. The binding sites for FSH and LH were demonstrated in postmenopausal ovarian tissue. The surface-binding sites for gonadotropins were localized in the cells of cortical stroma of the postmenopausal ovary. In addition, diffuse cytoplasmic staining of endogenous estrogen and 3 beta-hydroxysteroid dehydrogenase activity were detected immunohistochemically and histochemically in the cells of the cortical stroma. Electron microscopic study also suggested steroidogenic function in the cells of the cortical stroma. The results of the present study suggest that postmenopausal ovaries contain specific binding sites for pituitary gonadotropins and play a role in ovarian steroidogenesis.

  2. delta-Atracotoxins from australian funnel-web spiders compete with scorpion alpha-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels.

    Science.gov (United States)

    Little, M J; Zappia, C; Gilles, N; Connor, M; Tyler, M I; Martin-Eauclaire, M F; Gordon, D; Nicholson, G M

    1998-10-16

    delta-Atracotoxins from the venom of Australian funnel-web spiders are a unique group of peptide toxins that slow sodium current inactivation in a manner similar to scorpion alpha-toxins. To analyze their interaction with known sodium channel neurotoxin receptor sites, we studied their effect on [3H]batrachotoxin and 125I-Lqh II (where Lqh is alpha-toxin II from the venom of the scorpion Leiurus quinquestriatus hebraeus) binding and on alkaloid toxin-stimulated 22Na+ uptake in rat brain synaptosomes. delta-Atracotoxins significantly increased [3H]batrachotoxin binding yet decreased maximal batrachotoxin-activated 22Na+ uptake by 70-80%, the latter in marked contrast to the effect of scorpion alpha-toxins. Unlike the inhibition of batrachotoxin-activated 22Na+ uptake, delta-atracotoxins increased veratridine-stimulated 22Na+ uptake by converting veratridine from a partial to a full agonist, analogous to scorpion alpha-toxins. Hence, delta-atracotoxins are able to differentiate between the open state of the sodium channel stabilized by batrachotoxin and veratridine and suggest a distinct sub-conductance state stabilized by delta-atracotoxins. Despite these actions, low concentrations of delta-atracotoxins completely inhibited the binding of the scorpion alpha-toxin, 125I-Lqh II, indicating that they bind to similar, or partially overlapping, receptor sites. The apparent uncoupling between the increase in binding but inhibition of the effect of batrachotoxin induced by delta-atracotoxins suggests that the binding and action of certain alkaloid toxins may represent at least two distinguishable steps. These results further contribute to the understanding of the complex dynamic interactions between neurotoxin receptor site areas related to sodium channel gating.

  3. Site of covalent labeling by a photoreactive batrachotoxin derivative near transmembrane segment IS6 of the sodium channel alpha subunit.

    Science.gov (United States)

    Trainer, V L; Brown, G B; Catterall, W A

    1996-05-10

    The binding site for batrachotoxin, a lipid-soluble neurotoxin acting at Na+ channel receptor site 2, was localized using a photoreactive radiolabeled batrachotoxin derivative to covalently label purified and reconstituted rat brain Na+ channels. In the presence of the brevetoxin 1 from Ptychodiscus brevis and the pyrethroid RU51049, positive allosteric enhancers of batrachotoxin binding, a protein with an apparent molecular mass of 240 kDa corresponding to the Na+ channel alpha subunit was specifically covalently labeled. The region of the alpha subunit specifically photolabeled by the photoreactive batrachotoxin derivative was identified by antibody mapping of proteolytic fragments. Even after extensive trypsinization, and anti-peptide antibody recognizing an amino acid sequence adjacent to Na+ channel transmembrane segment IS6 was able to immunoprecipitate up to 70% of the labeled peptides. Analysis of a more complete digestion with trypsin or V8 protease indicated that the batrachotoxin receptor site is formed in part by a portion of domain I. The identification of a specifically immunoprecipitated photolabeled 7.3-kDa peptide containing transmembrane segment S6 from domain I restricted the site of labeling to residues Asn-388 to Glu-429 if V8 protease digestion was complete or Leu-380 to Glu-429 if digestion was incomplete. These results implicate the S6 transmembrane region of domain I of the Na+ channel alpha subunit as an important component of the batrachotoxin receptor site.

  4. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...... have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion...

  5. Biophysical fitness landscapes for transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Allan Haldane

    2014-07-01

    Full Text Available Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.

  6. Biophysical fitness landscapes for transcription factor binding sites.

    Science.gov (United States)

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V

    2014-07-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.

  7. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  9. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  10. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  11. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  12. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol.

    Science.gov (United States)

    El-Nezami, Hani; Polychronaki, Nektaria; Salminen, Seppo; Mykkänen, Hannu

    2002-07-01

    The interaction between two Fusarium mycotoxins, zearalenone (ZEN) and its derivative (')alpha-zearalenol ((')alpha-ZOL), with two food-grade strains of Lactobacillus was investigated. The mycotoxins (2 microg ml(-1)) were incubated with either Lactobacillus rhamnosus strain GG or L. rhamnosus strain LC705. A considerable proportion (38 to 46%) of both toxins was recovered from the bacterial pellet, and no degradation products of ZEN and (')alpha-ZOL were detected in the high-performance liquid chromatograms of the supernatant of the culturing media and the methanol extract of the pellet. Both heat-treated and acid-treated bacteria were capable of removing the toxins, indicating that binding, not metabolism, is the mechanism by which the toxins are removed from the media. Binding of ZEN or (')alpha-ZOL by lyophilized L. rhamnosus GG and L. rhamnosus LC705 was a rapid reaction: approximately 55% of the toxins were bound instantly after mixing with the bacteria. Binding was dependent on the bacterial concentration, and coincubation of ZEN with (')alpha-ZOL significantly affected the percentage of the toxin bound, indicating that these toxins may share the same binding site on the bacterial surface. These results can be exploited in developing a new approach for detoxification of mycotoxins from foods and feeds.

  13. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  14. Binding of benzo(a)pyrene and (+/-)-7 beta,8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo(a)pyrene to histones

    International Nuclear Information System (INIS)

    Sculley, T.B.; Zytkovicz, T.H.

    1983-01-01

    AKR-2B mouse embryo cells were incubated for 24 hr with [3H]benzo(a)pyrene, and the histones were isolated and analyzed using one- and two-dimensional gel electrophoresis and autoradiography. The results revealed that (a) histones H1, H2A, and H3 incorporated significant amounts of label whereas little or no label was associated with histones H2B and H4 and (b) electrophoresis of the histones in the Triton: acid: urea gel system caused labeled histones to have a slower migration than did the corresponding unlabeled histones. Additional studies such as incubation of (+/-)-7 beta,8 alpha-[3H]dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene with nuclei resulted in radioactive labeling of histones H1, H2A, H2B, and H3 and of high-mobility-group proteins HMG1 and HMG2. The low levels of label associated with histone H4 in the whole-cell and nuclear studies were further investigated by incubating isolated histones with (+/-)-7 beta,8 alpha-[3H]dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Under these conditions, negligible amounts of radioactivity were associated with H4, while significant labeling of H1, H2A, H2B, and H3 and other nuclear proteins was observed. The results suggest that factors other than the presence of suitable nucleophilic acceptor sites on the histones may be necessary for carcinogen binding

  15. The use of the long-range alpha detector (LRAD) for alpha emission surveys at active and inactive firing sites

    International Nuclear Information System (INIS)

    Mason, C.F.V.; Allander, K.S.; Bounds, J.A.; Garner, S.E.; Walter, K.J.

    1994-01-01

    Surveys were carried out at five different firing sites at Los Alamos National Laboratory to measure residual alpha emissions in earth contaminated with natural and depleted uranium. This contamination is caused by controlled experimental explosions during testing of the non fissile components of nuclear weapons. Two conclusions were reached: the first is that post shot clearing of the experimental areas is effective at removing contamination and the second is that the diminution of alpha emissions due to aging is small

  16. Insulin binding sites in various segments of the rabbit nephron

    International Nuclear Information System (INIS)

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-01-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of 125 I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between 125 I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone

  17. [3H]aniracetam binds to specific recognition sites in brain membranes.

    Science.gov (United States)

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics

  19. Halogenated mazindol analogs as potential inhibitors of the cocaine binding site at the dopamine transporter.

    Science.gov (United States)

    Houlihan, W J; Boja, J W; Parrino, V A; Kopajtic, T A; Kuhar, M J

    1996-12-06

    A series of halogenated (F, Cl, Br, I), pyrimido and diazepino homologs of mazindol were prepared and evaluated for their ability to displace [3H]WIN 35,428 binding and to inhibit uptake of [3H]dopamine (DA) in rat striatal tissue. All of the compounds except for the 2'-chloro (6) and 2'-bromo (16) analogs of mazindol displaced [3H]WIN 35,428 binding and inhibited [3H]DA uptake more effectively than (R)-cocaine. Structure-activity studies indicated that best inhibition of [3H]WIN 35,428 binding occurred in the imidazo series with compounds containing one or two Cl or Br atoms in the 3'- or 4'-position of the free phenyl group. Replacement of the imidazo ring by a pyrimido or diazepino ring enhanced binding inhibition. The most potent inhibitors of [3H]WIN 35,428 binding and [3H]DA uptake were 6-(3'-chlorophenyl)-2,3,4,6-tetrahydropyrimido[2,1-alpha]isoind ol-6-ol (23; IC50 1.0 nM; 8 x mazindol) and 7-(3',4'-dichlorophenyl)-2,3,4,5-tetrahydro-7H-diazepino[2,1-alpha ]isoindol-7-ol (28; IC50 0.26 nM; 32 x mazindol), respectively. No significant differences was found between binding and uptake inhibition. Mazindol and the pyrimido and diazepino homologs 24 and 27 showed a selectivity for the DA uptake over the serotonin (5-HT) uptake site of 5-, 250-, and 465-fold, respectively, and displayed weak or no affinity for a variety of neurotransmitter receptor sites.

  20. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  2. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  3. Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Færgeman, Nils J.; Cole, Nelson B

    2005-01-01

    :0 in the choline glycerophospholipids. No differences in incorporation rate or turnover were observed in liver phospholipids, confirming that these changes in lipid metabolism were brain specific. Using titration microcalorimetry, we observed no binding of 16:0 or oleic acid to alpha-synuclein in vitro. Thus....... To better define a role for alpha-synuclein in brain fatty acid uptake and metabolism, we infused awake, wild-type, or alpha-synuclein gene-ablated mice with [1-(14)C]palmitic acid (16:0) and assessed fatty acid uptake and turnover kinetics in brain phospholipids. Alpha-synuclein deficiency decreased brain......, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP....

  4. Influence of ligand binding on structure and thermostability of human alpha(1)-acid glycoprotein

    Czech Academy of Sciences Publication Activity Database

    Kopecký, V. Jr.; Ettrich, Rüdiger; Pazderka, T.; Hofbauerová, Kateřina; Řeha, David; Baumruk, V.

    2016-01-01

    Roč. 29, č. 2 (2016), s. 70-79 ISSN 0952-3499 Institutional support: RVO:61388971 Keywords : orosomucoid * binding site * Raman spectroscopy Subject RIV: CE - Biochemistry Impact factor: 2.175, year: 2016

  5. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.

    Science.gov (United States)

    Yasuno, Taichi; Muneyuki, Eiro; Yoshida, Masasuke; Kato-Yamada, Yasuyuki

    2009-12-11

    Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.

  6. Enantioselective kappa opioid binding sites on the macrophage cell line, P388d sub 1

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.J.J.; Blalock, J.E. (Univ. of Alabama, Birmingham (USA)); DeCosta, B.R.; Jacobson, A.E.; Rice, K.C. (NIDDK, NIH, Bethesda, MD (USA))

    1991-01-01

    A kappa opioid binding site has been characterized on the macrophage cell line, P388d{sub 1}, using the kappa selective affinity ligand, ({sup 3H}(1S,2S)-(-)-trans-2-isothiocyanato-N-methyl-N-(2-(1-phrrolidinyl) cyclohexyl) benzeneacetamide ((-)BD166). The kappa site has a relative molecular mass (Mr) of 38,000 under nonreducing conditions and 42,000 under reducing conditions. Moreover, it exhibits enantioselectivity in that 1S,2S-(-)-trans-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl) benzeneacetamide ((-)-U-50,488) blocks ({sup 3}H)95{alpha},7{alpha},8{beta})-(-)-N-methyl-N-(7-(1- pyrrolidinyl)-1-oxaspiro-(4,5)-dec-8-yl)benzeneacetamide (U-69,593) binding to P388d{sub 1} cells with an IC{sub 50} = 7.0 nM whereas 1R,2R-(+)-trans-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl) benzeneacetamide ((+)U-50,488) blocks ({sup 3}H)U-69,593 binding to P388d{sub 1} cells with an IC{sub 50} = 700 nM.

  7. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase.

    Science.gov (United States)

    Zhang, Z; Devarajan, P; Dorfman, A L; Morrow, J S

    1998-07-24

    The ankyrin 33-residue repeating motif, an L-shaped structure with protruding beta-hairpin tips, mediates specific macromolecular interactions with cytoskeletal, membrane, and regulatory proteins. The association between ankyrin and alpha-Na,K-ATPase, a ubiquitous membrane protein critical to vectorial transport of ions and nutrients, is required to assemble and stabilize Na,K-ATPase at the plasma membrane. alpha-Na,K-ATPase binds both red cell ankyrin (AnkR, a product of the ANK1 gene) and Madin-Darby canine kidney cell ankyrin (AnkG, a product of the ANK3 gene) utilizing residues 142-166 (SYYQEAKSSKIMESFK NMVPQQALV) in its second cytoplasmic domain. Fusion peptides of glutathione S-transferase incorporating these 25 amino acids bind specifically to purified ankyrin (Kd = 118 +/- 50 nM). The three-dimensional structure (2.6 A) of this minimal ankyrin-binding motif, crystallized as the fusion protein, reveals a 7-residue loop with one charged hydrophilic face capping a double beta-strand. Comparison with ankyrin-binding sequences in p53, CD44, neurofascin/L1, and the inositol 1,4,5-trisphosphate receptor suggests that the valency and specificity of ankyrin binding is achieved by the interaction of 5-7-residue surface loops with the beta-hairpin tips of multiple ankyrin repeat units.

  8. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  9. Predicting the binding modes and sites of metabolism of xenobiotics.

    Science.gov (United States)

    Mukherjee, Goutam; Lal Gupta, Pancham; Jayaram, B

    2015-07-01

    Metabolism studies are an essential integral part of ADMET profiling of drug candidates to evaluate their safety and efficacy. Cytochrome P-450 (CYP) metabolizes a wide variety of xenobiotics/drugs. The binding modes of these compounds with CYP and their intrinsic reactivities decide the metabolic products. We report here a novel computational protocol, which comprises docking of ligands to heme-containing CYPs and prediction of binding energies through a newly developed scoring function, followed by analyses of the docked structures and molecular orbitals of the ligand molecules, for predicting the sites of metabolism (SOM) of ligands. The calculated binding free energies of 121 heme-containing protein-ligand docked complexes yielded a correlation coefficient of 0.84 against experiment. Molecular orbital analyses of the resultant top three unique poses of the docked complexes provided a success rate of 87% in identifying the experimentally known sites of metabolism of the xenobiotics. The SOM prediction methodology is freely accessible at .

  10. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Most current methods in this field adopt a multi-step ap proach that segregates the two aspects. Again, it is widely accepted that the ... In a simulated setting, we provide a proof of concept that the approach works given the ... We study how alignments and binding site predictions interplay at varying evolutionary distances ...

  11. Diversity and evolutionary relationship of nucleotide binding site ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by ...

  12. Dangerous connections : on binding site models of infectious disease dynamics

    NARCIS (Netherlands)

    Leung, Ka Yin; Diekmann, Odo

    2017-01-01

    We formulate models for the spread of infection on networks that are amenable to analysis in the large population limit. We distinguish three different levels: (1) binding sites, (2) individuals, and (3) the population. In the tradition of physiologically structured population models, the

  13. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  14. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  15. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  16. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  17. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  18. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    to individual structures that bind to phosphate groups; here, we investigate a total of 8307 structures obtained from the RCSB Protein Data Bank (PDB). An analysis of the binding site amino acid propensities reveals very characteristic first shell residue distributions, which are found to be influenced...... by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  19. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ(alpha 1*0501, beta 1*0201) molecule

    DEFF Research Database (Denmark)

    Johansen, B H; Buus, S; Vartdal, F

    1994-01-01

    Peptide binding to DQ molecules has not previously been described. Here we report a biochemical peptide-binding assay specific for the DQ2 [i.e. DQ(alpha 1*0501, beta 1*0201)] molecule. This molecule was chosen since it shows a strong association to diseases such as celiac disease and insulin...

  20. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  1. Binding of dinitrogen to an iron-sulfur-carbon site

    Science.gov (United States)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  2. Fluorescence resonance energy transfer on the voltage-dependent sodium channel. Spatial relationship and site coupling between the batrachotoxin and Leiurus quinquestriatus quinquestriatus alpha-scorpion toxin receptors.

    Science.gov (United States)

    Angelides, K J; Brown, G B

    1984-05-25

    A fluorescent N- methylanthraniloyl derivative of the potent depolarizing agent batrachotoxin has been used to probe the structural and conformational properties of the neurotoxin receptor site on the voltage-dependent sodium channel. Batrachotoxin A 20-alpha-N- methylanthranilate (BTX-NMA) retains high affinity for its receptor site on the synaptosomal sodium channel with a Kd between 78 and 91 nM and an average site capacity of 2 pmol/mg of synaptosomal protein in the presence of Leiurus quinquestriatus quinquestriatus alpha-scorpion toxin. The fluorescence emission of BTX-NMA upon binding to synaptosomes indicates a hydrophobic environment. Toxin V from L. quinquestriatus, an allosteric activator, effects a 20-nm red shift in the spectrum of bound BTX-NMA and a 4-fold enhancement in the fluorescence quantum yield disclosing a conformational change into a hydrophilic environment. Fluorescence resonance energy transfer measurements show that the distance separating the receptor sites is 37 +/- 10 A. Thus, the binding of alpha-scorpion toxin must involve conformational changes that extend over large distances from the batrachotoxin-binding locus. This information together with the distance measurements between the tetrodotoxin and alpha-scorpion toxin receptors and the conformational transition associated with this distance upon batrachotoxin addition indicate a conformationally flexible channel with coupling of sites through the polyatomic framework of individual subunits or through extensive alterations in subunit/subunit interactions.

  3. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  4. The Pattern of microRNA Binding Site Distribution

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2017-10-01

    Full Text Available Micro-RNA (miRNA or miR regulates at least 60% of the genes in the human genome through their target sites at mRNA 3’-untranslated regions (UTR, and defects in miRNA expression regulation and target sites are frequently observed in cancers. We report here a systematic analysis of the distribution of miRNA target sites. Using the evolutionarily conserved miRNA binding sites in the TargetScan database (release 7.1, we constructed a miRNA co-regulation network by connecting genes sharing common miRNA target sites. The network possesses characteristics of the ubiquitous small-world network. Non-hub genes in the network—those sharing miRNA target sites with small numbers of genes—tend to form small cliques with their neighboring genes, while hub genes exhibit high levels of promiscuousness in their neighboring genes. Additionally, miRNA target site distribution is extremely uneven. Among the miRNAs, the distribution concentrates on a small number of miRNAs, in that their target sites occur in an extraordinarily large number of genes, that is, they have large numbers of target genes. The distribution across the genes follows a similar pattern; the mRNAs of a small proportion of the genes contain extraordinarily large numbers of miRNA binding sites. Quantitatively, the patterns fit into the P(K ∝ K−α relationship (P(K: the number of miRNAs with K target genes or genes with K miRNA sites; α: a positive constant, the mathematical description of connection distribution among the nodes and a defining characteristic of the so-called scale-free networks—a subset of small-world networks. Notably, well-known tumor-suppressive miRNAs (Let-7, miR-15/16, 26, 29, 31, 34, 145, 200, 203–205, 223, and 375 collectively have more than expected target genes, and well-known cancer genes contain more than expected miRNA binding sites. In summary, miRNA target site distribution exhibits characteristics of the small-world network. The potential to use this

  5. Visualization of specific binding sites of benzodiazepine in human brain

    International Nuclear Information System (INIS)

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-01-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of [11C]Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that [11C] Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans

  6. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  7. Scoring functions for transcription factor binding site prediction

    Directory of Open Access Journals (Sweden)

    Friberg Markus

    2005-04-01

    Full Text Available Abstract Background Transcription factor binding site (TFBS prediction is a difficult problem, which requires a good scoring function to discriminate between real binding sites and background noise. Many scoring functions have been proposed in the literature, but it is difficult to assess their relative performance, because they are implemented in different software tools using different search methods and different TFBS representations. Results Here we compare how several scoring functions perform on both real and semi-simulated data sets in a common test environment. We have also developed two new scoring functions and included them in the comparison. The data sets are from the yeast (S. cerevisiae genome. Our new scoring function LLBG (least likely under the background model performs best in this study. It achieves the best average rank for the correct motifs. Scoring functions based on positional bias performed quite poorly in this study. Conclusion LLBG may provide an interesting alternative to current scoring functions for TFBS prediction.

  8. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was effici...... peptide-MHC complexes may have broad significance in the biology of T cell responses, including generation of the T cell repertoire, the specificity of mixed lymphocyte responses, and the immune surveillance of self and nonself antigens in peripheral lymphoid tissues.......Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...

  9. Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets.

    Science.gov (United States)

    Shamsara, Jamal

    2018-01-01

    Rescoring is a simple approach that theoretically could improve the original docking results. In this study AutoDock Vina was used as a docked engine and three other scoring functions besides the original scoring function, Vina, as well as their combinations as consensus scoring functions were employed to explore the effect of rescoring on virtual screenings that had been done on diverse targets. Rescoring by DrugScore produces the most number of cases with significant changes in screening power. Thus, the DrugScore results were used to build a simple model based on two binding site descriptors that could predict possible improvement by DrugScore rescoring. Furthermore, generally the screening power of all rescoring approach as well as original AutoDock Vina docking results correlated with the Maximum Theoretical Shape Complementarity (MTSC) and Maximum Distance from Center of Mass and all Alpha spheres (MDCMA). Therefore, it was suggested that, with a more complete set of binding site descriptors, it could be possible to find robust relationship between binding site descriptors and response to certain molecular docking programs and scoring functions. The results could be helpful for future researches aiming to do a virtual screening using AutoDock Vina and/or rescoring using DrugScore.

  10. Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets

    Directory of Open Access Journals (Sweden)

    Jamal Shamsara

    2018-01-01

    Full Text Available Rescoring is a simple approach that theoretically could improve the original docking results. In this study AutoDock Vina was used as a docked engine and three other scoring functions besides the original scoring function, Vina, as well as their combinations as consensus scoring functions were employed to explore the effect of rescoring on virtual screenings that had been done on diverse targets. Rescoring by DrugScore produces the most number of cases with significant changes in screening power. Thus, the DrugScore results were used to build a simple model based on two binding site descriptors that could predict possible improvement by DrugScore rescoring. Furthermore, generally the screening power of all rescoring approach as well as original AutoDock Vina docking results correlated with the Maximum Theoretical Shape Complementarity (MTSC and Maximum Distance from Center of Mass and all Alpha spheres (MDCMA. Therefore, it was suggested that, with a more complete set of binding site descriptors, it could be possible to find robust relationship between binding site descriptors and response to certain molecular docking programs and scoring functions. The results could be helpful for future researches aiming to do a virtual screening using AutoDock Vina and/or rescoring using DrugScore.

  11. The next generation of transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Anthony Mathelier

    Full Text Available Finding where transcription factors (TFs bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs is based on basic position weight matrices (PWMs which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA

  12. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  13. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-01-01

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of [ 125 I]iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis

  14. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  15. A molecular dynamics study of human serum albumin binding sites.

    Science.gov (United States)

    Artali, Roberto; Bombieri, Gabriella; Calabi, Luisella; Del Pra, Antonio

    2005-01-01

    A 2.0 ns unrestrained Molecular Dynamics was used to elucidate the geometric and dynamic properties of the HSA binding sites. The structure is not stress affected and the rmsds calculated from the published crystallographic data are almost constant for all the simulation time, with an averaged value of 2.4A. The major variability is in the C-terminus region. The trajectory analysis of the IIA binding site put in evidence fast oscillations for the Cgamma@Leu203...Cgamma@Leu275 and Cgamma@Leu219...Cgamma@Leu260 distances, with fluctuations around 250 ps, 1000 ps and over for the first, while the second is smoothly increasing with the simulation time from 7 to 10A. These variations are consistent with a volume increase up to 20% confirmed by the inter-domain contacts analysis, in particular for the pair O@Pro148...Ogamma@Ser283, representing the change of distance between IB-h9 and IIA-h6, O@Glu149...Ogamma@Ser189 for sub-domains IB-h9/IIA-h1 and N@Val339...Odelta2@Asp447 sub-domains IIB-h9/IIIA-h1. These inter-domain motions confirm the flexibility of the unfatted HSA with possible binding site pre-formation.

  16. New binding site on common molecular scaffold provides HERG channel specificity of scorpion toxin BeKm-1

    DEFF Research Database (Denmark)

    Korolkova, Yuliya V; Bocharov, Eduard V; Angelo, Kamilla

    2002-01-01

    The scorpion toxin BeKm-1 is unique among a variety of known short scorpion toxins affecting potassium channels in its selective action on ether-a-go-go-related gene (ERG)-type channels. BeKm-1 shares the common molecular scaffold with other short scorpion toxins. The toxin spatial structure...... resolved by NMR consists of a short alpha-helix and a triple-stranded antiparallel beta-sheet. By toxin mutagenesis study we identified the residues that are important for the binding of BeKm-1 to the human ERG K+ (HERG) channel. The most critical residues (Tyr-11, Lys-18, Arg-20, Lys-23) are located...... in the alpha-helix and following loop whereas the "traditional" functional site of other short scorpion toxins is formed by residues from the beta-sheet. Thus the unique location of the binding site of BeKm-1 provides its specificity toward the HERG channel....

  17. Quantification of in vivo binding of [[sup 3]H]RX 821002 in rat brain: evaluation as a radioligand for central [alpha][sub 2]-adrenoceptors

    Energy Technology Data Exchange (ETDEWEB)

    Hume, S.P.; Lammertsma, A.A.; Opacka-Juffry, J.; Ahier, R.G.; Myers, R., Cremer, J.E.; Pike, V.W. (Hammersmith Hospital, London (United Kingdom). M.R.C. Cyclotron Unit); Hudson, A.L.; Nutt, D.J. (Bristol Univ. (United Kingdom). Reckitt and Coleman Psychopharmacology Unit)

    1992-11-01

    On the basis of its established in vitro characteristics, [[sup 3]H]RX 821002 was evaluated in rats as an in vivo radioligand for central [alpha][sub 2]-adrenoceptors. Estimates for in vivo binding potential, obtained by compartmental analyses of time-radioactivity data, ranged between 1.9 for hypothalamus and 0.2 for cerebellum, with a regional distribution in brain which was similar to that observed in vitro. Selectivity and specificity of the signal were checked by predosing with either the [alpha][sub 2]-antagonists, idazoxan or yohimbine, the [alpha][sub 2]-agonist, clonidine, or the [alpha][sub 1]-antagonist, prazosin. Pretreatment of the rats with the selective neurotoxin, DSP-4, had no significant effect on [[sup 3]H]RX 821002 binding, suggesting that the majority of labelled sites were situated post-junctionally. The studies indicate that [[sup 3]H]RX 821002 can be used experimentally as an in vivo marker for central [alpha][sub 2]-adrenoceptors. The size and rate of expression of the specific signal encourage the development and assessment of [[sup 11]C]RX 821002 for clinical PET studies. (author).

  18. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment

    International Nuclear Information System (INIS)

    Garcia-Sevilla, J.A.; Zis, A.P.; Hollingsworth, P.J.; Greden, J.F.; Smith, C.B.

    1981-01-01

    The specific binding of tritiated (3H)-clonidine, an alpha 2-adrenergic receptor agonist, to platelet membranes was measured in normal subjects and in patients with major depressive disorder. The number of platelet alpha 2-adrenergic receptors from the depressed group was significantly higher than that found in platelets obtained from the control population. Treatment with tricyclic antidepressant drugs led to significant decreases in the number of platelet alpha 2-adrenergic receptors. These results support the hypothesis that the depressive syndrome is related to an alpha 2-adrenergic receptor supersensitivity and that the clinical effectiveness of tricyclic antidepressant drugs is associated with a decrease in the number of these receptors

  19. Closure Report for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada. CAU 573 comprises the two corrective action sites (CASs): 05-23-02-GMX Alpha Contaminated Are-Closure in Place and 05-45-01-Atmospheric Test Site - Hamilton- Clean Closure. The purpose of this CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 573 based on the implementation of the corrective actions. Corrective action activities were performed at Hamilton from May 25 through June 30, 2016; and at GMX from May 25 to October 27, 2016, as set forth in the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit 573: Alpha Contaminated Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. Verification sample results were evaluated against data quality objective criteria developed by stakeholders that included representatives from the Nevada Division of Environmental Protection and the DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) during the corrective action alternative (CAA) meeting held on November 24, 2015. Radiological doses exceeding the final action level were assumed to be present within the high contamination areas associated with CAS 05-23-02, thus requiring corrective action. It was also assumed that radionuclides were present at levels that require corrective action within the soil/debris pile associated with CAS 05-45-01. During the CAU 573 CAA meeting, the CAA of closure in place with a use restriction (UR) was selected by the stakeholders as the preferred corrective action of the high contamination areas at CAS 05-23-02 (GMX), which contain high levels of removable contamination; and the CAA of clean closure was selected by the

  20. Identifying the binding site(s) for antidepressants on the Torpedo nicotinic acetylcholine receptor: [3H]2-azidoimipramine photolabeling and molecular dynamics studies.

    Science.gov (United States)

    Sanghvi, Mitesh; Hamouda, Ayman K; Jozwiak, Krzysztof; Blanton, Michael P; Trudell, James R; Arias, Hugo R

    2008-12-01

    Radioligand binding, photoaffinity labeling, and docking and molecular dynamics were used to characterize the tricyclic antidepressant (TCA) binding sites in the nicotinic acetylcholine receptor (nAChR). Competition experiments indicate that the noncompetitive antagonist phencyclidine (PCP) inhibits [3H]imipramine binding to resting (closed) and desensitized nAChRs. [3H]2-azidoimipramine photoincorporates into each subunit from the desensitized nAChR with approximately 25% of the labeling specifically inhibited by TCP (a PCP analog), whereas no TCP-inhibitable labeling was observed in the resting (closed) state. For the desensitized nAChR and within the alpha subunit, the majority of specific [3H]2-azidoimipramine labeling mapped to a approximately 20 kDa Staphylococcus aureus V8 protease fragment (alphaV8-20; Ser173-Glu338). To further map the labeling site, the alphaV8-20 fragment was further digested with endoproteinase Lys-C and resolved by Tricine SDS-PAGE. The principal labeled fragment (11 kDa) was further purified by rpHPLC and subjected to N-terminal sequencing. Based on the amino terminus (alphaMet243) and apparent molecular weight, the 11 kDa fragment contains the channel lining M2 segment. Finally, docking and molecular dynamics results indicate that imipramine and PCP interact preferably with the M2 transmembrane segments in the middle of the ion channel. Collectively, these results are consistent with a model where PCP and TCA bind to overlapping sites within the lumen of the Torpedo nAChR ion channel.

  1. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  2. Phospholipid-binding Sites of Phosphatase and Tensin Homolog (PTEN)

    Science.gov (United States)

    Wei, Yang; Stec, Boguslaw; Redfield, Alfred G.; Weerapana, Eranthie; Roberts, Mary F.

    2015-01-01

    The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide 31P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling 31P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis. PMID:25429968

  3. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha

    DEFF Research Database (Denmark)

    Lim, Ssang-Taek; Longley, Robert L; Couchman, John R

    2003-01-01

    alpha. Full-length PKC alpha weakly interacted with 4V by yeast two-hybrid assays, but PKC alpha constructs that lack the pseudosubstrate region or constructs of the whole catalytic domain interacted more strongly. A mutated 4V sequence (4V(YF): LGKKPIFKK) did not interact with PKC alpha, indicating...

  4. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  5. Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein

    International Nuclear Information System (INIS)

    Boulo, Sebastien; Akarsu, Hatice; Lotteau, Vincent; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence

    2011-01-01

    Influenza virus has a segmented genome composed of eight negative stranded RNA segments. Each segment is covered with NP forming ribonucleoproteins (vRNPs) and carries a copy of the heterotrimeric polymerase complex. As a rare phenomenon among the RNA viruses, the viral replication occurs in the nucleus and therefore implies interactions between host and viral factors, such as between importin alpha and nucleoprotein. In the present study we report that through binding with the human nuclear receptor importin α5 (Impα5), the viral NP is no longer oligomeric but maintained as a monomer inside the complex. In this regard, Impα5 acts as a chaperone until NP is delivered in the nucleus for viral RNA encapsidation. Moreover, we show that the association of NP with the host transporter does not impair the binding of NP to RNA. The complex human Impα5-NP binds RNA with the same affinity as wt NP alone, whereas engineered monomeric NP through point mutations binds RNA with a strongly reduced affinity.

  6. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lummis, S.C.R.; Johnston, G.A.R. (Univ. of Sydney, New South Wales (Australia)); Nicoletti, G. (Royal Melbourne Inst. of Tech. (Australia)); Holan, G. (CSIRO, Melbourne (Australia))

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  7. Batrachotoxinin-A-ortho-azidobenzoate: a photoaffinity probe of the batrachotoxin binding site of voltage-sensitive sodium channels.

    Science.gov (United States)

    Casebolt, T L; Brown, G B

    1993-09-01

    Batrachotoxin (BTX) is one of a group of potent lipid-soluble neurotoxins which binds voltage-sensitive sodium channels. Here we show that [3H]batrachotoxinin-A-ortho-azidobenzoate ([3H]BTX-OAB), a photolabile derivative of BTX, binds covalently upon irradiation to the BTX sodium channel site of rat cerebral cortical synaptoneurosomes. Another ligand specific for the BTX sodium channel receptor, batrachotoxinin-A 20-alpha-benzoate (BTX-B), competitively inhibited the specific binding of [3H]BTX-OAB. The specific binding of [3H]BTX-OAB was increased by the addition of Leiurus quinquestriatus quinquestriatus scorpion venom (ScTx) and inhibited by veratridine, a member of the same class of sodium channel activators. Examination of the [3H]BTX-OAB-labeled components revealed that over 90% of the specifically incorporated [3H]BTX-OAB was recovered in lipid extracts of photolabeled synaptoneurosomes. Addition of tetrodotoxin (TTX) to the binding mixture increased the specific incorporation of [3H]BTX-OAB into protein components as much as 15-fold. Increasing the incubation temperature from 25 degree C to 37 degrees C had a similar but less marked effect. We conclude that the BTX binding site lies at a lipid-protein interface and that treatments which induce conformational changes in the sodium channel protein (i.e. addition of TTX) can result in a reorientation of BTX at its binding site relative to the protein and lipid domains of voltage-sensitive sodium channels.

  8. Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.

    Directory of Open Access Journals (Sweden)

    Georg Sebastian Nübling

    Full Text Available BACKGROUND: In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn, implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding. METHODS: We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level. RESULTS: Binding of asyn129E monomers to gel-state membranes (DPPC-SUV is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+ induced asyn129E oligomers and markedly reduced in Al(3+ induced oligomers. CONCLUSION: The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase.

  9. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  10. Evolutionary variation of papillomavirus E2 protein and E2 binding sites

    Directory of Open Access Journals (Sweden)

    Angeletti Peter C

    2011-08-01

    Full Text Available Abstract Background In an effort to identify the evolutionary changes relevant to E2 function, within and between papillomavirus genera, we evaluated the E2 binding sites (E2BSs inside the long-control-region (LCR, and throughout the genomes. We identified E2BSs in the six largest genera of papillomaviruses: Alpha, Beta, Gamma, Delta, Lambda, and Xi-papillomaviruses (128 genomes, by comparing the sequences with a model consensus we created from known functional E2BSs (HPV16, HPV18, BPV1. We analyzed the sequence conservation and nucleotide content of the 4-nucleotide spacer within E2BSs. We determined that there is a statistically significant difference in GC content of the four-nucleotide E2BS spacer, between Alpha and Delta-papillomaviruses, as compared to each of the other groups. Additionally, we performed multiple alignments of E2 protein sequences using members of each genus in order to identify evolutionary changes within the E2 protein. Results When a phylogenetic tree was generated from E2 amino acid sequences, it was discovered that the alpha-papillomavirus genera segregates into two distinct subgroups (α1 and α2. When these subgroups were individually analyzed, it was determined that the subgroup α1 consensus E2BS favored a spacer of AAAA, whereas subgroup α2 favored the opposite orientation of the same spacer; TTTT. This observation suggests that these conserved inverted linkers could have functional importance.

  11. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  12. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  13. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  14. RH421 binds into the ATP-binding site on the Na+/K+-ATPase.

    Science.gov (United States)

    Huličiak, Miroslav; Bazgier, Václav; Berka, Karel; Kubala, Martin

    2017-10-01

    The Na + /K + -ATPase plays a key role in ion transport across the plasma membrane of all animal cells. The voltage-sensitive styrylpyrimidium dye RH421 has been used in several laboratories for monitoring of Na + /K + -ATPase kinetics. It is known, that RH421 can interact with the enzyme and it can influence its activity at micromolar concentrations, but structural details of this interaction are only poorly understood. Experiments with isolated large cytoplasmic loop (C45) of Na + /K + -ATPase revealed that RH421 can interact with this part of the protein with dissociation constant 1μM. The Trp-to-RH421 FRET performed on six single-tryptophan mutants revealed that RH421 binds directly into the ATP-binding site. This conclusion was further supported by results from molecular docking, site-directed mutagenesis and by competitive experiments using ATP. Experiments with C45/DPPC mixture revealed that RH421 can bind to both C45 and lipids, but only the former interaction was influenced by the presence of ATP. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I alpha chains.

    Science.gov (United States)

    Fruci, D; Rovero, P; Falasca, G; Chersi, A; Sorrentino, R; Butler, R; Tanigaki, N; Tosi, R

    1993-11-01

    The binding characteristics of the primary anchor residue motifs reported for HLA-A2 (A*0201, A*0205) and HLA-B27 (B*2705) alleles were investigated by a direct binding assay of the pertinent synthetic peptides to HLA class I alpha chains derived from a panel of HLA homozygous B-cell lines of various HLA phenotypes, including four A2 subtypes. The assay is based on a serologic detection of the conformational change of HLA class I alpha chains induced by binding to specific peptides in the presence of beta 2m. It is applicable to test a large number of HLA allelic products and synthetic peptides. Assay data confirmed the high allele specificity of the anchor residue motifs tested, but also revealed the intra- and interlocus cross-reactivity of these motifs. In the case of A2 anchor motifs, not only a broad cross-reactivity within the A2 subgroup, but also cross-reactivities with A24, A26, A28, and A29 were observed. With B27 anchor motifs, an interlocus cross-reactivity with A3 and A31 was seen. Several peptides, even though they carried A2 or B27 major anchor residue motifs, failed to bind to the relevant alpha chains, suggesting that the presence of a primary anchor residue motif is necessary for HLA class-I-peptide binding but is not by itself sufficient to guarantee binding.

  16. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  17. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  18. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz (Michigan); (UV)

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  19. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    Science.gov (United States)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  20. Specific PGF-2 alpha binding by the corpus luteum of the pregnant and non-pregnant mare.

    Science.gov (United States)

    Vernon, M W; Strauss, S; Simonelli, M; Zavy, M T; Sharp, D C

    1979-01-01

    The binding of prostaglandin (PG) F-2 alpha to corpora lutea (CL) from pregnant and non-pregnant Pony mares was examined. Studies of the rates of association and dissociation indicated that [3H]PGF was bound specifically and reversibly to a luteal cell membrane preparation (MP) that was isolated by high speed (100,000 g) ultracentrifugation. Various PGs and PG metabolites displaced [3H]PGF from the receptors in the following decreasing order: PGF-2 alpha greater than 13, 14-dihydro-PGF-2 alpha = 13,14-dihydro-15-keto PGF-2 alpha greater than PGD-2 greater than PGF-1 alpha = PGE-2 greater than PGE-2 beta greater than PGE-1. These data implicate the 9 alpha-OH and 5,6 cis double bond as major contributors to PGF receptor recognition. The membrane preparation appeared to contain at least two receptor populations, a high affinity, low capacity and a low affinity, high capacity receptor. The binding of PGF (pg/mg MP protein +/- s.e.m. (n)) to CL of the non-pregnant mare increased from 4.09 +/- 11.6 (4), on Day 4 after ovulation, to reach maximal levels by Day 12, 15.01 +/- 2.5 (4), and declined thereafter. In pregnancy the binding of PGF continued to increase until Day 18, reaching 27.47 +/- 1.7 (3), before it declined on Day 20. The reduction in binding by Day 16 in the non-pregnant mare may reflect the process of luteolysis, while high PGF binding capacity of CL between Days 16 and 18 of pregnancy indicated that luteal maintenance during pregnancy is not associated with a reduction of PGF binding capabilities.

  1. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  2. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  3. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  4. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    Science.gov (United States)

    Liu, Kuang-Kai; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J. F.; Cheng, Chia-Liang; Chang, Chia-Ching; Ho, Yen-Peng; Chao, Jui-I.

    2008-05-01

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR.

  5. Unfolded HLA class I alpha chains and their use in an assay of HLA class-I-peptide binding.

    Science.gov (United States)

    Tanigaki, N; Fruci, D; Chersi, A; Butler, R H

    1993-02-01

    Unfolded HLA class I alpha chains were isolated from B-cell lysates by alkaline denaturation and subsequent gel filtration and used for the detection of HLA class-I-peptide binding. Binding to specific peptides in the presence of excess beta 2-microglobulin induced the unfolded alpha chains to refold and acquire a conformation that is specific to folded alpha chains. This conformational change was measured by a specific RIA that involves inhibition of the binding of 125I-labeled HLA-A2 alpha/beta dimers and rabbit anti-HLA-B7 serum absorbed with beta 2-microglobulin. This assay procedure does not require labeling of either test peptides or test class I proteins and does not seem to have specificity degeneracy. It is applicable to the detection of peptide binding by all HLA class I allelic proteins. Evaluation of the assay conditions and HLA allelic specificity of the peptide binding defined by the use of synthetic peptides are described here, including the technical details, specificity, and reproducibility.

  6. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  7. Characterization of the binding of radioiodinated hybrid recombinant IFN-alpha A/D to murine and human lymphoid cell lines

    International Nuclear Information System (INIS)

    Faltynek, C.R.; Princler, G.L.; Schwabe, M.; Shata, M.T.; Lewis, G.K.; Kamin-Lewis, R.M.

    1990-01-01

    The hybrid recombinant human interferon (IFN) rIFN-alpha A/D was radioiodinated. Specific binding of [125I]rIFN-alpha A/D was observed with both human and murine cell lines. The binding of [125I]rIFN-alpha A/D to human Daudi cells had similar characteristics to the previously described binding of [125I]rIFN-alpha A or -alpha 2. The following lines of evidence demonstrated that [125I]rIFN-alpha A/D bound with high affinity to the same receptor on murine cells as murine IFN-alpha and -beta: (i) the binding of [125I]rIFN-alpha A/D to murine LBRM cells was inhibited to a similar extent by natural murine IFN-alpha, natural murine IFN-beta, and rIFN-A/D; (ii) the Kd (approximately 2 X 10(-10) M) obtained from both competition experiments and saturation binding experiments with [125I]rIFN-alpha A/D was comparable to the previously reported Kd for the binding of natural murine IFN-alpha and -beta to other murine cell lines; (iii) the size of the cross-linked [125I]rIFN-alpha A/D receptor complex formed on murine LBRM cells was similar to the previously reported cross-linked complex formed after binding radioiodinated natural murine IFN-beta to other murine cell lines. Due to the current lack of readily available recombinant murine IFN-alpha or -beta for radiolabeling and the previously demonstrated biological activity of rIFN-alpha A/D on murine cells, [125I]rIFN-alpha A/D should prove to be a useful reagent for further studies of murine IFN receptors

  8. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  9. L-(TH)glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, D.T.; Yao, D.; Cotman, C.W.

    1985-08-12

    The anatomical distribution of L-(TH)glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-(TH)glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of CaS , Cl and Na ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-(TH)2-amino-5-phosphonopentanoate (D-(TH)AP5), (TH)kainate ((TH)KA) and (TH) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ((TH)AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.). 29 refs.; 1 figure; 1 table.

  10. L-[3H]glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    International Nuclear Information System (INIS)

    Monaghan, D.T.; Yao, Deborah; Cotman, C.W.

    1985-01-01

    The anatomical distribution of L-[ 3 H]glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-[ 3 H]glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of Ca 2+ , Cl - and Na + ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-[ 3 H]2-amino-5-phosphonopentanoate (D-[ 3 H]AP5), [ 3 H]kainate ([ 3 H]KA) and [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([ 3 H]AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.)

  11. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    Full Text Available Abstract Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths

  12. Muscarinic acetylcholine receptors: location of the ligand binding site

    International Nuclear Information System (INIS)

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  13. A sialic acid binding site in a human picornavirus.

    Directory of Open Access Journals (Sweden)

    Georg Zocher

    2014-10-01

    Full Text Available The picornaviruses coxsackievirus A24 variant (CVA24v and enterovirus 70 (EV70 cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC, a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC.

  14. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  15. Enhancer transcripts mark active estrogen receptor binding sites.

    Science.gov (United States)

    Hah, Nasun; Murakami, Shino; Nagari, Anusha; Danko, Charles G; Kraus, W Lee

    2013-08-01

    We have integrated and analyzed a large number of data sets from a variety of genomic assays using a novel computational pipeline to provide a global view of estrogen receptor 1 (ESR1; a.k.a. ERα) enhancers in MCF-7 human breast cancer cells. Using this approach, we have defined a class of primary transcripts (eRNAs) that are transcribed uni- or bidirectionally from estrogen receptor binding sites (ERBSs) with an average transcription unit length of ∼3-5 kb. The majority are up-regulated by short treatments with estradiol (i.e., 10, 25, or 40 min) with kinetics that precede or match the induction of the target genes. The production of eRNAs at ERBSs is strongly correlated with the enrichment of a number of genomic features that are associated with enhancers (e.g., H3K4me1, H3K27ac, EP300/CREBBP, RNA polymerase II, open chromatin architecture), as well as enhancer looping to target gene promoters. In the absence of eRNA production, strong enrichment of these features is not observed, even though ESR1 binding is evident. We find that flavopiridol, a CDK9 inhibitor that blocks transcription elongation, inhibits eRNA production but does not affect other molecular indicators of enhancer activity, suggesting that eRNA production occurs after the assembly of active enhancers. Finally, we show that an enhancer transcription "signature" based on GRO-seq data can be used for de novo enhancer prediction across cell types. Together, our studies shed new light on the activity of ESR1 at its enhancer sites and provide new insights about enhancer function.

  16. Distribution of primaquine in human blood: Drug-binding to alpha 1-glycoprotein

    International Nuclear Information System (INIS)

    Kennedy, E.; Frischer, H.

    1990-01-01

    To clarify the distribution of the antimalarial primaquine in human blood, we measured the drug separately in the liquid, cellular, and ultrafiltrate phases. Washed red cells resuspended at a hematocrit of 0.4 were exposed to a submaximal therapeutic level of 250 ng/ml of carbon 14-labeled primaquine. The tracer was recovered quantitatively in separated plasma and red cells. Over 75% of the total labeled drug was found in red cells suspended in saline solution, but only 10% to 30% in red cells suspended in plasma. The plasma effect was not mediated by albumin. Studies with alpha 1-acid glycoprotein (AGP), tris(2-butoxyethyl)phosphate, an agent that displaces AGP-bound drugs, and cord blood known to have decreased AGP established that primaquine binds to physiologic amounts of the glycoprotein in plasma. Red cell primaquine concentration increased linearly as AGP level fell and as the free drug fraction rose. We suggest that clinical blood levels of primaquine include the red cell fraction or whole blood level because (1) erythrocytic primaquine is a sizable and highly variable component of the total drug in blood; (2) this component reflects directly the free drug in plasma, and inversely the extent of binding to AGP; (3) the amount of free primaquine may influence drug transport into specific tissues in vivo; and (4) fluctuations of AGP, an acute-phase reactant that increases greatly in patients with malaria and other infections, markedly affect the partition of primaquine in blood. Because AGP binds many basic drugs, unrecognized primaquine-drug interactions may exist

  17. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  18. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  19. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    Science.gov (United States)

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. WilsonU.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  20. BINDING OF STEROIDS AND ENVIRONMENTAL CHEMICALS TO THE RAINBOW TROUT ANDROGEN RECEPTOR ALPHA EXPRESSED IN COS CELLS

    Science.gov (United States)

    Binding of Steroids and Environmental Chemicals to the Rainbow Trout Androgen Receptor Alpha Expressed in COS Cells. Mary C. Cardon, L. Earl Gray. Jr., Phillip C. Hartig and Vickie S. Wilson U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology...

  1. Identification of the segment of the catalytic subunit of (Na+,K+)ATPase containing the digitalis binding site.

    Science.gov (United States)

    Rossi, B; Ponzio, G; Lazdunski, M

    1982-01-01

    Digitalis compounds that are extensively used in the treatment of cardiovascular disorders are known to bind specifically at the extracellular side of (Na+,K+)ATPase. We have recently reported the synthesis of [3H]p- nitrophenyltriazene -ouabain, a derivative of ouabain, which specifically alkylates the catalytic chain of the (Na+,K+)ATPase at a defined region of the sequence. The peptidic segment involved in the binding of digitalis to (Na+,K+)ATPase has been located after mild trypsin treatment of the labeled enzyme. In the presence of 100 mM KCl, tryptic fragmentation results in two peptide fragments of mol. wt. 58 000 and 41 000, respectively. The radioactive probe labeled only the 41 000 fragment indicating that the digitalis binding site is located on the 41 000 domain situated at the N-terminal part of the sequence of the alpha-subunit. Images Fig. 1. Fig. 3. PMID:6329711

  2. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Safi, Samir; Jeanson, Aurelie; Roques, Jerome; Simoni, Eric; Creff, Gaelle; Qi, Lei; Basset, Christian; Vidaud, Claude; Solari, Pier Lorenzo; Den Auwer, Christophe

    2013-01-01

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO 2 2+ /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  3. Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain

    DEFF Research Database (Denmark)

    Smith, Donald F; Dyve, Suzan; Minuzzi, Luciano

    2006-01-01

    Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain......Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain...

  4. Novel Vinculin Binding Site of the IpaA Invasin of Shigella

    Energy Technology Data Exchange (ETDEWEB)

    Park, HaJeung; Valencia-Gallardo, Cesar; Sharff, Andrew; Van Nhieu, Guy Tran; Izard, Tina (Globel Phasing); (Scripps); (CF)

    2012-10-25

    Internalization of Shigella into host epithelial cells, where the bacteria replicates and spreads to neighboring cells, requires a type 3 secretion system (T3SS) effector coined IpaA. IpaA binds directly to and activates the cytoskeletal protein vinculin after injection in the host cell cytosol, and this was previously thought to be directed by two amphipathic {alpha}-helical vinculin-binding sites (VBS) found in the C-terminal tail domain of IpaA. Here, we report a third VBS, IpaA-VBS3, that is located N-terminal to the other two VBSs of IpaA and show that one IpaA molecule can bind up to three vinculin molecules. Biochemical in vitro Shigella invasion assays and the 1.6 {angstrom} crystal structure of the vinculin {center_dot} IpaA-VBS3 complex showed that IpaA-VBS3 is functionally redundant with the other two IpaA-VBSs in cell invasion and in activating the latent F-actin binding functions of vinculin. Multiple VBSs in IpaA are reminiscent of talin, which harbors 11 VBSs. However, most of the talin VBSs have low affinity and are buried in helix bundles, whereas all three of the VBSs of IpaA are high affinity, readily available, and in close proximity to each other in the IpaA structure. Although deletion of IpaA-VBS3 has no detectable effects on Shigella invasion of epithelial cells, deletion of all three VBSs impaired bacterial invasion to levels found in an ipaA null mutant strain. Thus, IpaA-directed mimicry of talin in activating vinculin occurs through three high affinity VBSs that are essential for Shigella pathogenesis.

  5. E.D.F. dismantling site and surveillance of internal exposure to alpha emitters

    International Nuclear Information System (INIS)

    Gonin, M.; Le Guen, B.; Brement, F.; Phan Van, J.

    2001-01-01

    On two dismantling sites between 1995 and 2000, 27 workers on 1066 ( 2.5%) have shown an internal contamination coming from alpha emitters for a collective dose of 69.5 mSv with an individual dose bracket from 0.5 to 8 mSv. (N.C.)

  6. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Full, Stephen J; Deinzer, Max L; Ho, P Shing; Greenwood, Jeffrey A

    2007-12-01

    alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.

  7. Relationships between the catechol substrate binding site and amphetamine, cocaine, and mazindol binding sites in a kinetic model of the striatal transporter of dopamine in vitro.

    Science.gov (United States)

    Wayment, H; Meiergerd, S M; Schenk, J O

    1998-05-01

    Experiments were conducted to determine how (-)-cocaine and S(+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m-tyramine and S(+)-amphetamine caused release of dopamine from intracellular stores at concentrations > or = 12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m-tyramine and S(+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S(+)-Amphetamine and m-tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (-)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site (K(int) = 583 nM). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (-)-cocaine suggest that the (-)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (-)-cocaine binding may be developed to block (-)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.

  8. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin

    International Nuclear Information System (INIS)

    Clarke, P.B.; Schwartz, R.D.; Paul, S.M.; Pert, C.B.; Pert, A.

    1985-01-01

    Three radioligands have been commonly used to label putative nicotinic cholinoceptors in the mammalian central nervous system: the agonists [ 3 H]nicotine and [ 3 H]acetylcholine ([ 3 H]ACh--in the presence of atropine to block muscarinic receptors), and the snake venom extract, [ 125 I]-alpha-bungarotoxin([ 125 I]BTX), which acts as a nicotinic antagonist at the neuromuscular junction. Binding studies employing brain homogenates indicate that the regional distributions of both [ 3 H]nicotine and [ 3 H]ACh differ from that of [ 125 I]BTX. The possible relationship between brain sites bound by [ 3 H]nicotine and [ 3 H]ACh has not been examined directly. The authors have used the technique of autoradiography to produce detailed maps of [ 3 H]nicotine, [ 3 H]ACh, and [ 125 I]BTX labeling; near-adjacent tissue sections were compared at many levels of the rat brain. The maps of high affinity agonist labeling are strikingly concordant, with highest densities in the interpeduncular nucleus, most thalamic nuclei, superior colliculus, medial habenula, presubiculum, cerebral cortex (layers I and III/IV), and the substantia nigra pars compacta/ventral tegmental area. The pattern of [ 125 I]BTX binding is strikingly different, the only notable overlap with agonist binding being the cerebral cortex (layer I) and superior colliculus. [ 125 I]BTX binding is also dense in the inferior colliculus, cerebral cortex (layer VI), hypothalamus, and hippocampus, but is virtually absent in thalamus. Various lines of evidence suggest that the high affinity agonist-binding sites in brain correspond to nicotinic cholinergic receptors similar to those found at autonomic ganglia; BTX-binding sites may also serve as receptors for nicotine and are possibly related to neuromuscular nicotinic cholinoceptors

  9. Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J

    1993-01-01

    Two Akv murine leukemia virus-based retroviral vectors with primer binding sites matching tRNA(Gln-1) and tRNA(Lys-3) were constructed. The transduction efficiency of these mutated vectors was found to be comparable to that of a vector carrying the wild-type primer binding site matching t......RNA(Pro). Polymerase chain reaction amplification and sequence analysis of transduced proviruses confirmed the transfer of vectors with mutated primer binding sites and further showed that tRNA(Gln-2) may act efficiently in conjunction with the tRNA(Gln-1) primer binding site. We conclude that murine leukemia virus...... can replicate by using various tRNA molecules as primers and propose primer binding site-tRNA primer interactions to be of major importance for tRNA primer selection. However, efficient primer selection does not require perfect Watson-Crick base pairing at all 18 positions of the primer binding site....

  10. Modulation of the nicotinic alpha-bungarotoxin site in chromaffin cells in culture by a factor(s) endogenous to neuronal tissue.

    Science.gov (United States)

    Quik, M; Fournier, S; Trifaró, J M

    1986-04-30

    An endogenous factor(s) which affects the in vitro binding of (alpha-BGT) to rat brain membranes has previously been found in brain supernatant. This fraction, as well as a partially purified preparation of this material from bovine brain, is here shown to affect the binding of alpha-BGT to chromaffin cell membranes. To study possible long term effects, the supernatant extract was added to adrenal medullary chromaffin cells in culture. The cells were incubated for several days and at the end of this time, the medium bathing the cells, which contained the endogenous factor(s), was removed and alpha-BGT binding to the cells measured. Binding to control cultures had shown that alpha-BGT bound to the chromaffin cells in a saturable manner, with high affinity (Kd = 1.5 nM) and the specificity of a nicotinic receptor ligand. After incubation of the cells with supernatant factor, a marked decline in the number of alpha-BGT binding sites was observed with no change in affinity. This does not appear to be due to a detrimental effect on the cells as cell number did not appear to be decreased in the cultures preincubated with the supernatant extract and the DNA and protein content were similar in the control and treated cultures. The possibility that there was some non-specific detrimental effect to the chromaffin cell membrane was considered; however, the stimulated release of noradrenaline from the cells was not affected by treatment of the cultures in the presence of the supernatant fractions. In addition, tyrosine hydroxylase activity was significantly increased in the treated cultures. D-Tubo-curarine, an antagonist at the acetylcholine receptor, caused an increase in alpha-BGT binding after 7 days of treatment, while the agonist nicotine and choline had no effect. These results suggest that in brain supernatant there may exist an endogenous factor(s), which may function in the regulation of the nicotinic-like alpha-BGT receptors in neuronal cell.

  11. Active site studies of bovine alpha1-->3-galactosyltransferase and its secondary structure prediction.

    Science.gov (United States)

    Shah, P S; Bizik, F; Dukor, R K; Qasba, P K

    2000-07-14

    The catalytic domain of bovine alpha1-->3-galactosyltransferase (alpha3GalT), residues 80-368, have been cloned and expressed, in Escherichia coli. Using a sequential purification protocol involving a Ni(2+) affinity column followed by a UDP-hexanolamine affinity column, we have obtained a pure and active protein from the soluble fraction which catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetyllactosamine (LacNAc) with a specific activity of 0.69 pmol/min/ng. The secondary structural content of alpha3GalT protein was analyzed by Fourier transform infrared (FTIR) spectroscopy, which shows that the enzyme has about 35% beta-sheet and 22% alpha-helix. This predicted secondary structure content by FTIR spectroscopy was used in the protein sequence analysis algorithm, developed by the Biomolecular Engineering Research Center at Boston University and Tasc Inc., for the assignment of secondary structural elements to the amino acid sequence of alpha3GalT. The enzyme appears to have three major and three minor helices and five sheet-like structures. The studies on the acceptor substrate specificity of the enzyme, alpha3GalT, show that in addition to LacNAc, which is the natural substrate, the enzyme accepts various other disaccharides as substrates such as lactose and Gal derivatives, beta-O-methylgalactose and beta-D-thiogalactopyranoside, albeit with lower specific activities. There is an absolute requirement for Gal to be at the non-reducing end of the acceptor molecule which has to be beta1-->4-linked to a second residue that can be more diverse in structure. The kinetic parameters for four acceptor molecules were determined. Lactose binds and functions in a similar way as LacNAc. However, beta-O-methylgalactose and Gal do not bind as tightly as LacNAc or lactose, as their K(ia) and K(A) values indicate, suggesting that the second monosaccharide is critical for holding the acceptor molecule in place. The 2' and 4' hydroxyl groups of the receiving Gal

  12. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    Science.gov (United States)

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  13. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  14. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  15. Bindings of 3H-prazosin and 3H-yohimbine to alpha adrenoceptors in the guinea-pig stomach

    International Nuclear Information System (INIS)

    Taniguchi, T.; Nishikawa, H.

    1988-01-01

    Alpha adrenoceptor subtypes have been investigated by radioligand binding study in guinea-pig stomach using 3 H-prazosin and 3 H-yohimbine. The specific 3 H-prazosin binding to guinea-pig stomach was saturable and of high affinity with a Bmax of 33 fmol/mg protein. Specific 3 H-yohimbine binding to the tissue was also saturable and of high affinity with a Bmax of 150 fmol/mg protein. Adrenergic drugs competed for 3 H-prazosin binding in order of prazosin > phentolamine > methoxamine > norepinephrine > clonidine > epinephrine > yohimbine. These drugs competed for 3 H-yohimbine binding in order of yohimbine > phentolamine > clonidine > epinephrine > norepinephrine > prazosin > methoxamine. They also examined whether dopamine receptors exist in guinea-pig stomach, using radioligand binding study. Specific binding of 3 H-spiperone, 3 H-apomorphine, 3 H-dopamine and 3 H-domperidone was not detectable in the stomach. Dopaminergic drugs such as dopamine, haloperidol, domperidone and sulpiride competed for 3 H-prazosin binding in order of haloperidol > domperidone > dopamine > sulpiride. Metoclopramide, sulpiride and dopamine competed for 3 H-yohimbine binding in order of metoclopramide > sulpiride > dopamine

  16. Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human alpha1-acid glycoprotein.

    Science.gov (United States)

    Zsila, Ferenc; Molnár, Péter; Deli, József; Lockwood, Samuel F

    2005-08-01

    Using circular dichroism (CD) and electronic absorption spectroscopy techniques, interaction of the natural dietary cis-carotenoid bixin with an important human plasma protein in vitro was demonstrated for the first time. The induced CD spectra of bixin obtained under physiological conditions (pH 7.4, 37 degrees C) revealed its binding to the serum acute-phase reactant alpha(1)-acid glycoprotein (AGP), a member of the lipocalin protein family. Spectral features of the extrinsic Cotton effects of bixin suggested the inclusion of a single, chirally distorted ligand molecule into the asymmetric protein environment. Compared with the absorption spectra obtained in ethanol and benzene, the strong red shift of the main absorption peak of AGP-bound bixin indicated that the proposed binding site was rich in aromatic residues, and also suggested that hydrophobic interactions were involved in the binding. Using the data obtained from the CD titration experiments, the association constant (Ka=4.5x10(5)M-1) and stoichiometry of the binding (0.15) were calculated. The low value of the stoichiometry was attributed to the structural polymorphism of AGP. To the authors' knowledge, the current study represents the first human lipocalin protein for which carotenoid binding affinity has been explored in vitro with these techniques.

  17. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1976-01-01

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D 0 ) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  18. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  19. Split tasks of asymmetric nucleotide-binding sites in the heterodimeric ABC exporter EfrCD.

    Science.gov (United States)

    Hürlimann, Lea M; Hohl, Michael; Seeger, Markus A

    2017-06-01

    Many heterodimeric ATP-binding cassette (ABC) exporters evolved asymmetric ATP-binding sites containing a degenerate site incapable of ATP hydrolysis due to noncanonical substitutions in conserved sequence motifs. Recent studies revealed that nucleotide binding to the degenerate site stabilizes contacts between the nucleotide-binding domains (NBDs) of the inward-facing transporter and regulates ATP hydrolysis at the consensus site via allosteric coupling mediated by the D-loops. However, it is unclear whether nucleotide binding to the degenerate site is strictly required for substrate transport. In this study, we examined the functional consequences of a systematic set of mutations introduced at the degenerate and consensus site of the multidrug efflux pump EfrCD of Enterococcus faecalis. Mutating motifs which differ among the two ATP-binding sites (Walker B, switch loop, and ABC signature) or which are involved in interdomain communication (D-loop and Q-loop) led to asymmetric results in the functional assays and were better tolerated at the degenerate site. This highlights the importance of the degenerate site to allosterically regulate the events at the consensus site. Mutating invariant motifs involved in ATP binding and NBD closure (A-loop and Walker A) resulted in equally reduced transport activities, regardless at which ATP-binding site they were introduced. In contrast to previously investigated heterodimeric ABC exporters, mutation of the degenerate site Walker A lysine completely inactivated ATPase activity and substrate transport, indicating that ATP binding to the degenerate site is essential for EfrCD. This study provides novel insights into the split tasks of asymmetric ATP-binding sites of heterodimeric ABC exporters. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  20. [(3)H]chlorpromazine photolabeling of the torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion channel.

    Science.gov (United States)

    Chiara, David C; Hamouda, Ayman K; Ziebell, Michael R; Mejia, Luis A; Garcia, Galo; Cohen, Jonathan B

    2009-10-27

    Chlorpromazine (CPZ), a potent nicotinic acetylcholine receptor (nAChR) noncompetitive antagonist, binds with higher affinity in the ion channel in the desensitized state than in the closed channel state and with low affinity to additional sites in nAChR-rich membranes. For nAChR equilibrated with agonist, we confirm previous reports that [(3)H]CPZ occupies a site near the cytoplasmic end of the M2 ion channel domain, photolabeling positions M2-2, M2-6, and/or M2-9 in each subunit. We find that [(3)H]CPZ also binds at the extracellular end of the channel, photolabeling amino acids at positions M2-16 (alpha,gamma), M2-17 (alpha,beta,delta), and M2-20 (alpha,beta,delta). The photolabeling at the cytoplasmic end of the channel is fully inhibitable by phencyclidine or proadifen, whereas neither drug inhibits [(3)H]CPZ photolabeling at the extracellular end, establishing that positively charged drugs can bind simultaneously at the cytoplasmic and extracellular ends of the ion channel. [(3)H]CPZ photolabeling is not detected in the transmembrane domain outside the ion channel, but it photolabels alphaMet-386 and alphaSer-393 in the cytoplasmic alphaMA helix. In the nAChR equilibrated with alpha-bungarotoxin to stabilize the nAChR in a closed state, [(3)H]CPZ photolabels amino acids at M2-5 (alpha), M2-6 (alpha,beta,delta), and M2-9 (beta,delta), with no labeling at M2-2. These results provide novel information about the modes of drug binding within the nAChR ion channel and indicate that within the nAChR transmembrane domain, the binding of cationic aromatic amine antagonists can be restricted to the ion channel domain, in contrast to the uncharged, allosteric potentiators and inhibitors that also bind within the delta subunit helix bundle and at subunit interfaces.

  1. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  2. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated...... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  3. Stereochemical requirements of chitin synthase for ligand binding at the allosteric site for N-acetylglucosamine.

    Science.gov (United States)

    Horsch, M; Mayer, C; Rast, D M

    1996-04-15

    The substrate kinetics of chitin synthase (CS) were non-Michaelian, irrespective of the type of enzyme preparation studied (105-S chitosomal CS, and 16-S ex walls), even in the presence of saturating GlcNAc. An unexplained idiosyncrasy of this enzyme, which is likely to be responsible for this phenomenon, is evident from the striking non-linearity of product deposition with time at low substrate or low enzyme concentrations, particularly in the absence of GlcNac. The possibility can be excluded that this non-linearity is due to the formation of soluble by-products or intermediates in the form of chito-oligomers, as shown by HPLC/pulsed amperometric detection analysis. Additional evidence was sought for the tenet that CS is homotropically-heterotropically regulated, at least under steady-state reaction conditions. Substrate kinetic curves established from rate data for the linear reaction phase only were used for modelling. These could be reasonably well parameterised on the basis of the Monod mathematical model for co-operative ligand binding. Within a series of test compounds used to assess the stereochemical conditions of the allosteric site of CS for effector binding, N-acetylglucosaminono-1,5-lactone oxime excelled. Requirements for effector binding are as follows: (a) an aminoglucopyranose skeleton with the amino function acetylated, and (b) a single-bonded oxo-function present at C(1), which is preferentially a hydrogen bond donor, that may be equatorially spaced off, but must not be alpha-anomeric. The implications of these findings for chitin synthesis in vivo are discussed in terms of a mechanistically based fitness of CS to operate efficiently under vastly different combinations of substrate could be coordinately linked to the catabolism of chitin.

  4. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  5. EasyMIFS and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures.

    Science.gov (United States)

    Ghersi, Dario; Sanchez, Roberto

    2009-12-01

    SiteHound uses Molecular Interaction Fields (MIFs) produced by EasyMIFs to identify protein structure regions that show a high propensity for interaction with ligands. The type of binding site identified depends on the probe atom used in the MIF calculation. The input to EasyMIFs is a PDB file of a protein structure; the output MIF serves as input to SiteHound, which in turn produces a list of putative binding sites. Extensive testing of SiteHound for the detection of binding sites for drug-like molecules and phosphorylated ligands has been carried out. EasyMIFs and SiteHound executables for Linux, Mac OS X, and MS Windows operating systems are freely available for download from http://sitehound.sanchezlab.org/download.html. Supplementary data are available at Bioinformatics online.

  6. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    Science.gov (United States)

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  7. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  8. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  9. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    International Nuclear Information System (INIS)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.; Goberna, R.; Guerrero, J.M.

    1991-01-01

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using [ 125 I]melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37 degree C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of [ 125 I]melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8 fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of [ 125 I]melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the [ 125 I]melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland

  10. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa.

    Science.gov (United States)

    Chessa, Daniela; Winter, Maria G; Jakomin, Marcello; Bäumler, Andreas J

    2009-02-01

    The std operon encodes a fimbrial adhesin of Salmonella enterica serotype Typhimurium that is required for attachment to intestinal epithelial cells and for cecal colonization in the mouse. To study the mechanism by which this virulence factor contributes to colonization we characterized its binding specificity. Std-mediated binding to human colonic epithelial (Caco-2) cells could be abrogated by removing N-linked glycans. Adherence of Std fimbriated S. Typhimurium to Caco-2 cells could be blocked by co-incubation with H type 2 oligosaccharide (Fucalpha1-2Galbeta1-4GlcNAc) or by pretreatment of cells with alpha1-2 fucosidase. In contrast, pretreatment of Caco-2 cells with neuraminidase or co-incubation with the type 2 disaccharide precursor (Galbeta1-4GlcNAc) did not reduce adherence of Std fimbriated S. Typhimurium. Binding of purified Std fimbriae to Fucalpha1-2Galbeta1-4GlcNAc in a solid phase binding assay was competitively inhibited by Ulex europaeus agglutinin-I (UEA-I), a lectin specific for Fucalpha1-2 moieties. Purified Std fimbriae and UEA both bound to a receptor localized in the mucus layer of the murine cecum. These data suggest that the std operon encodes an adhesin that binds an alpha1-2 fucosylated receptor(s) present in the cecal mucosa.

  11. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska

    2017-01-01

    γ-Aminobutyric acid type A and glycine receptors are the major mediators of fast synaptic inhibition in the human central nervous system and are established drug targets. However, all drugs targeting these receptors bind to the extracellular ligand-binding domain of the receptors, which inherentl...

  12. Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors.

    Science.gov (United States)

    Yamashita, Tetsuo; Inaoka, Daniel Ken; Shiba, Tomoo; Oohashi, Takumi; Iwata, So; Yagi, Takao; Kosaka, Hiroaki; Miyoshi, Hideto; Harada, Shigeharu; Kita, Kiyoshi; Hirano, Katsuya

    2018-02-05

    Yeast Ndi1 is a monotopic alternative NADH dehydrogenase. Its crystal structure in complex with the electron acceptor, ubiquinone, has been determined. However, there has been controversy regarding the ubiquinone binding site. To address these points, we identified the first competitive inhibitor of Ndi1, stigmatellin, along with new mixed-type inhibitors, AC0-12 and myxothiazol, and thereby determined the crystal structures of Ndi1 in complexes with the inhibitors. Two separate binding sites of stigmatellin, STG-1 and STG-2, were observed. The electron density at STG-1, located at the vicinity of the FAD cofactor, further demonstrated two binding modes: STG-1a and STG-1b. AC0-12 and myxothiazol are also located at the vicinity of FAD. The comparison of the binding modes among stigmatellin at STG-1, AC0-12, and myxothiazol revealed a unique position for the aliphatic tail of stigmatellin at STG-1a. Mutations of amino acid residues that interact with this aliphatic tail at STG-1a reduced the affinity of Ndi1 for ubiquinone. In conclusion, the position of the aliphatic tail of stigmatellin at STG-1a provides a structural basis for its competitive inhibition of Ndi1. The inherent binding site of ubiquinone is suggested to overlap with STG-1a that is distinct from the binding site for NADH.

  13. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ(alpha 1*0501, beta 1*0201) molecule

    DEFF Research Database (Denmark)

    Johansen, B H; Buus, S; Vartdal, F

    1994-01-01

    Peptide binding to DQ molecules has not previously been described. Here we report a biochemical peptide-binding assay specific for the DQ2 [i.e. DQ(alpha 1*0501, beta 1*0201)] molecule. This molecule was chosen since it shows a strong association to diseases such as celiac disease and insulin......-dependent diabetes mellitus. Initially we radiolabelled some selected peptides and tested them for binding to affinity-purified DQ2 molecules. One of the peptides, a Mycobacterium bovis (MB) 65 kDa 243-255Y peptide, displayed a good signal-to-noise ratio and was thus chosen as an indicator peptide in the DQ2 binding...... to DQ2 was specific, as shown in inhibition experiments with a panel of 47 peptides, differing in length, sequence, and origin. The binding of peptides to DR3 was tested in a similar assay with a Mycobacterium tuberculosis 65 kDa 3-13 peptide as the binding indicator. DQ2 and DR3 molecules bound...

  15. The linkage between binding of the C-terminal domain of hirudin and amidase activity in human alpha-thrombin.

    OpenAIRE

    de Cristofaro, R; Rocca, B; Bizzi, B; Landolfi, R

    1993-01-01

    A method derived from the analysis of viscosity effects on the hydrolysis of the amide substrates D-phenylalanylpipecolyl-arginine-p-nitroaniline, tosylglycylprolylarginine-p-nitroanaline and cyclohexylglycylalanylarginine-p-nitroalanine by human alpha-thrombin was developed to dissect the Michaelis-Menten parameters Km and kcat into the individual rate constants of the binding, acylation and deacylation reactions. This method was used to analyse the effect of the C-terminal hirudin (residues...

  16. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  17. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  18. MotifMap-RNA: a genome-wide map of RBP binding sites.

    Science.gov (United States)

    Liu, Yu; Sun, Sha; Bredy, Timothy; Wood, Marcelo; Spitale, Robert C; Baldi, Pierre

    2017-07-01

    RNA plays a critical role in gene expression and its regulation. RNA binding proteins (RBPs), in turn, are important regulators of RNA. Thanks to the availability of large scale data for RBP binding motifs and in vivo binding sites results in the form of eCLIP experiments, it is now possible to computationally predict RBP binding sites across the whole genome. We describe MotifMap-RNA, an extension of MotifMap which predicts binding sites for RBP motifs across human and mouse genomes and allows large scale querying of predicted binding sites. The data and corresponding web server are available from: http://motifmap-rna.ics.uci.edu/ as part of the MotifMap web portal. rspitale@uci.edu or pfbaldi@uci.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Decomposition of the factors that govern binding site preference in a multiple rotaxane.

    Science.gov (United States)

    Angelo, Joseph P; Sohlberg, Karl

    2009-06-18

    A particularly interesting class of multiple rotaxanes consists of complexes where one long shaft threads two rings. If the shaft contains three or more potential binding sites for the rings, multiple co-conformations are possible. Such a complex is a molecular topological analogue to an abacus. Here we address the question, how does strength of ring binding to the shaft vary with respect to position on the shaft? Previous studies have found that a shaft with three binding sites exhibits strongest ring binding at the center site. Here a five-binding-site shaft is studied. We employ a novel method to partition the total energy of the system into contributions from intercomponent binding and intracomponent distortion. The method uses the output of quantum mechanical electronic structure calculations to determine fitting parameters in a set of coupled equations. The solution of the equations yields the energy partitioning and reveals the influence of long-range intercomponent interactions.

  20. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6, pgenome-wide = 0.013. The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10, and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695* that segregated fully with the disease in both breeds (p = 2.5×10(-23. A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.

  1. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol

    2008-01-01

    Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft with a charact...

  2. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    ]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0...

  3. Localization of tachykinin binding sites (NK1, NK2, NK3 ligands) in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Saffroy, M.; Beaujouan, J.C.; Torrens, Y.; Besseyre, J.; Bergstroem, L.G.; Glowinski, J.

    1988-03-01

    A comparative autoradiographic analysis of the distribution of tachykinin binding sites was made on brain serial sections using several ligands. (1) /sup 3/H-SP, /sup 125/I-BHSP and /sup 3/H-physalaemin labeled identical binding sites (NK1 type). (2) /sup 3/H-NKB, /sup 125/I-BHE and /sup 3/H-eledoisin also labeled identical sites (NK3 type). (3) /sup 125/I-BHNKA preferentially labeled NK3 binding sites, the distribution of /sup 125/I-BHNKA binding sites being identical to that of /sup 3/H-NKB or /sup 125/I-BHE binding sites. (4) The distributions of /sup 3/H-SP and /sup 3/H-NKB binding sites were markedly different. (5) A very low density of labeling was found with /sup 3/H-NKA or /sup 125/I-NKA, and these binding sites were distributed only in areas rich in either /sup 3/H-SP or /sup 3/H-NKB binding sites. (6) Particular efforts were made to look for the presence of tachykinin binding sites in the substantia nigra, since this structure is particularly rich in SP and NKA and contains functional tachykinin receptors of the NK1 and NK2 types as suggested by physiological studies. Confirming previous reports, low or very low labeling was observed in the substantia nigra with /sup 3/H-SP or /sup 125/I-BHSP and /sup 3/H-NKB or /sup 125/I-BHE. Similar results were found with /sup 3/H-NKA, /sup 125/I-NKA or /sup 125/I-BHNKA. In conclusion, our data do not provide evidence yet for the existence of NK2 binding sites in the rat brain.

  4. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla

    2015-01-01

    degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley alpha-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser...

  5. New type of tachykinin binding site in the rat brain characterized by specific binding of a labeled eledoisin derivative

    Energy Technology Data Exchange (ETDEWEB)

    Beaujouan, J.C.; Torrens, Y.; Viger, A.; Glowinski, J.

    1984-09-01

    A new ligand for investigating tachykinin-binding site subtypes was synthesized by coupling the /sup 125/I-Bolton and Hunter reagent to eledoisin (/sup 125/I-BHE). Using a synaptosomal preparation (P2 fraction) of rat cerebral cortex, /sup 125/I-BHE was shown to bind with apparent high affinity (apparent Kd . 15.3 nM). When concentrations of up to 30 nM /sup 125/I-BHE were used, /sup 125/I-BHE binding was specific, saturable, reversible, and temperature-dependent. In contrast to (/sup 3/H)dopamine, /sup 125/I-BHE was not taken up within synaptosomes by an ouabain-sensitive process. Eledoisin, kassinin, and substance P were examined for their ability to inhibit specific /sup 125/I-BHE binding to cortical synaptosomes. Eledoisin and kassinin were considerably more potent than substance P, in contrast to the order of potency observed for specific /sup 125/I-Bolton-Hunter substance P (/sup 125/I-BHSP) binding. Specific /sup 125/I-BHE binding was highest in the cerebral cortex and hypothalamus; intermediate in the hippocampus, striatum, and thalamus; low in the mesencephalon, septum, and substantia nigra; and absent in the cerebellum. Comparison of these data with those previously obtained for /sup 125/I-BHSP binding to synaptosomes indicated that /sup 125/I-BHE-labeled binding sites differ markedly from those of /sup 125/I-BHSP-labeled binding sites. Therefore, tachykinin receptors other than substance P receptors seem to be present in the central nervous system.

  6. Toxin a from Clostridium difficile binds to rabbit erythrocyte glycolipids with therminal Gal. cap alpha. 1-3Gal. beta. 1-4GlcNaC sequences

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.F.; Krivan, H.; Wilkins, T.; Smith, D.F.

    1987-05-01

    Toxin A is one of two clostridial toxins implicated as the causative agent of pseudomembranous colitis in patients undergoing postoperative antibiotic therapy. Evidence that the carbohydrate binding determinant for this toxin is a glycoconjugate(s) with non-reducing Gal..cap alpha..1-3Gal..beta..1-4GlcNAc has recently been reported. Specific agglutination of rabbit erythrocytes by Toxin A is inhibited by bovine thyroglobulin and prevented by pretreatment of cells with ..cap alpha..-galactosidase. Total lipid extracts from rabbit erythrocytes were subjected to thin layer chromatography and the chromatogram overlaid with purified /sup 125/I-labeled Toxin A. Two major and several minor toxin-binding glycolipids were detected following autoradiography. The major toxin-binding glycolipids were identified as pentasaccharide- and decasaccharide-ceramides expressing terminal Gal..cap alpha..1-3Gal..beta..1-4GlcNAc sequences. Treatment of the toxin-binding glycolipids with ..cap alpha..-galactosidase abolished binding. Forsmann glycolipid, globoside, Gal..cap alpha..1-4 Gal..beta..1-4Glc-cer, and Gal..cap alpha..1-3Gal..beta..1-4Glc-cer did not bind the toxin. These observations are consistent with the proposed carbohydrate specificity of the toxin for the non-reducing terminal sequence, Gal..cap alpha..1-3Gal..beta..1-4GlcNAc.

  7. Alpha 1-adrenoceptor subtypes in the rat ventricular muscle.

    Science.gov (United States)

    Kinami, J; Tsuchihashi, H; Baba, S; Mano, F; Maruyama, K; Nagatomo, T

    1992-02-01

    Scatchard analyses of [3H]prazosin binding in rat ventricular muscle membranes showed biphasic curves, which identified alpha 1High- and alpha 1Low-affinity sites. The alpha 1High-affinity site was completely inhibited by 1 microM phenoxybenzamine. The displacement potencies of alpha 1-adrenergic antagonists were characterized by [3H]prazosin binding to alpha 1High- and alpha 1Low-affinity sites in the absence and presence of 1 microM phenoxybenzamine. The affinities of most chemicals for alpha 1Low-affinity sites were significantly lower than those for alpha 1High-affinity sites, but WB-4101 (2-(2,6-dimethoxy-phenoxyethyl)aminomethyl-1,4-benzodioxane), arotinolol, cinanserin, nifedipine, and p-aminoclonidine had the same affinities for both alpha 1Low- and alpha 1High-affinity sites. These results show that two alpha 1-adrenoceptor subtypes, alpha 1High- and alpha 1Low-affinity, are present in the rat heart, and that there are physical variations in alpha 1-adrenoceptor binding sites, based on their selectivity to antagonists.

  8. X-ray Absorption Spectroscopy of the Zinc-Binding Sites in the Class B2 Metallo-B-lactamsase ImiS from Aeromonas veronii bv. sobria

    Energy Technology Data Exchange (ETDEWEB)

    Costello,A.; Sharma, N.; Yang, K.; Crowder, M.; Tierney, D.

    2006-01-01

    X-ray absorption spectroscopy was used to investigate the metal-binding sites of ImiS from Aeromonas veronii bv. sobria in catalytically active (1-Zn), product-inhibited (1-Zn plus imipenem), and inactive (2-Zn) forms. The first equivalent of zinc(II) was found to bind to the consensus Zn{sub 2} site. The reaction of 1-Zn ImiS with imipenem leads to a product-bound species, coordinated to Zn via a carboxylate group. The inhibitory binding site of ImiS was examined by a comparison of wild-type ImiS with 1 and 2 equiv of bound zinc. 2-Zn ImiS extended X-ray absorption fine structure data support a binding site that is distant from the active site and contains both one sulfur donor and one histidine ligand. On the basis of the amino acid sequence of ImiS and the crystal structure of CphA [Garau et al. (2005) J. Mol. Biol. 345, 785-795], we propose that the inhibitory binding site is formed by M146, found on the B2-distinct {alpha}3 helix, and H118, a canonical Zn{sub 1} ligand, proposed to help activate the nucleophilic water. The mutation of M146 to isoleucine abolishes metal inhibition. This is the first characterization of ImiS with the native metal Zn and establishes, for the first time, the location of the inhibitory metal site.

  9. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Science.gov (United States)

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  10. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...... fragments from decomposed erythrocytes and granulocytes. The soluble FBPs may exert bacteriostatic effects and protect folates in plasma from biological degradation, whereas FRs on the surface of blood cells could be involved in intracellular folate uptake or serve as signal proteins. The latter receptors...

  11. A screening system to identify transcription factors that induce binding site-directed DNA demethylation.

    Science.gov (United States)

    Suzuki, Takahiro; Maeda, Shiori; Furuhata, Erina; Shimizu, Yuri; Nishimura, Hajime; Kishima, Mami; Suzuki, Harukazu

    2017-12-08

    DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited. Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes. The system involves the ectopic expression of target TFs in model cells followed by DNA methylome analysis and overrepresentation analysis of the corresponding TF binding motif at differentially methylated regions. It successfully identified binding site-directed demethylation of SPI1, which is known to promote DNA demethylation in a binding site-directed manner. We extended our screening system to 15 master TFs involved in cellular differentiation and identified eight novel binding site-directed DNA demethylation-inducing TFs (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5). Gene ontology and tissue enrichment analysis revealed that these TFs demethylate genomic regions associated with corresponding biological roles. We also describe the characteristics of binding site-directed DNA demethylation induced by these TFs, including the targeting of highly methylated CpGs, local DNA demethylation, and the overlap of demethylated regions between TFs of the same family. Our results show the usefulness of the developed screening system for the identification of TFs that induce DNA demethylation in a site-directed manner.

  12. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Crystallographic study of novel transthyretin ligands exhibiting negative-cooperativity between two thyroxine binding sites.

    Directory of Open Access Journals (Sweden)

    Divya Tomar

    Full Text Available BACKGROUND: Transthyretin (TTR is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4 and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis. METHODOLOGY AND PRINCIPAL FINDINGS: We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site than the second T4 site (BD site. Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy. CONCLUSION: Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation.

  14. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  15. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display.

    Science.gov (United States)

    Najar, Tariq Ahmad; Khare, Shruti; Pandey, Rajesh; Gupta, Satish K; Varadarajan, Raghavan

    2017-03-07

    We describe a facile method for mapping protein:ligand binding sites and conformational epitopes. The method uses a combination of Cys scanning mutagenesis, chemical labeling, and yeast surface display. While Ala scanning is widely used for similar purposes, often mutation to Ala (or other amino acids) has little effect on binding, except at hotspot residues. Many residues in physical contact with a binding partner are insensitive to substitution with Ala. In contrast, we show that labeling of Cys residues in a binding site consistently abrogates binding. We couple this methodology to yeast surface display and deep sequencing to map conformational epitopes targeted by both monoclonal antibodies and polyclonal sera as well as a protein:ligand binding site. The method does not require purified protein, can distinguish buried and exposed residues, and can be extended to other display formats, including mammalian cells and viruses, emphasizing its wide applicability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis.

    Science.gov (United States)

    Takahashi, Kaneyoshi; Imai, Arisa; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D; Kuroda, Shun'ichi; Niimi, Tomoaki

    2015-12-21

    Neural epidermal growth factor-like (NEL)-like 1 (NELL1) is a secretory osteogenic protein comprising an N-terminal thrombospondin-1-like (TSPN) domain, four von Willebrand factor type C domains, and six epidermal growth factor-like repeats. NELL1 shows heparin-binding activity; however, the biological significance remains to be explored. In this report, we demonstrate that NELL1 binds to cell surface proteoglycans through its TSPN domain. Major heparin-binding sites were identified on the three-dimensional structural model of the TSPN domain of NELL1. Mutant analysis of the heparin-binding sites indicated that the heparin-binding activity of the TSPN domain is involved in interaction of NELL1 with cell surface proteoglycans. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. The role of amino acid alpha38 in the control of oxygen binding to human adult and embryonic haemoglobin Portland.

    OpenAIRE

    Zheng, T; Brittain, T; Watmough, N J; Weber, R E

    1999-01-01

    The role of the amino acid at position alpha(38) in haemoglobin has been probed using site-directed mutagenesis. When the Thr residue at position alpha(38) (which is totally conserved in all mammals) is changed to a Gln, the equilibrium properties of the protein are significantly altered. Equilibrium and kinetic data show that the R-state properties of the protein are essentially unaffected by the mutation whilst the allosteric equilibrium and T-state properties are changed. Mutation of the n...

  18. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 1: free energy of binding to a binding site.

    Science.gov (United States)

    Chunsrivirot, Surasak; Diao, Ying; Trout, Bernhardt L

    2011-10-18

    Crystallization is commonly used in a separation and purification process in the production of a wide range of materials in various industries. In industry, crystallization usually starts with heterogeneous nucleation on a foreign surface. The complicated mechanism of heterogeneous nucleation is not well understood; however, we hypothesize that there might be a possible correlation between binding affinity to a surface and enhancement of nucleation. Recent studies show that amorphous polymers can be used to control crystallization, selectively produce pharmaceutical polymorphs, and discover novel pharmaceutical polymorphs. To investigate the possible correlation between the binding affinity of one molecule to key binding sites (local binding) and heterogeneous nucleation activity as well as the possibility of using this binding affinity to help guide the selection of polymers that promote heterogeneous nucleation, we computed the free energy of binding of aspirin to four nonporous cross-linked polymers in an ethanol-water 38 v% mixture. These cross-linked polymers are poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS); all of them were cross-linked with divinylbenzene (DVB). These systems were used because their heterogeneous nucleation activities are available in literature, and the ranking is PAM > PCEA > PHBA ≈ PS. We generated three independent surfaces for each polymer and computed the free energy of binding of aspirin to the best binding site that we found on each surface. The average free energies of binding to the best sites of PAM, PCEA, PHBA, and PS are -20.4 ± 1.0, -16.7 ± 1.0, -14.4 ± 1.1, and -13.6 ± 1.1 kcal/mol, respectively. We found that the trend of the magnitudes of the average free energies of binding to the best sites is PAM > PCEA > PHBA ≈ PS. This trend is very similar to that of heterogeneous nucleation activity. Our results suggest the importance of the

  19. Retrospective Validation of a Structure-Based Virtual Screening Protocol to Identify Ligands for Estrogen Receptor Alpha and Its Application to Identify the Alpha-Mangostin Binding Pose

    Directory of Open Access Journals (Sweden)

    Agustina Setiawati

    2014-07-01

    Full Text Available The publicly available enhanced data of ligands and decoys for estrogen receptor alpha (ERα which were recently published has made the retrospective validation of a structure-based virtual screening (SBVS protocol to identify ligands for ERα possible. In this article, we present the retrospective validation of an SBVS protocol using PLANTS molecular docking software version 1.2 (PLANTS1.2 as the backbone software. The protocol shows better enrichment factor at 1% false positives (EF1% value and the Area Under Curve (AUC value of the Receiver Operator Characteristic (ROC compared to the original published protocol. Moreover, in all 1000 iterative attempts the protocol could reproduce the co-crystal pose of 4-hydroxitamoxifen in ERα binding pocket. It shows that the protocol is not only able to identify potent ligands for ERα but also able to be employed in examining binding pose of known ligand. Thence, the protocol was successfully employed to examine the binding poses of α-mangostin, an ERα ligand found in the Garcinia mangostana, L. pericarp.

  20. Characterization and autoradiographic localization of multiple tachykinin binding sites in gastrointestinal tract and bladder

    Energy Technology Data Exchange (ETDEWEB)

    Burcher, E.; Buck, S.H.; Lovenberg, W.; O' Donohue, T.L.

    1986-03-01

    Binding sites for the (125I)Bolton-Hunter-labeled tachykinins substance K (BHSK), eledoisin (BHE) and substance P (BHSP) were investigated using crude membrane suspensions and autoradiography. In smooth muscle membranes from guinea-pig small intestine and rat duodenum, specific binding of BHSK was saturable and reversible, showing a single class of sites with a KD of 1 to 3 nM and maximum number of specific binding sites of 1 to 2 fmol/mg of wet weight tissue. Pharmacological characterization of this binding revealed a novel receptor site (K) with affinity for substance K greater than kassinin greater than or equal to eledoisin greater than neuromedin K greater than substance P greater than physalaemin. Inhibition of the binding of BHSK in membranes from mouse urinary bladder exhibited a similar K-type pattern. In rat duodenum and mouse bladder membranes, the binding of BHE was inhibited by substance K greater than kassinin greater than eledoisin greater than neuromedin K greater than substance P greater than physalaemin indicating the same receptor site as for BHSK. In rat cerebral cortex membranes BHE binding was inhibited by neuromedin K = kassinin = eledoisin greater than physalaemin greater than substance K greater than substance P indicating a definitive tachykinin E receptor site. The same displacement pattern of BHE binding was also detected in longitudinal muscle membranes from the guinea-pig small intestine. In mouse bladder membranes and in rat and guinea-pig intestine, the binding of BHSP was inhibited by substance P greater than physalaemin greater than substance K greater than or equal to eledoisin = kassinin greater than neuromedin K indicating a definitive tachykinin P receptor site. Autoradiographic binding sites for both BHSK and BHSP were seen in circular muscle of the rat stomach, small intestine and colon and in circular and longitudinal muscle of the guinea-pig small intestine and colon.

  1. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  2. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  3. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  4. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  5. Identification of substrate binding sites in enzymes by computational solvent mapping.

    Science.gov (United States)

    Silberstein, Michael; Dennis, Sheldon; Brown, Lawrence; Kortvelyesi, Tamas; Clodfelter, Karl; Vajda, Sandor

    2003-10-03

    Enzyme structures determined in organic solvents show that most organic molecules cluster in the active site, delineating the binding pocket. We have developed algorithms to perform solvent mapping computationally, rather than experimentally, by placing molecular probes (small molecules or functional groups) on a protein surface, and finding the regions with the most favorable binding free energy. The method then finds the consensus site that binds the highest number of different probes. The probe-protein interactions at this site are compared to the intermolecular interactions seen in the known complexes of the enzyme with various ligands (substrate analogs, products, and inhibitors). We have mapped thermolysin, for which experimental mapping results are also available, and six further enzymes that have no experimental mapping data, but whose binding sites are well characterized. With the exception of haloalkane dehalogenase, which binds very small substrates in a narrow channel, the consensus site found by the mapping is always a major subsite of the substrate-binding site. Furthermore, the probes at this location form hydrogen bonds and non-bonded interactions with the same residues that interact with the specific ligands of the enzyme. Thus, once the structure of an enzyme is known, computational solvent mapping can provide detailed and reliable information on its substrate-binding site. Calculations on ligand-bound and apo structures of enzymes show that the mapping results are not very sensitive to moderate variations in the protein coordinates.

  6. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    International Nuclear Information System (INIS)

    Bennick, A.; McLaughlin, A.C.; Grey, A.A.; Madapallimattam, G.

    1981-01-01

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing 45 Ca. All the calcium-binding sites are located in the NH 2 -terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 μM and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 μM and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 μM. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that β-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids

  7. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  8. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  9. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  10. Use of thallium to identify monovalent cation binding sites in GroEL

    Science.gov (United States)

    Kiser, Philip D.; Lorimer, George H.; Palczewski, Krzysztof

    2009-01-01

    GroEL is a bacterial chaperone protein that assembles into a homotetra­decameric complex exhibiting D 7 symmetry and utilizes the co-chaperone protein GroES and ATP hydrolysis to assist in the proper folding of a variety of cytosolic proteins. GroEL utilizes two metal cofactors, Mg2+ and K+, to bind and hydrolyze ATP. A K+-binding site has been proposed to be located next to the nucleotide-binding site, but the available structural data do not firmly support this conclusion. Moreover, more than one functionally significant K+-binding site may exist within GroEL. Because K+ has important and complex effects on GroEL activity and is involved in both positive (intra-ring) and negative (inter-ring) cooperativity for ATP hydrolysis, it is important to determine the exact location of these cation-binding site(s) within GroEL. In this study, the K+ mimetic Tl+ was incorporated into GroEL crystals, a moderately redundant 3.94 Å resolution X-ray diffraction data set was collected from a single crystal and the strong anomalous scattering signal from the thallium ion was used to identify monovalent cation-binding sites. The results confirmed the previously proposed placement of K+ next to the nucleotide-binding site and also identified additional binding sites that may be important for GroEL function and cooperativity. These findings also demonstrate the general usefulness of Tl+ for the identification of monovalent cation-binding sites in protein crystal structures, even when the quality and resolution of the diffraction data are relatively low. PMID:19851000

  11. [3H]mazindol binding associated with neuronal dopamine and norepinephrine uptake sites.

    Science.gov (United States)

    Javitch, J A; Blaustein, R O; Snyder, S H

    1984-07-01

    [3H]Mazindol labels neuronal dopamine uptake sites in corpus striatum membranes (KD = 18 nM) and neuronal norepinephrine uptake sites in cerebral cortex and submaxillary/sublingual gland membranes (KD = 4 nM). The potencies of various inhibitors of biogenic amine uptake in reducing [3H]mazindol binding in striatal membranes correlate with their potencies for inhibition of neuronal [3H]dopamine accumulation, whereas their potencies in reducing [3H]mazindol binding to cortical and salivary gland membranes correlate with their potencies for inhibition of neuronal [3H]norepinephrine accumulation. Similar to the dopamine and norepinephrine uptake systems, [3H]mazindol binding in all three tissues is dependent upon sodium (with potassium, lithium, rubidium, and Tris being ineffective substitutes) and chloride (with sulfate and phosphate being ineffective substitutes). In membranes of the cerebral cortex and salivary gland, half-maximal stimulation is observed at 50-80 mM NaCl, whereas in membranes of the corpus striatum half-maximal stimulation occurs at 240 mM NaCl. In striatal membranes NaCl increases the affinity of [3H]mazindol binding with no effect on the maximal number of sites. The enhancement of affinity is due to a selective slowing of the dissociation of the ligand from its binding site. The association of [3H]mazindol binding sites with neuronal dopamine uptake sites in the corpus striatum is further supported by the reduction of [3H]mazindol binding sites in striatal membranes following destruction of dopaminergic neurons by 6-hydroxydopamine. Similarly, the association of [3H]mazindol binding sites with neuronal norepinephrine uptake sites in cerebral cortex is supported by the reduction of [3H]mazindol binding to cortical membranes following destruction of noradrenergic neurons by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine.

  12. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma.

    Science.gov (United States)

    Maranchie, Jodi K; Vasselli, James R; Riss, Joseph; Bonifacino, Juan S; Linehan, W Marston; Klausner, Richard D

    2002-04-01

    Clear-cell renal carcinoma is associated with inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. VHL is the substrate recognition subunit of an E3 ligase, known to target the alpha subunits of the HIF heterodimeric transcription factor for ubiquitin-mediated degradation under normoxic conditions. We demonstrate that competitive inhibition of the VHL substrate recognition site with a peptide derived from the oxygen degradation domain of HIF1alpha recapitulates the tumorigenic phenotype of VHL-deficient tumor cells. These studies prove that VHL substrate recognition is essential to the tumor suppressor function of VHL. We further demonstrate that normoxic stabilization of HIF1alpha alone, while capable of mimicking some aspects of VHL loss, is not sufficient to reproduce tumorigenesis, indicating that it is not the critical oncogenic substrate of VHL.

  13. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Science.gov (United States)

    Das, Shubhadip; Paul, Sandip

    2018-01-01

    The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS) cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  14. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  15. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    . The occurrence of alpha 2M/pMBP-28 complexes was further indicated by crossed immunoelectrophoresis and by use of an anti-alpha 2M affinity column and chelating Sepharose loaded with Zn2+. The eluates from these affinity columns showed alpha 2M subunits (94 and 180 kDa) and pMBP subunits (28kDa) in SDS-PAGE...... with anti-C1 s antibodies in ELISA, one of about 650-800 kDa, which in addition contained pMBP-28 and anti-alpha 2M reactive material, the other with an M(r) of 100-150 kDa. The latter peak revealed rhomboid molecules (7 x 15 nm) in the electron microscope and a 67 kDa band in SDS-PAGE under reducing...

  16. Quantitative autoradiography of (/sup 125/I) apamin binding sites in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Janicki, P.K.; Horvath, E.; Habermann, E. (Giessen Univ. (Germany, F.R.). Rudolf-Buchheim-Institut fuer Pharmakologie); Seibold, G. (Giessen Univ. (Germany, F.R.). Strahlenzentrum)

    1984-12-01

    The binding sites for (/sup 125/I) apamin in the central nervous system of rat, guinea-pig, chicken and frog were assessed by quantitative autoradiography on X-ray film. In rat and guinea-pig brain apamin labels preferentially the limbic-olfactory system, i.e. nucleus olfactorius, nuclei septi, habenula and hippocampus. In the rat spinal cord the peptide binds preferentially to the substantia gelatinosa. Tectum opticum and nuclei isthmi are labelled in chicken brain. In frog brain no preferentially 'apamin-stained' area was found. The role of the cerebral binding sites is still unknown, whereas the spinal sites may be involved in apamin poisoning.

  17. Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5′-Phosphosulfate Kinase*

    Science.gov (United States)

    Ravilious, Geoffrey E.; Jez, Joseph M.

    2012-01-01

    Adenosine 5′-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3′-phosphate 5′-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp136, which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis. PMID:22810229

  18. Autoradiographic characterization of L-[3H]glutamate binding sites in the central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.

    1986-01-01

    A quantitative autoradiographic technique was developed to study L-[ 3 H[glutamate binding in sections of central nervous system tissue. This technique circumvented some problems associated with conventional receptor binding methodologies and allowed direct assessment of regional distribution, numbers and affinities of glutamate binding sites. The sensitivity and high degree of anatomical resolution attainable by autoradiography obviated the need for pooled samples of microdissected specimens. Under assay conditions, [ 4 H]glutamate bound rapidly and reversibly to sections of rat brain and was not metabolized appreciably. The distribution of glutamate binding sites corresponded to the projection areas of putative glutamatergic pathways. Thus, there was heavy glutamate binding in regions where there is evidence for glutamatergic innervation and little binding in nuclei which apparently do not receive glutamatergic input. Scatchard and Hill plots suggested that glutamate was interacting with a single population of sites; however, competition studies revealed binding site heterogeneity. Anatomical and pharmacological evidence suggested that the NMDA-, high affinity quisqualate-, and kainate-sensitive glutamate binding sites may correspond to physiologically-defined NMDA, quisqualate and kainate receptors

  19. Anthranilate phosphoribosyltransferase: Binding determinants for 5'-phospho-alpha-d-ribosyl-1'-pyrophosphate (PRPP) and the implications for inhibitor design.

    Science.gov (United States)

    Evans, Genevieve L; Furkert, Daniel P; Abermil, Nacim; Kundu, Preeti; de Lange, Katrina M; Parker, Emily J; Brimble, Margaret A; Baker, Edward N; Lott, J Shaun

    2018-02-01

    Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC 50 values of 10-60μM, and K i values of 1.3-15μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Importance of the alphaC-helix in the cyclic nucleotide binding domain for the stable channel regulation and function of cyclic nucleotide gated ion channels in Arabidopsis.

    Science.gov (United States)

    Chin, Kimberley; Moeder, Wolfgang; Abdel-Hamid, Huda; Shahinas, Dea; Gupta, Deepali; Yoshioka, Keiko

    2010-05-01

    The involvement of cyclic nucleotide gated ion channels (CNGCs) in the signal transduction of animal light and odorant perception is well documented. Although plant CNGCs have recently been revealed to mediate multiple stress responses and developmental pathways, studies that aim to elucidate their structural and regulatory properties are still very much in their infancy. The structure-function relationship of plant CNGCs was investigated here by using the chimeric Arabidopsis AtCNGC11/12 gene that induces multiple defence responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22) for the identification of functionally essential residues. A genetic screen for mutants that suppress cpr22-conferred phenotypes identified over 20 novel mutant alleles in AtCNGC11/12. One of these mutants, suppressor S58 possesses a single amino acid substitution, arginine 557 to cysteine, in the alphaC-helix of the cyclic nucleotide-binding domain (CNBD). The suppressor S58 lost all cpr22 related phenotypes, such as spontaneous cell death formation under ambient temperature conditions. However, these phenotypes were recovered at 16 degrees C suggesting that the stability of channel function is affected by temperature. In silico modelling and site-directed mutagenesis analyses suggest that arginine 557 in the alphaC-helix of the CNBD is important for channel regulation, but not for basic function. Furthermore, another suppressor mutant, S136 that lacks the entire alphaC-helix due to a premature stop codon, lost channel function completely. Our data presented here indicate that the alphaC-helix is functionally important in plant CNGCs.

  1. Structural basis for substrate specificity in phosphate binding (beta/alpha)8-barrels: D-allulose 6-phosphate 3-epimerase from Escherichia coli K-12.

    Science.gov (United States)

    Chan, Kui K; Fedorov, Alexander A; Fedorov, Elena V; Almo, Steven C; Gerlt, John A

    2008-09-09

    Enzymes that share the (beta/alpha) 8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (beta/alpha) 2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth beta-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, DeltaT196, DeltaS197 and DeltaG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in k cat/ K m are dominated by changes in k cat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE

  2. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions...

  3. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    Energy Technology Data Exchange (ETDEWEB)

    Makyio, Hisayoshi [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Shimabukuro, Junpei; Suzuki, Tatsuya [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Imamura, Akihiro; Ishida, Hideharu [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Kiso, Makoto [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ando, Hiromune, E-mail: hando@gifu-u.ac.jp [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kato, Ryuichi, E-mail: ryuichi.kato@kek.jp [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  4. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  5. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha1-adrenergic system

    International Nuclear Information System (INIS)

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha 1 -adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha 1 -adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha 1 -selective radioligand [ 125 I]-I-2-[β-(4-hydroxphenyl)ethylaminomethyl]tetralone ([ 125 I]-IBE 2254) demonstrated that the alpha 1 -adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha 1 -adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha 1 -adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha 1 -mediated positive chronotropic response in the neonate, whereas in the adult the alpha 1 -mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha 1 -adrenergic receptor to its effector under certain circumstances such as high potassium (K + ) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha 1 -response

  6. Rat submaxillary gland contains predominantly P-type tachykinin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Buck, S.H.; Burcher, E.

    1985-11-01

    The specific binding of the /sup 125/I-Bolton-Hunter labeled tachykinins substance K (BHSK), eledoisin (BHE), and substance P (BHSP) was examined in crude membrane suspensions and by autoradiography in rat submaxillary gland. All three ligands at 0.1 nM concentrations exhibited binding that was inhibited by tachykinins in a potency rank order of substance P greater than physalaemin greater than substance K greater than eledoisin greater than kassinin greater than neuromedin K with slope factors essentially equal to unity. All tachykinins were 5 to 10 times more potent in inhibiting BHSK and BHE binding compared to BHSP binding. Autoradiographic visualization of BHSK and BHSP binding sites in the gland revealed extensive labeling of mucous and serous acini. The intensity of labeling was much less for BHSK than for BHSP. The results indicate that the rat submaxillary gland contains predominantly P-type tachykinin binding sites.

  7. Quantitative autoradiography of brain binding sites for the vesicular acetylcholine transport blocker 2-(4-phenylpiperidino)cyclohexanol (AH5183)

    International Nuclear Information System (INIS)

    Marien, M.R.; Parsons, S.M.; Altar, C.A.

    1987-01-01

    2-(4-Phenylpiperidino)cyclohexanol (AH5183) is a noncompetitive and potent inhibitor of high-affinity acetylcholine transport into cholinergic vesicles. It is reported here that [ 3 H]AH5183 binds specifically and saturably to slide-mounted sections of the rat forebrain (Kd = 1.1 to 2.2 X 10(-8) M; Bmax = 286 to 399 fmol/mg of protein). The association and dissociation rate constants for [ 3 H]AH5183 binding are 8.6 X 10(6) M-1 X min-1 and 0.18 min-1, respectively. Bound [ 3 H]AH5183 can be displaced by nonradioactive AH5183 and by the structural analog (2 alpha,3 beta,4A beta,8A alpha)-decahydro-3-(4-phenyl-1-piperidinyl)-2- naphthalenol but not by 10 microM concentrations of the cholinergic drugs acetylcholine, choline, atropine, hexamethonium, eserine, or hemicholinium-3 or by the structurally related compounds 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridine, (+/-)-N-allylnormetazocine (SKF 10,047), levoxadrol, or dexoxadrol. Quantitative autoradiography reveals that [ 3 H]AH5183 binding sites are distributed heterogenously throughout the rat forebrain and are highly localized to cholinergic nerve terminal regions. At the level of the caudate nucleus-putamen, the highest concentrations of saturable [ 3 H]AH5183 binding (713-751 fmol/mg of protein) are found in the vertical limb of the diagonal band and the olfactory tubercle, with lesser amounts (334-516 fmol/mg of protein) in the caudate-putamen, nucleus accumbens, superficial layers of the cerebral cortex, and the primary olfactory cortex. At day 7 after transsection of the left fimbria, [ 3 H]AH5183 binding and choline acetyltransferase activity in the left hippocampus were reduced by 33 +/- 6% and 61 +/- 7%, respectively. These findings indicate that [ 3 H]AH5183 binds to a unique recognition site in rat brain that is topographically associated with cholinergic nerve terminals

  8. Photoaffinity studies of the tubulin-colchicine binding site

    International Nuclear Information System (INIS)

    Hahn, K.M.

    1987-01-01

    A variety of colchicine derivatives were synthesized and coupled with 3,3,3-trifluoro-2-diazapropionyl chloride (TFDP-Cl) to produce colchicine photoaffinity analogs for use in tubulin labelling studies. Photoaffinity analogs of allocolchicine and podophylotoxin were also made using the same photoreactive moiety. Several labels were found to be effective inhibitors of tubulin polymerization. The approximate tubulin binding constants of the labels, calculated from polymerization inhibition data, varied between 2.2 x 10 5 to 2.5 x 10 3 M -1 . The labels chosen for use in tubulin labelling experiments were (N-TFDP) deacetyl-thiocolchicine 1, (O-TFDP)thiocolchifoline 2, and (O-TFDP)-2-demethylthiocolchicine 3. Compound 1 was found to bind tubulin reversibly and to competitively inhibit colchicine binding. Methods for the incorporation of tritium and 14 C in these labels were developed. Conditions were found which caused labels to insert into solvent without photorearrangement of the colchicine skeleton. Catalytic base caused the α-diazo amide of 1 to rearrange to a triazole

  9. Prolactin binding sites on human chorion-decidua tissue

    International Nuclear Information System (INIS)

    McWey, L.A.; Singhas, C.A.; Rogol, A.D.

    1982-01-01

    An effective procedure has been developed and utilized to demonstrate the presence of prolactin receptors on the plasma membranes of human chorion-decidua cells. Particulate fractions from human chorion-decidua sedimenting between 1,500 and 45,000 x g display optimal binding of 125 I-labeled ovine prolactin when incubated at a membrane protein concentration of 200 micrograms per assay tube for 2 hours at 22 degrees C. Specific binding was increased by pretreatment of the membrane particles with 5M magnesium chloride to remove endogenous prolactin. These receptors show binding parameters (affinity, 0.92 x 10(9) L/mode; capacity, approximately 80 fmoles/mg) similar to those of lactogenic receptors in the rabbit mammary gland and, the rabbit and rat liver. The presence of prolactin receptors in human chorion-decidua suggests that may play a role in mediating local action(s) of prolactin such as involvement in the decidualization reaction or in maintaining fetal osmoregulation

  10. Europium ion as a probe for binding sites to carrageenans

    International Nuclear Information System (INIS)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A.; Zaniquelli, Maria Elisabete D.; Wong, Kenneth

    2007-01-01

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu 3+ /Na + or K + with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan

  11. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive...

  12. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly...... be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor...... approach to obtain insight into the binding site of the allosteric antagonists and additionally introduced eight single point mutations in CCR2 to further characterize the putative binding pocket. All constructs were studied in radioligand binding and/or functional IP turnover assays, providing evidence...

  13. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    Science.gov (United States)

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-02

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Energetics of 5-bromo-4-chloro-3-indolyl-alpha-D-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing.

    Science.gov (United States)

    Gallego del Sol, Francisca; Gómez, Javier; Hoos, Sylviane; Nagano, Celso S; Cavada, Benildo S; England, Patrick; Calvete, Juan J

    2005-03-01

    Parkia platycephala belongs to the most primitive group of Leguminosae plants. Its seed lectin is made up of three homologous beta-prism repeats and exhibits binding specificity for mannose/glucose. The properties of the association between the lectin from P. platycephala seeds and monosaccharide ligands were analysed by isothermal titration calorimetry and surface plasmon resonance. The results are consistent with the lectin bearing three thermodynamically identical binding sites for mannose/glucose per monomer with dissociation constants in the millimolar range. Binding of each ligand by the lectin is enthalpically driven. Crystals have been obtained of the lectin in complex with a brominated derivative of mannose (5-bromo-4-chloro-3-indolyl-alpha-D-mannose), which were suitable for deriving an electron-density map by MAD phasing. In agreement with the thermodynamic data, six Br atoms were found in the asymmetric unit of the monoclinic P2(1) crystals, which contained two P. platycephala lectin molecules. The availability of other Br derivatives of monosaccharides (glucose, galactose, fucose) may make this strategy widely useful for structure elucidation of novel lectins or when (as in the case of the P. platycephala lectin) molecular-replacement methods fail.

  15. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal alpha 1-3Gal beta 1-4GlcNAc sequences

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.F.; Krivan, H.C.; Wilkins, T.D.; Smith, D.F.

    1987-08-15

    The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using /sup 125/I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. /sup 125/I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc.

  17. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    Corp, E.S.; Woods, S.C.; Figlewicz, D.P.; Porte, D. Jr.; Baskin, D.G.; Dorsa, D.M.

    1986-01-01

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125 I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  18. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  19. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  20. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers.

    Directory of Open Access Journals (Sweden)

    Richard W Lusk

    2010-01-01

    Full Text Available The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Krüppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into

  1. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  2. Probing and mapping the binding sites on streptavidin imprinted polymer surface

    International Nuclear Information System (INIS)

    Duman, Memed

    2014-01-01

    Molecular imprinting is an effective technique for preparing recognition sites which act as synthetic receptors on polymeric surfaces. Herein, we synthesized MIP surfaces with specific binding sites for streptavidin and characterized them at nanoscale by using two different atomic force microscopy (AFM) techniques. While the single molecule force spectroscopy (SMFS) reveals the unbinding kinetics between streptavidin molecule and binding sites, simultaneous topography and recognition imaging (TREC) was employed, for the first time, to directly map the binding sites on streptavidin imprinted polymers. Streptavidin modified AFM cantilever showed specific unbinding events with an unbinding force around 300 pN and the binding probability was calculated as 35.2% at a given loading rate. In order to prove the specificity of the interaction, free streptavidin molecules were added to AFM liquid cell and the binding probability was significantly decreased to 7.6%. Moreover, the recognition maps show that the smallest recognition site with a diameter of around ∼ 21 nm which corresponds to a single streptavidin molecule binding site. We believe that the potential of combining SMFS and TREC opens new possibilities for the characterization of MIP surfaces with single molecule resolution under physiological conditions. - Graphical abstract: Simultaneous Topography and RECognition (TREC) imaging is a novel characterization technique to reveal binding sites on molecularly imprinted polymer surfaces with single molecule resolution under physiological conditions. - Highlights: • Highly specific streptavidin printed polymer surfaces were synthesized. • Unbinding kinetic rate of single streptavidin molecule was studied by SMFS. • The distribution of binding pockets was revealed for the first time by TREC imaging. • TREC showed that the binding pockets formed nano-domains on MIP surface. • SMFS and TREC are powerful AFM techniques for characterization of MIP surfaces

  3. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  4. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  5. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site

    Science.gov (United States)

    Lu, Yan; Chen, Jianjun; Xiao, Min; Li, Wei

    2013-01-01

    Tubulin dynamics is a promising target for new chemotherapeutic agents. The colchicine binding site is one of the most important pockets for potential tubulin polymerization destabilizers. Colchicine binding site inhibitors (CBSI) exert their biological effects by inhibiting tubulin assembly and suppressing microtubule formation. A large number of molecules interacting with the colchicine binding site have been designed and synthesized with significant structural diversity. CBSIs have been modified as to chemical structure as well as pharmacokinetic properties, and tested in order to find a highly potent, low toxicity agent for treatment of cancers. CBSIs are believed to act by a common mechanism via binding to the colchicine site on tubulin. The present review is a synopsis of compounds that have been reported in the past decade that have provided an increase in our understanding of the actions of CBSIs. PMID:22814904

  6. Radiolabeling of dopamine uptake sites in mouse striatum: comparison of binding sites for cocaine, mazindol, and GBR 12935.

    Science.gov (United States)

    Reith, M E; Selmeci, G

    1992-03-01

    This study addressed the possibility of a unique binding interaction between cocaine and the dopamine transporter as compared with other blockers of dopamine uptake. Cocaine binding sites in a fresh P2 fraction of mouse striatum were labeled with [3H]CFT, a phenyltropane analog of cocaine also known as WIN 35,428, and compared with sites labeled with [3H]mazindol or [3H]GBR 12935. Under the conditions used, homogeneous binding was observed that was inhibited monophasically by cocaine, CFT, and mazindol; the same potencies were observed with the three radioligands. Saturation analysis in the presence and in the absence of unlabeled inhibitor (CFT, mazindol, cocaine) indicated a change in the Kd but not the Bmax, consonant with a competitive mechanisms. Tris-HCl reduced the affinity of each radioligand and unlabeled inhibitor without changing the Bmax. N-Ethylmaleimide reduced the binding of all radioligands equally and cocaine offered protection. The dissociation rate of [3H]CFT and [3H]mazindol binding was not affected by the presence of mazindol and CFT, respectively. The Bmax of [3H]CFT and [3H]mazindol binding was the same; the relatively higher value for [3H]GBR 12935 binding in analyses involving varying tritiated GBR 12935 only, was due primarily to an underestimation of the specific activity of [3H]GBR 12935. All results are in agreement with a one-site model in which cocaine, CFT, mazindol, and GBR 12935 share a common binding site in mouse striatum.

  7. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    Santos, Raquel Gouvea dos; Diniz, Carlos Roberto; Nascimento, Marta Cordeiro; Lima, Maria Elena de

    1996-01-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ( 125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na 125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10 -10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  8. HDAC Inhibitors without an Active Site Zn2+-Binding Group

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Leman, Luke J.

    2012-01-01

    -target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure−activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn2+-binding group. The lead compounds (e.g., 15 and 26) display good...... potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/ off competitive inhibitor of HDACs 1−3 with Ki values of 49, 33, and 37 nM, respectively. Our proof...

  9. Estimating the relative position of risperidone primary binding site in Sera Albumins. Modeling from spectrofluorimetric data

    Science.gov (United States)

    Cortez, Celia Martins; Fragoso, Viviane Muniz S.; Silva, Dilson

    2014-10-01

    In this work, we used a mathematical model to study the interaction of risperidone with human and bovine serum albumins estimating the relative position of the primary binding site, based on the fluorescence quenching theory. Results have shown that the model was able to demonstrate that primary binding site for risperidone in HSA and BSA is very close to the position where is tryptophan 134 of BSA, possibly in domain 1B.

  10. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Quader Saad

    2012-07-01

    Full Text Available Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this paper, we propose ML-Consensus (Mixed-Length Consensus: a consensus model for variable-length TFBS which does not exclude any reported binding sites. Methods We consider Pairwise Score (PS as a measure of positional dependence of nucleotides within an alignment of TFBS. We investigate how the prediction accuracy of ML-Consensus is affected by the incorporation of IC and PS with a particular binding site alignment strategy. We perform cross-validations for datasets of six species from the TRANSFAC public database, and analyze the results using ROC curves and the Wilcoxon matched-pair signed-ranks test. Results We observe that the incorporation of IC and PS in ML-Consensus results in statistically significant improvement in the prediction accuracy of the model. Moreover, the existence of a core region among the known binding sites (of any length is witnessed by the pairwise coexistence of nucleotides within the core length. Conclusions These observations suggest the possibility of an efficient multiple sequence alignment algorithm for aligning TFBS, accommodating known binding sites of any length, for optimal (or near-optimal TFBS prediction. However, designing such an algorithm is a matter of further investigation.

  11. Binding of alpha-fetoprotein by immobilized monoclonal antibodies during episodes of zero-gravity obtained by parabolic flight

    Science.gov (United States)

    Spooner, Brian S.; Guikema, James A.; Barnes, Grady

    1990-01-01

    Alpha-fetoprotein (AFP), a single-chain polypeptide which is synthesized by the liver and yolk sac of the human fetus, provided a model ligand for assessing the effects of microgravity on ligand binding to surface-immobilized model receptor molecules. Monoclonal antibodies, used as receptors for AFP, were immobilized by covalent attachment to latex microparticles. Zero gravity environment was obtained by parabolic flight aboard NASA 930, a modified KC-135 aircraft. Buring the onset of an episode of zero gravity, ligand and receptor were mixed. Timed incubation (20 s) was terminated by centrifugation, the supernatant removed, and microparticies were assessed for bound AFP by immunochemical methods. The extent of binding was not influenced by microgravity, when compared with 1-G controls, which suggests that aberrant cellular activities observed in microgravity are not the simple expression of altered macromolecular interactions.

  12. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro

    International Nuclear Information System (INIS)

    Leysen, J.E.

    1981-01-01

    In vitro binding studies to serotoninergic receptors were performed using 3 H-LSD, 3 H-5-HT and 3 H-spiperone. An overwiew is given on findings using these three ligands with respect to the following: localization of specific binding sites, in various animal species, the regional distribution in the brain and periphery, the subcellular and cellular distribution. Properties of the binding sites, influence of the composition of the assay medium, binding kinetic properties, receptor regulation in vivo. Identity of the binding sites, differences between site for various 3 H-ligands, pharmacological specificity of the membranous binding sites, chemical composition of the macromolecular complex constituting the binding site. Function of the receptor. Binding affinities of 44 compounds were measured in binding assays using 3 H-spiperone and 3 H-LSD with rat frontal cortex membrane preparations and using 3 H-5-HT and 3 H-LSD with rat hippocampal membrane preparations

  13. Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα determines male-female differences in the expression of hepatic lipid processing genes in mice.

    Directory of Open Access Journals (Sweden)

    Astrid Kosters

    Full Text Available Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs. Retinoid X Receptor alpha (RXRα is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2 binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male and 46,877 (female RXRα binding sites (BS, associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key

  14. Computational mapping identifies the binding sites of organic solvents on proteins

    Science.gov (United States)

    Dennis, Sheldon; Kortvelyesi, Tamas; Vajda, Sandor

    2002-01-01

    Computational mapping places molecular probes—small molecules or functional groups—on a protein surface to identify the most favorable binding positions. Although x-ray crystallography and NMR show that organic solvents bind to a limited number of sites on a protein, current mapping methods result in hundreds of energy minima and do not reveal why some sites bind molecules with different sizes and polarities. We describe a mapping algorithm that explains the origin of this phenomenon. The algorithm has been applied to hen egg-white lysozyme and to thermolysin, interacting with eight and four different ligands, respectively. In both cases the search finds the consensus site to which all molecules bind, whereas other positions that bind only certain ligands are not necessarily found. The consensus sites are pockets of the active site, lined with partially exposed hydrophobic residues and with a number of polar residues toward the edge. These sites can accommodate each ligand in a number of rotational states, some with a hydrogen bond to one of the nearby donor/acceptor groups. Specific substrates and/or inhibitors of hen egg-white lysozyme and thermolysin interact with the same side chains identified by the mapping, but form several hydrogen bonds and bind in unique orientations. PMID:11904374

  15. PocketMatch: a new algorithm to compare binding sites in protein structures.

    Science.gov (United States)

    Yeturu, Kalidas; Chandra, Nagasuma

    2008-12-17

    Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along with the new alignment strategy used, it is sufficient to

  16. Up-regulatory effect of triphasic oral contraceptive on platelet 3H-imipramine binding sites.

    Science.gov (United States)

    Weizman, A; Morgenstern, H; Kaplan, B; Amiri, Z; Tyano, S; Ovadia, Y; Rehavi, M

    1988-01-01

    Triphasic oral contraceptive (Logynon) induced a significant increase (36%) in the maximal binding capacity of platelet membranes for [3H]imipramine. The increase was achieved in the second Logynon cycle as compared to pretreatment and first Logynon cycle binding values. The pill contains a combination of ethinyl estradiol and levonorgestrel, and it is as yet unclear which of the two hormones is responsible for the up-regulatory effect. The increase in the density of platelet imipramine binding sites may reflect a similar alteration in brain. The increase in imipramine binding did not correlate with alteration in mood as assessed by Beck Depression Inventory scores.

  17. Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability.

    OpenAIRE

    Kuroki, R; Taniyama, Y; Seko, C; Nakamura, H; Kikuchi, M; Ikehara, M

    1989-01-01

    A Ca2+ binding site like an EF-hand motif was designed and created in human lysozyme by replacing both Gln-86 and Ala-92 with aspartic acids by site-directed mutagenesis. The mutant human lysozyme (D86/92-lysozyme) was expressed and secreted by yeast. One Ca2+ was found to bind one molecule of the purified protein with the binding constant 5.0 x 10(6) M-1. The enzymatic activity of holo-D86/92-lysozyme against glycol chitin at 40 degrees C was 2-fold higher than that of the native lysozyme. M...

  18. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  19. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    Science.gov (United States)

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  20. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  1. Measurement of the relative binding affinity of zearalenone, alpha-zearalenol and beta-zearalenol for uterine and oviduct estrogen receptors in swine, rats and chickens: an indicator of estrogenic potencies.

    Science.gov (United States)

    Fitzpatrick, D W; Picken, C A; Murphy, L C; Buhr, M M

    1989-01-01

    1. The relative binding affinity of zearalenone, alpha-zearalenol, and beta-zearalenol for estrogen receptors was determined in the pig, rat and chicken. 2. Similar relative binding patterns were observed, with alpha-zearalenol exhibiting greater affinity than zearalenone and beta-zearalenol the least binding affinity in all species. 3. The relative binding affinity of alpha-zearalenol was greater in pig, than in rat and significantly greater than in chicken. 4. Interspecies differences in zearalenone sensitivity may be due to the binding affinity of alpha-zearalenol for estrogen receptors and differences in zearalenone metabolites formed.

  2. Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors

    Directory of Open Access Journals (Sweden)

    Figeys Daniel

    2008-09-01

    Full Text Available Abstract Background Alpha-Synuclein (α-syn, a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD. Three missense mutations (A30P, A53T and E46K in the α-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of α-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. Results In the present study, we analysed the ability of cytosolic factors to regulate α-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant α-syn. To characterize cytosolic factor(s that modulate α-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate α-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T α-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF is one of the principal lipids found in complex with cytosolic proteins and is required to enhance α-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P α-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. Conclusion These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant α-syn membrane binding, and could represent potential targets to influence α-syn solubility in brain.

  3. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amy Sebeson

    Full Text Available The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  4. Thyrotropin-releasing hormone receptor binding sites: autoradiographic distribution in the rat and guinea pig brain

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, A.; Cortes, R.; Palacios, J.M.

    1985-11-01

    Thyrotropin-releasing hormone (TRH) binding sites were labeled in vitro in mounted brain tissue sections from rat and guinea pig brains with (TH)methyl TRH and localized autoradiographically using TH-sensitive film. Regional densities of TRH binding sites were measured by computer-assisted microdensitometry. The distribution of sites in both species was highly heterogeneous. In both guinea pig and rat brains, the highest densities of binding sites were seen in the amygdaloid nuclei and the perirhinal cortex. In contrast, in other brain areas, a clear difference between the distribution of sites in rat and guinea pig was found. The temporal cortex, pontine nuclei, and interpeduncular nucleus, which contained high densities of binding in the guinea pig, were scarcely labeled in the rat. The accessory olfactory bulb and the septohippocampal area presented in the rat higher concentrations of binding sites than in the guinea pig. The anterior pituitary also presented low to intermediate concentrations of receptors. The distribution of TRH sites here described does not completely correlate with that of endogenous TRH, but is in good agreement with previous biochemical data. The results are discussed in correlation to the physiological effects that appear to be mediated by TRH.

  5. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  6. 2[125I]Iodomelatonin binding sites in spleens of guinea pigs

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Pang, S.F.

    1992-01-01

    2-[ 125 I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8±4.12 pmol/l and binding site density (Bmax) of 0.69±0.082 fmol/mg protein at mid-light. There was no significant change in the Kd or the Bmax at mid-dark. Kinetic analysis showed a Kd of 23.13±4.81 pmol/l, in agreement to that derived from the saturation studies. The 2-[ 125 I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin much-gt N-acetylserotonin, 6-hydroxymelatonin > 5-methoxytryptamine, 5-methoxytryptophol > serotonin, 5-methoxyindole-3-acetic acid > 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan > tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fraction, the rest are distributed in the microsomal fraction, mitochondrial fraction and cytosolic fraction. The demonstration of 2-[ 125 I]iodomelatonin binding sites in the spleen suggests the presence of melatonin receptors and a direct mechanism of action of melatonin on the immune system

  7. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  8. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  9. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A

    2015-01-01

    around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro...

  10. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    Science.gov (United States)

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  11. Origin of the stereospecificity in binding hydroxamates of alpha- and beta-phenylalanine methylamide to thermolysin revealed by the X-ray crystallographic study.

    Science.gov (United States)

    Kim, Seung-Jun; Kim, Dong H; Park, Jung Dae; Woo, Joo-Rang; Jin, Yonghao; Ryu, Seong Eon

    2003-05-29

    Optically active N-formyl-N-hydroxy-alpha-phenylalanine methylamide (1) and N-formyl-N-hydroxy-beta-phenylalanine methylamide (2) were evaluated as inhibitors for thermolysin (TLN) to find that while the D-form is more potent than its enantiomer in the case of the hydroxamate of alpha-Phe-NHMe, in the inhibition with hydroxamate of beta-Phe-NHMe, the L-isomer (K(i)=1.66+/-0.05 microM) is more effective than its enantiomer. In order to shed light on the stereochemical preference observed in the inhibitions, X-ray crystallographic analyses of the crystalline TLN.D-1 and TLN.L-2 complexes were performed to the resolution of 2.1A. While L-2 binds TLN like substrate does with its benzyl aromatic ring occupying the S(1)' pocket, the electron density in the S(1)' pocket in the complex of TLN.D-1 is weak and could best be accounted for by the methylcarbamoyl moiety. For both inhibitors, the hydroxamate moiety coordinates the active site zinc ion in a bidentate fashion.

  12. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures.

    Science.gov (United States)

    Li, Wenlong; Sun, Honghao; Xu, Shengtao; Zhu, Zheying; Xu, Jinyi

    2017-10-01

    The vital roles of microtubule in mitosis and cell division make it an attractive target for antitumor therapy. Colchicine binding site of tubulin is one of the most important pockets that have been focused on to design tubulin-destabilizing agents. Over the past few years, a large number of colchicine binding site inhibitors (CBSIs) have been developed inspired by natural products or synthetic origins, and many moieties frequently used in these CBSIs are structurally in common. In this review, we will classify the CBSIs into classical CBSIs and nonclassical CBSIs according to their spatial conformations and binding modes with tubulin, and highlight the privileged structures from these CBSIs in the development of tubulin inhibitors targeting the colchicine binding site.

  13. Properties of achetakinin binding sites on malpighian tubule membranes from the house cricket, Acheta domesticus.

    Science.gov (United States)

    Chung, J S; Wheeler, C H; Goldsworthy, G J; Coast, G M

    1995-01-01

    A biologically active 125I-labeled analogue of AK-II (3'-hydroxyphenyl propionic-Gly-Gly-Gly-Phe-Ser-Pro-Trp-Gly-NH2) was used to investigate the properties of achetakinin binding sites on plasma membranes from Malpighian tubules of Acheta domesticus. With optimized conditions, binding was rapid, reversible, and specific, and saturation studies revealed a single class of binding sites with Kd 0.55 nM and Bmax 39.9 fmol/mg membrane protein. The affinities of achetakinins for binding sites on tubule membranes ranked AK-V > AK III > AK-II > AK-I > or = AK-IV, in general agreement with their potencies in functional assays. However, IC50 values were several orders of magnitude higher than corresponding values for EC50, which suggests a considerable receptor reserve.

  14. Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites

    DEFF Research Database (Denmark)

    Maolanon, Alex R.; Risgaard, Rune; Wang, Shuang Yan

    2017-01-01

    A series of analogues based on serine as lead structure were designed, and their agonist activities were evaluated at recombinant NMDA receptor subtypes (GluN1/2A-D) using two-electrode voltage-clamp (TEVC) electrophysiology. Pronounced variation in subunit-selectivity, potency, and agonist...... efficacy was observed in a manner that was dependent on the GluN2 subunit in the NMDA receptor. In particular, compounds 15a and 16a are potent GluN2C-specific superagonists at the GluN1 subunit with agonist efficacies of 398% and 308% compared to glycine. This study demonstrates that subunit......-selectivity among glycine site NMDA receptor agonists can be achieved and suggests that glycine-site agonists can be developed as pharmacological tool compounds to study GluN2C-specific effects in NMDA receptor-mediated neurotransmission....

  15. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  16. Residue propensities, discrimination and binding site prediction of adenine and guanine phosphates

    Directory of Open Access Journals (Sweden)

    Ahmad Zulfiqar

    2011-05-01

    Full Text Available Abstract Background Adenine and guanine phosphates are involved in a number of biological processes such as cell signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often detected by looking for a previously known motif by alignment based search. This is likely to miss those where a similar binding site has not been previously characterized and when the binding sites do not follow the rule described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative with high specificity. Results Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that subtle differences exist between single residue preferences for specific nucleotides and taking neighbor environment and evolutionary context into account, successful models of their binding site prediction can be developed. Conclusion In this work, we explore how single amino acid propensities for these nucleotides play a role in the affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for adenine and guanine phosphates, especially when a known binding motif is not detectable.

  17. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A

    Directory of Open Access Journals (Sweden)

    Manuela Maurer

    2016-04-01

    Full Text Available The periplasmic oligopeptide binding protein A (OppA represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK, but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  18. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  19. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277......-793nM)). Eight amino acids, which correspond to amino acids that are critical for ligand binding to other NMDA receptor subunits, situated within the S1S2 predicted ligand binding domain of hNR3A were mutated, which resulted in complete or near complete loss of [(3)H]-glycine binding to hNR3A. The NMDA...

  20. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  1. Location and effect of obesity on putative anorectic binding sites in the rat brain.

    Science.gov (United States)

    Dunn-Meynell, A A; Levin, B E

    1997-05-01

    Anorectic drugs such as mazindol bind to a class of low-affinity, sodium-sensitive sites in the brain which are affected by ambient glucose concentrations and a predisposition to develop diet-induced obesity (DIO). This study used quantitative autoradiography of 10 nM 3H-mazindol binding to identify the cellular location of these putative anorectic binding sites in the brain and to assess the way in which the development of DIO affected their binding. We previously showed that chow-fed, obesity-prone rats have widespread increases in brain 3H-mazindol binding to these low-affinity sites as compared with diet-resistant (DR) rats. Here, low-affinity 3H-mazindol binding was assessed in the brains of eight rats which developed DIO vs. eight which were DR after three months on a high-energy diet. DIO rats gained 89% more weight and had 117% higher plasma insulin levels but no difference in plasma glucose levels compared with DR rats. Along with these differences, low-affinity 3H-mazindol binding in DIO rats was identical to that in DR rats in all of the 23 brain areas assessed. This suggested that this binding was downregulated by the development of obesity in DIO rats. In other chow-fed rats, stereotaxic injections of 5,7-dihydroxytryptamine and 6-hydroxydopamine (6OHDA) to ablate serotonin and catecholamine nerve terminals in the ventromedial nucleus of the hypothalamus (VMN) had no effect on 3H-mazindol binding. However, ibotenic acid injected into the VMN, substantia nigra, pars reticulata, and pars compacta destroyed intrinsic neurons and/or their local processes and decreased low-affinity 3H-mazindol binding by 13%-22%. Destruction of dopamine neurons in the substantia nigra, pars compacta, and noradrenergic neurons in the locus ceruleus with 6OHDA also reduced 3H-mazindol binding in those areas by 9% and 12%, respectively. This suggested that up to 22% of putative anorectic binding sites may be located on the cell bodies of dopamine, norepinephrine, and other

  2. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    Energy Technology Data Exchange (ETDEWEB)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with (/sup 3/H)yohimbine, whereas (/sup 3/H)clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, (/sup 3/H) clonidine and (/sup 3/H)yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of (/sup 3/H)clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations.

  3. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  4. Searching for the low affinity ubiquinone binding site in cytochrome bo3from Escherichia coli.

    Science.gov (United States)

    Choi, Sylvia K; Lin, Myat T; Ouyang, Hanlin; Gennis, Robert B

    2017-05-01

    The cytochrome bo 3 ubiquinol oxidase is one of three respiratory oxygen reductases in the aerobic respiratory chain of Escherichia coli. The generally accepted model of catalysis assumes that cyt bo 3 contains two distinct ubiquinol binding sites: (i) a low affinity (Q L ) site which is the traditional substrate binding site; and (ii) a high affinity (Q H ) site where a "permanently" bound quinone acts as a cofactor, taking two electrons from the substrate quinol and passing them one-by-one to the heme b component of the enzyme which, in turn, transfers them to the heme o 3 /Cu B active site. Whereas the residues at the Q H site are well defined, the location of the Q L site remains unknown. The published X-ray structure does not contain quinone, and substantial amounts of the protein are missing as well. A recent bioinformatics study by Bossis et al. [Biochem J. (2014) 461, 305-314] identified a sequence motif G 163 EFX 3 GWX 2 Y 173 as the likely Q L site in the family of related quinol oxidases. In the current work, this was tested by site-directed mutagenesis. The results show that these residues are not important for catalytic function and do not define the Q L substrate binding site. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J.

    2005-01-01

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO 2 ) 1-x (LSiO 1.5 ) x , where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu t ) 2 . At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  6. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  7. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    International Nuclear Information System (INIS)

    Paul, J.H.; Pichard, S.L.

    1989-01-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of [ 3 H]- or [ 32 P]DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments

  8. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  9. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  10. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    International Nuclear Information System (INIS)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-01-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective 125 I-labeled OT antagonist ( 125 I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of 125 I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that 125 I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration

  11. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  12. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  13. Binding interactions of human interleukin 5 with its receptor alpha subunit. Large scale production, structural, and functional studies of Drosophila-expressed recombinant proteins.

    Science.gov (United States)

    Johanson, K; Appelbaum, E; Doyle, M; Hensley, P; Zhao, B; Abdel-Meguid, S S; Young, P; Cook, R; Carr, S; Matico, R

    1995-04-21

    Human interleukin 5 (hIL5) and soluble forms of its receptor alpha subunit were expressed in Drosophila cells and purified to homogeneity, allowing a detailed structural and functional analysis. B cell proliferation confirmed that the hIL5 was biologically active. Deglycosylated hIL5 remained active, while similarly deglycosylated receptor alpha subunit lost activity. The crystal structure of the deglycosylated hIL5 was determined to 2.6-A resolution and found to be similar to that of the protein produced in Escherichia coli. Human IL5 was shown by analytical ultracentrifugation to form a 1:1 complex with the soluble domain of the hIL5 receptor alpha subunit (shIL5R alpha). Additionally, the relative abundance of ligand and receptor in the hIL5.shIL5R alpha complex was determined to be 1:1 by both titration calorimetry and SDS-polyacrylamide gel electrophoresis analysis of dissolved cocrystals of the complex. Titration microcalorimetry yielded equilibrium dissociation constants of 3.1 and 2.0 nM, respectively, for the binding of hIL5 to shIL5R alpha and to a chimeric form of the receptor containing shIL5R alpha fused to the immunoglobulin Fc domain (shIL5R alpha-Fc). Analysis of the binding thermodynamics of IL5 and its soluble receptor indicates that conformational changes are coupled to the binding reaction. Kinetic analysis using surface plasmon resonance yielded data consistent with the Kd values from calorimetry and also with the possibility of conformational isomerization in the interaction of hIL5 with the receptor alpha subunit. Using a radioligand binding assay, the affinity of hIL5 with full-length hIL5R alpha in Drosophila membranes was found to be 6 nM, in accord with the affinities measured for the soluble receptor forms. Hence, most of the binding energy of the alpha receptor is supplied by the soluble domain. Taken with other aspects of hIL5 structure and biological activity, the data obtained allow a prediction for how 1:1 stoichiometry and

  14. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  15. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses.

    Science.gov (United States)

    Grünewald, Nora; Jan, Audric; Salvatico, Charlotte; Kress, Vanessa; Renner, Marianne; Triller, Antoine; Specht, Christian G; Schwarz, Guenter

    2018-01-01

    The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 3 10 -helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.

  16. Molecularly imprinted protein recognition cavities bearing exchangeable binding sites for postimprinting site-directed introduction of reporter molecules for readout of binding events.

    Science.gov (United States)

    Sunayama, Hirobumi; Takeuchi, Toshifumi

    2014-11-26

    Protein-imprinted cavities bearing exchangeable domains to be used for postimprinting fluorophore introduction to transform binding events into fluorescence changes were constructed in molecularly imprinted polymer (MIPs) matrixes prepared on glass substrates. Copolymerization was performed with acrylamide, N,N'-methylenebisaclylamide, and a newly designed functional group-exchangeable monomer, ({[2-(2-methacrylamido)ethyldithio]ethylcarbamoyl}methoxy)acetic acid (MDTA), in the presence of a model basic protein, lysozyme (Lyso); MDTA can interact with Lyso and assemble close to Lyso in the resulting polymer. After removal of Lyso, followed by a disulfide reduction to cleave the (ethylcarbamoylmethoxy)acetic acid moiety from the MDTA residues, the exposed thiol groups within the imprinted cavities were modified by aminoethylpyridyldisulfide to be transformed into aminoethyl groups that function as active sites for amine-reactive fluorophores. Fluorescein isothiocyanate (FITC) was then coupled with the aminoethyl groups, yielding site specifically FITC-modified signaling imprinted cavities for Lyso binding. Because the in-cavity fluorescent labeling was achieved via a disulfide linkage, it was easy to remove, exchange, and/or replace amine-reactive fluorophores. This facilitated the screening of fluorophores to select the highest readout for binding events, replace fluorophores when photobleaching occurred, and introduce other functions. The proposed molecular imprinting process, combined with postimprinting modifications, is expected to provide an affordable route to develop multifunctional MIPs for specific detection of protein binding events.

  17. Fluorone dyes have binding sites on both cytoplasmic and extracellular domains of Na,K-ATPase.

    Science.gov (United States)

    Havlíková, Marika; Huličiak, Miroslav; Bazgier, Václav; Berka, Karel; Kubala, Martin

    2013-02-01

    Combination of fluorescence techniques and molecular docking was used to monitor interaction of Na,K-ATPase and its large cytoplasmic loop connecting fourth and fifth transmembrane helices (C45) with fluorone dyes (i.e. eosin Y, 5(6)-carboxyeosin, rose bengal, fluorescein, and erythrosine B). Our data suggested that there are at least two binding sites for all used fluorone dyes, except of 5(6)-carboxyeosin. The first binding site is located on C45 loop, and it is sensitive to the presence of nucleotide. The other site is located on the extracellular part of the enzyme, and it is sensitive to the presence of Na(+) or K(+) ions. The molecular docking revealed that in the open conformation of C45 loop (which is obtained in the presence of ATP) all used fluorone dyes occupy position directly inside the ATP-binding pocket, while in the closed conformation (i.e. in the absence of any ligand) they are located only near the ATP-binding site depending on their different sizes. On the extracellular part of the protein, the molecular docking predicts two possible binding sites with similar binding energy near Asp897(α) or Gln69(β). The former was identified as a part of interaction site between α- and β-subunits, the latter is in contact with conserved FXYD sequence of the γ-subunit. Our findings provide structural explanation for numerous older studies, which were performed with fluorone dyes before the high-resolution structures were known. Further, fluorone dyes seem to be good probes for monitoring of intersubunit interactions influenced by Na(+) and K(+) binding. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    Science.gov (United States)

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-15

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  19. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  20. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands

    Science.gov (United States)

    Richter, Lars; de Graaf, Chris; Sieghart, Werner; Varagic, Zdravko; Mörzinger, Martina; de Esch, Iwan J P; Ecker, Gerhard F; Ernst, Margot

    2012-01-01

    Benzodiazepines exert their anxiolytic, anticonvulsant, muscle-relaxant and sedative-hypnotic properties by allosterically enhancing the action of GABA at GABAA receptors via their benzodiazepine-binding site. Although these drugs have been used clinically since 1960, the molecular basis of this interaction is still not known. By using multiple homology models and an un biased docking protocol, we identified a binding hypothesis for the diazepam-bound structure of the benzodiazepine site, which was confirmed by experimental evidence. Moreover, two independent virtual screening approaches based on this structure identified known benzodiazepine-site ligands from different structural classes and predicted potential new ligands for this site. Receptor-binding assays and electrophysiological studies on recombinant receptors confirmed these predictions and thus identified new chemotypes for the benzodiazepine-binding site. Our results support the validity of the diazepam-bound structure of the benzodiazepine-binding pocket, demonstrate its suitability for drug discovery and pave the way for structure-based drug design. PMID:22446838

  1. Egernia stokesii (gidgee skink) MHC I positively selected sites lack concordance with HLA peptide binding regions.

    Science.gov (United States)

    Pearson, Sarah K; Bull, C Michael; Gardner, Michael G

    2017-01-01

    Genes of the major histocompatibility complex (MHC) play an important role in vertebrate disease resistance, kin recognition and mate choice. Mammalian MHC is the most widely characterised of all vertebrates, and attention is often given to the peptide binding regions of the MHC because they are presumed to be under stronger selection than non-peptide binding regions. For vertebrates where the MHC is less well understood, researchers commonly use the amino acid positions of the peptide binding regions of the human leukocyte antigen (HLA) to infer the peptide binding regions within the MHC sequences of their taxon of interest. However, positively selected sites within MHC have been reported to lack correspondence with the HLA in fish, frogs, birds and reptiles including squamates. Despite squamate diversity, the MHC has been characterised in few snakes and lizards. The Egernia group of scincid lizards is appropriate for investigating mechanisms generating MHC variation, as their inclusion will add a new lineage (i.e. Scincidae) to studies of selection on the MHC. We aimed to identify positively selected sites within the MHC of Egernia stokesii and then determine if these sites corresponded with the peptide binding regions of the HLA. Six positively selected sites were identified within E. stokesii MHC I, only two were homologous with the HLA. E. stokesii positively selected sites corresponded more closely to non-lizard than other lizard taxa. The characterisation of the MHC of more intermediate taxa within the squamate order is necessary to understand the evolution of the MHC across all vertebrates.

  2. Validating metal binding sites in macromolecule structures using the CheckMyMetal web server

    Science.gov (United States)

    Zheng, Heping; Chordia, Mahendra D.; Cooper, David R.; Chruszcz, Maksymilian; Müller, Peter; Sheldrick, George M.

    2015-01-01

    Metals play vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules where metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal binding environments. The "CheckMyMetal" (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal binding sites in macromolecular structures in respect to 7350 metal binding sites observed in a benchmark dataset of 2304 high resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal binding sites and alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the anticipated results section. CMM was designed for a broad audience—biomedical researchers studying metal-containing proteins and nucleic acids—but is equally well suited for structural biologists to validate new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure modeled with a few hundred amino acids. PMID:24356774

  3. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    Science.gov (United States)

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  4. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  5. Blocking and binding folate receptor alpha autoantibodies identify novel autism spectrum disorder subgroups

    Directory of Open Access Journals (Sweden)

    Richard Eugene Frye

    2016-03-01

    Full Text Available Folate receptor α (FRα autoantibodies (FRAAs are prevalent in autism spectrum disorder (ASD. They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD with FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and Mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments.

  6. 3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors.

    Science.gov (United States)

    Huang, X; Liu, T; Gu, J; Luo, X; Ji, R; Cao, Y; Xue, H; Wong, J T; Wong, B L; Pei, G; Jiang, H; Chen, K

    2001-06-07

    With flavone as a structural template, three-dimensional quantitative structure-activity relationship (3D-QSAR) studies and ab initio calculations were performed on a series of flavonoids. A reasonable pharmacophore model was built through CoMFA, CoMSIA, and HQSAR analyses and electrostatic potential calculations. A plausible binding mode for flavonoids with GABA(A) receptors was rationalized. On the basis of the commonly recognized binding site, the specific S1 and S2 subsites relating to substituent positions were proposed. The different binding affinities could be explained according to the frontier orbitals and electrostatic potential (ESP) maps. The ESP could be used as a novel starting point for designing more selective BZ-binding-site ligands.

  7. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    Pollack, A.E.; Wooten, G.F.

    1987-01-01

    The binding of the opiate antagonist 3 H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3 H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  8. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    Science.gov (United States)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  9. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  10. Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Oliver Weth

    Full Text Available The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.

  11. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts.

    Science.gov (United States)

    Ekanayake, Devi K; Andi, Babak; Bobyk, Kostyantyn D; West, Ann H; Cook, Paul F

    2010-07-02

    Saccharopine dehydrogenase catalyzes the NAD-dependent oxidative deamination of saccharopine to give l-lysine and alpha-ketoglutarate. There are a number of conserved hydrophilic, ionizable residues in the active site, all of which must be important to the overall reaction. In an attempt to determine the contribution to binding and rate enhancement of each of the residues in the active site, mutations at each residue are being made, and double mutants are being made to estimate the interrelationship between residues. Here, we report the effects of mutations of active site glutamate residues, Glu(78) and Glu(122), on reactant binding and catalysis. Site-directed mutagenesis was used to generate E78Q, E122Q, E78Q/E122Q, E78A, E122A, and E78A/E122A mutant enzymes. Mutation of these residues increases the positive charge of the active site and is expected to affect the pK(a) values of the catalytic groups. Each mutant enzyme was completely characterized with respect to its kinetic and chemical mechanism. The kinetic mechanism remains the same as that of wild type enzymes for all of the mutant enzymes, with the exception of E78A, which exhibits binding of alpha-ketoglutarate to E and E.NADH. Large changes in V/K(Lys), but not V, suggest that Glu(78) and Glu(122) contribute binding energy for lysine. Shifts of more than a pH unit to higher and lower pH of the pK(a) values observed in the V/K(Lys) pH-rate profile of the mutant enzymes suggests that the presence of Glu(78) and Glu(122) modulates the basicity of the catalytic groups.

  12. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.

    Science.gov (United States)

    Liu, Sheng; Zibetti, Cristina; Wan, Jun; Wang, Guohua; Blackshaw, Seth; Qian, Jiang

    2017-07-27

    Computational prediction of transcription factor (TF) binding sites in different cell types is challenging. Recent technology development allows us to determine the genome-wide chromatin accessibility in various cellular and developmental contexts. The chromatin accessibility profiles provide useful information in prediction of TF binding events in various physiological conditions. Furthermore, ChIP-Seq analysis was used to determine genome-wide binding sites for a range of different TFs in multiple cell types. Integration of these two types of genomic information can improve the prediction of TF binding events. We assessed to what extent a model built upon on other TFs and/or other cell types could be used to predict the binding sites of TFs of interest. A random forest model was built using a set of cell type-independent features such as specific sequences recognized by the TFs and evolutionary conservation, as well as cell type-specific features derived from chromatin accessibility data. Our analysis suggested that the models learned from other TFs and/or cell lines performed almost as well as the model learned from the target TF in the cell type of interest. Interestingly, models based on multiple TFs performed better than single-TF models. Finally, we proposed a universal model, BPAC, which was generated using ChIP-Seq data from multiple TFs in various cell types. Integrating chromatin accessibility information with sequence information improves prediction of TF binding.The prediction of TF binding is transferable across TFs and/or cell lines suggesting there are a set of universal "rules". A computational tool was developed to predict TF binding sites based on the universal "rules".

  13. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  14. Identification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M.; Crofts, Antony R.; Schulten, Klaus

    2015-01-01

    all atom molecular dynamics and quantum chemical calculations to reveal the binding modes of quinol at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues responsible for quinol binding and support a mechanism for proton......-coupled electron transfer from quinol to iron-sulfur cluster through a bridging hydrogen bond from histidine that stabilizes the reaction complex....

  15. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2.

    Science.gov (United States)

    Kafurke, Uwe; Erijman, Ariel; Aizner, Yonatan; Shifman, Julia M; Eichler, Jutta

    2015-09-01

    Molecules capable of mimicking protein binding and/or functional sites present useful tools for a range of biomedical applications, including the inhibition of protein-ligand interactions. Such mimics of protein binding sites can currently be generated through structure-based design and chemical synthesis. Computational protein design could be further used to optimize protein binding site mimetics through rationally designed mutations that improve intermolecular interactions or peptide stability. Here, as a model for the study, we chose an interaction between human acetylcholinesterase (hAChE) and its inhibitor fasciculin-2 (Fas) because the structure and function of this complex is well understood. Structure-based design of mimics of the hAChE binding site for Fas yielded a peptide that binds to Fas at micromolar concentrations. Replacement of hAChE residues known to be essential for its interaction with Fas with alanine, in this peptide, resulted in almost complete loss of binding to Fas. Computational optimization of the hAChE mimetic peptide yielded a variant with slightly improved affinity to Fas, indicating that more rounds of computational optimization will be required to obtain peptide variants with greatly improved affinity for Fas. CD spectra in the absence and presence of Fas point to conformational changes in the peptide upon binding to Fas. Furthermore, binding of the optimized hAChE mimetic peptide to Fas could be inhibited by hAChE, providing evidence for a hAChE-specific peptide-Fas interaction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  16. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R

    2000-01-01

    in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element...

  17. Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism.

    Science.gov (United States)

    Fong, N M; Jensen, T C; Shah, A S; Parekh, N N; Saltiel, A R; Brady, M J

    2000-11-10

    The activation of protein phosphastase-1 (PP1) by insulin plays a critical role in the regulation of glycogen metabolism. PTG is a PP1 glycogen-targeting protein, which also binds the PP1 substrates glycogen synthase, glycogen phosphorylase, and phosphorylase kinase (Printen, J. A., Brady, M. J., and Saltiel, A. R. (1997) Science 275, 1475-1478). Through a combination of deletion analysis and site-directed mutagenesis, the regions on PTG responsible for binding PP1 and its substrates have been delineated. Mutagenesis of Val-62 and Phe-64 in the highly conserved (K/R)VXF PP1-binding motif to alanine was sufficient to ablate PP1 binding to PTG. Phosphorylase kinase, glycogen synthase, and phosphorylase binding all mapped to the same C-terminal region of PTG. Mutagenesis of Asp-225 and Glu-228 to alanine completely blocked the interaction between PTG and these three enzymes, without affecting PP1 binding. Disruption of either PP1 or substrate binding to PTG blocked the stimulation of PP1 activity in vitro against phosphorylase, indicating that both binding sites may be important in PTG action. Transient overexpression of wild-type PTG in Chinese hamster ovary cells overexpressing the insulin receptor caused a 50-fold increase in glycogen levels. Expression of PTG mutants that do not bind PP1 had no effect on glycogen accumulation, indicating that PP1 targeting is essential for PTG function. Likewise, expression of the PTG mutants that do not bind PP1 substrates did not increase glycogen levels, indicating that PP1 targeting glycogen is not sufficient for the metabolic effects of PTG. These results cumulatively demonstrate that PTG serves as a molecular scaffold, allowing PP1 to recognize its substrates at the glycogen particle.

  18. Marked reduction in the number of platelet-tritiated imipramine binding sites in geriatric depression

    International Nuclear Information System (INIS)

    Nemeroff, C.B.; Knight, D.L.; Krishnan, R.R.; Slotkin, T.A.; Bissette, G.; Melville, M.L.; Blazer, D.G.

    1988-01-01

    The number (Bmax) and affinity (Kd) of platelet-tritiated imipramine binding sites was determined in young and middle-aged controls 50 years of age and younger (n = 25), elderly normal controls over 60 years of age (n = 18), patients who fulfilled DSM-III criteria for major depression who were under 50 years of age (n = 29), patients who fulfilled DSM-III criteria for major depression who were 60 years of age and older (n = 19), and patients who fulfilled both DSM-III criteria for primary degenerative dementia and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association criteria for probable Alzheimer's disease (n = 13). Both groups of depressed patients (under 50 and over 60 years of age) exhibited significant reductions (decreases 42%) in the number of platelet-tritiated imipramine binding sites with no change in affinity, when compared with their age-matched controls. There was little overlap in Bmax values between the elderly depressed patients and their controls. The patients with probable Alzheimer's disease showed no alteration in platelet-tritiated imipramine binding. There was no statistically significant relationship between postdexamethasone plasma cortisol concentrations and tritiated imipramine binding. These results indicate that platelet-tritiated imipramine binding may have potential utility as a diagnostic adjunct in geriatric depression, and moreover that the reduction in the number of platelet-tritiated imipramine binding sites is not due to hypercortisolemia

  19. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shima, K.; Kitayama, S.; Nakano, R.

    1987-05-01

    Gonadotropin binding sites were localized by autoradiography after incubation of human ovarian sections with /sup 125/I-labeled gonadotropins. The binding sites for /sup 125/I-labeled human follicle-stimulating hormone (/sup 125/I-hFSH) were identified in the granulosa cells and in the newly formed corpora lutea. The /sup 125/I-labeled human luteinizing hormone (/sup 125/I-hLH) binding to the thecal cells increased during follicular maturation, and a dramatic increase was preferentially observed in the granulosa cells of the large preovulatory follicle. In the corpora lutea, the binding of /sup 125/I-hLH increased from the early luteal phase and decreased toward the late luteal phase. The changes in 3 beta-hydroxysteroid dehydrogenase activity in the corpora lutea corresponded to the /sup 125/I-hLH binding. Thus, the changes in gonadotropin binding sites in the follicles and corpora lutea during the menstrual cycle may help in some important way to regulate human ovarian function.

  20. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  1. Field study of alpha characterization of a D ampersand D site using long-range alpha detectors

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Allander, K.S.; Bounds, J.A.; Koster, J.E.; MacArthur, D.W.; Sprouse, L.L.; Stout, D.; Vaccarella, J.A.; Vu, T.Q.

    1994-01-01

    A successful and cost-effective D ampersand D effort relies upon an accurate, real-time, in situ, and non-destructive method of characterization of contamination both before and after the decontamination process. Detector systems based on long-range alpha detection (LRAD) technology meet these criteria. Currently, LANL is in the process of investigating, designing, or building various surface monitors, various pipe monitors, and glove-box monitors. This paper describes the field studies conducted using detectors based on LRAD technology

  2. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    -founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial......BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...

  3. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites -current status

    International Nuclear Information System (INIS)

    Pike, V.W.; Osman, S.; Shah, F.; Turton, D.R.; Waters, S.L.; Crouzel, C.; Nutt, D.J.

    1993-01-01

    The status of the radiochemical development and biological evaluation of radioligands for PET studies of central benzodiazepine (BZ) receptors and the so-called peripheral benzodiazepine binding sites, here discriminated and referred to as PK binding sites, is reviewed against current pharmacological knowledge, indicating those agents with present value and those with future potential. Practical recommendations are given for the preparation of two useful radioligands for PET studies, [N-methyl- 11 C]flumazenil for central BZ receptors, and [N-methyl- 11 C]PK 11195 for PK binding sites. Quality assurance and plasma metabolite analysis are also reviewed for these radioligands and practical recommendations are given on methodology for their performance. (Author)

  4. Autoradiographic distribution of /sup 125/I-galanin binding sites in the rat central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Skofitsch, G.; Sills, M.A.; Jacobowitz, D.M.

    1986-11-01

    Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of /sup 125/I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. /sup 125/I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.

  5. Blood Serum Alpha Fetoprotein Enhancer Binding Protein, a Tumor Suppressor, Decreases in Chronic HBV Hepatitis Patients as Hepatocellular Cancer Appears

    Directory of Open Access Journals (Sweden)

    James N. Riggins

    2010-01-01

    Full Text Available Chronic hepatitis increases the risk of hepatocellular carcinoma (HCC. To test whether circulating proteins reflect hepatic carcinogenesis, sera from patients and controls were albumin depleted, enriched for glycoproteins, digested with trypsin, and subjected to reverse phase chromatography and tandem mass spectrometry. Alpha-fetoprotein enhancer binding protein (AFPebp, a tumor suppressor, was repeatedly identified in sera from chronic HBV hepatitis patients. We independently identified and quantified AFPebp with a deuterated, phenylisocyanate-labeled synthetic peptide standard. Elevated AFPebp levels in sera from chronic HBV hepatitis patients decreased as cancer developed. These data suggest that rising AFPebp levels in chronic HBV hepatitis may be protective, while falling levels may contribute to HCC development.

  6. Cortisol decreases 2[125I] iodomelatonin binding sites in the duck thymus

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F.

    1994-01-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[ 125 I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[ 125 I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[ 125 I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[ 125 I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs

  7. Cortisol decreases 2[[sup 125]I] iodomelatonin binding sites in the duck thymus

    Energy Technology Data Exchange (ETDEWEB)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F. (Univ. of Hong Kong (China))

    1994-03-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[[sup 125]I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[[sup 125]I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[[sup 125]I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[[sup 125]I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs.

  8. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.

    Directory of Open Access Journals (Sweden)

    Daniel B Roche

    Full Text Available The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP experiment, utilizing the Matthews Correlation Coefficient (MCC and Binding-site Distance Test (BDT metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall's τ, Spearman's ρ and Pearson's r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC when Receiver Operator Characteristic (ROC analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%, and one of the top manual groups (FN293 tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site

  9. Identification of a functional hepatocyte nuclear factor 4 binding site in the neutral ceramidase promoter

    DEFF Research Database (Denmark)

    Maltesen, Henrik R; Troelsen, Jesper T; Olsen, Jørgen

    2010-01-01

    in ceramide digestion. It was the purpose of the present work to experimentally verify the functional importance of a HNF-4a binding site predicted by bioinformatic analysis to be present in the Asah2 promoter. Using supershift analysis, HNF-4a overexpression, and HNF-4a knockdown experiments it was confirmed...... that the predicted HNF-4a binding site identified in the Asah2 promoter is functional. The results support the hypothesis that HNF-4a might be important for intestinal glycolipid metabolism....

  10. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  11. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  12. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  13. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.

    2004-01-01

    The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved...... in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and

  14. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    Science.gov (United States)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  15. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  16. A Parzen window-based approach for the detection of locally enriched transcription factor binding sites.

    Science.gov (United States)

    Vandenbon, Alexis; Kumagai, Yutaro; Teraguchi, Shunsuke; Amada, Karlou Mar; Akira, Shizuo; Standley, Daron M

    2013-01-21

    Identification of cis- and trans-acting factors regulating gene expression remains an important problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of interest, because of high levels of false positive predictions, and because of positional restrictions on functional binding sites with regard to the transcription start site. We have developed a novel method for the detection of regulatory motifs based on their local over-representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We show that the accuracy of our method compares favourably to that of other methods, and that our method is capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs that are often missed by standard motif detection approaches. Using a number of examples we illustrate the validity of our approach and suggest applications, such as the analysis of weaker binding sites. Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.

  17. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  18. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  19. Anti-interleukin-1 alpha autoantibodies in humans: Characterization, isotype distribution, and receptor-binding inhibition--higher frequency in Schnitzler's syndrome (urticaria and macroglobulinemia)

    Energy Technology Data Exchange (ETDEWEB)

    Saurat, J.H.; Schifferli, J.; Steiger, G.; Dayer, J.M.; Didierjean, L. (Department of Dermatology, University Hospital, Geneva (Switzerland))

    1991-08-01

    Since autoantibodies (Abs) to cytokines may modify their biologic activities, high-affinity binding factors for interleukin-1 alpha (IL-1 alpha BF) were characterized in human sera. IL-1 alpha BF was identified as IgG (1) by sucrose density-gradient centrifugation followed by immunodiffusion autoradiography, (2) by ligand-blotting method, (3) by ligand binding to affinity-immobilized serum IgG, and (4) by IgG affinity purification followed by sucrose density-gradient centrifugation. IL-1 alpha binding activity resided in the F(ab)2 fragment. The apparent equilibrium constant was in the range of IgG found after immunization with conventional antigens (i.e., 10(-9) to 10(-10) mol/L). Anti-IL-1 alpha IgG auto-Abs represented only an extremely small fraction of total IgG (less than 1/10(-5)). Some sera with IL-1 alpha BF and purified IgG thereof were able to inhibit by 96% to 98% the binding of human recombinant IL-1 alpha to its receptor on murine thymoma EL4-6.1 cells, whereas other sera did not. When 125I-labeled anti-IL-1 alpha IgG complexes were injected into rats, they prolonged the plasma half-life of 125I-labeled IL-1 alpha several fold and altered its tissue distribution. The predominant class was IgG (12/19), mainly IgG4 (9/19), but in five of the sera, anti-IL-1 alpha IgA was also detected. In a screening of 271 sera, IL-1 alpha BF was detected in 17/98 normal subjects and was not more frequent in several control groups of patients, except in patients with Schnitzler's syndrome (fever, chronic urticaria, bone pain, and monoclonal IgM paraprotein) (6/9; p less than 0.005). The pathologic significance of these auto-Abs remains to be determined.

  20. Characterization of [3H]mazindol binding sites in cultured monkey amniotic epithelial cells.

    Science.gov (United States)

    Elwan, M A; Sakuragawa, N

    2000-01-21

    Our previous studies showed that monkey amniotic epithelial cells (MAEC) synthesize and release catecholamines and possess D1 and D2 dopamine (DA) receptors (Elwan, M.A., Ishii, T., Ono, F. and Sakuragawa, N., Evidence for the presence of dopamine D1 receptor mRNA and binding sites in monkey amniotic epithelial cells. Neurosci. Lett., 262 (1999) 9-12; Elwan, M.A., Ishii, T. and Sakuragawa, N., Detection of dopamine D2 receptor mRNA and binding sites in monkey amniotic epithelial cells. J. Neurosci. Res., 56 (1999) 316-322; Elwan, M.A., Thangavel, R., Ono, F. and Sakuragawa, N., Synthesis and release of catecholamines by cultured monkey amniotic epithelial cells. J. Neurosci. Res., 53 (1998) 107-113). In the present study we tested the presence of DA transporter (DAT) in MAEC using radioligand binding experiments. Saturation studies showed that [3H]mazindol binds to a high affinity site with K(D) and Bmax values of 7.85 +/- 1.25 nM and 123.22 +/- 18.34 fmol/mg protein, respectively. Competition studies indicated that selective DAT inhibitors are potent displacers of [3H]mazindol binding, compared to inhibitors of other types of transporters. The rank order of potency of the competing drugs is consistent with the pharmacology of DAT. These results provide, for the first time, clear evidence that MAEC natively possess DAT binding sites and suggest that MAEC may provide a potential primate cell model to study DA release and uptake processes and to explore new drugs active at this site.

  1. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  2. Investigation of gammaE-crystallin target protein binding to bovine lens alpha-crystallin by small-angle neutron scattering.

    Science.gov (United States)

    Clarke, M J; Artero, J B; Moulin, M; Callow, P; Carver, J A; Griffiths, P C; Haertlein, M; Harding, J J; Meek, K M; Timmins, P; Regini, J W

    2010-03-01

    alpha-Crystallin, one of the main constituent proteins in the crystalline lens, is an important molecular chaperone both within and outside the lens. Presently, the structural relationship between alpha-crystallin and its target proteins during chaperone action is poorly understood. It has been hypothesised that target proteins bind within a central cavity. Small-angle neutron-scattering (SANS) experiments in conjunction with isotopic substitution were undertaken to investigate the interaction of a target lens protein (gammaE-crystallin) with alpha-crystallin (alpha(H)) and to measure the radius of gyration (Rg) of the proteins and their binary complexes in solution under thermal stress. The size of the alpha(H) in D(2)O incubated at 65 degrees C increased from 69+/-3 to 81+/-5 A over 40 min, in good agreement with previously published small-angle X-ray scattering (SAXS) and SANS measurements. Deuterated gammaE-crystallin in H(2)O buffer (gammaE(D)/H(2)O) and hydrogenous gammaE-crystallin in D(2)O buffer (gammaE(H)/D(2)O) free in solution were of insufficient size and/or too dilute to provide any measurable scattering over the angular range used, which was selected primarily to investigate gammaE:alpha(H) complexes. The evolution of the aggregation size/shape as an indicator of alpha(H) chaperone action was monitored by recording the neutron scattering in different H:D solvent contrasts under thermally stressed conditions (65 degrees C) for binary mixtures of alpha(H), gammaE(H), and gammaE(D). It was found that Rg(alpha(H):gammaE(D)/D(2)O)>Rg(alpha(H):gammaE(H)/D(2)O)>Rg(alpha(H)/D(2)O) and that Rg(alpha(H):gammaE(H)/D(2)O) approximately Rg(alpha(H)/D(2)O). The relative sizes observed for the complexes weighted by the respective scattering powers of the various components imply that gammaE-crystallin binds in a central cavity of the alpha-crystallin oligomer, during chaperone action. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. The Streptococcal Binding Site in the Gelatin-binding Domain of Fibronectin Is Consistent with a Non-linear Arrangement of Modules*

    Science.gov (United States)

    Atkin, Kate E.; Brentnall, Andrew S.; Harris, Gemma; Bingham, Richard J.; Erat, Michele C.; Millard, Christopher J.; Schwarz-Linek, Ulrich; Staunton, David; Vakonakis, Ioannis; Campbell, Iain D.; Potts, Jennifer R.

    2010-01-01

    Fibronectin-binding proteins (FnBPs) of Staphylococcus aureus and Streptococcus pyogenes mediate invasion of human endothelial and epithelial cells in a process likely to aid the persistence and/or dissemination of infection. In addition to binding sites for the N-terminal domain (NTD) of fibronectin (Fn), a number of streptococcal FnBPs also contain an upstream region (UR) that is closely associated with an NTD-binding region; UR binds to the adjacent gelatin-binding domain (GBD) of Fn. Previously, UR was shown to be required for efficient streptococcal invasion of epithelial cells. Here we show, using a Streptococcus zooepidemicus FnBP, that the UR-binding site in GBD resides largely in the 8F19F1 module pair. We also show that UR inhibits binding of a peptide from the α1 chain of type I collagen to 8F19F1 and that UR binding to 8F1 is likely to occur through anti-parallel β-zipper formation. Thus, we propose that streptococcal proteins that contain adjacent NTD- and GBD-binding sites form a highly unusual extended tandem β-zipper that spans the two domains and mediates high affinity binding to Fn through a large intermolecular interface. The proximity of the UR- and NTD-binding sequences in streptococcal FnBPs is consistent with a non-linear arrangement of modules in the tertiary structure of the GBD of Fn. PMID:20843804

  4. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region

    Directory of Open Access Journals (Sweden)

    Alonso Ángel

    2006-03-01

    Full Text Available Abstract Background Papillomaviruses (PVs infect stratified squamous epithelia in warm-blooded vertebrates and have undergone a complex evolutionary process. The control of the expression of the early ORFs in PVs depends on the binding of cellular and viral transcription factors to the upstream regulatory region (URR of the virus. It is believed that there is a core of transcription factor binding sites (TFBS common to all PVs, with additional individual differences, although most of the available information focuses only on a handful of viruses. Results We have studied the URR of sixty-one PVs, covering twenty different hosts. We have predicted the TFBS present in the URR and analysed these results by principal component analysis and genetic algorithms. The number and nature of TFBS in the URR might be much broader than thus far described, and different PVs have different repertoires of TFBS. Conclusion There are common fingerprints in the URR in PVs that infect primates, although the ancestors of these viruses diverged a long time ago. Additionally, there are obvious differences between the URR of alpha and beta PVs, despite these PVs infect similar histological cell types in the same host, i.e. human. A thorough analysis of the TFBS in the URR might provide crucial information about the differential biology of cancer-associated PVs.

  5. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation.

    Science.gov (United States)

    McDade, Simon S; Henry, Alexandra E; Pivato, Geraldine P; Kozarewa, Iwanka; Mitsopoulos, Constantinos; Fenwick, Kerry; Assiotis, Ioannis; Hakas, Jarle; Zvelebil, Marketa; Orr, Nicholas; Lord, Christopher J; Patel, Daksha; Ashworth, Alan; McCance, Dennis J

    2012-08-01

    The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.

  6. Functional analysis of a potential regulatory K+-binding site in the Na+, K+-ATPase

    DEFF Research Database (Denmark)

    Schack, Vivien Rodacker; Vilsen, Bente

    The Na+, K+-ATPase functions by actively transporting 3 Na+ ions out of and 2 K+ ions into the cell, thereby creating ion gradients crucial for many physiological processes. Recently, a combined structural and functional study of the closely related Ca2+-ATPase indicated the presence...... of a regulatory K+-binding site in the P-domain of the enzyme, identifying E732 as being of particular importance (Sorensen, Clausen et al. 2004). In addition, P709 is thought to play a significant role in the structural organization of this site. Both E732 and P709 are highly conserved among P-type ATPases (E732...... is present as either glutamic acid or aspartic acid), which supports their importance and additionally raises the question whether this site may play a general role among P-type ATPases. In Na+, K+-ATPase, K+ functions directly as a substrate for membrane binding sites, however, an additional regulatory...

  7. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  8. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.

    2006-01-01

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites...... as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile......, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in a-amylases....

  9. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP......-identified hnRNP A1 binding site immediately downstream of the 5' splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site...

  10. Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp

    Directory of Open Access Journals (Sweden)

    Previato Jose O

    2008-05-01

    Full Text Available Abstract Background The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs. In the present study, nuclear magnetic resonance (NMR was used to map the binding site(s of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. Results The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. Conclusion Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.

  11. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  12. Two disparate ligand binding sites in the human P2Y1 receptor

    Science.gov (United States)

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  13. Mefloquine inhibits voltage dependent Nav1.4 channel by overlapping the local anaesthetic binding site.

    Science.gov (United States)

    Paiz-Candia, Bertin; Islas, Angel A; Sánchez-Solano, Alfredo; Mancilla-Simbro, Claudia; Scior, Thomas; Millan-PerezPeña, Lourdes; Salinas-Stefanon, Eduardo M

    2017-02-05

    Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na + channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na + channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Na v 1.4 currents (IC 50 =60μM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the β1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Na v 1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na + channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Na-K pump site density and ouabain binding affinity in cultured chick heart cells

    International Nuclear Information System (INIS)

    Lobaugh, L.A.; Lieberman, M.

    1987-01-01

    The possible existence of multiple [ 3 H]ouabain binding sites and the relationship between ouabain binding and Na-K pump inhibition in cardiac muscle were studied using cultured embryonic chick heart cells. [ 3 H]ouabain bound to a single class of sites in 0.5 mM K (0.5 Ko) with an association rate constant (k+1) of 3.4 X 10(4) M-1.s-1 and a dissociation rate constant (k-1) of 0.0095 s. Maximal specific [ 3 H]ouabain binding RT to myocyte-enriched cultures is 11.7 pmol/mg protein and Kd is 0.43 microM in 0.5 Ko, whereas Kd,apparent is 6.6 microM in 5.4 Ko. The number of binding sites per myocyte was calculated by correcting for the contribution of fibroblasts in myocyte-enriched cultures using data from homogeneous fibroblast cultures (RT = 3.3 pmol/mg protein; Kd = 0.19 microM in 0.5 Ko). Equivalence of [ 3 H]ouabain binding sites and Na-K pumps was implied by agreement between maximal specific binding of [ 3 H]ouabain and 125 I-labeled monoclonal antibody directed against Na+-K+-ATPase (approximately 2 X 10(6) sites/cell). However, [ 3 H]ouabain binding occurred at lower concentrations than inhibition of ouabain-sensitive 42 K uptake in 0.5 Ko. Further studies in both 0.5 K and 5.4 Ko showed that ouabain caused cell Na content Nai to increase over the same range of concentrations that binding occurred, implying that increased Nai may stimulate unbound Na-K pumps and prevent a proportional decrease in 42 K uptake rate. The results show that Na-K pump inhibition occurs as a functional consequence of specific ouabain binding and indicate that the Na-K pump is the cardiac glycoside receptor in cultured heart cells

  15. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  16. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations...... to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little...

  17. Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence

    Directory of Open Access Journals (Sweden)

    A.M. Kettlun

    2000-07-01

    Full Text Available Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10 and Desirée (ATPase/ADPase = 1 isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.

  18. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove

    2008-01-01

    and [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  19. AthaMap: from in silico data to real transcription factor binding sites.

    Science.gov (United States)

    Bülow, Lorenz; Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Hehl, Reinhard

    2006-01-01

    AthaMap generates a map for cis-regulatory sequences for the whole Arabidopsis thaliana genome. AthaMap was initially developed by matrix-based detection of putative transcription factor binding sites (TFBS) mostly determined from random binding site selection experiments. Now, also experimentally verified TFBS have been included for 48 different Arabidopsis thaliana transcription factors (TF). Based on these sequences, 89,416 very similar putative TFBS were determined within the genome of A. thaliana and annotated to AthaMap. Matrix- and single sequence-based binding sites can be included in colocalization analysis for the identification of combinatorial cis-regulatory elements. As an example, putative target genes of the WRKY18 transcription factor that is involved in plant-pathogen interaction were determined. New functions of AthaMap include descriptions for all annotated Arabidopsis thaliana genes and direct links to TAIR, TIGR and MIPS. Transcription factors used in the binding site determination are linked to TAIR and TRANSFAC databases. AthaMap is freely available at http://www.athamap.de.

  20. An Integrated Approach to Sequence-Independent Local Alignment of Protein Binding Sites.

    Science.gov (United States)

    Pang, Bin; Schlessman, David; Kuang, Xingyan; Zhao, Nan; Shyu, Daniel; Korkin, Dmitry; Shyu, Chi-Ren

    2015-01-01

    Accurate alignment of protein-protein binding sites can aid in protein docking studies and constructing templates for predicting structure of protein complexes, along with in-depth understanding of evolutionary and functional relationships. However, over the past three decades, structural alignment algorithms have focused predominantly on global alignments with little effort on the alignment of local interfaces. In this paper, we introduce the PBSalign (Protein-protein Binding Site alignment) method, which integrates techniques in graph theory, 3D localized shape analysis, geometric scoring, and utilization of physicochemical and geometrical properties. Computational results demonstrate that PBSalign is capable of identifying similar homologous and analogous binding sites accurately and performing alignments with better geometric match measures than existing protein-protein interface comparison tools. The proportion of better alignment quality generated by PBSalign is 46, 56, and 70 percent more than iAlign as judged by the average match index (MI), similarity index (SI), and structural alignment score (SAS), respectively. PBSalign provides the life science community an efficient and accurate solution to binding-site alignment while striking the balance between topological details and computational complexity.

  1. Identification of anesthetic binding sites on human serum albumin using a novel etomidate photolabel

    NARCIS (Netherlands)

    Bright, Damian P.; Adham, Sara D.; Lemaire, Lucienne C. J. M.; Benavides, Rodrigo; Gruss, Marco; Taylor, Graham W.; Smith, Edward H.; Franks, Nicholas P.

    2007-01-01

    We have synthesized a novel analog of the general anesthetic etomidate in which the ethoxy group has been replaced by an azide group, and which can be used as a photolabel to identify etomidate binding sites. This acyl azide analog is a potent general anesthetic in both rats and tadpoles and, as

  2. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  3. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  4. Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution

    Science.gov (United States)

    Howard, Rebecca J.; Slesinger, Paul A.; Davies, Daryl L.; Das, Joydip; Trudell, James R.; Harris, R. Adron

    2011-01-01

    Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmit-ter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a “molecular lubricant” for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol. PMID:21676006

  5. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.

    2006-01-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase...

  6. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  7. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    International Nuclear Information System (INIS)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J.

    1990-01-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-[3H]aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. [3H]Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-[3H]methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive [3H]glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. [3H]Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others

  8. The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of alpha- and beta-chitin.

    Science.gov (United States)

    Vaaje-Kolstad, Gustav; Bunaes, Anne C; Mathiesen, Geir; Eijsink, Vincent G H

    2009-04-01

    It has recently been shown that the Gram-negative bacterium Serratia marcescens produces an accessory nonhydrolytic chitin-binding protein that acts in synergy with chitinases. This provided the first example of the production of dedicated helper proteins for the turnover of recalcitrant polysaccharides. Chitin-binding proteins belong to family 33 of the carbohydrate-binding modules, and genes putatively encoding these proteins occur in many microorganisms. To obtain an impression of the functional conservation of these proteins, we studied the chitinolytic system of the Gram-positive Lactococcus lactis ssp. lactis IL1403. The genome of this lactic acid bacterium harbours a simple chitinolytic machinery, consisting of one family 18 chitinase (named LlChi18A), one family 33 chitin-binding protein (named LlCBP33A) and one family 20 N-acetylhexosaminidase. We cloned, overexpressed and characterized LlChi18A and LlCBP33A. Sequence alignments and structural modelling indicated that LlChi18A has a shallow substrate-binding groove characteristic of nonprocessive endochitinases. Enzymology showed that LlChi18A was able to hydrolyse both chitin oligomers and artificial substrates, with no sign of processivity. Although the chitin-binding protein from S. marcescens only bound to beta-chitin, LlCBP33A was found to bind to both alpha- and beta-chitin. LlCBP33A increased the hydrolytic efficiency of LlChi18A to both alpha- and beta-chitin. These results show the general importance of chitin-binding proteins in chitin turnover, and provide the first example of a family 33 chitin-binding protein that increases chitinase efficiency towards alpha-chitin.

  9. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  10. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  11. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  12. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the

  13. Two different transcription factors discriminate the -315C>T polymorphism of the Fc epsilon RI alpha gene: binding of Sp1 to -315C and of a high mobility group-related molecule to -315T.

    Science.gov (United States)

    Kanada, Shunsuke; Nakano, Nobuhiro; Potaczek, Daniel P; Maeda, Keiko; Shimokawa, Naomi; Niwa, Yusuke; Fukai, Tatsuo; Sanak, Marek; Szczeklik, Andrew; Yagita, Hideo; Okumura, Ko; Ogawa, Hideoki; Nishiyama, Chiharu

    2008-06-15

    The alpha-chain is a specific component of FcepsilonRI, which is essential for the cell surface expression of FcepsilonRI and the binding of IgE. Recently, two single nucleotide polymorphisms (SNPs) in the alpha-chain promoter, -315C>T and -66T>C, have been shown by statistic studies to associate with allergic diseases. The effect of -66 SNP on GATA-1-mediated promoter activity has been already indicated. In the present study, to investigate roles of the -315 SNP on the alpha-chain promoter functions, the transcription activity was evaluated by reporter assay. The alpha-chain promoter carrying -315T (minor allele) possessed significantly higher transcriptional activity than that of -315C (major allele). EMSA indicated that the transcription factor Sp1, but not Myc-associated zinc finger protein (MAZ), was bound to the -315C allele probe and that a transcription factor belonging to a high mobility group-family bound to the -315T allele probe. The chromatin immunoprecipitation assay suggested that high mobility group 1, 2, and Sp1 bound around -315 of FcepsilonRIalpha genomic DNA in vivo in the human basophil cell line KU812 with -315C/T and in human peripheral blood basophils with -315C/C, respectively. When cell surface expression level of FcepsilonRI on basophils was analyzed by flow cytometry, basophils from individuals carrying -315T allele expressed significantly higher amount of FcepsilonRI compared with those of -315C/C. The findings demonstrate that a -315 SNP significantly affects human FcepsilonRI alpha-chain promoter activity and expression level of FcepsilonRI on basophils by binding different transcription factors to the SNP site.

  14. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    International Nuclear Information System (INIS)

    Rosier, A.M.; Vandesande, F.; Orban, G.A.

    1991-01-01

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of [ 125 I]-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed

  15. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  16. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  17. Identification of an allosteric binding site for RORγt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Scheepstra, Marcel; Leysen, Seppe; vanAlmen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc (Merck); (Eindhoven)

    2015-12-07

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.

  18. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  19. In vivo receptor binding of opioid drugs at the mu site

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, J.S.; Holford, N.H.; Sadee, W.

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of (/sup 3/H)etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described.

  20. Characterization of the S100A1 protein binding site on TRPC6 C-terminus.

    Directory of Open Access Journals (Sweden)

    Jan Bily

    Full Text Available The transient receptor potential (TRP protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals. Calcium binding proteins such as Calmodulin or the family of S100A proteins are regulators of TRPC channels. Here we characterized the overlapping integrative binding site for S100A1 at the C-tail of TRPC6, which is also able to accomodate various ligands such as Calmodulin and phosphatidyl-inositol-(4,5-bisphosphate. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864 were determined by fluorescence anisotropy measurements for their participation in the calcium-dependent binding of S100A1 to the C terminus of TRPC6. The triple mutation Arg852/Lys859/Arg860 exhibited significant disruption of the binding of S100A1 to TRPC6. This indicates a unique involvement of these three basic residues in the integrative overlapping binding site for S100A1 on the C tail of TRPC6.

  1. Characterization of the S100A1 protein binding site on TRPC6 C-terminus.

    Science.gov (United States)

    Bily, Jan; Grycova, Lenka; Holendova, Blanka; Jirku, Michaela; Janouskova, Hana; Bousova, Kristyna; Teisinger, Jan

    2013-01-01

    The transient receptor potential (TRP) protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals. Calcium binding proteins such as Calmodulin or the family of S100A proteins are regulators of TRPC channels. Here we characterized the overlapping integrative binding site for S100A1 at the C-tail of TRPC6, which is also able to accomodate various ligands such as Calmodulin and phosphatidyl-inositol-(4,5)-bisphosphate. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864) were determined by fluorescence anisotropy measurements for their participation in the calcium-dependent binding of S100A1 to the C terminus of TRPC6. The triple mutation Arg852/Lys859/Arg860 exhibited significant disruption of the binding of S100A1 to TRPC6. This indicates a unique involvement of these three basic residues in the integrative overlapping binding site for S100A1 on the C tail of TRPC6.

  2. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    after treatment with ERalpha-selective agonist propyl pyrazole triol. Five of these eight selected genes, Shp, Stat3, Pdgds, Pck1, and Pdk4, all responded to propyl pyrazole triol after 4 h treatment. These results extend our previous studies using gene expression profiling to characterize estrogen...

  3. Engineering of specific uranyl-coordination sites in the calcium-binding motif of Calmodulin

    International Nuclear Information System (INIS)

    Beccia, M.; Pardoux, R.; Sauge-Merle, S.; Bremond, N.; Lemaire, D.; Berthomieu, C.; Delangle, P.; Guilbaud, P.

    2014-01-01

    Complete text of publication follows: Characterization of heavy metals interactions with proteins is fundamental for understanding the molecular factors and mechanisms governing ions toxicity and speciation in cells. This line of research will also help in developing new molecules able to selectively and efficiently bind toxic metal ions, which could find application for bio-detection or bioremediation purposes. We have used the regulatory calcium-binding protein Calmodulin (CaM) from A. thaliana as a structural model and, starting from it, we have designed various mutants by site-directed mutagenesis. We have analysed thermodynamics of uranyl ion binding to both sites I and II of CaM N-terminal domain and we have identified structural factors governing this interaction. Selectivity for uranyl ion has been tested by studying reactions of the investigated peptides with Ca 2+ , in the same conditions used for UO 2 2+ . Spectro-fluorimetric titrations and FTIR analysis have shown that the affinity for uranyl increases by phosphorylation of a threonine in site I, especially approaching the physiological pH, where the phospho-threonine side chain is deprotonated. Based on structural models obtained by Molecular Dynamics, we tested the effect of a two residues deletion on site I properties. We obtained an almost two orders of magnitude increase in affinity for uranyl, with a sub-nanomolar dissociation constant for the uranyl complex with the non phosphorylated peptide, and an improved uranyl/calcium selectivity. Allosteric effects depending on Ca 2+ and UO 2 2+ binding have been investigated by comparing thermodynamic parameters obtained for mutants having both sites I and II able to chelate metal ions with those of mutants consisting of just one active site

  4. A model-based approach to identify binding sites in CLIP-Seq data.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/MiClip/index.html, and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip for customized analysis.

  5. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase

    International Nuclear Information System (INIS)

    Pougeois, R.; Lauquin, G.J.

    1985-01-01

    The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (P /sub i/ ), could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca 2+ -ATPase in the presence of Ca 2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase, abolished P /sub i/ binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites

  6. Identification of metal ion binding sites based on amino acid sequences

    Science.gov (United States)

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  7. Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation.

    Science.gov (United States)

    Lee, Jun-Ho; Lee, Byung-Hwan; Choi, Sun-Hye; Yoon, In-Soo; Shin, Tae-Joon; Pyo, Mi Kyung; Lee, Sang-Mok; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2008-04-08

    Recently, we showed that the 20(S)-ginsenoside Rg3 (Rg3), an active ingredient of Panax ginseng, inhibits rat brain NaV1.2 channel peak currents (INa). Batrachotoxin (BTX) is a steroidal alkaloid neurotoxin and activates NaV channels through interacting with transmembrane domain-I-segment 6 (IS6) of channels. Recent report shows that ginsenoside inhibits BTX binding in rat brain membrane fractions. However, it needs to be confirmed whether biochemical mechanism is relevant physiologically and which residues of the BTX binding sites are important for ginsenoside regulations. Here, we demonstrate that mutations of BTX binding sites such as N418K and L421K of rat brain NaV1.2 and L437K of mouse skeletal muscle NaV1.4 channel reduce or abolish Rg3 inhibition of I(Na) and attenuate Rg3-mediated depolarizing shift of the activation voltage and use-dependent inhibition. These results indicate that BTX binding sites play an important role in modifying Rg3-mediated Na+ channel properties.

  8. Validation of binding of SE-75 labeled sucralfate to sites of gastrointestinal ulceration

    International Nuclear Information System (INIS)

    Maurer, A.H.; Knight, L.C.; Kollman, M.; Krevsky, B.; Pleet, D.; D'Ercole, F.; Siegel, J.A.; Fisher, R.S.; Malmud, L.S.

    1985-01-01

    This study was performed to determine if and for how long sucralfate (SU) binds selectively to sites of gastro-intestinal (GI) ulceration. Se-Su was prepared by sulfating sucrose with tracer Se-75 and precipitating it as the basic Al salt. All patients (pts) had endoscopy to confirm the presence of either: esophagitis (n=5), gastritis (GA) (n=5), gastric ulcers (GU) (n=5), duodenal ulcers (DU) (n=5), or no ulceration (NU) (n=5). Following an overnight fast the pts swallowed 1 gm with 100 μCi of Se-SU and were imaged continuously over 24 hours or until no activity remained in the upper GI tract. Pts with GU visually demonstrated focal SU binding at the ulcers for an average of 3.9 +- 1.1 hrs. with a mean GET of 68 +- 25 min. Mean GET for pts with DU was prolonged, 171 +- 63 min, however focal binding at duodenal ulcers was not seen. All pts with GA had diffuse retention of SU in the stomach with a mean GET of 118 +- 34 min. Focal binding of SU at all sites of esophagitis was seen with a T-1/2 of 65 +- 32 min at the ulcerations. In conclusion these data support the theory that the mechanism of ulcer healing with SU is related to its ability to adhere to the ulcer site forming a protective barrier. In addition Se-SU is a potential ulcer imaging agent which can be used to noninvasively assess healing

  9. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2Receptors.

    Science.gov (United States)

    Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I; Lanciego, José L; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael

    2017-01-01

    The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB 2 receptors (CB 2 Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB 2 R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB 2 R. Using membrane preparations from CB 2 R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB 2 R where the synthetic cannabinoid, [ 3 H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB 2 R-selective compound, CM-157. The effect on binding to CB 2 R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the K D . CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB 2 R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

  10. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors

    Directory of Open Access Journals (Sweden)

    Eva Martínez-Pinilla

    2017-10-01

    Full Text Available The mechanism of action of cannabidiol (CBD, the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs; however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD. CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

  11. Ivermectin binding sites in human and invertebrate Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2012-01-01

    modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular...... basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies...

  12. Mapping of the vitronectin-binding site on the urokinase receptor

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Ploug, Michael

    2007-01-01

    a comprehensive alanine-scanning library of purified single-site uPAR mutants (244 positions tested). Interestingly, the five residues identified as "hot spots" for vitronectin binding form a contiguous epitope consisting of two exposed loops connecting the central fourstranded beta-sheet in uPAR domain I (Trp(32...... the intriguing possibility that the canonical receptor and inhibitor for uPA (uPAR and PAI-1) may have reached a convergent solution for binding to the somatomedin B domain of vitronectin....

  13. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability

    Directory of Open Access Journals (Sweden)

    Faizule Hassan

    2018-03-01

    Full Text Available High mobility group AT-hook 1 (HMGA1 protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%–80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation. Keywords: adenovirus, cancer therapy, oncogenic transcription factor, chemotherapy resistance, high mobility group A protein, decoy binding site, pancreatic cancer, liver cancer, HMGA1, neoadjuvant therapy

  14. PATTERN BASED DETECTION OF POTENTIALLY DRUGGABLE BINDING SITES BY LIGAND SCREENING

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2018-03-01

    Full Text Available This article describes an innovative way of finding the potentially druggable sites on a target protein, which can be used for orthosteric and allosteric lead detection in a single virtual screening setup. Druggability estimation for an alternate binding site other than the canonical ligand-binding pocket of an enzyme is rewarding for several inherent benefits. Allostery is a direct and efficient way of regulating biomacromolecule function. The allosteric modulators can fine-tune protein mechanics. Besides, allosteric sites are evolutionarily less conserved/more diverse even in very similarly related proteins, thus, provides high degree of specificity in targeting a particular protein. Therefore, targeting of allosteric sites is gaining attention as an emerging strategy in rational drug design. However, the experimental approaches provide a limited degree of characterization of new allosteric sites. Computational approaches are useful to analyze and select potential allosteric sites for drug discovery. Here, the use of molecular docking, which has become an integral part of the drug discovery process, has been discussed to predict the druggability of novel allosteric sites as well as the active site on target proteins by ligand screening. Genetic algorithm was used for docking and the whole protein was placed in the search space. For each ligand in the library of small molecules, the genetic algorithm was run for multiple times to populate all the druggable sites in the target protein, which was then translated into two dimensional density maps or “patterns”. High density clusters were observed for lead like molecules in these pattern diagrams. Each cluster in such a pattern diagram indicated a plausible binding site and the density gave its druggability score in terms of weighted probabilities. The patterns were filtered to find the leads for each of the druggable sites on the target protein. Such a novel pattern based analysis of the

  15. Biophysical Models of Evolution: Application to Transcription Factor Binding Sites in Yeast

    Science.gov (United States)

    Manhart, Michael; Haldane, Allan; Morozov, Alexandre

    2012-02-01

    There has been growing interest in understanding the physical driving forces of evolution at the molecular scale, in particular how biophysics determines the fitness landscapes that shape the evolution of DNA and proteins. To that end we study a model of molecular evolution that explicitly incorporates the underlying biophysics. Using population genetics, we derive a steady-state distribution of monomorphic populations evolving on an arbitrary fitness landscape. Compared to previous studies, we find this result is universal for a large class of population models and fully incorporates both stochastic effects and strong natural selection. This distribution can then be used to infer the underlying fitness landscape from genomic data. This model can be applied to a variety of systems, but we focus on transcription factor binding sites, which play a crucial role in gene regulatory networks. Since these sites must be bound for successful gene regulation, we consider a simple thermodynamic model of fitness as a function of the free energy for binding a transcription factor at the site. Using empirical energy matrices and genome-wide sets of binding sites from the yeast Saccharomyces cerevisiae, we use this model to infer the role of DNA-protein interaction physics in evolution.

  16. The structure of the catechin-binding site of human sulfotransferase 1A1.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Girvin, Mark; Leyh, Thomas S

    2016-12-13

    We are just beginning to understand the allosteric regulation of the human cytosolic sulfotransferase (SULTs) family-13 disease-relevant enzymes that regulate the activities of hundreds, if not thousands, of signaling small molecules. SULT1A1, the predominant isoform in adult liver, harbors two noninteracting allosteric sites, each of which binds a different molecular family: the catechins (naturally occurring flavonols) and nonsteroidal antiinflammatory drugs (NSAIDs). Here, we present the structure of an SULT allosteric binding site-the catechin-binding site of SULT1A1 bound to epigallocatechin gallate (EGCG). The allosteric pocket resides in a dynamic region of the protein that enables EGCG to control opening and closure of the enzyme's active-site cap. Furthermore, the structure offers a molecular explanation for the isozyme specificity of EGCG, which is corroborated experimentally. The binding-site structure was obtained without X-ray crystallography or multidimensional NMR. Instead, a SULT1A1 apoprotein structure was used to guide positioning of a small number of spin-labeled single-Cys mutants that coat the entire enzyme surface with a paramagnetic field of sufficient strength to determine its contribution to the bound ligand's transverse (T 2 ) relaxation from its 1D solution spectrum. EGCG protons were mapped to the protein surface by triangulation using the T 2 values to calculate their distances to a trio of spin-labeled Cys mutants. The final structure was obtained using distance-constrained molecular dynamics docking. This approach, which is readily extensible to other systems, is applicable over a wide range of ligand affinities, requires little protein, avoids the need for isotopically labeled protein, and has no protein molecular weight limitations.

  17. Genome-wide mapping of estrogen receptor α binding sites by ChIP-seq to identify genes related to sexual maturity in hens.

    Science.gov (United States)

    Guo, Miao; Li, Yi; Chen, Yuxia; Guo, Xiaoli; Yuan, Zhenjie; Jiang, Yunliang

    2018-02-05

    In ovarian follicle development, estrogen acts as a regulatory molecule to mediate proliferation and differentiation of follicular cells. ERα (estrogen receptor α) exerts regulatory function classically by binding directly to the estrogen response element, recruiting co-factors and activating or repressing transcription in response to E2. In this study, we used ChIP-seq to map ERα-binding sites in ovaries of Hy-line Brown commercial hens at 45d, 90d and 160d. In total, 24,886, 21,680 and 23,348 binding sites were identified in the ovaries of hens at 45d, 90d and 160d, which are linked to 86, 83 and 74 genes, respectively. The PPI network contains 47 protein nodes and 164 interaction edges, among which, AKT1 (V-Akt Murine Thymoma Viral Oncogene Homolog 1) and ACTN2 (Actinin Alpha 2) with the highest weight in the network, followed by CREB1 (CAMP Responsive Element Binding Protein 1), and EPHA5 (EPH Receptor A5) were identified. These genes are likely related to sexual maturity in hens. This study also provides insight into the regulation of the ERα target gene networks and a reference for understanding ERα-regulated transcription. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  19. A second tubulin binding site on the kinesin-13 motor head domain is important during mitosis.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available Kinesin-13s are microtubule (MT depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2 on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.

  20. Cytochrome c1 exhibits two binding sites for cytochrome c in plants.

    Science.gov (United States)

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2014-10-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita; Karkashon, Shay; Bonanno, Jeffrey B.; Poulos, Thomas L.; Yeh, Syun-Ru (Einstein); (UCI)

    2017-11-22

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.

  2. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Bang-Andersen, Benny

    2017-01-01

    amber codon suppression in hSERT to encode the photo-cross-linking unnatural amino acid p-azido-l-phenylalanine into the suggested high- and low-affinity binding sites. We then employ UV-induced cross-linking with azF to map the binding site of escitalopram and paroxetine, two prototypical selective...

  3. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  4. Determination of specific alpha-radioactivity of flora samples from semipalatinsk test site (STS)

    International Nuclear Information System (INIS)

    Blekhman, A.M.; Dujsenbaev, A.; Orazova, A.O.

    1999-01-01

    For further rehabilitation of soil earlier contaminated with radioactive fallout, the method of radionuclide absorption by plants is vital. The last updating of electronic system of the facility meant to analyze impulse shape /2/ helped to enlarge dynamical range of registration and reduction of identification threshold for alpha particles up to 50 keV. We have developed methods for STS flora samples preparation and performed first measurements of their specific alpha activity. Measurement results are in table 1. Measurement results analysis shows that STS flora samples can accumulate considerable concentrations of alpha active nuclides

  5. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...

  6. Nonenzymatic palmitoylation at Cys 3 causes extra-activation of the alpha-subunit of the stimulatory GTP-binding protein Gs.

    Science.gov (United States)

    Mollner, S; Ferreira, P; Beck, K; Pfeuffer, T

    1998-10-01

    Treatment of crude stimulatory GTP-binding protein of adenylyl cyclase (Gs) from turkey erythrocyte membranes with hydroxylamine results in twofold enhancement of adenylyl cyclase activity following reconstitution with adenylyl cyclase type V expressed in Spodoptera frugiperda cells (Sf9) cells. Enhancement by hydroxylamine of immunoaffinity purified Gs was still 1.5-fold, while that of Gs purified according to the multiple-step procedure by Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M. & Gilman, A. G. (Proc. Natl Acad. Sci. USA 78, 6516-6520, 1980) was close to unity. The alpha-subunit of the stimulatory GTP-binding protein expressed in Escherichia coli (r(alpha)s), likewise, failed to show an effect by hydroxylamine. Surprisingly, guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-liganded r(alpha)s, treated with palmitoyl-CoA for 14 h at 4 degrees C resulted in sixfold enhancement of reconstitutive activity. In contrast, that of the GDP-liganded r(alpha)s(beta)gamma heterotrimer was not improved by palmitoylation and consecutive activation with GTP[S], although incorporation of [3H]palmitate into momomer and heterotrimer was identical. While adenylyl cyclase type-V activity reconstituted by r(alpha)s x GTP[S] was not influenced by betagamma-subunits, that activated by palmitoylated r(alpha)s x GTP[S] was considerably inhibited, suggesting a higher affinity of palmitoylated r(alpha)s for betagamma-subunits. On treatment of either form with the proteinase Lys-C, less than 25% of the label was found in a stable M(r) 38000 fragment with intact C terminus, but lacking the N-terminal portion. Absence of the latter did not affect activation by r(alpha)s, but caused a >90% loss of extra-activation by palmitoylated r(alpha)s. The results also indicate that nonenzymatic, much in the same way as physiological enzymatic, palmitoylation of alpha(s) occurs predominantly on Cys 3.

  7. Mutations at the Qo-Site of the Cytochrome bc1 Complex Strongly Affect Oxygen Binding

    DEFF Research Database (Denmark)

    Husen, Peter; Solov'yov, Ilia A

    2017-01-01

    The homodimeric bc1 protein complex is embedded in membranes of mitochondria and photosynthetic bacteria, where it transports protons across the membrane to maintain an electrostatic potential used to drive ATP synthesis as part of the respiratory or photosynthetic pathways. The reaction cycle...... of the bc1 complex is driven by series of redox processes involving substrate molecules from the membrane, but occasional side reactions between an intermediate semiquinone substrate and molecular oxygen are suspected to be a source of toxic superoxide, which is believed to be a factor in aging. The present...... investigation employs molecular dynamics simulations to study the effect of mutations in the Qo binding sites of the bc1 complex on the ability of oxygen molecules to migrate to and bind at various locations within the complex. It is found that the mutations strongly affect the ability of oxygen to bind...

  8. Humanin binds MPP8: mapping interaction sites of the peptide and protein.

    Science.gov (United States)

    Maximov, Vadim V; Martynenko, Alina V; Arman, Inga P; Tarantul, Vyacheslav Z

    2013-05-01

    Humanin (HN), a 24-amino acid peptide encoded by the mitochondrial 16S rRNA gene, was discovered by screening a cDNA library from the occipital cortex of a patient with Alzheimer's disease (AD) for a protection factor against AD-relevant insults. Earlier, using the yeast two-hybrid system, we have identified the M-phase phosphoprotein 8 (MPP8) as a binding partner for HN. In the present work, we further confirmed interaction of HN with MPP8 in co-immunoprecipitation experiments and localized an MPP8-binding site in the region between 5 and 12 aa. of HN. We have also shown that an MPP8 fragment (residues 431-560) is sufficient to bind HN. Further studies on functional consequences of the interaction between the potential oncopetide and the oncoprotein may elucidate some aspects of the molecular mechanisms of carcinogenesis. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  9. Novel biomarkers predict liver fibrosis in hepatitis C patients: alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI

    Directory of Open Access Journals (Sweden)

    Lee Jing-Ying

    2010-07-01

    Full Text Available Abstract Background The gold standard of assessing liver fibrosis is liver biopsy, which is invasive and not without risk. Therefore, searching for noninvasive serologic biomarkers for liver fibrosis is an importantly clinical issue. Methods A total of 16 healthy volunteers and 45 patients with chronic hepatitis C virus (HCV were enrolled (F0: n = 16, F1: n = 7, F2: n = 17, F3: n = 8 and F4: n = 13, according to the METAVIR classification. Three serum samples of each fibrotic stage were analyzed by two-dimension difference gel electrophoresis (2D-DIGE. The differential proteins were identified by the cooperation of MALDI-TOF/TOF and MASCOT; then western blotting and Bio-Plex Suspension Array were used to quantify the protein levels. Results Three prominent candidate biomarkers were identified: alpha 2 macroglobulin (A2M is up regulated; vitamin D binding protein (VDBP and apolipoprotein AI (ApoAI are down regulated. The serum concentration of A2M was significantly different among normal, mild (F1/F2 and advanced fibrosis (F3/F4 (p p Conclusions This study not only reveals three putative biomarkers of liver fibrosis (A2M, VDBP and ApoAI but also proves the differential expressions of those markers in different stages of fibrosis. We expect that combination of these novel biomarkers could be applied clinically to predict the stage of liver fibrosis without the need of liver biopsy.

  10. Human Ku70 protein binds hairpin RNA and double stranded DNA through two different sites.

    Science.gov (United States)

    Anisenko, Andrey N; Knyazhanskaya, Ekaterina S; Zatsepin, Timofey S; Gottikh, Marina B

    2017-01-01

    Human protein Ku usually functions in the cell as a complex of two subunits, Ku70 and Ku80. The Ku heterodimer plays a key role in the non-homologous end joining DNA repair pathway by specifically recognizing the DNA ends at the site of the lesion. The binding of the Ku heterodimer to DNA has been well-studied, and its interactions with RNA have been also described. However, Ku70 subunit is known to have independent DNA binding capability, which is less characterized. RNA binding properties of Ku70 have not been yet specially studied. We have prepared recombinant full-length Ku70 and a set of its truncated mutants in E. coli, and studied their interactions with nucleic acids of various structures: linear single- and double-stranded DNA and RNA, as well as closed circular DNA and hairpin RNA. Ku70 has demonstrated a high affinity binding to double stranded DNA and hairpin RNA with a certain structure only. Interestingly, in contrast to the Ku heterodimer, Ku70 is found to interact with closed circular DNA. We also show for the first time that Ku70 employs two different sites for DNA and RNA binding. The double-stranded DNA is recognized by the C-terminal part of Ku70 including SAP domain as it has been earlier demonstrated, whereas hairpin RNA binding is provided by amino acids 251-438. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  12. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  13. Identification of novel a