WorldWideScience

Sample records for binding site motif

  1. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  2. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  3. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  5. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  6. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.

    Science.gov (United States)

    Tong, Jiefei; Elowe, Sabine; Nash, Piers; Pawson, Tony

    2003-02-21

    Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.

  7. Two sequence motifs from HIF-1α bind to the DNA-binding site of p53

    OpenAIRE

    Hansson, Lars O.; Friedler, Assaf; Freund, Stefan; Rüdiger, Stefan; Fersht, Alan R.

    2002-01-01

    There is evidence that hypoxia-inducible factor-1α (HIF-1α) interacts with the tumor suppressor p53. To characterize the putative interaction, we mapped the binding of the core domain of p53 (p53c) to an array of immobilized HIF-1α-derived peptides and found two peptide-sequence motifs that bound to p53c with micromolar affinity in solution. One sequence was adjacent to and the other coincided with the two proline residues of the oxygen-dependent degradation domain (P402 and P564) that act as...

  8. Engineering of specific uranyl-coordination sites in the calcium-binding motif of Calmodulin

    International Nuclear Information System (INIS)

    Beccia, M.; Pardoux, R.; Sauge-Merle, S.; Bremond, N.; Lemaire, D.; Berthomieu, C.; Delangle, P.; Guilbaud, P.

    2014-01-01

    Complete text of publication follows: Characterization of heavy metals interactions with proteins is fundamental for understanding the molecular factors and mechanisms governing ions toxicity and speciation in cells. This line of research will also help in developing new molecules able to selectively and efficiently bind toxic metal ions, which could find application for bio-detection or bioremediation purposes. We have used the regulatory calcium-binding protein Calmodulin (CaM) from A. thaliana as a structural model and, starting from it, we have designed various mutants by site-directed mutagenesis. We have analysed thermodynamics of uranyl ion binding to both sites I and II of CaM N-terminal domain and we have identified structural factors governing this interaction. Selectivity for uranyl ion has been tested by studying reactions of the investigated peptides with Ca 2+ , in the same conditions used for UO 2 2+ . Spectro-fluorimetric titrations and FTIR analysis have shown that the affinity for uranyl increases by phosphorylation of a threonine in site I, especially approaching the physiological pH, where the phospho-threonine side chain is deprotonated. Based on structural models obtained by Molecular Dynamics, we tested the effect of a two residues deletion on site I properties. We obtained an almost two orders of magnitude increase in affinity for uranyl, with a sub-nanomolar dissociation constant for the uranyl complex with the non phosphorylated peptide, and an improved uranyl/calcium selectivity. Allosteric effects depending on Ca 2+ and UO 2 2+ binding have been investigated by comparing thermodynamic parameters obtained for mutants having both sites I and II able to chelate metal ions with those of mutants consisting of just one active site

  9. Identification of Ubiquinol Binding Motifs at the Qo-Site of the Cytochrome bc1 Complex

    DEFF Research Database (Denmark)

    Barragan, Angela M.; Crofts, Antony R.; Schulten, Klaus

    2015-01-01

    for the function of the bc1 complex is the initial redox process that involves a bifurcated electron transfer in which the two electrons from a quinol substrate are passed to different electron acceptors in the bc1 complex. The electron transfer is coupled to proton transfer. The overall mechanism of quinol...... all atom molecular dynamics and quantum chemical calculations to reveal the binding modes of quinol at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues responsible for quinol binding and support a mechanism for proton...

  10. Genome-wide identification of basic helix-loop-helix and NF-1 motifs underlying GR binding sites in male rat hippocampus

    DEFF Research Database (Denmark)

    Pooley, John R.; Flynn, Ben P.; Grøntved, Lars

    2017-01-01

    linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix-loop-helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding......Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites...

  11. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla

    2015-01-01

    degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley alpha-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser...

  12. Preorganization of the catalytic Zn2+-binding site in the HNH nuclease motif-A solution study

    Czech Academy of Sciences Publication Activity Database

    Németh, E.; Kožíšek, Milan; Schilli, G. K.; Gyurcsik, B.

    2015-01-01

    Roč. 151, Oct (2015), s. 143-149 ISSN 0162-0134 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : HNH-motif * metallonuclease * Zn2+-binding * protein folding * ITC Subject RIV: CE - Biochemistry Impact factor: 3.205, year: 2015

  13. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  14. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  15. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  16. Regulation and function of the CD3¿ DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro

    DEFF Research Database (Denmark)

    Dietrich, J; Kastrup, J; Nielsen, B L

    1997-01-01

    /CD3gamma chimeras; and in vitro by binding CD3gamma peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3gamma D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4...... and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3gamma S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate...

  17. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.

    Science.gov (United States)

    Banroques, Josette; Doère, Monique; Dreyfus, Marc; Linder, Patrick; Tanner, N Kyle

    2010-03-05

    Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (k(cat)), but not the affinity for ATP (K(m)). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of gamma-PO(4) of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the beta,gamma-phosphoanhydride bond of ATP. (c) 2009 Elsevier Ltd. All rights reserved.

  18. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    Science.gov (United States)

    Hüntelmann, Bettina; Staab, Julia; Herrmann-Lingen, Christoph; Meyer, Thomas

    2014-01-01

    Binding to specific palindromic sequences termed gamma-activated sites (GAS) is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription) family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ), while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563) on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  19. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  20. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  1. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  2. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  3. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  4. Suppression of HPV-16 late L1 5′-splice site SD3632 by binding of hnRNP D proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs

    Science.gov (United States)

    Li, Xiaoze; Johansson, Cecilia; Glahder, Jacob; Mossberg, Ann-Kristin; Schwartz, Stefan

    2013-01-01

    Human papillomavirus type 16 (HPV-16) 5′-splice site SD3632 is used exclusively to produce late L1 mRNAs. We identified a 34-nt splicing inhibitory element located immediately upstream of HPV-16 late 5′-splice site SD3632. Two AUAGUA motifs located in these 34 nt inhibited SD3632. Two nucleotide substitutions in each of the HPV-16 specific AUAGUA motifs alleviated splicing inhibition and induced late L1 mRNA production from episomal forms of the HPV-16 genome in primary human keratinocytes. The AUAGUA motifs bind specifically not only to the heterogeneous nuclear RNP (hnRNP) D family of RNA-binding proteins including hnRNP D/AUF, hnRNP DL and hnRNP AB but also to hnRNP A2/B1. Knock-down of these proteins induced HPV-16 late L1 mRNA expression, and overexpression of hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP D37 and hnRNP D40 further suppressed L1 mRNA expression. This inhibition may allow HPV-16 to hide from the immune system and establish long-term persistent infections with enhanced risk at progressing to cancer. There is an inverse correlation between expression of hnRNP D proteins and hnRNP A2/B1 and HPV-16 L1 production in the cervical epithelium, as well as in cervical cancer, supporting the conclusion that hnRNP D proteins and A2/B1 inhibit HPV-16 L1 mRNA production. PMID:24013563

  5. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    Science.gov (United States)

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  6. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase.

    Directory of Open Access Journals (Sweden)

    Hao Ding

    Full Text Available Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI. The Q motif, consisting of nine amino acids (GFXXPXPIQ with an invariant glutamine (Q residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11 gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.

  7. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication

    NARCIS (Netherlands)

    Peters, S A; Verver, J; Nollen, E A; van Lent, J W; Wellink, J; van Kammen, A

    1994-01-01

    We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions

  8. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr......(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...

  9. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2015-01-01

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  10. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  11. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  12. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  13. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    Science.gov (United States)

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  14. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d

    Directory of Open Access Journals (Sweden)

    Moffatt Barbara A

    2010-08-01

    Full Text Available Abstract Background Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB for coplanar aromatic motifs similar to those found in known glycan-binding proteins. Results The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192 in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Conclusions Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  16. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d.

    Science.gov (United States)

    Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J

    2010-08-03

    Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  17. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    Science.gov (United States)

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-10-27

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A novel fibronectin binding motif in MSCRAMMs targets F3 modules.

    Directory of Open Access Journals (Sweden)

    Sabitha Prabhakaran

    Full Text Available BBK32 is a surface expressed lipoprotein and fibronectin (Fn-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein.Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

  19. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  20. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  1. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    Science.gov (United States)

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  2. A sialoreceptor binding motif in the Mycoplasma synoviae adhesin VlhA.

    Directory of Open Access Journals (Sweden)

    Meghan May

    Full Text Available Mycoplasma synoviae depends on its adhesin VlhA to mediate cytadherence to sialylated host cell receptors. Allelic variants of VlhA arise through recombination between an assemblage of promoterless vlhA pseudogenes and a single transcription promoter site, creating lineages of M. synoviae that each express a different vlhA allele. The predicted full-length VlhA sequences adjacent to the promoter of nine lineages of M. synoviae varying in avidity of cytadherence were aligned with that of the reference strain MS53 and with a 60-a.a. hemagglutinating VlhA C-terminal fragment from a Tunisian lineage of strain WVU1853(T. Seven different sequence variants of an imperfectly conserved, single-copy, 12-a.a. candidate cytadherence motif were evident amid the flanking variable residues of the 11 total sequences examined. The motif was predicted to adopt a short hairpin structure in a low-complexity region near the C-terminus of VlhA. Biotinylated synthetic oligopeptides representing four selected variants of the 12-a.a. motif, with the whole synthesized 60-a.a. fragment as a positive control, differed (P<0.01 in the extent they bound to chicken erythrocyte membranes. All bound to a greater extent (P<0.01 than scrambled or irrelevant VlhA domain negative control peptides did. Experimentally introduced branched-chain amino acid (BCAA substitutions Val3Ile and Leu7Ile did not significantly alter binding, whereas fold-destabilizing substitutions Thr4Gly and Ala9Gly tended to reduce it (P<0.05. Binding was also reduced to background levels (P<0.01 when the peptides were exposed to desialylated membranes, or were pre-saturated with free sialic acid before exposure to untreated membranes. From this evidence we conclude that the motif P-X-(BCAA-X-F-X-(BCAA-X-A-K-X-G binds sialic acid and likely mediates VlhA-dependent M. synoviae attachment to host cells. This conserved mechanism retains the potential for fine-scale rheostasis in binding avidity, which could be a

  3. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  5. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1988-01-01

    on the I-Ad binding of the immunogenic peptide OVA 323-339. The results obtained demonstrated the very permissive nature of Ag-Ia interaction. We also showed that unrelated peptides that are good I-Ad binders share a common structural motif and speculated that recognition of such motifs could represent...... that I-Ad molecules recognize a large library of Ag by virtue of common structural motifs present in peptides derived from phylogenetically unrelated proteins....

  6. SiteBinder: an improved approach for comparing multiple protein structural motifs.

    Science.gov (United States)

    Sehnal, David; Vařeková, Radka Svobodová; Huber, Heinrich J; Geidl, Stanislav; Ionescu, Crina-Maria; Wimmerová, Michaela; Koča, Jaroslav

    2012-02-27

    There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.

  7. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  8. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  9. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

    Science.gov (United States)

    Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2017-07-27

    Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family

    Science.gov (United States)

    Soufari, Heddy

    2017-01-01

    Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515

  11. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    Science.gov (United States)

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  12. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  13. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  14. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats

    DEFF Research Database (Denmark)

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders

    2013-01-01

    megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described...... to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists....

  15. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Science.gov (United States)

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  16. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Directory of Open Access Journals (Sweden)

    Zing Tsung-Yeh Tsai

    2015-08-01

    Full Text Available Transcription factor (TF binding is determined by the presence of specific sequence motifs (SM and chromatin accessibility, where the latter is influenced by both chromatin state (CS and DNA structure (DS properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  17. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  18. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  19. Photonic crystal borax competitive binding carbohydrate sensing motif.

    Science.gov (United States)

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  20. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  1. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    Science.gov (United States)

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  2. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs.

    Science.gov (United States)

    Towler, D A; Bennett, C D; Rodan, G A

    1994-05-01

    A detailed analysis of the transcriptional machinery responsible for osteoblast-specific gene expression should provide tools useful for understanding osteoblast commitment and differentiation. We have defined three cis-elements important for basal activity of the rat osteocalcin (OC) promoter, located at about -200 to -180, -170 to -138, and -121 to -64 relative to the transcription initiation site. A motif (TCTGATTGTGT) present in the region between -200 and -170 that binds a multisubunit CP1/NFY/CBF-like CAAT factor complex contributes significantly to high level basal activity and presumably functions as the CAAT box for the rat OC promoter. We show that the region -121 to 32 is sufficient to confer osteoblastic cell type specificity in transient transfection assays of cultured cell lines using luciferase as a reporter. The basal promoter is active in rodent osteoblastic cell lines, but not in rodent fibroblastic or muscle cell lines. Although the rat OC box (-100 to -74) contains a CAAT motif, we could not detect CP1-like CAAT factor binding to this region. In fact, we demonstrate that a Msx-1 (Hox 7.1) homeodomain binding motif (ACTAATTG; bottom strand) in the 3'-end of the rat OC box is necessary for high level activity of the rat OC basal promoter in osteoblastic cells. A nuclear factor that recognizes this motif appears to be present in osteoblastic ROS 17/2.8 cells, which produce OC, but not in fibroblastic ROS 25/1 cells, which fail to express OC. This ROS 17/2.8 nuclear factor also recognizes the A/T-rich DNA cognates of the homeodomain-containing POU family of transcription factors. Taken together, these data suggest that a ubiquitous CP1-like CAAT factor and a cell type-restricted homeodomain containing (Msx or POU family) transcription factor interact with the proximal rat OC promoter to direct appropriate basal OC transcription in osteoblastic cells.

  3. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    International Nuclear Information System (INIS)

    Lilic, M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella

  4. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  5. Binding motif of terminal alkynes on gold clusters.

    Science.gov (United States)

    Maity, Prasenjit; Takano, Shinjiro; Yamazoe, Seiji; Wakabayashi, Tomonari; Tsukuda, Tatsuya

    2013-06-26

    Gold clusters protected by terminal alkynes (1-octyne (OC-H), phenylacetylene (PA-H) and 9-ethynyl-phenanthrene (EPT-H)) were prepared by the ligand exchange of small (diameter alkynes on Au clusters was investigated using various spectroscopic methods. FTIR and Raman spectroscopy revealed that terminal hydrogen is lost during the ligand exchange and that the C≡C bond of the alkynyl group is weakened upon attachment to the Au clusters. Acidification of the water phase after the ligand exchange indicated that the ligation of alkynyl groups to the Au clusters proceeds via deprotonation of the alkynes. A series of precisely defined Au clusters, Au34(PA)16, Au54(PA)26, Au30(EPT)13, Au35(EPT)18, and Au(41-43)(EPT)(21-23), were synthesized and characterized in detail to obtain further insight into the interfacial structures. Careful mass analysis confirmed the ligation of the alkynes in the dehydrogenated form. An upright configuration of the alkynes on Au clusters was suggested from the Au to alkyne ratios and photoluminescence from the excimer of the EPT ligands. EXAFS analysis implied that the alkynyl carbon is bound to bridged or hollow sites on the cluster surface.

  6. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    International Nuclear Information System (INIS)

    Janaki Ramaiah, M.; Parnaik, Veena K.

    2006-01-01

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif

  7. A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11.

    Directory of Open Access Journals (Sweden)

    Marina Cardó-Vila

    Full Text Available Interleukin-11 (IL-11 is a pleiotropic cytokine approved by the FDA against chemotherapy-induced thrombocytopenia. From a combinatorial selection in a cancer patient, we isolated an IL-11-like peptide mapping to domain I of the IL-11 (sequence CGRRAGGSC. Although this motif has ligand attributes, it is not within the previously characterized interacting sites. Here we design and validate in-tandem binding assays, site-directed mutagenesis and NMR spectroscopy to show (i the peptide mimics a receptor-binding site within IL-11, (ii the binding of CGRRAGGSC to the IL-11R alpha is functionally relevant, (iii Arg4 and Ser8 are the key residues mediating the interaction, and (iv the IL-11-like motif induces cell proliferation through STAT3 activation. These structural and functional results uncover an as yet unrecognized receptor-binding site in human IL-11. Given that IL-11R alpha has been proposed as a target in human cancer, our results provide clues for the rational design of targeted drugs.

  8. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40

    Directory of Open Access Journals (Sweden)

    Nipaporn Ngernyuang

    2018-02-01

    Full Text Available The heparin-binding glycoprotein YKL-40 (CHI3L1 is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R and lysine (K (RRDK; residues 144–147; but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334–345 that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A substituted for K or R (K337A, K342A, R344A, led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases.

  9. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  10. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    Science.gov (United States)

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  11. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  12. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs

    Directory of Open Access Journals (Sweden)

    Jockusch Rebecca A

    2006-11-01

    Full Text Available Abstract Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.

  13. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  14. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    Science.gov (United States)

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  15. A Parzen window-based approach for the detection of locally enriched transcription factor binding sites.

    Science.gov (United States)

    Vandenbon, Alexis; Kumagai, Yutaro; Teraguchi, Shunsuke; Amada, Karlou Mar; Akira, Shizuo; Standley, Daron M

    2013-01-21

    Identification of cis- and trans-acting factors regulating gene expression remains an important problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of interest, because of high levels of false positive predictions, and because of positional restrictions on functional binding sites with regard to the transcription start site. We have developed a novel method for the detection of regulatory motifs based on their local over-representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We show that the accuracy of our method compares favourably to that of other methods, and that our method is capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs that are often missed by standard motif detection approaches. Using a number of examples we illustrate the validity of our approach and suggest applications, such as the analysis of weaker binding sites. Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.

  16. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  17. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ

    Directory of Open Access Journals (Sweden)

    Roepcke Stefan

    2011-12-01

    Full Text Available Abstract Background Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM. In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. Results Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. Conclusions Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.

  18. Characterizing the binding motifs of 11 common human HLA‐DP and HLA‐DQ molecules using NNAlign

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2012-01-01

    ‐based method NNAlign, we characterized the binding specificities of five HLA‐DP and six HLA‐DQ among the most frequent in the human population. The identified binding motifs showed an overall concurrence with earlier studies but revealed subtle differences. The DP molecules revealed a large overlap...

  19. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  20. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  1. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    Science.gov (United States)

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  2. LIBRA: LIgand Binding site Recognition Application.

    Science.gov (United States)

    Hung, Le Viet; Caprari, Silvia; Bizai, Massimiliano; Toti, Daniele; Polticelli, Fabio

    2015-12-15

    In recent years, structural genomics and ab initio molecular modeling activities are leading to the availability of a large number of structural models of proteins whose biochemical function is not known. The aim of this study was the development of a novel software tool that, given a protein's structural model, predicts the presence and identity of active sites and/or ligand binding sites. The algorithm implemented by ligand binding site recognition application (LIBRA) is based on a graph theory approach to find the largest subset of similar residues between an input protein and a collection of known functional sites. The algorithm makes use of two predefined databases for active sites and ligand binding sites, respectively, derived from the Catalytic Site Atlas and the Protein Data Bank. Tests indicate that LIBRA is able to identify the correct binding/active site in 90% of the cases analyzed, 90% of which feature the identified site as ranking first. As far as ligand binding site recognition is concerned, LIBRA outperforms other structure-based ligand binding sites detection tools with which it has been compared. The application, developed in Java SE 7 with a Swing GUI embedding a JMol applet, can be run on any OS equipped with a suitable Java Virtual Machine (JVM), and is available at the following URL: http://www.computationalbiology.it/software/LIBRAv1.zip. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Beauvericin synthetase contains a calmodulin binding motif in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Kim, Jiyoung; Sung, Gi-Ho

    2018-03-19

    Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca 2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca 2+ signals are partially decoded by Ca 2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca 2+ -dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca 2+ . In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca 2+ -dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.

  4. ATP-binding motifs play key roles in Krp1p, kinesin-related protein 1, function for bi-polar growth control in fission yeast

    International Nuclear Information System (INIS)

    Rhee, Dong Keun; Cho, Bon A; Kim, Hyong Bai

    2005-01-01

    Kinesin is a microtubule-based motor protein with various functions related to the cell growth and division. It has been reported that Krp1p, kinesin-related protein 1, which belongs to the kinesin heavy chain superfamily, localizes on microtubules and may play an important role in cytokinesis. However, the function of Krp1p has not been fully elucidated. In this study, we overexpressed an intact form and three different mutant forms of Krp1p in fission yeast constructed by site-directed mutagenesis in two ATP-binding motifs or by truncation of the leucine zipper-like motif (LZiP). We observed hyper-extended microtubules and the aberrant nuclear shape in Krp1p-overexpressed fission yeast. As a functional consequence, a point mutation of ATP-binding domain 1 (G89E) in Krp1p reversed the effect of Krp1p overexpression in fission yeast, whereas the specific mutation in ATP-binding domain 2 (G238E) resulted in the altered cell polarity. Additionally, truncation of the leucine zipper-like domain (LZiP) at the C-terminal of Krp1p showed a normal nuclear division. Taken together, we suggest that krp1p is involved in regulation of cell-polarized growth through ATP-binding motifs in fission yeast

  5. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites

    KAUST Repository

    Wong, Aloysius Tze; Gehring, Christoph A; Irving, Helen R.

    2015-01-01

    Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  6. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites

    KAUST Repository

    Wong, Aloysius Tze

    2015-06-09

    Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  7. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit

    Science.gov (United States)

    Kittler, Josef T.; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R.; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2008-01-01

    The regulation of the number of γ2-subunit-containing GABAA receptors (GABAARs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface γ2-subunit-containing GABAARs is regulated. Here, we identify a γ2-subunit-specific Yxxφ-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for γ2-subunit tyrosine phosphorylation. Blocking GABAAR-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxφ motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that γ2-subunit-containing heteromeric GABAARs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABAAR surface levels and synaptic inhibition. PMID:18305175

  8. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2008-03-04

    The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface gamma2-subunit-containing GABA(A)Rs is regulated. Here, we identify a gamma2-subunit-specific Yxxvarphi-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for gamma2-subunit tyrosine phosphorylation. Blocking GABA(A)R-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxvarphi motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that gamma2-subunit-containing heteromeric GABA(A)Rs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABA(A)R surface levels and synaptic inhibition.

  9. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation.

    Science.gov (United States)

    Lee, Jae Won; An, Hyoseok; Lee, Kuen Yong

    2017-07-01

    Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells. In this study, alginate hydrogels were modified with a peptide derived from the low-density lipoprotein receptor-related protein 5 (LRP5), which is known to bind to N-cadherin, as a cell-cell interaction motif. In vitro changes in the morphology and differentiation of mouse bone marrow stromal cells (D1 stem cells) cultured in LRP5-alginate hydrogels were investigated. LRP5-alginate gels successfully induced stem cell aggregation and enhanced chondrogenic differentiation of D1 stem cells, compared to RGD-alginate gels, at low cell density. This approach to tailoring synthetic biomimetic ECMs using cell-cell interaction motifs may be critical in tissue engineering approaches using stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  11. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy

    Directory of Open Access Journals (Sweden)

    Ketaki Ganti

    2015-07-01

    Full Text Available Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression.

  12. Novel Strategy for Discrimination of Transcription Factor Binding Motifs Employing Mathematical Neural Network

    Science.gov (United States)

    Sugimoto, Asuka; Sumi, Takuya; Kang, Jiyoung; Tateno, Masaru

    2017-07-01

    Recognition in biological macromolecular systems, such as DNA-protein recognition, is one of the most crucial problems to solve toward understanding the fundamental mechanisms of various biological processes. Since specific base sequences of genome DNA are discriminated by proteins, such as transcription factors (TFs), finding TF binding motifs (TFBMs) in whole genome DNA sequences is currently a central issue in interdisciplinary biophysical and information sciences. In the present study, a novel strategy to create a discriminant function for discrimination of TFBMs by constituting mathematical neural networks (NNs) is proposed, together with a method to determine the boundary of signals (TFBMs) and noise in the NN-score (output) space. This analysis also leads to the mathematical limitation of discrimination in the recognition of features representing TFBMs, in an information geometrical manifold. Thus, the present strategy enables the identification of the whole space of TFBMs, right up to the noise boundary.

  13. Principal component analysis for predicting transcription-factor binding motifs from array-derived data

    Directory of Open Access Journals (Sweden)

    Vincenti Matthew P

    2005-11-01

    Full Text Available Abstract Background The responses to interleukin 1 (IL-1 in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs. In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD is a powerful method to derive primary components of a given matrix. Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel method to predict the critical set of TFBMs. Results The promoter matrix was defined to establish a quantitative relationship between the IL-1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3' were predicted from a pool of 512 random DNA sequences. The prediction included matches to the core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4, ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated numerically using Monte Carlo simulation and genetic algorithm. Conclusion The described SVD-based prediction is an analytical method to provide a set of potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate analytically a contribution of individual DNA sequences.

  14. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  15. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  16. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  17. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  18. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  19. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    Science.gov (United States)

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  20. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  1. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  2. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  3. Binding of MCM-interacting proteins to ATP-binding site in MCM6

    Directory of Open Access Journals (Sweden)

    Hosoi A

    2016-03-01

    Full Text Available Atsutoshi Hosoi, Taku Sakairi, Yukio Ishimi Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan Abstract: The function of MCM2–7 complex that is a DNA helicase in DNA replication may be regulated by various MCM-interacting proteins, including CDC45, RPA, TIM, TIPIN, Claspin, MCM10, and MCM-BP. It has been shown by immunoprecipitation that human MCM6 interacts with all these proteins in coexpressed insect cells. To determine the region in MCM6 to interact with these proteins, we prepared various truncated forms of MCM6 and examined the interaction of these MCM6 fragments with the MCM-interacting proteins. All these proteins bound to C-terminal half of MCM6, and CDC45, RPA2, TIM, TIPIN, MCM-BP, and MCM10 bound to the fragments containing ATP-binding motifs. CDC45 and RPA2 bound to the smallest fragment containing Walker motif A. Only MCM-BP is bound to the N-terminal half of MCM6. Site-directed mutagenesis study suggests that hydrophobic interaction is involved in the interaction of MCM6 with CDC45 and TIM. These results suggest a possibility that MCM-interacting proteins regulate MCM2–7 function by modulating the ATP-binding ability of the MCM2–7. Keywords: DNA helicase, DNA replication, checkpoint, MCM2–7 proteins

  4. Identification of nucleic acid binding sites on translin-associated factor X (TRAX protein.

    Directory of Open Access Journals (Sweden)

    Gagan Deep Gupta

    Full Text Available Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.

  5. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    Science.gov (United States)

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  6. Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs.

    Science.gov (United States)

    Campion, S R; Ameen, A S; Lai, L; King, J M; Munzenmaier, T N

    2001-08-15

    This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.

  7. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.

    Directory of Open Access Journals (Sweden)

    Tingjun Hou

    2006-01-01

    Full Text Available Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3 domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.

  8. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  9. A ChIP-Seq benchmark shows that sequence conservation mainly improves detection of strong transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Tony Håndstad

    Full Text Available BACKGROUND: Transcription factors are important controllers of gene expression and mapping transcription factor binding sites (TFBS is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed that information about sequence conservation across different genomes can generally improve accuracy of motif-based predictors, but it is not clear under what circumstances use of conservation is most beneficial. RESULTS: Here we use published ChIP-seq data and an improved peak detection method to create comprehensive benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic sequences. We use this benchmark to assess the performance of five different prediction methods and find that the methods that use information about sequence conservation generally perform better than simpler motif-scanning methods. The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based methods. CONCLUSIONS: Our benchmark provides a comprehensive test that can be used to rank the relative performance of transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports, sequence conservation is better suited for predicting strong than weak transcription factor binding sites.

  10. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  11. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly.

    Directory of Open Access Journals (Sweden)

    Lisa M Maurer

    Full Text Available Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K of fibronectin (FN stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD motifs in four of the nine FN type 1 (FNI modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3FNI and (5FNI; (7FNI and (9FNI; or (3FNI, (5FNI, (7FNI, and (9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.

  12. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir

    Directory of Open Access Journals (Sweden)

    Chou Sunwen

    2009-01-01

    Full Text Available Abstract The UL97 kinase has been shown to phosphorylate and inactivate the retinoblastoma protein (Rb and has three consensus Rb-binding motifs that might contribute to this activity. Recombinant viruses containing mutations in the Rb-binding motifs generally replicated well in human foreskin fibroblasts with only a slight delay in replication kinetics. Their susceptibility to the specific UL97 kinase inhibitor, maribavir, was also examined. Mutation of the amino terminal motif, which is involved in the inactivation of Rb, also renders the virus hypersensitive to the drug and suggests that the motif may play a role in its mechanism of action.

  13. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  14. Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain*

    Science.gov (United States)

    Mazerik, Jessica N.; Tyska, Matthew J.

    2012-01-01

    One of the most abundant components of the enterocyte brush border is the actin-based monomeric motor, myosin-1a (Myo1a). Within brush border microvilli, Myo1a carries out a number of critical functions at the interface between membrane and actin cytoskeleton. Proper physiological function of Myo1a depends on its ability to bind to microvillar membrane, an interaction mediated by a C-terminal tail homology 1 (TH1) domain. However, little is known about the mechanistic details of the Myo1a-TH1/membrane interaction. Structure-function analysis of Myo1a-TH1 targeting in epithelial cells revealed that an N-terminal motif conserved among class I myosins and a C-terminal motif unique to Myo1a-TH1 are both required for steady state microvillar enrichment. Purified Myo1a bound to liposomes composed of phosphatidylserine and phosphoinositol 4,5-bisphosphate, with moderate affinity in a charge-dependent manner. Additionally, peptides of the N- and C-terminal regions required for targeting were able to compete with Myo1a for binding to highly charged liposomes in vitro. Single molecule total internal reflection fluorescence microscopy showed that these motifs are also necessary for slowing the membrane detachment rate in cells. Finally, Myo1a-TH1 co-localized with both lactadherin-C2 (a phosphatidylserine-binding protein) and PLCδ1-PH (a phosphoinositol 4,5-bisphosphate-binding protein) in microvilli, but only lactaderin-C2 expression reduced brush border targeting of Myo1a-TH1. Together, our results suggest that Myo1a targeting to microvilli is driven by membrane binding potential that is distributed throughout TH1 rather than localized to a single motif. These data highlight the diversity of mechanisms that enable different class I myosins to target membranes in distinct biological contexts. PMID:22367206

  15. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding.

    Science.gov (United States)

    Rogals, Monique J; Greenwood, Alexander I; Kwon, Jeahoo; Lu, Kun Ping; Nicholson, Linda K

    2016-12-01

    The peptidyl prolyl isomerase Pin1 has two domains that are considered to be its binding (WW) and catalytic (PPIase) domains, both of which interact with phosphorylated Ser/Thr-Pro motifs. This shared specificity might influence substrate selection, as many known Pin1 substrates have multiple sequentially close phosphoSer/Thr-Pro motifs, including the protein interleukin-1 receptor-associated kinase-1 (IRAK1). The IRAK1 undefined domain (UD) contains two sets of such neighboring motifs (Ser131/Ser144 and Ser163/Ser173), suggesting possible bivalent interactions with Pin1. Using a series of NMR titrations with 15N-labeled full-length Pin1 (Pin1-FL), PPIase, or WW domain and phosphopeptides representing the Ser131/Ser144 and Ser163/Ser173 regions of IRAK1-UD, bivalent interactions were investigated. Binding studies using singly phosphorylated peptides showed that individual motifs displayed weak affinities (> 100 μm) for Pin1-FL and each isolated domain. Analysis of dually phosphorylated peptides binding to Pin1-FL showed that inclusion of bivalent states was necessary to fit the data. The resulting complex model and fitted parameters were applied to predict the impact of bivalent states at low micromolar concentrations, demonstrating significant affinity enhancement for both dually phosphorylated peptides (3.5 and 24 μm for peptides based on the Ser131/Ser144 and Ser163/Ser173 regions, respectively). The complementary technique biolayer interferometry confirmed the predicted affinity enhancement for a representative set of singly and dually phosphorylated Ser131/Ser144 peptides at low micromolar concentrations, validating model predictions. These studies provide novel insights regarding the complexity of interactions between Pin1 and activated IRAK1, and more broadly suggest that phosphorylation of neighboring Ser/Thr-Pro motifs in proteins might provide competitive advantage at cellular concentrations for engaging with Pin1. © 2016 Federation of European

  16. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    Science.gov (United States)

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  17. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA

    Directory of Open Access Journals (Sweden)

    Zwieb Christian

    2010-11-01

    Full Text Available Abstract Background Human cells depend critically on the signal recognition particle (SRP for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  18. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA.

    Science.gov (United States)

    Iakhiaeva, Elena; Iakhiaev, Alexei; Zwieb, Christian

    2010-11-13

    Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  19. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.

    Science.gov (United States)

    Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-09-01

    Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  1. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  2. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  3. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    Science.gov (United States)

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  4. The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis.

    Science.gov (United States)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Denis, Raphaël; Luquet, Serge; Badoual, Cécile; Fucharoen, Suthat; Maouche-Chrétien, Leila; Leboulch, Philippe; Chrétien, Stany

    2017-12-19

    GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. Mammals have six GATA and two FOG factors. We recently demonstrated that interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation. We show here that the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Unlike GATA-1, which inhibits cell division, FOG-2 promotes proliferation. Mice with a knockin of a Fog2 gene bearing a mutated LXCXE pRb-binding site are resistant to obesity and display higher rates of white-to-brown fat conversion. Thus, each component of the GATA/FOG complex (GATA-1 and FOG-2) is involved in pRb/E2F regulation, but these molecules have markedly different roles in the control of tissue homeostasis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. HHM motif at the CuH-site of peptidylglycine monooxygenase is a pH-dependent conformational switch.

    Science.gov (United States)

    Kline, Chelsey D; Mayfield, Mary; Blackburn, Ninian J

    2013-04-16

    Peptidylglycine monooxygenase is a copper-containing enzyme that catalyzes the amidation of neuropeptides hormones, the first step of which is the conversion of a glycine-extended pro-peptide to its α-hydroxyglcine intermediate. The enzyme contains two mononuclear Cu centers termed CuM (ligated to imidazole nitrogens of H242, H244 and the thioether S of M314) and CuH (ligated to imidazole nitrogens of H107, H108, and H172) with a Cu-Cu separation of 11 Å. During catalysis, the M site binds oxygen and substrate, and the H site donates the second electron required for hydroxylation. The WT enzyme shows maximum catalytic activity at pH 5.8 and undergoes loss of activity at lower pHs due to a protonation event with a pKA of 4.6. Low pH also causes a unique structural transition in which a new S ligand coordinates to copper with an identical pKA, manifest by a large increase in Cu-S intensity in the X- ray absorption spectroscopy. In previous work (Bauman, A. T., Broers, B. A., Kline, C. D., and Blackburn, N. J. (2011) Biochemistry 50, 10819-10828), we tentatively assigned the new Cu-S interaction to binding of M109 to the H-site (part of an HHM conserved motif common to all but one member of the family). Here we follow up on these findings via studies on the catalytic activity, pH-activity profiles, and spectroscopic (electron paramagnetic resonance, XAS, and Fourier transform infrared) properties of a number of H-site variants, including H107A, H108A, H172A, and M109I. Our results establish that M109 is indeed the coordinating ligand and confirm the prediction that the low pH structural transition with associated loss of activity is abrogated when the M109 thioether is absent. The histidine mutants show more complex behavior, but the almost complete lack of activity in all three variants coupled with only minor differences in their spectroscopic properties suggests that unique structural elements at H are critical for functionality. The data suggest a more general

  6. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    Science.gov (United States)

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  7. N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications.

    Science.gov (United States)

    Gonzalez, Paulina; Bossak, Karolina; Stefaniak, Ewelina; Hureau, Christelle; Raibaut, Laurent; Bal, Wojciech; Faller, Peter

    2018-06-07

    Peptides and proteins with N-terminal amino acid sequences NH 2 -Xxx-His (XH) and NH 2 -Xxx-Zzz-His (XZH) form well-established high-affinity Cu II -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity Cu II -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH 2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of Cu II in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong Cu II binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif.

    Science.gov (United States)

    Goldie, Belinda J; Fitzsimmons, Chantel; Weidenhofer, Judith; Atkins, Joshua R; Wang, Dan O; Cairns, Murray J

    2017-01-01

    While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

  9. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif

    Directory of Open Access Journals (Sweden)

    Belinda J. Goldie

    2017-08-01

    Full Text Available While the cytoplasmic function of microRNA (miRNA as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.

  10. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  12. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  13. Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2.

    Directory of Open Access Journals (Sweden)

    Allen C T Teng

    Full Text Available Interferon regulatory factor 2 binding protein 2 (IRF2BP2 is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known.Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS to an evolutionarily conserved sequence (354ARKRKPSP(361 in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360. Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2C(12 myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2C(12 muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2.Nuclear localization of IRF2BP2 depends on phosphorylation near a conserved NLS. Changes in phosphorylation status

  14. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.; (UPENN); (Cardiff); (UC)

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  15. An inverted repeat motif stabilizes binding of E2F and enhances transcription of the dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Wade, M; Blake, M C; Jambou, R C

    1995-01-01

    consensus E2F site, significantly decrease the binding stability of all of the forms of E2F tested. The rate of association of E2F-1/DP-1 heterodimers with the inverted repeat wild type site was not significantly different from those with the two single site mutated probes. Furthermore, the mutations...

  16. Autoradiographic localization of benzomorphan binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Crain, B.J.; Kwenjen Chang; McNamara, J.O.; Valdes, F.

    1985-07-17

    The benzomorphan subpopulation of opiate binding sites was labeled by (TH)diprenorphine in the presence of unlabeled ligands selected to quench and delta opiate binding sites. The distribution of benzomorphan binding sites was then localized autoradiographically. The distribution differs from the distributions of , delta and kappa opiate binding and is quite similar to the distribution of US -endorphin immunoreactivity. These observations support the hypothesis, based on biochemical studies in brain membranes, that benzomorphan binding sites may represent the ligand recognition sites of putative epsilon receptors. (Auth.). 34 refs.; 3 figs.

  17. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    International Nuclear Information System (INIS)

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-01-01

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: → We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. → Cre/loxP recombination was used to modify the adenovirus genome. → A targeting ligand present on capsid protein IX was removed or replaced using recombination. → Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  18. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an i...... downstream of the 5' splice site can be blocked by SSOs to activate the exon. CONCLUSIONS: The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease...

  19. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  20. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  1. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    Science.gov (United States)

    2015-07-10

    razor blade. The damaged area was subsequently exposed to UV irradiation (320 – 390 nm, 500 mW·cm-2), which led to complete disappearance of the...subsequently exposed for 12 s to the light of a UV lamp , which caused complete healing (bottom). (d) Unloading curves of AFM nano indentation of an as...UPy motif. By contrast, UV -Vis spectroscopic titration experiments revealed that equimolar mixtures of [Fe(BKB)](ClO4)2 and (UPy-PEB-UPy) show

  2. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  3. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    Science.gov (United States)

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  4. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  5. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  6. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  7. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    Science.gov (United States)

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  8. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    Science.gov (United States)

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. Copyright © 2010 John Wiley & Sons, Ltd.

  9. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    2006-01-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions

  10. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    Science.gov (United States)

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs. Copyright © 2014. Published by Elsevier B.V.

  11. Competitor analogs for defined T cell antigens: peptides incorporating a putative binding motif and polyproline or polyglycine spacers.

    Science.gov (United States)

    Maryanski, J L; Verdini, A S; Weber, P C; Salemme, F R; Corradin, G

    1990-01-12

    We describe a new approach for modeling antigenic peptides recognized by T cells. Peptide A24 170-182 can compete with other antigenic peptides that are recognized by H-2kd-restricted cytolytic T cells, presumably by binding to the Kd molecule. By comparing substituted A24 peptides as competitors in a functional competition assay, the A24 residues Tyr-171, Thr-178, and Leu-179 were identified as possible contact residues for Kd. A highly active competitor peptide analog was synthesized in which Tyr was separated from the Thr-Leu pair by a pentaproline spacer. The choice of proline allowed the prediction of a probable conformation for the analog when bound to the Kd molecule. The simplest conformation of the A24 peptide that allows the same spacing and orientation of the motif as in the analog would be a nearly extended polypeptide chain incorporating a single 3(10) helical turn or similar structural kink.

  12. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    Science.gov (United States)

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  13. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    Science.gov (United States)

    1984-11-30

    MEDICAL CENTER WILFORD HALL AIR FORCE MEDICAL CENTER Title of Thesis: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord" Name of...that the use of any copyrighted material in the dissertation manuscript entitled: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord...University of the Health Sciences 11 Abstract Title of Thesis: Heterogenity of Opioid Binding Sites In Guinea Pig Spinal Cord Gary Dean Zarr MAJ/ANC

  14. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  15. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated...... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  17. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus

    Directory of Open Access Journals (Sweden)

    Margit Mutso

    2018-04-01

    Full Text Available Infection by Chikungunya virus (CHIKV of the Old World alphaviruses (family Togaviridae in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP (nsP1, nsp2, nsP3 and nsP4 that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  18. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    Science.gov (United States)

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  19. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  20. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites.

    Science.gov (United States)

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1 , and Nfxl1 , are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  1. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  2. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    International Nuclear Information System (INIS)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-01-01

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  3. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  4. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    Science.gov (United States)

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  5. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  6. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  7. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Science.gov (United States)

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  8. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1 Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif.

    Directory of Open Access Journals (Sweden)

    Julia Bender

    Full Text Available The corticotropin-releasing hormone receptor type 1 (CRHR1 plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK family: postsynaptic density protein 95 (PSD95, synapse-associated protein 97 (SAP97, SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2. CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1 binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.

  9. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    Science.gov (United States)

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  10. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    Science.gov (United States)

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  11. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  12. N-termini of fungal CSL transcription factors are disordered, enriched in regulatory motifs and inhibit DNA binding in fission yeast.

    Directory of Open Access Journals (Sweden)

    Martin Převorovský

    Full Text Available CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1 transcription factors are the effector components of the Notch receptor signalling pathway, which is critical for metazoan development. The metazoan CSL proteins (class M can also function in a Notch-independent manner. Recently, two novel classes of CSL proteins, designated F1 and F2, have been identified in fungi. The role of the fungal CSL proteins is unclear, because the Notch pathway is not present in fungi. In fission yeast, the Cbf11 and Cbf12 CSL paralogs play antagonistic roles in cell adhesion and the coordination of cell and nuclear division. Unusually long N-terminal extensions are typical for fungal and invertebrate CSL family members. In this study, we investigate the functional significance of these extended N-termini of CSL proteins.We identify 15 novel CSL family members from 7 fungal species and conduct bioinformatic analyses of a combined dataset containing 34 fungal and 11 metazoan CSL protein sequences. We show that the long, non-conserved N-terminal tails of fungal CSL proteins are likely disordered and enriched in phosphorylation sites and PEST motifs. In a case study of Cbf12 (class F2, we provide experimental evidence that the protein is proteolytically processed and that the N-terminus inhibits the Cbf12-dependent DNA binding activity in an electrophoretic mobility shift assay.This study provides insight into the characteristics of the long N-terminal tails of fungal CSL proteins that may be crucial for controlling DNA-binding and CSL function. We propose that the regulation of DNA binding by Cbf12 via its N-terminal region represents an important means by which fission yeast strikes a balance between the class F1 and class F2 paralog activities. This mode of regulation might be shared with other CSL-positive fungi, some of which are relevant to human disease and biotechnology.

  13. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  14. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  15. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    Science.gov (United States)

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  16. Conservation of the LexA repressor binding site in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Khan Feroz

    2008-03-01

    Full Text Available The LexA protein is a transcriptional repressor of the bacterial SOS DNA repair system, which comprises a set of DNA repair and cellular survival genes that are induced in response to DNA damage. Its varied DNA binding motifs have been characterized and reported in the Escherichia coli, Bacillus subtilis, rhizobia family members, marine magnetotactic bacterium, Salmonella typhimurium and recently in Mycobacterium tuberculosis and this motifs information has been used in our theoretical analysis to detect its novel regulated genes in radio-resistant Deinococcus radiodurans genome. This bacterium showed presence of SOS-box like consensus sequence in the upstream sequences of 3166 genes with >60% motif score similarity percentage (MSSP on both strands. Attempts to identify LexA-binding sites and the composition of the putative SOS regulon in D. radiodurans have been unsuccessful so far. To resolve the problem we performed theoretical analysis with modifications on reported data set of genes related to DNA repair (61 genes, stress response (145 genes and some unusual predicted operons (21 clusters. Expression of some of the predicted SOS-box regulated operon members then was examined through the previously reported microarray data which confirm the expression of only single predicted operon i.e. DRB0143 (AAA superfamily NTPase related to 5-methylcytosine specific restriction enzyme subunit McrB and DRB0144 (homolog of the McrC subunit of the McrBC restriction modification system. The methodology involved weight matrix construction through CONSENSUS algorithm using information of conserved upstream sequences of eight known genes including dinB, tagC, lexA, recA, uvrB, yneA of B. subtilis while lexA and recA of D. radiodurans through phylogenetic footprinting method and later detection of similar conserved SOS-box like LexA binding motifs through both RSAT & PoSSuMsearch programs. The resultant DNA consensus sequence had highly conserved 14 bp SOS

  17. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing

    International Nuclear Information System (INIS)

    Craft, Willie Warren; Dutch, Rebecca Ellis

    2005-01-01

    The Hendra virus fusion (HeV F) protein is synthesized as a precursor, F 0 , and proteolytically cleaved into the mature F 1 and F 2 heterodimer, following an HDLVDGVK 109 motif. This cleavage event is required for fusogenic activity. To determine the amino acid requirements for processing of the HeV F protein, we constructed multiple mutants. Individual and simultaneous alanine substitutions of the eight residues immediately upstream of the cleavage site did not eliminate processing. A chimeric SV5 F protein in which the furin site was substituted for the VDGVK 109 motif of the HeV F protein was not processed but was expressed on the cell surface. Another chimeric SV5 F protein containing the HDLVDGVK 109 motif of the HeV F protein underwent partial cleavage. These data indicate that the upstream region can play a role in protease recognition, but is neither absolutely required nor sufficient for efficient processing of the HeV F protein

  18. A model-based approach to identify binding sites in CLIP-Seq data.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/MiClip/index.html, and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip for customized analysis.

  19. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor ( Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2015-10-01

    Full Text Available The AT motif-binding factor (ATBF1 not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3 (PIAS3 to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1 gene (also known as POU1F1 critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs (SNP 1-7 within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1. Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.

  20. Nephronectin is Correlated with Poor Prognosis in Breast Cancer and Promotes Metastasis via its Integrin-Binding Motifs

    Directory of Open Access Journals (Sweden)

    Tonje S. Steigedal

    2018-04-01

    Full Text Available Most cancer patients with solid tumors who succumb to their illness die of metastatic disease. While early detection and improved treatment have led to reduced mortality, even for those with metastatic cancer, some patients still respond poorly to treatment. Understanding the mechanisms of metastasis is important to improve prognostication, to stratify patients for treatment, and to identify new targets for therapy. We have shown previously that expression of nephronectin (NPNT is correlated with metastatic propensity in breast cancer cell lines. In the present study, we provide a comprehensive analysis of the expression pattern and distribution of NPNT in breast cancer tissue from 842 patients by immunohistochemical staining of tissue microarrays from a historic cohort. Several patterns of NPNT staining were observed. An association between granular cytoplasmic staining (in <10% of tumor cells and poor prognosis was found. We suggest that granular cytoplasmic staining may represent NPNT-positive exosomes. We found that NPNT promotes adhesion and anchorage-independent growth via its integrin-binding and enhancer motifs and that enforced expression in breast tumor cells promotes their colonization of the lungs. We propose that NPNT may be a novel prognostic marker in a subgroup of breast cancer patients.

  1. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    Science.gov (United States)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    International Nuclear Information System (INIS)

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family

  3. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  4. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  5. Localization of gonadotropin binding sites in human ovarian neoplasms

    International Nuclear Information System (INIS)

    Nakano, R.; Kitayama, S.; Yamoto, M.; Shima, K.; Ooshima, A.

    1989-01-01

    The binding of human luteinizing hormone and human follicle-stimulating hormone to ovarian tumor biopsy specimens from 29 patients was analyzed. The binding sites for human luteinizing hormone were demonstrated in one tumor of epithelial origin (mucinous cystadenoma) and in one of sex cord-stromal origin (theca cell tumor). The binding sites for human follicle-stimulating hormone were found in three tumors of epithelial origin (serous cystadenoma and mucinous cystadenoma) and in two of sex cord-stromal origin (theca cell tumor and theca-granulosa cell tumor). The surface-binding autoradiographic study revealed that the binding sites for gonadotropins were localized in the stromal tissue. The results suggest that gonadotropic hormones may play a role in the growth and differentiation of a certain type of human ovarian neoplasms

  6. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice

    Science.gov (United States)

    Artesi, Maria; Jalinot, Pierre

    2018-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. PMID:29566098

  7. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    International Nuclear Information System (INIS)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-01-01

    Autoradiography using 125 I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat

  8. Development of cholecystokinin binding sites in rat upper gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.H.; Moran, T.H.; Goldrich, M.; McHugh, P.R.

    1987-04-01

    Autoradiography using /sup 125/I-labeled Bolton Hunter-CCK-33 was used to study the distribution of cholecystokinin binding sites at different stages of development in the rat upper gastrointestinal tract. Cholecystokinin (CCK) binding was present in the distal stomach, esophagus, and gastroduodenal junction in the rat fetus of gestational age of 17 days. In the 20-day fetus, specific binding was found in the gastric mucosa, antral circular muscle, and pyloric sphincter. Mucosal binding declined during postnatal development and had disappeared by day 15. Antral binding declined sharply between day 10 and day 15 and disappeared by day 50. Pyloric muscle binding was present in fetal stomach and persisted in the adult. Pancreatic CCK binding was not observed before day 10. These results suggest that CCK may have a role in the control of gastric emptying and ingestive behavior in the neonatal rat.

  9. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-01-01

    Highlights: • ABCD proteins classifies based on with or without NH 2 -terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH 2 -terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH 2 -terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH 2 -terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH 2 -terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH 2 -terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH 2 -terminal H0 motif in organelle targeting is widely conserved in living organisms

  10. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels.

    Directory of Open Access Journals (Sweden)

    Valentina Taiakina

    Full Text Available NSCaTE is a short linear motif of (xWxxx(I or Lxxxx, composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA, but disappears in high buffer conditions (10 mM EGTA. Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.

  11. Genome-wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional architectures.

    Directory of Open Access Journals (Sweden)

    Hong Jin

    Full Text Available The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ~50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.

  12. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  13. Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from Gαi *

    Science.gov (United States)

    Jia, Min; Li, Jianchao; Zhu, Jinwei; Wen, Wenyu; Zhang, Mingjie; Wang, Wenning

    2012-01-01

    GoLoco (GL) motif-containing proteins regulate G protein signaling by binding to Gα subunit and acting as guanine nucleotide dissociation inhibitors. GLs of LGN are also known to bind the GDP form of Gαi/o during asymmetric cell division. Here, we show that the C-terminal GL domain of LGN binds four molecules of Gαi·GDP. The crystal structures of Gαi·GDP in complex with LGN GL3 and GL4, respectively, reveal distinct GL/Gαi interaction features when compared with the only high resolution structure known with GL/Gαi interaction between RGS14 and Gαi1. Only a few residues C-terminal to the conserved GL sequence are required for LGN GLs to bind to Gαi·GDP. A highly conserved “double Arg finger” sequence (RΨ(D/E)(D/E)QR) is responsible for LGN GL to bind to GDP bound to Gαi. Together with the sequence alignment, we suggest that the LGN GL/Gαi interaction represents a general binding mode between GL motifs and Gαi. We also show that LGN GLs are potent guanine nucleotide dissociation inhibitors. PMID:22952234

  14. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    Science.gov (United States)

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  15. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  16. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  17. (-)PPAP: a new and selective ligand for sigma binding sites.

    Science.gov (United States)

    Glennon, R A; Battaglia, G; Smith, J D

    1990-11-01

    Most agents employed for the investigation of sigma (sigma) binding sites display relatively low affinity for these sites, bind both at sigma sites and at either phencyclidine (PCP) sites or dopamine receptors with similar affinity, and/or produce some dopaminergic activity in vivo. We describe a new agent, (-)PPAP or R(-)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane hydrochloride, that binds with high affinity and selectivity at sigma (IC50 = 24 nM) versus either PCP sites (IC50 greater than 75,000 nM) or D1 and D2 dopamine receptors (IC50 greater than 5,000 nM). The sigma affinity of this agent is comparable to that of the standard ligands (+)-3-PPP and DTG. Furthermore, although (-)PPAP is structurally related to amphetamine, it neither produces nor antagonizes amphetamine-like stimulus effect in rats trained to discriminate 1 mg/kg of S(+)amphetamine from saline.

  18. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  19. Peptide binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes, and include HLA-B27-like alleles

    OpenAIRE

    Mothé, Bianca R.; Southwood, Scott; Sidney, John; English, A. Michelle; Wriston, Amanda; Hoof, Ilka; Shabanowitz, Jeffrey; Hunt, Donald F.; Sette, Alessandro

    2013-01-01

    Chinese rhesus macaques are of particular interest in SIV/HIV research as these animals have prolonged kinetics of disease progression to AIDS, compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide binding motifs, provides valuable information for measuring cellular immune response...

  20. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif

    Directory of Open Access Journals (Sweden)

    Grishin Nick V

    2009-01-01

    Full Text Available Abstract Background Argonaute (Ago proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. 1 describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E. In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp base. The corresponding Ago2 aromatic residues (F450 and F505 were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable. Results A number of sequence-based and structure-based bioinformatics methods reveal the reported similarity between the Ago2 MC sequence region and the eIF4E cap-binding motif to be spurious. Alternatively, the MC sequence region is confidently assigned to the N-terminus of the Ago piwi module, within the mid domain of experimentally determined prokaryotic Ago structures. Confident mapping of the Ago2 MC sequence region to the piwi mid domain results in a homology-based structure model that positions the identified aromatic residues over 20 Å apart, with one of the aromatic side chains (F450 contributing instead to the hydrophobic core of the domain. Conclusion Correct functional prediction based on weak sequence similarity requires substantial evolutionary and structural support. The evolutionary context of the Ago mid domain suggested by multiple sequence alignment is limited to a conserved hydrophobicity profile required for the fold and a motif following the MC region that binds guide RNA. Mapping of the MC sequence to the mid domain structure reveals Ago2 aromatics that are incompatible with eIF4E-like mRNA cap-binding, yet display some limited local structure similarities that cause the chance sequence match to eIF4E. Reviewers This article was reviewed by Arcady Mushegian

  1. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  2. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.; Lincoln, P.; Norden, B.

    2013-01-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  3. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  4. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    Science.gov (United States)

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  5. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  6. Human chorionic ganodotropin binding sites in the human endometrium

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Banerjee, J.; Sen, S.; Manna, P.R.

    1993-01-01

    The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. The authors have identified the hCG binding sites in the human endometrium collected from 35-42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5x10 -10 mol/l and in anovulatory women to be 3.1x10 -10 mol/l. The maximum binding capacity varied considerably between ovulatory and anovulatory endometrium. Among the divalent metal ions tested Zn 2+ effected a remarkable increase in [ 125 I]hCG binding to the endometrium, whereas Mn 2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [ 125 I]hCG binding to endometrium. 14 refs., 3 figs

  7. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  8. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  9. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  10. RNA Binding of T-cell Intracellular Antigen-1 (TIA-1) C-terminal RNA Recognition Motif Is Modified by pH Conditions*

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene

    2013-01-01

    T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765

  11. The combinatorial PP1-binding consensus Motif (R/Kx( (0,1V/IxFxx(R/Kx(R/K is a new apoptotic signature.

    Directory of Open Access Journals (Sweden)

    Angélique N Godet

    Full Text Available BACKGROUND: Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. PRINCIPAL FINDINGS: In this study, we demonstrate that DPT-AIF(1, a peptide containing the AIF(562-571 sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1 provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1 a bi-partite cell penetrating peptide containing APAF-1(122-131, a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571 and APAF-1(122-131 sequences contain a common R/Kx((0,1V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2 and DPT-APAF(2 that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2 also suppressed cell penetration. CONCLUSION: These results indicate that the combinatorial PP1c docking motif R/Kx((0,1V/IxFxxR/KxR/K, deduced from AIF(562-571 and APAF-1(122-131 sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  12. Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Sharon M Barth

    Full Text Available There are limitations in pre-clinical settings using mice as a basis for clinical development in humans. In cancer, similarities exist between humans and dogs; thus, the dog patient can be a link in the transition from laboratory research on mouse models to clinical trials in humans. Knowledge of the peptides presented on MHC molecules is fundamental for the development of highly specific T cell-based immunotherapies. This information is available for human MHC molecules but is absent for the canine MHC. In the present study, we characterized the binding motif of dog leukocyte antigen (DLA class I allele DLA-88*50101, using human C1R and K562 transfected cells expressing the DLA-88*50101 heavy chain. MHC class I immunoaffinity-purification revealed 3720 DLA-88*50101 derived peptides, which enabled the determination of major anchor positions. The characterized binding motif of DLA-88*50101 was similar to HLA-A*02:01. Peptide binding analyses on HLA-A*02:01 and DLA-88*50101 via flow cytometry showed weak binding of DLA-88*50101 derived peptides to HLA-A*02:01, and vice versa. Our results present for the first time a detailed peptide binding motif of the canine MHC class I allelic product DLA-88*50101. These data support the goal of establishing dogs as a suitable animal model for the evaluation and development of T cell-based cancer immunotherapies, benefiting both dog and human patients.

  13. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Penicillin-binding site on the Escherichia coli cell envelope

    International Nuclear Information System (INIS)

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-01-01

    The binding of 35 S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin

  15. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.

    Science.gov (United States)

    Li, Yang Eric; Xiao, Mu; Shi, Binbin; Yang, Yu-Cheng T; Wang, Dong; Wang, Fei; Marcia, Marco; Lu, Zhi John

    2017-09-08

    Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP-RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.

  16. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    Science.gov (United States)

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  17. GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.

    Science.gov (United States)

    Xue, Yu; Liu, Zexian; Cao, Jun; Ma, Qian; Gao, Xinjiao; Wang, Qingqi; Jin, Changjiang; Zhou, Yanhong; Wen, Longping; Ren, Jian

    2011-03-01

    As the most important post-translational modification of proteins, phosphorylation plays essential roles in all aspects of biological processes. Besides experimental approaches, computational prediction of phosphorylated proteins with their kinase-specific phosphorylation sites has also emerged as a popular strategy, for its low-cost, fast-speed and convenience. In this work, we developed a kinase-specific phosphorylation sites predictor of GPS 2.1 (Group-based Prediction System), with a novel but simple approach of motif length selection (MLS). By this approach, the robustness of the prediction system was greatly improved. All algorithms in GPS old versions were also reserved and integrated in GPS 2.1. The online service and local packages of GPS 2.1 were implemented in JAVA 1.5 (J2SE 5.0) and freely available for academic researches at: http://gps.biocuckoo.org.

  18. Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter

    International Nuclear Information System (INIS)

    Dahabieh, Matthew S.; Ooms, Marcel; Malcolm, Tom; Simon, Viviana; Sadowski, Ivan

    2011-01-01

    Transcription from the HIV-1 long terminal repeat (LTR) is mediated by numerous host transcription factors. In this study we characterized an E-box motif (RBE1) within the core promoter that was previously implicated in both transcriptional activation and repression. We show that RBE1 is a binding site for the RBF-2 transcription factor complex (USF1, USF2, and TFII-I), previously shown to bind an upstream viral element, RBE3. The RBE1 and RBE3 elements formed complexes of identical mobility and protein constituents in gel shift assays, both with Jurkat T-cell nuclear extracts and recombinant USF/TFII-I. Furthermore, both elements are regulators of HIV-1 expression; mutations in LTR-luciferase reporters and in HIV-1 molecular clones resulted in decreased transcription, virion production, and proviral expression in infected cells. Collectively, our data indicate that RBE1 is a bona fide RBF-2 binding site and that the RBE1 and RBE3 elements are necessary for mediating proper transcription from the HIV-1 LTR.

  19. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska

    2017-01-01

    is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor-gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super......-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate...

  20. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its γ-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the γ-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  1. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  2. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-01

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics

  3. Radiotracers for per studies of neurotransmitter binding sites: Design considerations

    International Nuclear Information System (INIS)

    Kilbourn, M.R.

    1991-01-01

    Neurotransmitter binding sites, such as receptors, neuronal uptake systems, and vesicular uptake systems, are important targets for new radiopharmaceutical design. Selection of potential radioligands can be guided by in vitro laboratory data including such characteristics as selectivity and affinity for specific binding sites. However, development of PET radiotracers for use in vivo must include considerations of in vivo pharmacokinetics and metabolism. Introduction of potential radioligands is further narrowed by the demands of the radiochemical synthesis, which must produce radioligands of high chemical and radiochemical purity and of high specific activity. This paper will review examples of previous and current attempts by radiopharmaceutical chemists to meet these demands for new positron emitter-labeled radioligands for PET studies of a wide array of neurotransmitter binding sites

  4. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  5. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    Science.gov (United States)

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  6. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    Science.gov (United States)

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  7. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members

    Directory of Open Access Journals (Sweden)

    R.C. Heinen

    2006-11-01

    Full Text Available Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  8. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  10. Multiple [3H]-nemonapride binding sites in calf brain.

    Science.gov (United States)

    Helmeste, D M; Tang, S W; Li, M; Fang, H

    1997-07-01

    [3H]-Nemonapride has been the ligand of choice to label D4 dopamine receptors. Its specificity was questioned when it was discovered that sigma (sigma) sites were also labeled by [3H]-nemonapride. To further characterize the binding of [3H]-nemonapride, three areas of calf brain (striatum, frontal cortex and cerebellum) were examined. In all three areas, [3H]-nemonapride labeled multiple sites. Dopaminergic and sigma sites were the most prominent. The sigma binding profile was sigma-1 like with a Ki binding profile as follows (in order of decreasing potency): haloperidol, PPAP, pentazocine, DTG, U-50488, R(+)-3-PPP. Experiments using sulpiride and pentazocine to block striatal dopaminergic and sigma sites, respectively, revealed additional, not previously characterized binding sites for [3H]-nemonapride. One component which was present in striatum but not in frontal cortex or cerebellum, had affinity for some neuroleptics and WB-4101, but not for typical serotonergic agents. Thus, [3H]-nemonapride has no selectivity for dopamine receptors unless stringent experimental conditions are met.

  11. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    2010-04-01

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  12. Common structural features of cholesterol binding sites in crystallized soluble proteins.

    Science.gov (United States)

    Bukiya, Anna N; Dopico, Alejandro M

    2017-06-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i ) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii ) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii ) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv ) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v ) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Zhao, Heng; Hermsen, Trudi; Stet, Rene J M

    2008-01-01

    The structure of the peptide-binding specificity of major histocompatibility complex (MHC) class I has been analyzed extensively in human and mouse. For fish, there are no crystallographic models of MHC molecules, neither are there data on the peptide-binding specificity. In this study, we descri...... and there is a significant association between MHC polymorphism and the disease resistance. Therefore, our study might contribute to designing a peptide vaccine against this viral disease....... class I molecule might have a very similar binding motif at the C-terminus compared with a known mouse class I molecule H2-Kb which has L, or I, V, M at p8. Previous work showed that Atlantic Salmon carrying the allele SasaUBA*0301 are resistant to infectious Salmon aneamia virus...

  14. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  15. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  16. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  17. Dangerous connections : on binding site models of infectious disease dynamics

    NARCIS (Netherlands)

    Leung, Ka Yin; Diekmann, Odo

    2017-01-01

    We formulate models for the spread of infection on networks that are amenable to analysis in the large population limit. We distinguish three different levels: (1) binding sites, (2) individuals, and (3) the population. In the tradition of physiologically structured population models, the

  18. Fabrication of supramolecular frameworks by tuning the binding site ...

    Indian Academy of Sciences (India)

    Administrator

    Fabrication of supramolecular frameworks by tuning the binding site of a tripodal ligand with d. 10 metal ions 803. Table 1. Crystal data and structure refinement parameters for 1 and 2. 1 .... e-mail: deposit@ccdc.cam.ac.uk web: http://www. ccdc. cam.ac.uk/deposit]. Supplementary figures and tables can be found in website ...

  19. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...

  20. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate ... alignments with parts annotated as gap lessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair- profile related parameters are derived in a sound statistical framework. ... Much research has gone into the study of the evolution of.

  1. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  2. Hybrids of the bHLH and bZIP protein motifs display different DNA-binding activities in vivo vs. in vitro.

    Directory of Open Access Journals (Sweden)

    Hiu-Kwan Chow

    Full Text Available Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim protein Arnt fused to the leucine zipper (LZ dimerization domain from bZIP (basic region-leucine zipper protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H, transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed, as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (K(d 148.9 nM and 40.2 nM, respectively, but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly alpha-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60-70 aa. Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions.

  3. Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins

    International Nuclear Information System (INIS)

    Mitchell, Michael S.; Rao, Venigalla B.

    2004-01-01

    Bacteriophage terminases constitute a very interesting class of viral-coded multifunctional ATPase 'motors' that apparently drive directional translocation of DNA into an empty viral capsid. A common Walker A motif and other conserved signatures of a critical ATPase catalytic center are identified in the N-terminal half of numerous large terminase proteins. However, several terminases, including the well-characterized λ and SPP1 terminases, seem to lack the classic Walker A in the N-terminus. Using sequence alignment approaches, we discovered the presence of deviant Walker A motifs in these and many other phage terminases. One deviation, the presence of a lysine at the beginning of P-loop, may represent a 3D equivalent of the universally conserved lysine in the Walker A GKT/S signature. This and other novel putative Walker A motifs that first came to light through this study help define the ATPase centers of phage and viral terminases as well as elicit important insights into the molecular functioning of this fundamental motif in biological systems

  4. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    Science.gov (United States)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  5. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs.

    Science.gov (United States)

    Hecker, Andreas; Brand, Luise H; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Harter, Klaus; Gaudin, Valérie; Wanke, Dierk

    2015-07-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  7. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng

    2016-06-13

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.

  8. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

    Science.gov (United States)

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. PMID:23175603

  9. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2012-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  10. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2012-11-21

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  11. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  12. Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

    Science.gov (United States)

    André, S; Ortega, P J; Perez, M A; Roy, R; Gabius, H J

    1999-11-01

    Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential

  13. [Adenylate cyclase from rabbit heart: substrate binding site].

    Science.gov (United States)

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  14. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  15. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  16. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  17. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2015-11-19

    Models of transcription factor (TF) binding sites provide a basis for a wide spectrum of studies in regulatory genomics, from reconstruction of regulatory networks to functional annotation of transcripts and sequence variants. While TFs may recognize different sequence patterns in different conditions, it is pragmatic to have a single generic model for each particular TF as a baseline for practical applications. Here we present the expanded and enhanced version of HOCOMOCO (http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco10), the collection of models of DNA patterns, recognized by transcription factors. HOCOMOCO now provides position weight matrix (PWM) models for binding sites of 601 human TFs and, in addition, PWMs for 396 mouse TFs. Furthermore, we introduce the largest up to date collection of dinucleotide PWM models for 86 (52) human (mouse) TFs. The update is based on the analysis of massive ChIP-Seq and HT-SELEX datasets, with the validation of the resulting models on in vivo data. To facilitate a practical application, all HOCOMOCO models are linked to gene and protein databases (Entrez Gene, HGNC, UniProt) and accompanied by precomputed score thresholds. Finally, we provide command-line tools for PWM and diPWM threshold estimation and motif finding in nucleotide sequences.

  18. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    to individual structures that bind to phosphate groups; here, we investigate a total of 8307 structures obtained from the RCSB Protein Data Bank (PDB). An analysis of the binding site amino acid propensities reveals very characteristic first shell residue distributions, which are found to be influenced...... by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  19. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  20. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    International Nuclear Information System (INIS)

    Liu, Zhongchuan; Xie, Tian; Zhong, Qiuping; Wang, Ganggang

    2016-01-01

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases

  1. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhongchuan; Xie, Tian [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); Zhong, Qiuping [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China); University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of (China); Wang, Ganggang, E-mail: wanggg@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of (China); Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of (China)

    2016-03-24

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.

  2. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  3. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    Science.gov (United States)

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  4. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  5. Prediction of DtxR regulon: Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed

    2004-09-01

    Full Text Available Abstract Background The diphtheria toxin repressor, DtxR, of Corynebacterium diphtheriae has been shown to be an iron-activated transcription regulator that controls not only the expression of diphtheria toxin but also of iron uptake genes. This study aims to identify putative binding sites and operons controlled by DtxR to understand the role of DtxR in patho-physiology of Corynebacterium diphtheriae. Result Positional Shannon relative entropy method was used to build the DtxR-binding site recognition profile and the later was used to identify putative regulatory sites of DtxR within C. diphtheriae genome. In addition, DtxR-regulated operons were also identified taking into account the predicted DtxR regulatory sites and genome annotation. Few of the predicted motifs were experimentally validated by electrophoretic mobility shift assay. The analysis identifies motifs upstream to the novel iron-regulated genes that code for Formamidopyrimidine-DNA glycosylase (FpG, an enzyme involved in DNA-repair and starvation inducible DNA-binding protein (Dps which is involved in iron storage and oxidative stress defense. In addition, we have found the DtxR motifs upstream to the genes that code for sortase which catalyzes anchoring of host-interacting proteins to the cell wall of pathogenic bacteria and the proteins of secretory system which could be involved in translocation of various iron-regulated virulence factors including diphtheria toxin. Conclusions We have used an in silico approach to identify the putative binding sites and genes controlled by DtxR in Corynebacterium diphtheriae. Our analysis shows that DtxR could provide a molecular link between Fe+2-induced Fenton's reaction and protection of DNA from oxidative damage. DtxR-regulated Dps prevents lethal combination of Fe+2 and H2O2 and also protects DNA by nonspecific DNA-binding. In addition DtxR could play an important role in host interaction and virulence by regulating the levels of sortase

  6. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein...... sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally...

  7. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo.

    Science.gov (United States)

    Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L

    2006-03-01

    HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.

  8. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism

    DEFF Research Database (Denmark)

    Beqqali, Abdelaziz; Bollen, I. A. E.; Rasmussen, T. B.

    2016-01-01

    Mutations in the RS-domain of RNA-binding motif protein 20 (RBM20) have recently been identified to segregate with aggressive forms of familial dilated cardiomyopathy (DCM). Loss of RBM20 in rats results in missplicing of the sarcomeric gene titin (TTN). The functional and physiological consequen......Mutations in the RS-domain of RNA-binding motif protein 20 (RBM20) have recently been identified to segregate with aggressive forms of familial dilated cardiomyopathy (DCM). Loss of RBM20 in rats results in missplicing of the sarcomeric gene titin (TTN). The functional and physiological...... consequences of RBM20 mutations outside the mutational hotspot of RBM20 have not been explored to date. In this study, we investigated the pathomechanism of DCM caused by a novel RBM20 mutation in human cardiomyocytes. We identified a family with DCM carrying a mutation (RBM20(E913K/+)) in a glutamate...... to the early onset, and malignant course of DCM caused by RBM20 mutations. Altogether, our results demonstrate that heterozygous loss of RBM20 suffices to profoundly impair myocyte biomechanics by its disturbance of TTN splicing....

  9. Visualization of specific binding sites of benzodiazepine in human brain

    International Nuclear Information System (INIS)

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-01-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of [11C]Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that [11C] Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans

  10. SP-A binding sites on bovine alveolar macrophages.

    Science.gov (United States)

    Plaga, S; Plattner, H; Schlepper-Schaefer, J

    1998-11-25

    Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.

  11. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  12. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    Science.gov (United States)

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  13. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  14. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    International Nuclear Information System (INIS)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-01-01

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of [ 125 I]iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis

  15. Receptor-ligand binding sites and virtual screening.

    Science.gov (United States)

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  16. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  17. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    Science.gov (United States)

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  18. Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiongying; Latham, John A.; Klema, Valerie J.; Evans III, Robert L.; Li, Chao; Klinman, Judith P.; Wilmot, Carrie M. (UMM); (UCB)

    2017-08-19

    PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.

  19. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A receptor.

    Directory of Open Access Journals (Sweden)

    Renwen Zhang

    Full Text Available In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A, at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231 and carboxyl tail of the receptor (ct, 302-317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219 for alanine in i3, and phenylalanine (F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

  20. Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

    Science.gov (United States)

    Zhang, Renwen; Liu, Zhijie; Qu, Youxing; Xu, Ying; Yang, Qing

    2013-01-01

    In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor. PMID:23755207

  1. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    Science.gov (United States)

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  2. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  3. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.; Holan, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [ 3 H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [ 3 H]diazepam binding are those that are active in displacing [ 3 H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  5. Where's water? The many binding sites of hydantoin.

    Science.gov (United States)

    Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie

    2018-02-21

    Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

  6. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin

    2015-01-01

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  7. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  8. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine

    2003-01-01

    14-3-3 proteins constitute a family of well conserved proteins interacting with a large number of phosphorylated binding partners in eukaryotic cells. The plant plasma membrane H+-ATPase is an unusual target in that a unique phosphothreonine motif (946YpTV, where pT represents phosphothreonine...... of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these...

  9. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  10. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    Science.gov (United States)

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  11. A novel k-mer set memory (KSM) motif representation improves regulatory variant prediction.

    Science.gov (United States)

    Guo, Yuchun; Tian, Kevin; Zeng, Haoyang; Guo, Xiaoyun; Gifford, David Kenneth

    2018-04-13

    The representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding gene regulatory networks and interpreting the impact of disease-associated noncoding genetic variants. We present a novel TF binding motif representation, the k -mer set memory (KSM), which consists of a set of aligned k -mers that are overrepresented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more accurately predict in vivo binding sites than position weight matrix (PWM) models and other more complex motif models across a large set of ChIP-seq experiments. Furthermore, KSMs outperform PWMs and more complex motif models in predicting in vitro binding sites. KMAC also identifies correct motifs in more experiments than five state-of-the-art motif discovery methods. In addition, KSM-derived features outperform both PWM and deep learning model derived sequence features in predicting differential regulatory activities of expression quantitative trait loci (eQTL) alleles. Finally, we have applied KMAC to 1600 ENCODE TF ChIP-seq data sets and created a public resource of KSM and PWM motifs. We expect that the KSM representation and KMAC method will be valuable in characterizing TF binding specificities and in interpreting the effects of noncoding genetic variations. © 2018 Guo et al.; Published by Cold Spring Harbor Laboratory Press.

  12. SSTRAP: A computational model for genomic motif discovery ...

    African Journals Online (AJOL)

    Computational methods can potentially provide high-quality prediction of biological molecules such as DNA binding sites and Transcription factors and therefore reduce the time needed for experimental verification and challenges associated with experimental methods. These biological molecules or motifs have significant ...

  13. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  14. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  15. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  16. Atrial natriuretic factor binding sites in experimental congestive heart failure

    International Nuclear Information System (INIS)

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M.

    1989-01-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor [(Ser99, Tyr126)ANF] binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF [des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2] (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease

  17. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs

    International Nuclear Information System (INIS)

    Takagaki, Yoshio; Manley, J.L.; MacDonald, C.C.; Shenk, T.

    1992-01-01

    Cleavage stimulation factor is one of the multiple factors required for 3'-end cleavage of mammalian pre-mRNAs. The authors have shown previously that this factor is composed of three subunits with estimated molecular masses of 77, 64, and 50 kDa and that the 64-kDa subunit can be UV-cross linked to RNA in a polyadenylylation signal (AAUAAA)-dependent manner. They have now isolated cDNAs encoding the 64-kDa subunit of human cleavage stimulation factor. The 64-kDa subunit contains a ribonucleoprotein-type RNA binding domain in the N-terminal region and a repeat structure in the C-terminal region in which a pentapeptide sequence (consensus MEARA/G) is repeated 12 times and the formation of a long α-helix stabilized by salt bridges is predicted. An ∼270-amino acid segment surrounding this repeat structure is highly enriched in proline and glycine residues (∼20% for each). When cloned 64-kDa subunit was expressed in Escherichia coli, an N-terminal fragment containing the RNA binding domain bound to RNAs in a polyadenylylation-signal-independent manner, suggesting that the RNA binding domain is directly involved in the binding of the 64-kDa subunit to pre-mRNAs

  18. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  19. The HIV-1 envelope transmembrane domain binds TLR2 through a distinct dimerization motif and inhibits TLR2-mediated responses.

    Directory of Open Access Journals (Sweden)

    Eliran Moshe Reuven

    2014-08-01

    Full Text Available HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD of the HIV-1 envelope (ENV directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation.

  20. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  1. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  2. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    Directory of Open Access Journals (Sweden)

    Lixin Yang

    Full Text Available As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1, a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538 exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  3. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    Science.gov (United States)

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Distribution of Glycan Motifs at the Surface of Midgut Cells in the Cotton Leafworm (Spodoptera littoralis Demonstrated by Lectin Binding

    Directory of Open Access Journals (Sweden)

    Tomasz Walski

    2017-12-01

    Full Text Available Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm Spodoptera littoralis, an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA, GalNAc/Gal (RSA and SSA, GlcNAc (WGA and Nictaba and Neu5Ac(α-2,6Gal/GalNAc (SNA-I], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and

  5. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    Directory of Open Access Journals (Sweden)

    Andréa Barbosa de Melo

    Full Text Available The yellow fever vaccines (YF-17D-204 and 17DD are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env and nonstructural (NS proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+ and CD8(+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  6. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  8. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  9. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  10. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding.

    Directory of Open Access Journals (Sweden)

    Hai Li

    2010-01-01

    Full Text Available Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase activity, the function of the chitinase insertion domain is not completely understood. Bioinformatics offers an important avenue in which to facilitate understanding the role of residues within the chitinase insertion domain in chitinase function.Twenty-seven chitinase insertion domain sequences, which include four experimentally determined structures and span five kingdoms, were aligned and analyzed using a modified sequence entropy parameter. Thirty-two positions with conserved residues were identified. The role of these conserved residues was explored by conducting a structural analysis of a number of holo-enzymes. Hydrogen bonding and van der Waals calculations revealed a distinct subset of four conserved residues constituting two sequence motifs that interact with oligosaccharides. The other conserved residues may be key to the structure, folding, and stability of this domain.Sequence and structural studies of the chitinase insertion domains conducted within the framework of evolution identified four conserved residues which clearly interact with the substrates. Furthermore, evolutionary studies propose a link between the appearance of the chitinase insertion domain and the function of family 18 chitinases in the subfamily A.

  11. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif....... A special viewing feature, MHC fight, allows for display of the specificity of two different MHC molecules side by side. We show how the web server can be used to discover and display surprising similarities as well as differences between MHC molecules within and between different species. The MHC motif...

  12. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  13. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    Science.gov (United States)

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  14. Structure of a SUMO-binding-motif mimic bound to Smt3p–Ubc9p: conservation of a noncovalent Ubiquitin-like protein–E2 complex as a platform for selective interactions within a SUMO pathway

    Science.gov (United States)

    Duda, David M.; van Waardenburg, Robert C. A. M.; Borg, Laura A.; McGarity, Sierra; Nourse, Amanda; Waddell, M. Brett; Bjornsti, Mary-Ann; Schulman, Brenda A.

    2007-01-01

    Summary The SUMO ubiquitin-like proteins play regulatory roles in cell division, transcription, DNA repair, and protein subcellular localization. Paralleling other ubiquitin-like proteins, SUMO proteins are proteolytically processed to maturity, conjugated to targets by E1-E2-E3 cascades, and subsequently recognized by specific downstream effectors containing a SUMO-binding motif (SBM). SUMO and its E2 from the budding yeast S. cerevisiae, Smt3p and Ubc9p, are encoded by essential genes. Here we describe the 1.9 Å resolution crystal structure of a noncovalent Smt3p–Ubc9p complex. Unexpectedly, a heterologous portion of the crystallized complex derived from the expression construct mimics an SBM, and binds Smt3p in a manner resembling SBM binding to human SUMO family members. In the complex, Smt3p binds a surface distal from Ubc9's catalytic cysteine. The structure implies that a single molecule of Smt3p cannot bind concurrently to both the noncovalent binding site and the catalytic cysteine of a single Ubc9p molecule. However, formation of higher-order complexes can occur, where a single Smt3p covalently linked to one Ubc9p's catalytic cysteine also binds noncovalently to another molecule of Ubc9p. Comparison with other structures from the SUMO pathway suggests that formation of the noncovalent Smt3p–Ubc9p complex occurs mutually exclusively with many other Smt3p and Ubc9p interactions in the conjugation cascade. By contrast, high-resolution insights into how Smt3p–Ubc9p can also interact with downstream recognition machineries come from contacts with the SBM mimic. Interestingly, the overall architecture of the Smt3p–Ubc9p complex is strikingly similar to recent structures from the ubiquitin pathway. The results imply that noncovalent ubiquitin-like protein–E2 complexes are conserved platforms, which function as parts of larger assemblies involved many protein post-translational regulatory pathways. PMID:17475278

  15. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  16. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  17. Functional impact of HIV coreceptor-binding site mutations

    International Nuclear Information System (INIS)

    Biscone, Mark J.; Miamidian, John L.; Muchiri, John M.; Baik, Sarah S.W.; Lee, Fang-Hua; Doms, Robert W.; Reeves, Jacqueline D.

    2006-01-01

    The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner

  18. Pet imaging of peripheral benzodiazepine binding sites in brain tumors

    International Nuclear Information System (INIS)

    Junck, L.; Jewett, D.M.; Olsen, J.M.; Kilbourn, M.R.; Koeppe, R.A.; Young, A.B.; Greenberg, H.S.; Kuhl, D.E.

    1991-01-01

    Studies in vitro have shown that the peripheral-type benzodiazepine binding site (PBBS) is present in moderate to high density on malignant gliomas as well as in areas of reactive gliosis, but in low density in normal brain. PK 11195 is an isoquinoline derivative that binds selectively to the PBBS but not to the central benzodiazepine receptor. We have used [ 11 C]PK 11195 with positron emission tomography (PET) to study brain tumors and cerebral infarcts. Preliminary results showed that, in 13 of 18 patients with astrocytomas, [ 11 C]PK 11195 radioactivity was increased in tumor compared to remote brain and that the concentration ratios of tumor-to-remote brain were higher for high grade astrocytomas than for low grade astrocytomas. Pharmacokinetic analysis suggests that the increased activity in tumor probably does not result from alterations in blood flow or vascular permeability. Patients with lymphoma, meningioma, medulloblastoma, brain metastasis, and neurosarcoidosis have also shown increased radioactivity in tumor. Among eight patients with acute and subacute cerebral infarcts, activity in the infarct was increased in seven and was often greatest at the periphery. We conclude that [ 11 C]PK 11195 is a promising radiopharmaceutical for further investigation of brain tumors as well as diseases characterized by reactive gliosis

  19. Muscarinic acetylcholine receptors: location of the ligand binding site

    International Nuclear Information System (INIS)

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  20. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

    Science.gov (United States)

    Segura-Puimedon, Maria; Borralleras, Cristina; Pérez-Jurado, Luis A; Campuzano, Victoria

    2013-09-25

    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS). Identification of genes regulated by TFII-I is thus critical to detect molecular determinants of WBS as well as to identify potential new targets for specific pharmacological interventions, which are currently absent. We performed a microarray screening for transcriptional targets of TFII-I in cortex and embryonic cells from Gtf2i mutant and wild-type mice. Candidate genes with altered expression were verified using real-time PCR. A novel motif shared by deregulated genes was found and chromatin immunoprecipitation assays in embryonic fibroblasts were used to document in vitro TFII-I binding to this motif in the promoter regions of deregulated genes. Interestingly, the PI3K and TGFβ signaling pathways were over-represented among TFII-I-modulated genes. In this study we have found a highly conserved DNA element, common to a set of genes regulated by TFII-I, and identified and validated novel in vivo neuronal targets of this protein affecting the PI3K and TGFβ signaling pathways. Overall, our data further contribute to unravel the complexity and variability of the different genetic programs orchestrated by TFII-I. © 2013 Elsevier B.V. All rights reserved.

  1. Distance between two binding sites of the same antibody molecule

    International Nuclear Information System (INIS)

    Cser, L.; Gladkikh, I.A.; Ostanevich, Y.M.; Franek, F.; Novotny, J.; Nezlin, R.S.

    1978-01-01

    Neutron small-angle scattering experiments are reported, aimed at determining the distance between the two binding sites of the same antibody molecule employing complexes of anti-Dnp antibody with an antigenically univalent, high molecular weight ligand. Although the distance values could be determined only with a large statistical error, the data allowed the conclusion that the geometrical parameters of the complexes formed with the early (i.e., precipitating) antibody are significantly different from those of the complexes formed with the late (i.e, non-precipitating) antibody. The data suggest that the precipitating antibody complexed with a high molecular weight antigen assumes an extended shape with an antigen to antigen distance of 35.8 +- 1.3 nm. (Auth.)

  2. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  3. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    Energy Technology Data Exchange (ETDEWEB)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  4. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  5. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    , of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site...... on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome....

  6. Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography

    International Nuclear Information System (INIS)

    Gillberg, P.-G.; Aquilonius, S.-M.

    1985-01-01

    Binding sites for the receptor ligands 3 H-quinuclidinylbenzilate, 3 H-alpha-bungarotoxin ( 3 H-alpha-Btx), 3 H-etorphine and 3 H-strychnine were localized autoradiographically at cervical, thoracic and lumbar levels of spinal cords from post-mortem human control subjects and subjects with amyotrophic lateral sclerosis (ALS). The highest densities of muscarinic binding sites were found in the motor neuron areas and in the substantia gelatinosa, while the grey matter binding was very low within Clarke's column. Both 3 H-alpha-Btx and opioid receptor binding sites were numerous within the substantia gelatinosa, while glycine receptor binding sites were more uniformly distribute within the spinal grey matter. In ALS cases, muscarinic receptor binding sites were markedly reduced in motor neuron areas and slightly reduced in the dorsal horn, while the other binding sites studied were relatively unchanged. (author)

  7. The Ubiquitin Binding Domain ZnF UBP Recognizes the C-Terminal Diglycine Motif of Unanchored Ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Turcu,F.; Horton, J.; Mullally, J.; Heroux, A.; Cheng, X.; Wilkinson, K.

    2006-01-01

    Ubiquitin is a highly versatile post-translational modification that controls virtually all types of cellular events. Over the past ten years we have learned that diverse forms of ubiquitin modifications and of ubiquitin binding modules co-exist in the cell, giving rise to complex networks of protein:protein interactions. A central problem that continues to puzzle ubiquitinologists is how cells translate this myriad of stimuli into highly specific responses. This is a classical signaling problem. Here, we draw parallels with the phosphorylation signaling pathway and we discuss the expanding repertoire of ubiquitin signals, signal tranducers and signaling-regulated E3 enzymes. We examine recent advances in the field, including a new mechanism of regulation of E3 ligases that relies on ubiquitination.

  8. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  9. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.

    Science.gov (United States)

    Bae, Jae Hyun; Lew, Erin Denise; Yuzawa, Satoru; Tomé, Francisco; Lax, Irit; Schlessinger, Joseph

    2009-08-07

    SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.

  10. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Safi, Samir; Jeanson, Aurelie; Roques, Jerome; Simoni, Eric; Creff, Gaelle; Qi, Lei; Basset, Christian; Vidaud, Claude; Solari, Pier Lorenzo; Den Auwer, Christophe

    2013-01-01

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO 2 2+ /peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  11. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2011-06-01

    Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  12. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.

    Science.gov (United States)

    Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody

    2012-03-01

    Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.

  13. Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2011-09-01

    Full Text Available of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 onto plates coated with anti-CD4bs antibodies b12, b6 or the CD4 receptor mimetic, CD4-IgG2...

  14. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.

    Science.gov (United States)

    Dixon, James E; Osman, Gizem; Morris, Gavin E; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J; Denning, Chris; Shakesheff, Kevin M

    2016-01-19

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application.

  15. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.

    Science.gov (United States)

    Wei, Yingying; Wu, George; Ji, Hongkai

    2013-05-01

    Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have limitations: they are low-throughput with respect to surveying many TFs. Recent advances in genome-wide chromatin profiling, including development of technologies such as DNase-seq, FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo TFBSs by analyzing chromatin features at computationally determined DNA motif sites. This promising new approach may allow researchers to monitor the genome-wide binding sites of many TFs simultaneously. In this article, we discuss various experimental design and data analysis issues that arise when applying this approach. Through a systematic analysis of the data from the Encyclopedia Of DNA Elements (ENCODE) project, we compare the predictive power of individual and combinations of chromatin marks using supervised and unsupervised learning methods, and evaluate the value of integrating information from public ChIP and gene expression data. We also highlight the challenges and opportunities for developing novel analytical methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing functional and non-functional TF binding targets from the predicted binding sites. The online version of this article (doi:10.1007/s12561-012-9066-5) contains supplementary material, which is available to authorized users.

  16. Characterization of a Highly Conserved Binding Site of Mlh1 Required for Exonuclease I-Dependent Mismatch Repair

    DEFF Research Database (Denmark)

    Dherin, Claudine; Gueneau, Emeric; Francin, Mathilde

    2009-01-01

    Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2......, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting...... protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with K(d) values ranging from 8.1 to 17.4 microM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2...

  17. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  18. F-Type Lectins: A Highly Diversified Family of Fucose-Binding Proteins with a Unique Sequence Motif and Structural Fold, Involved in Self/Non-Self-Recognition

    Directory of Open Access Journals (Sweden)

    Gerardo R. Vasta

    2017-11-01

    Full Text Available The F-type lectin (FTL family is one of the most recent to be identified and structurally characterized. Members of the FTL family are characterized by a fucose recognition domain [F-type lectin domain (FTLD] that displays a novel jellyroll fold (“F-type” fold and unique carbohydrate- and calcium-binding sequence motifs. This novel lectin family comprises widely distributed proteins exhibiting single, double, or greater multiples of the FTLD, either tandemly arrayed or combined with other structurally and functionally distinct domains, yielding lectin subunits of pleiotropic properties even within a single species. Furthermore, the extraordinary variability of FTL sequences (isoforms that are expressed in a single individual has revealed genetic mechanisms of diversification in ligand recognition that are unique to FTLs. Functions of FTLs in self/non-self-recognition include innate immunity, fertilization, microbial adhesion, and pathogenesis, among others. In addition, although the F-type fold is distinctive for FTLs, a structure-based search revealed apparently unrelated proteins with minor sequence similarity to FTLs that displayed the FTLD fold. In general, the phylogenetic analysis of FTLD sequences from viruses to mammals reveals clades that are consistent with the currently accepted taxonomy of extant species. However, the surprisingly discontinuous distribution of FTLDs within each taxonomic category suggests not only an extensive structural/functional diversification of the FTLs along evolutionary lineages but also that this intriguing lectin family has been subject to frequent gene duplication, secondary loss, lateral transfer, and functional co-option.

  19. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line

    International Nuclear Information System (INIS)

    Hirata, Akira; Higuchi, Masaya; Niinuma, Akiko; Ohashi, Minako; Fukushi, Masaya; Oie, Masayasu; Akiyama, Tetsu; Tanaka, Yuetsu; Gejyo, Fumitake; Fujii, Masahiro

    2004-01-01

    While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

  20. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry.

    Directory of Open Access Journals (Sweden)

    Uma Shankar Sagaram

    Full Text Available MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of β2 and β3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA, a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA.

  1. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  3. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  4. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline.

    Directory of Open Access Journals (Sweden)

    Nima Najand

    Full Text Available We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

  5. Canonical and Noncanonical Sites Determine NPT2A Binding Selectivity to NHERF1 PDZ1.

    Directory of Open Access Journals (Sweden)

    Tatyana Mamonova

    Full Text Available Na+/H+ Exchanger Regulatory Factor-1 (NHERF1 is a scaffolding protein containing 2 PDZ domains that coordinates the assembly and trafficking of transmembrane receptors and ion channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less equivalently to the either PDZ domain, which contain identical core-binding motifs. However some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A, uniquely bind only one PDZ domain. We sought to define the structural determinants responsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By performing all-atom/explicit-solvent molecular dynamics (MD simulations in combination with biological mutagenesis, fluorescent polarization (FP binding assays, and isothermal titration calorimetry (ITC, we found that in addition to canonical interactions of residues at 0 and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in PDZ1 (Glu43Asp and His27Asn decreased binding to NPT2A. Conversely, introduction of Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interactions yielding micromolar KDs. The results describe novel determinants within both the PDZ domain and outside the canonical PDZ-recognition motif that are responsible for discrimination of NPT2A between two PDZ domains. The results challenge general paradigms for PDZ recognition and suggest new targets for drug development.

  6. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  7. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1

    Directory of Open Access Journals (Sweden)

    Ugo Moens

    2017-11-01

    Full Text Available Human polyomavirus 9 (HPyV9 was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20–50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg. Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.

  8. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    Science.gov (United States)

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  9. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  10. Homo sapiens-Specific Binding Site Variants within Brain Exclusive Enhancers Are Subject to Accelerated Divergence across Human Population.

    Science.gov (United States)

    Zehra, Rabail; Abbasi, Amir Ali

    2018-03-01

    Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.

  11. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  12. The kissing-loop motif is a preferred site of 5' leader recombination during replication of SL3-3 murine leukemia viruses in mice

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Mikkelsen, J G; Schmidt, J

    1999-01-01

    , and the upstream part of the 5' untranslated region, enabled us to map recombination sites, guided by distinct scattered nucleotide differences. In 30 of 44 analyzed sequences, recombination was mapped to a 33-nucleotide similarity window coinciding with the kissing-loop stem-loop motif implicated in dimerization...... of the diploid genome. Interestingly, the recombination pattern preference found in replication-competent viruses from T-cell tumors is very similar to the pattern previously reported for retroviral vectors in cell culture experiments. The data therefore sustain the hypothesis that the kissing loop, presumably...

  13. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif

    Directory of Open Access Journals (Sweden)

    Chang Jan-Gowth

    2011-10-01

    Full Text Available Abstract Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser and the hotspot mutation (p.Ala84Thr from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD simulations and normal mode analysis (NMA, we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.

  14. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.

    1984-01-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  15. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  16. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    International Nuclear Information System (INIS)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.; Goberna, R.; Guerrero, J.M.

    1991-01-01

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using [ 125 I]melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37 degree C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of [ 125 I]melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8 fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of [ 125 I]melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the [ 125 I]melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland

  17. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  18. Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires

    DEFF Research Database (Denmark)

    Bergseng, Elin; Dørum, Siri; Arntzen, Magnus Ø.

    2014-01-01

    Celiac disease is caused by intolerance to cereal gluten proteins, and HLA-DQ molecules are involved in the disease pathogenesis by presentation of gluten peptides to CD4+ T cells. The α- or β-chain sharing HLA molecules DQ2.5, DQ2.2, and DQ7.5 display different risks for the disease...... established binding motifs. The binding motif of DQ2.2 was strikingly different from that of DQ2.5 with position P3 being a major anchor having a preference for threonine and serine. This is notable as three recently identified epitopes of gluten recognized by T cells of DQ2.2 celiac patients harbor serine...... at position P3. This study demonstrates that relative quantitative comparison of endogenous peptides sampled from our protein metabolism by HLA molecules provides clues to understand HLA association with disease....

  19. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  20. 8-anilino-1-naphthaline sulfonate binds at the hemoglobin allosteric regulatory sites: inhibitory analyses

    International Nuclear Information System (INIS)

    Bokut', S.B.; Parul', D.A.; Yachnik, N.N.; Milyutin, A.A.

    2001-01-01

    The present study focused on the localization at least one of the ANS binding sites in the major form of human hemoglobin HbA. High-resolution docking predict ANS binding to the hemoglobin central cavity. Steady-state fluorescence titration data obtained in the absence/presence of natural effector inositol hexaphosphate (IHP) allowed to conclude that IHP competitively inhibited ANS binding to HbA. Thus, we must conclude that one of the ANS binding sites is central cavity, which makes it possible to monitor changes at this region upon ligation/deligation, effector binding and changes in hemoglobin structure

  1. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study.

    Directory of Open Access Journals (Sweden)

    Wolfgang Klein

    Full Text Available The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity.

  2. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    Science.gov (United States)

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  3. Cu(II) Binding to the Peptide Ala-His-His, a Chimera of the Canonical Cu(II)-Binding Motifs Xxx-His and Xxx-Zzz-His.

    Science.gov (United States)

    Gonzalez, Paulina; Vileno, Bertrand; Bossak, Karolina; El Khoury, Youssef; Hellwig, Petra; Bal, Wojciech; Hureau, Christelle; Faller, Peter

    2017-12-18

    Peptides and proteins with the N-terminal motifs NH 2 -Xxx-His and NH 2 -Xxx-Zzz-His form well-established Cu(II) complexes. The canonical peptides are Gly-His-Lys and Asp-Ala-His-Lys (from the wound healing factor and human serum albumin, respectively). Cu(II) is bound to NH 2 -Xxx-His via three nitrogens from the peptide and an external ligand in the equatorial plane (called 3N form here). In contrast, Cu(II) is bound to NH 2 -Xxx-Zzz-His via four nitrogens from the peptide in the equatorial plane (called 4N form here). These two motifs are not mutually exclusive, as the peptides with the sequence NH 2 -Xxx-His-His contain both of them. However, this chimera has never been fully explored. In this work, we use a multispectroscopic approach to analyze the Cu(II) binding to the chimeric peptide Ala-His-His (AHH). AHH is capable of forming the 3N- and 4N-type complexes in a pH dependent manner. The 3N form predominates at pH ∼ 4-6.5 and the 4N form at ∼ pH 6.5-10. NMR experiments showed that at pH 8.5, where Cu(II) is almost exclusively bound in the 4N form, the Cu(II)-exchange between AHH or the amidated AHH-NH 2 is fast, in comparison to the nonchimeric 4N form (AAH). Together, the results show that the chimeric AHH can access both Cu(II) coordination types, that minor changes in the second (or further) coordination sphere can impact considerably the equilibrium between the forms, and that Cu kinetic exchange is fast even when Cu-AHH is mainly in the 4N form.

  4. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.

    Science.gov (United States)

    He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2013-02-15

    The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.

  6. Evidence for a non-opioid sigma binding site din the guinea-pig myenteric plexus

    International Nuclear Information System (INIS)

    Roman, F.; Pascaud, X.; Vauche, D.; Junien, J.

    1988-01-01

    The presence of a binding site to (+)-( 3 H)SKF 10,047 was demonstrated in a guinea-pig myenteric plexus (MYP) membrane preparation. Specific binding to this receptor was saturable, reversible, linear with protein concentration and consisted of two components, a high affinity site and a low affinity site. Morphine and naloxone 10 -4 M were unable to displace (+)-( 3 H)SKF 10,047 binding. Haloperidol, imipramine, ethylketocyclazocine and propranolol were among the most potent compounds to inhibit this specific binding. These results suggest the presence of a non-opioid haloperidol sensitive sigma receptor in the MYP of the guinea-pig

  7. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  8. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein

    Science.gov (United States)

    Marsh, Elizabeth K.; Delury, Craig P.; Davies, Nicholas J.; Weston, Christopher J.; Miah, Mohammed A.L.; Banks, Lawrence; Parish, Joanna L.

    2017-01-01

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification. PMID:28061478

  10. [Regulatory effect and mechanism of RNA binding motif protein 38 on the expression of progesterone receptor in human breast cancer ZR-75-1 cells].

    Science.gov (United States)

    Lou, P P; Li, C L; Xia, T S; Shi, L; Wu, J; Zhou, X J; Wang, Y; Ding, Q

    2016-06-23

    To investigate the regulatory mechanism of RNA binding motif protein 38 (RNPC1) on the expression of progesterone receptor (PR) in breast cancer cell line ZR-75-1. Lentiviral vector was used to induce overexpression of RNPC1 in ZR-75-1 cells. qRT-PCR and Western blot were used to assess the regulatory effect of RNPC1 on PR expression. Actinomycin was used to detect the regulatory mechanism involved. Immunohistochemical (IHC) staining was used to determine the protein expression of RNPC1 and PR in 80 breast cancer tissues. IHC staining showed that the expression of RNPC1 was significantly higher in the PR positive breast cancer tissues than that in the PR negative breast cancer tissues (P<0.05). The qRT-PCR results showed that overexpression of RNPC1 in ZR-75-1 cells significantly upregulated the mRNA level of PR (1.764±0.028 vs. 1.001±0.037, P<0.01), whereas knockdown of RNPC1 did the opposite (0.579± 0.007 vs. 1.000±0.002, P<0.01). The Western blot results also showed that overexpression of RNPC1 up-regulated PR levels, while knockdown of RNPC1 resulted in down-regulation of PR levels in the ZR-75-1 cells.The actinomycin assay showed that overexpression of RNPC1 increased the mRNA stability of PR. The half-life of PR mRNA was increased from 4.0 h to 6.5 h. Knockdown of RNPC1 decreased the mRNA stability of PR and the half-life of PR transcript was decreased from 4.1 h to 3.0 h. RNPC1 plays a crucial role in regulating the expression of PR in breast cancer ZR-75-1 cells.

  11. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    Science.gov (United States)

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  12. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    Science.gov (United States)

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming. Published by Elsevier Inc.

  13. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    ]ouabain-binding-site concentration in the diaphragm, but in the heart ventricles, the K+-dependent 3-O-methylfluorescein phosphatase activity increased by 20% (P less than 0.001). Muscle inactivity induced by denervation, plaster immobilisation or tenotomy reduced the [3H]ouabain-binding-site concentration by 20-30% (P less than 0...

  14. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor...

  15. GABAA [gamma-aminobutyric acid] type binding sites on membranes of spermatozoa

    International Nuclear Information System (INIS)

    Erdoe, S.L.; Wekerle, L.

    1990-01-01

    The binding of [ 3 H] gamma-aminobutyric acid (GABA) to seminal membranes of swines and rams was examined. Specific, GABA binding was demonstrated in both species, which showed the features of GABA A type receptors. The affinity of binding was similar in both species, whereas the density of seminal GABA binding sites was 5 times higher in swine. Our findings suggest that GABA may have a direct effect on spermatozoa

  16. Mcm1p binding sites in ARG1 positively regulate Gcn4p binding and SWI/SNF recruitment

    OpenAIRE

    Yoon, Sungpil; Hinnebusch, Alan G.

    2009-01-01

    Transcription of the arginine biosynthetic gene ARG1 is activated by Gcn4p, a transcription factor induced by starvation for any amino acid. Previously we showed that Gcn4p binding stimulates the recruitment of Mcm1p and co-activator SWI/SNF to ARG1 in cells via Gcn4p induction through amino acid starvation. Here we report that Gcn4p binding is reduced by point mutations of the Mcm1p binding site and increased by overexpression of Mcm1p. This result suggests that Mcm1p plays a positive role i...

  17. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  18. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Lactococcus lactis TrxD represents a subgroup of thioredoxins prevalent in Gram-positive bacteria containing WCXDC active site motifs

    DEFF Research Database (Denmark)

    Björnberg, Olof; Efler, Petr; Epie, Denis Ebong

    2014-01-01

    Three protein disulfide reductases of the thioredoxin superfamily from the industrially important Gram-positive Lactococcus lactis (LlTrxA, LlTrxD and LlNrdH) are compared to the "classical" thioredoxin from Escherichia coil (EcTrx1). LlTrxA resembles EcTrx1 with a WCGPC active site motif and other...... capacity to reduce insulin disulfides and their exposed active site thiol is alkylated at a similar rate at pH 7.0. LlTrxD on the other hand, is alkylated by iodoacetamide at almost 100 fold higher rate and shows no activity towards insulin disulfides. LlTrxA, LlTrxD and L1NrdH are all efficiently reduced...

  20. Involvement of a putative substrate binding site in the biogenesis and assembly of phosphatidylserine decarboxylase 1 from Saccharomyces cerevisiae.

    Science.gov (United States)

    Di Bartolomeo, Francesca; Doan, Kim Nguyen; Athenstaedt, Karin; Becker, Thomas; Daum, Günther

    2017-07-01

    In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a β-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Characterization of [3H] oxymorphone binding sites in mouse brain

    DEFF Research Database (Denmark)

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza

    2017-01-01

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear....... This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [3H]oxymorphone revealed high affinity binding sites in mouse......]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [3H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP...

  3. Binding of C-reactive protein to human polymorphonuclear leukocytes: evidence for association of binding sites with Fc receptors

    International Nuclear Information System (INIS)

    Mueller, H.; Fehr, J.

    1986-01-01

    The functional similarities between C-reactive protein (CRP) and IgG raised the question as to whether human phagocytes are stimulated by CRP in the same way as by binding of antigen-complexes or aggregated IgG to their Fc receptors. Studies with the use of highly purified 125 I-labeled CRP showed specific and saturable binding to human polymorphonuclear leukocytes (PNM) with a K/sub D/ of 10.5 +/- 5.7 x 10 -8 M only when carried out in heat-inactivated plasma. The number of specific binding sites per cell was estimated at 1 to 3 x 10 6 . Competitive inhibition of CRP binding by antigen-complexed or aggregated IgG suggests CRP binding sites to be associated IgG suggests CRP binding sites to be associated with PMN Fc receptors. Only when assayed in heat-inactivated plasma did CRP binding induce adherence of cells to tissue culture dishes. However, no metabolic and potentially cytotoxic simulation of PMN was detected during CRP plasma-dependent attachment to surfaces: induction of aggregation, release of secondary granule constituents, and activation of the hexose monophosphate pathway were not observed. These results imply that CRP-PMN interactions is dependent on an additional factor present in heat-inactivated plasma and is followed only by a complement-independent increase in PMN attachment to surfaces. Because CRP was found to be deposits at sites of tissue injury, the CRP-mediated adherence of PMN may be an important step in localizing an inflammatory focus

  4. Autoradiographic localization of peptide YY and neuropeptide Y binding sites in the medulla oblongata

    International Nuclear Information System (INIS)

    Leslie, R.A.; McDonald, T.J.; Robertson, H.A.

    1988-01-01

    Peptide YY is a highly potent emetic when given intravenously in dogs. We hypothesized that the area postrema, a small brain stem nucleus that acts as a chemoreceptive trigger zone for vomiting and lies outside the blood-brain barrier, might have receptors that PYY would bind to, in order to mediate the emetic response. We prepared [ 125 I]PYY and used autoradiography to show that high affinity binding sites for this ligand were highly localized in the area postrema and related nuclei of the dog medulla oblongata. Furthermore, the distribution of [ 125 I]PYY binding sites in the rat medulla oblongata was very similar to that in the dog; the distribution of [ 125 I]PYY binding sites throughout the rat brain was seen to be similar to the distribution of [ 125 I]NPY binding sites

  5. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  6. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data.

    Science.gov (United States)

    Bottini, Silvia; Hamouda-Tekaya, Nedra; Tanasa, Bogdan; Zaragosi, Laure-Emmanuelle; Grandjean, Valerie; Repetto, Emanuela; Trabucchi, Michele

    2017-05-19

    Experimental evidence indicates that about 60% of miRNA-binding activity does not follow the canonical rule about the seed matching between miRNA and target mRNAs, but rather a non-canonical miRNA targeting activity outside the seed or with a seed-like motifs. Here, we propose a new unbiased method to identify canonical and non-canonical miRNA-binding sites from peaks identified by Ago2 Cross-Linked ImmunoPrecipitation associated to high-throughput sequencing (CLIP-seq). Since the quality of peaks is of pivotal importance for the final output of the proposed method, we provide a comprehensive benchmarking of four peak detection programs, namely CIMS, PIPE-CLIP, Piranha and Pyicoclip, on four publicly available Ago2-HITS-CLIP datasets and one unpublished in-house Ago2-dataset in stem cells. We measured the sensitivity, the specificity and the position accuracy toward miRNA binding sites identification, and the agreement with TargetScan. Secondly, we developed a new pipeline, called miRBShunter, to identify canonical and non-canonical miRNA-binding sites based on de novo motif identification from Ago2 peaks and prediction of miRNA::RNA heteroduplexes. miRBShunter was tested and experimentally validated on the in-house Ago2-dataset and on an Ago2-PAR-CLIP dataset in human stem cells. Overall, we provide guidelines to choose a suitable peak detection program and a new method for miRNA-target identification. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  8. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    Science.gov (United States)

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  10. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  11. Spectrometric study of the folding process of i-motif-forming DNA sequences upstream of the c-kit transcription initiation site

    International Nuclear Information System (INIS)

    Bucek, Pavel; Gargallo, Raimundo; Kudrev, Andrei

    2010-01-01

    The c-kit oncogene shows a cytosine-rich DNA region upstream of the transcription initiation site which forms an i-motif structure at slightly acidic pH values (Bucek et al. ). In the present study, the pH-induced formation of i-motif - forming sequences 5'-CCC CTC CCT CGC GCC CGC CCG-3' (ckitC1, native), 5'-CCC TTC CCT TGT GCC CGC CCG-3' (ckitC2) and 5'-CCCTT CCC TTTTT CCC T CCC T-3' (ckitC3) was studied by spectroscopic techniques, such as UV molecular absorption and circular dichroism (CD), in tandem with two multivariate data analysis methods, the hard modelling-based matrix method and the soft modelling-based MCR-ALS approach. Use of the hard chemical modelling enabled us to propose the equilibrium model, which describes spectral changes as functions of solution acidity. Additionally, the intrinsic protonation constant, K in , and the cooperativity parameters, ω c , and ω a , were calculated from the fitting procedure of the coupled CD and molecular absorption spectra. In the case of ckitC2 and ckitC3, the hard model correctly reproduced the spectral variations observed experimentally. The results indicated that folding was accompanied by a cooperative process, i.e. the enhancement of protonated structure stability upon protonation. In contrast, unfolding was accompanied by an anticooperative process. Finally, folding of the native sequence, ckitC1, seemed to follow a more complex mechanism.

  12. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  13. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.

    Science.gov (United States)

    Parca, Luca; Ferré, Fabrizio; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2013-07-01

    Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.

  14. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  15. Location and nature of calcium-binding sites in salivary acidic proline-rich phosphoproteins

    International Nuclear Information System (INIS)

    Bennick, A.; McLaughlin, A.C.; Grey, A.A.; Madapallimattam, G.

    1981-01-01

    The location of the calcium-binding sites in the human acidic proline-rich proteins, salivary proteins A and C, was determined by equilibrium dialysis of the tryptic peptides with buffers containing 45 Ca. All the calcium-binding sites are located in the NH 2 -terminal tryptic peptide (TX peptide). The nature of the calcium binding sites in the TX peptide and native salivary proteins A and C, as well as dephosphorylated proteins was compared. Two types of sites can be distinguished in peptide TX. Type I sites have an apparent dissociation constant (K) of 38 μM and are responsible for the binding of 2.6 mol of Ca/mol of peptide. The corresponding figures for Type II sites are 780 μM and 5.3 mol of Ca/mol of peptide. In the native proteins, the amount of calcium bound at the type II sites decreases to 3.9 mol of Ca/mol of proteins A and C and K increases to 1100 μM. The amount of calcium bound at type I sites decreases to 1.5 mol/mol of protein A and 0.6 mol/mol of protein C, but there is no change in K. Dephosphorylation affects the calcium binding at both types of sites. The experiments indicate that the COOH-terminal parts of the native proteins affect the number and the nature of the protein calcium-binding sites. Proton and phosphorous NMR data demonstrate that β-COOH in aspartic acid, as well as phosphoserine, are part of the calcium-binding sites. The difference in calcium binding to salivary proteins A and C may be due at least partially to differences in the environment of one or more aspartic acids

  16. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  17. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  18. Identification of a common single nucleotide polymorphism at the primer binding site of D2S1360 that causes heterozygote peak imbalance when using the Investigator HDplex Kit.

    Science.gov (United States)

    Inokuchi, Shota; Yamashita, Yasuhiro; Nishimura, Kazuma; Nakanishi, Hiroaki; Saito, Kazuyuki

    2017-11-01

    Phenomena known as null alleles and peak imbalance can occur because of mutations in the primer binding sites used for DNA typing. In these cases, an accurate statistical evaluation of DNA typing is difficult. The estimated likelihood ratio is incorrectly calculated because of the null allele and allele dropout caused by mutation-induced peak imbalance. Although a number of studies have attempted to uncover examples of these phenomena, few reports are available on the human identification kit manufactured by Qiagen. In this study, 196 Japanese individuals who were heterozygous at D2S1360 were genotyped using an Investigator HDplex Kit with optimal amounts of DNA. A peak imbalance was frequently observed at the D2S1360 locus. We performed a sequencing analysis of the area surrounding the D2S1360 repeat motif to identify the cause for peak imbalance. A point mutation (G>A transition) 136 nucleotides upstream from the D2S1360 repeat motif was discovered in a number of samples. The allele frequency of the mutation was 0.0566 in the Japanese population. Therefore, human identification or kinship testing using the Investigator HDplex Kit requires caution because of the higher frequency of single nucleotide polymorphisms at the primer binding site of D2S1360 locus in the Japanese population.

  19. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  20. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments? ?Electronic supplementary information (ESI) available: Peptide synthesis, full experimental procedures and analytical data of the peptides and products obtained. See DOI: 10.1039/c5sc01415h Click here for additional data file.

    OpenAIRE

    Rodr?guez, J?ssica; Mosquera, Jes?s; Couceiro, Jose R.; V?zquez, M. Eugenio; Mascare?as, Jos? L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates.

  1. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  2. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    Energy Technology Data Exchange (ETDEWEB)

    Makyio, Hisayoshi [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Shimabukuro, Junpei; Suzuki, Tatsuya [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Imamura, Akihiro; Ishida, Hideharu [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Kiso, Makoto [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ando, Hiromune, E-mail: hando@gifu-u.ac.jp [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kato, Ryuichi, E-mail: ryuichi.kato@kek.jp [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  3. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system

    International Nuclear Information System (INIS)

    Greenamyre, J.T.; Young, A.B.; Penney, J.B.

    1984-01-01

    Quantitative autoradiography was used to determine the distribution of L-[3H]glutamate-binding sites in the rat central nervous system. Autoradiography was carried out in the presence of Cl- and Ca2+ ions. Scatchard plots and Hill coefficients of glutamate binding suggested that glutamate was interacting with a single population of sites having a K-D of about 300 nM and a capacity of 14.5 pmol/mg of protein. In displacement studies, ibotenate also appeared to bind to a single class of non-interacting sites with a KI of 28 microM. However, quisqualate displacement of [3H]glutamate binding revealed two well-resolved sites with KIS of 12 nM and 114 microM in striatum. These sites were unevenly distributed, representing different proportions of specific glutamate binding in different brain regions. The distribution of glutamate-binding sites correlated very well with the projection areas of putative glutamatergic pathways. This technique provides an extremely sensitive assay which can be used to gather detailed pharmacological and anatomical information about L-[3H]glutamate binding in the central nervous system

  4. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    International Nuclear Information System (INIS)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-01-01

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  5. Motif enrichment tool.

    Science.gov (United States)

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Quantitative autoradiography of [3H]ouabain binding sites in rat brain

    International Nuclear Information System (INIS)

    Spyropoulos, A.C.; Rainbow, T.C.

    1984-01-01

    In vitro quantitative autoradiography was used to localize in rat brain binding sites for [ 3 H]ouabain, an inhibitor of the Na + ,K + -ATPase. High levels of [ 3 H]ouabain sites were found in the superior and inferior colliculi, the mammillary nucleus, the interpeduncular nucleus, and in various divisions of the olfactory, auditory and somatomotor systems. The heterogeneous distribution of [ 3 H]ouabain binding closely parallels the regional brain glucose consumption as determined by the [ 14 C]deoxyglucose method. Lesion studies of the rat hippocampus using the excitotoxin, ibotenic acid, showed both a marked decrease of neuronal cell types on the injected side and a corresponding decrease in [ 3 H]ouabain binding, indicating that some of the [ 3 H]ouabain binding sites are localized to neurons. The close correlation between [ 3 H]ouabain binding and regional glucose utilization provides further evidence for a linkage between glucose utilization and the neuronal Na + ,K + -ATPase. (Auth.)

  7. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward

    2014-01-01

    Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to...... that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms....

  8. Photoaffinity studies of the tubulin-colchicine binding site

    International Nuclear Information System (INIS)

    Hahn, K.M.

    1987-01-01

    A variety of colchicine derivatives were synthesized and coupled with 3,3,3-trifluoro-2-diazapropionyl chloride (TFDP-Cl) to produce colchicine photoaffinity analogs for use in tubulin labelling studies. Photoaffinity analogs of allocolchicine and podophylotoxin were also made using the same photoreactive moiety. Several labels were found to be effective inhibitors of tubulin polymerization. The approximate tubulin binding constants of the labels, calculated from polymerization inhibition data, varied between 2.2 x 10 5 to 2.5 x 10 3 M -1 . The labels chosen for use in tubulin labelling experiments were (N-TFDP) deacetyl-thiocolchicine 1, (O-TFDP)thiocolchifoline 2, and (O-TFDP)-2-demethylthiocolchicine 3. Compound 1 was found to bind tubulin reversibly and to competitively inhibit colchicine binding. Methods for the incorporation of tritium and 14 C in these labels were developed. Conditions were found which caused labels to insert into solvent without photorearrangement of the colchicine skeleton. Catalytic base caused the α-diazo amide of 1 to rearrange to a triazole

  9. Europium ion as a probe for binding sites to carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil); Zaniquelli, Maria Elisabete D. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil)], E-mail: medzaniquelli@ffclrp.usp.br; Wong, Kenneth [Laboratorio de Fisico-Quimica, Centro de Pesquisas de Paulinia, Rhodia Brasil, Paulinia, Sao Paulo (Brazil)

    2007-12-15

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu{sup 3+}/Na{sup +} or K{sup +} with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan.

  10. Europium ion as a probe for binding sites to carrageenans

    International Nuclear Information System (INIS)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A.; Zaniquelli, Maria Elisabete D.; Wong, Kenneth

    2007-01-01

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu 3+ /Na + or K + with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan

  11. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  12. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  13. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    Corp, E.S.; Woods, S.C.; Figlewicz, D.P.; Porte, D. Jr.; Baskin, D.G.; Dorsa, D.M.

    1986-01-01

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125 I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  14. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    Energy Technology Data Exchange (ETDEWEB)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-09-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples.

  15. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    International Nuclear Information System (INIS)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-01-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples

  16. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...

  17. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    Science.gov (United States)

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  18. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  19. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  20. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    Science.gov (United States)

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  1. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  2. DNA Binding Drugs Targeting the Regulatory DNA Binding Site of the ETS Domain Family Transcription Factor Associated With Human Breast Cancer

    National Research Council Canada - National Science Library

    Wang, Yong-Dong

    1999-01-01

    .... The key approach is to prevent the binding of two transcription factors, ESX and AP-2, to the consensus DNA binding sites contained within the Her2/neu promoter resulting in inhibition of transcription factor function...

  3. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  4. Identification of an allosteric binding site for RORγt inhibition

    NARCIS (Netherlands)

    Scheepstra, M.; Leysen, S.; van Almen, G.; Miller, J.R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S.M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B.W.; Stelt, van der M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L.

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of

  5. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  6. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  7. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair.

    Science.gov (United States)

    Warbrick, E; Lane, D P; Glover, D M; Cox, L S

    1997-05-15

    Following genomic damage, the cessation of DNA replication is co-ordinated with onset of DNA repair; this co-ordination is essential to avoid mutation and genomic instability. To investigate these phenomena, we have analysed proteins that interact with PCNA, which is required for both DNA replication and repair. One such protein is p21Cip1, which inhibits DNA replication through its interaction with PCNA, while allowing repair to continue. We have identified an interaction between PCNA and the structure specific nuclease, Fen1, which is involved in DNA replication. Deletion analysis suggests that p21Cip1 and Fen1 bind to the same region of PCNA. Within Fen1 and its homologues a small region (10 amino acids) is sufficient for PCNA binding, which contains an 8 amino acid conserved PCNA-binding motif. This motif shares critical residues with the PCNA-binding region of p21Cip1. A PCNA binding peptide from p21Cip1 competes with Fen1 peptides for binding to PCNA, disrupts the Fen1-PCNA complex in replicating cell extracts, and concomitantly inhibits DNA synthesis. Competition between homologous regions of Fen1 and p21Cip1 for binding to the same site on PCNA may provide a mechanism to co-ordinate the functions of PCNA in DNA replication and repair.

  8. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    Science.gov (United States)

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2018-02-01

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  9. CONREAL web server: identification and visualization of conserved transcription factor binding sites

    NARCIS (Netherlands)

    Berezikov, E.; Guryev, V.; Cuppen, E.

    2005-01-01

    The use of orthologous sequences and phylogenetic footprinting approaches have become popular for the recognition of conserved and potentially functional sequences. Several algorithms have been developed for the identification of conserved transcription factor binding sites (TFBSs), which are

  10. Three-dimensional binding sites volume assessment during cardiac pacing lead extraction

    Directory of Open Access Journals (Sweden)

    Bich Lien Nguyen

    2015-07-01

    Conclusions: Real-time 3D binding sites assessment is feasible and improves transvenous lead extraction outcomes. Its role as a complementary information requires extensive validation, and might be beneficial for a tailored strategy.

  11. Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle

    International Nuclear Information System (INIS)

    Nicosia, S.; Crowley, H.J.; Oliva, D.; Welton, A.F.

    1984-01-01

    Leutriene (LTC4) is one of the components of Slow Reacting Substance of Anaphylaxis (SRS-A) and is a potent constrictor of guinea pig ilea. The contraction is likely to be a receptor-mediated process. Here the authors report the existence of specific binding sites for 3 H-LTC4 in a crude membrane preparation from guinea pig ileal longitudinal muscle. At 4 degrees C in the presence of 20 mM Serine-borate, binding increases linearly with protein concentration, reaches equilibrium in 10 minutes, and is reversible upon addition of 3 x 10(-5) M unlabelled LTC4. The dissociation curve is consistent with the existence of more than one class of binding site. Ca++ and Mg++ greatly enhance the binding of 3 H-LTC4 at equilibrium. In the presence of 5 mM CaCl 2 and MgCl 2 not only LTC4 (IC50 10(-7)M), but also LTD4 and the SRS-A antagonist FPL 55712 can compete with 3 H-LTC4 for its binding sites. FPL 55712 only displaces 60-70% of the total amount bound, while LTC4 displaces 90-95%. These studies indicate that multiple classes of binding sites exist for 3 H-LTC4 in guinea pig ileal longitudinal muscle, and that at least part of these binding sites might be related to the ability of LTC4 to contract guinea pig ilea

  12. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    Santos, Raquel Gouvea dos; Diniz, Carlos Roberto; Nascimento, Marta Cordeiro; Lima, Maria Elena de

    1996-01-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ( 125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na 125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10 -10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  13. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro

    International Nuclear Information System (INIS)

    Leysen, J.E.

    1981-01-01

    In vitro binding studies to serotoninergic receptors were performed using 3 H-LSD, 3 H-5-HT and 3 H-spiperone. An overwiew is given on findings using these three ligands with respect to the following: localization of specific binding sites, in various animal species, the regional distribution in the brain and periphery, the subcellular and cellular distribution. Properties of the binding sites, influence of the composition of the assay medium, binding kinetic properties, receptor regulation in vivo. Identity of the binding sites, differences between site for various 3 H-ligands, pharmacological specificity of the membranous binding sites, chemical composition of the macromolecular complex constituting the binding site. Function of the receptor. Binding affinities of 44 compounds were measured in binding assays using 3 H-spiperone and 3 H-LSD with rat frontal cortex membrane preparations and using 3 H-5-HT and 3 H-LSD with rat hippocampal membrane preparations

  14. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    Science.gov (United States)

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  15. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    Schmitz, G.; Wulf, G.; Bruening, T.A.; Assmann, G.

    1987-01-01

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125 I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125 I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125 I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  16. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    Science.gov (United States)

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  17. High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    International Nuclear Information System (INIS)

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D.

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea [3H] glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of [3H] glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer [3H]glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of [3H]glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats

  18. PocketMatch: A new algorithm to compare binding sites in protein structures

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma

    2008-12-01

    Full Text Available Abstract Background Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that

  19. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  20. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  1. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  2. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density

    Science.gov (United States)

    Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.

    2015-01-01

    The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299

  3. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  4. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux.

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    Full Text Available Caveolin-1 (Cav1, a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs derived from wild type (WT or Cav1-deficient (Cav1(-/- animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/- cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/- MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/- cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.

  5. Diversity and evolutionary relationship of nucleotide binding site ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    site-encoding disease-resistance gene analogues in sweet potato. (Ipomoea batatas Lam.) ... terminal domain of the protein, this class of R-genes can be subdivided into TIR ... from young leaflets using the modified 2.0% (w/v) cetyl trimethyl ...

  6. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin.

    Directory of Open Access Journals (Sweden)

    Keishi Yamasaki

    Full Text Available A wide variety of drugs bind to human serum albumin (HSA at its two principal sites, namely site I and site II. A number of reports indicate that drug binding to these two binding sites are not completely independent, and that interactions between ligands of these two discrete sites can play a role. In this study, the effect of the binding of long-chain fatty acids on the interactive binding between dansyl-L-asparagine (DNSA; site I ligand and ibuprofen (site II ligand at pH6.5 was examined. Binding experiments showed that the binding of sodium oleate (Ole to HSA induces conformational changes in the molecule, which, in turn, changes the individual binding of DNSA and ibuprofen, as well as the mode of interaction between these two ligands from a 'competitive-like' allosteric interaction in the case of the defatted HSA conformer to a 'nearly independent' binding in the case of non-defatted HSA conformer. Circular dichroism measurements indicated that ibuprofen and Ole are likely to modify the spatial orientation of DNSA at its binding site. Docking simulations suggest that the long-distance electric repulsion between DNSA and ibuprofen on defatted HSA contributes to a 'competitive-like' allosteric interaction, whereas extending the distance between ligands and/or increasing the flexibility or size of the DNSA binding site in fatted HSA evokes a change in the interaction mode to 'nearly independent' binding. The present findings provide further insights into the structural dynamics of HSA upon the binding of fatty acids, and its effects on drug binding and drug-drug interactions that occur on HSA.

  7. 2[125I]Iodomelatonin binding sites in spleens of guinea pigs

    International Nuclear Information System (INIS)

    Poon, A.M.S.; Pang, S.F.

    1992-01-01

    2-[ 125 I]Iodomelatonin was found to bind specifically to the membrane preparations of the spleens of guinea pigs with high affinity. The binding was rapid, stable, saturable and reversible. Scatchard analysis of the binding assays revealed an equilibrium dissociation constant (Kd) of 49.8±4.12 pmol/l and binding site density (Bmax) of 0.69±0.082 fmol/mg protein at mid-light. There was no significant change in the Kd or the Bmax at mid-dark. Kinetic analysis showed a Kd of 23.13±4.81 pmol/l, in agreement to that derived from the saturation studies. The 2-[ 125 I]iodomelatonin binding sites have the following order of potency: 2-iodomelatonin > melatonin > 6-chloromelatonin much-gt N-acetylserotonin, 6-hydroxymelatonin > 5-methoxytryptamine, 5-methoxytryptophol > serotonin, 5-methoxyindole-3-acetic acid > 5-hydroxytryptophol, 3-acetylindole, 1-acetylindole-3-carboxyaldehyde, L-tryptophan > tryptamine, 5-hydroxyindole-3-acetic acid. Differential centrifugation studies showed that the binding sites are localized mainly in the nuclear fracti