WorldWideScience

Sample records for binding protein encoded

  1. Polynucleotides encoding TRF1 binding proteins

    Science.gov (United States)

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  2. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  3. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    2008-01-01

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT ge

  4. Genes encoding FAD-binding proteins in Volvariella volvacea exhibit differential expression in homokaryons and heterokaryons.

    Science.gov (United States)

    Meng, Li; Yan, Junjie; Xie, Baogui; Li, Yu; Chen, Bingzhi; Liu, Shuyan; Li, Dan; Yang, Zhiyun; Zeng, Xiancheng; Deng, Youjin; Jiang, Yuji

    2013-10-01

    Flavin adenine dinucleotide (FAD)-binding proteins play a vital role in energy transfer and utilization during fungal growth and mycelia aggregation. We sequenced the genome of Volvariella volvacea, an economically important edible fungus, and discovered 41 genes encoding FAD-binding proteins. Gene expression profiles revealed that the expression levels of four distinctly differentially expressed genes in heterokaryotic strain H1521 were higher than in homokaryotic strains PYd15 and PYd21 combined. These observations were validated by quantitative real-time PCR. The results suggest that the differential expression of FAD-binding proteins may be important in revealing the distinction between homokaryons and heterokaryons on the basis of FAD-binding protein functionality.

  5. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel;

    2015-01-01

    IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...... at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...

  6. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  7. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins

    Directory of Open Access Journals (Sweden)

    André Zapun

    2016-09-01

    Full Text Available Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP, in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.

  8. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes.

    Science.gov (United States)

    Nakashima, K; Nobuhisa, I; Deshimaru, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, M; Sakaki, Y; Hattori, S; Ohno, M

    1995-01-23

    A cDNA encoding the Trimeresurus gramineus (Tg; green habu snake) TATA-box-binding protein (TgTBP) was cloned and sequenced. The cDNA encodes a 33-kDa protein with an extensive sequence similarity to those derived from other organisms, except for the N-terminal domain. Genes encoding TgTBP and Trimeresurus flavoviridis (Tf; habu snake) TBP (TfTBP) were isolated using a TgTBP cDNA and their nt sequences were determined. They are the first TBP genes entirely sequenced in higher animals. Both genes span over 15 kb and are constructed from eight exons and seven introns. Comparison of the loci of introns on the aligned amino-acid sequences of TBP from six organisms (Tg, Tf, mouse, Arabidopsis thaliana, Schizosaccharomyces pombe and Acanthamoeba castellanii) indicated that there are three highly conserved loci in the C-terminal domain.

  9. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  10. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    NARCIS (Netherlands)

    Jain, Samta; Zweig, Maria; Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in

  11. Analysis of Genes Encoding Penicillin-Binding Proteins in Clinical Isolates of Acinetobacter baumannii ▿ †

    Science.gov (United States)

    Cayô, Rodrigo; Rodríguez, María-Cruz; Espinal, Paula; Fernández-Cuenca, Felipe; Ocampo-Sosa, Alain A.; Pascual, Álvaro; Ayala, Juan A.; Vila, Jordi; Martínez-Martínez, Luis

    2011-01-01

    There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals. PMID:21947403

  12. Comparative sequence analysis of double stranded RNA binding protein encoding gene of parapoxviruses from Indian camels

    Directory of Open Access Journals (Sweden)

    G. Nagarajan

    2014-03-01

    Full Text Available The dsRNA binding protein (RBP encoding gene of parapoxviruses (PPVs from the Dromedary camels, inhabitating different geographical region of Rajasthan, India were amplified by polymerase chain reaction using the primers of pseudocowpoxvirus (PCPV from Finnish reindeer and cloned into pGEM-T for sequence analysis. Analysis of RBP encoding gene revealed that PPV DNA from Bikaner shared 98.3% and 76.6% sequence identity at the amino acid level, with Pali and Udaipur PPV DNA, respectively. Reference strains of Bovine papular stomatitis virus (BPSV and PCPV (reindeer PCPV and human PCPV shared 52.8% and 86.9% amino acid identity with RBP gene of camel PPVs from Bikaner, respectively. But different strains of orf virus (ORFV from different geographical areas of the world shared 69.5–71.7% amino acid identity with RBP gene of camel PPVs from Bikaner. These findings indicate that the camel PPVs described are closely related to bovine PPV (PCPV in comparison to caprine and ovine PPV (ORFV.

  13. Characterization of the single stranded DNA binding protein SsbB encoded in the Gonoccocal Genetic Island.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available BACKGROUND: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg(2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity. CONCLUSIONS/SIGNIFICANCE: We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.

  14. Facilitated geranylgeranylation of shrimp ras-encoded p25 fusion protein by the binding with guanosine diphosphate.

    Science.gov (United States)

    Huang, C F; Chuang, N N

    1999-05-01

    A cDNA was isolated from the shrimp Penaeus japonicus by homology cloning. Similar to the mammalian Ras proteins, this shrimp hepatopancreas cDNA encodes a 187-residue polypeptide whose predicted amino acid sequence shares 85% homology with mammalian KB-Ras proteins and demonstrates identity in the guanine nucleotide binding domains. Expression of the cDNA of shrimp in Escherichia coli yielded a 25-kDa polypeptide with positive reactivity toward the monoclonal antibodies against Ras of mammals. As judged by nitrocellulose filtration assay, the specific GTP binding activity of ras-encoded p25 fusion protein was approximately 30,000 units/mg of protein, whereas that of GDP was 5,000 units/mg of protein. In other words, the GTP bound form of ras-encoded p25 fusion protein prevails. Fluorography analysis demonstrated that the prenylation of both shrimp Ras-GDP and shrimp Ras-GTP by protein geranylgeranyltransferase I of shrimp Penaeus japonicus exceeded that of nucleotide-free form of Ras by 10-fold and four-fold, respectively. That is, the protein geranylgeranyl transferase I prefers to react with ras-encoded p25 fusion protein in the GDP bound form.

  15. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F

    DEFF Research Database (Denmark)

    Helin, K; Lees, J A; Vidal, M

    1992-01-01

    The retinoblastoma protein (pRB) plays an important role in the control of cell proliferation, apparently by binding to and regulating cellular transcription factors such as E2F. Here we describe the characterization of a cDNA clone that encodes a protein with properties of E2F. This clone, RBP3,...... of RBP3 caused a 10-fold transactivation of the adenovirus E2 promoter, and this transactivation was dependent on the E2F recognition sequences. These properties suggest that RBP3 encodes E2F, or an E2F-like protein....

  16. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    OpenAIRE

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-01-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-bindin...

  17. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Jaana M Jurvansuu

    Full Text Available Transmembrane protein 18 (TMEM18 has previously been connected to cell migration and obesity. However, the molecular function of the protein has not yet been described. Here we show that TMEM18 localises to the nuclear membrane and binds to DNA in a sequence-specific manner. The protein binds DNA with its positively charged C-terminus that contains also a nuclear localisation signal. Increase in the amount of TMEM18 in cells suppresses expression from a reporter vector with the TMEM18 target sequence. TMEM18 is a small protein of 140 residues and is predicted to be mostly alpha-helical with three transmembrane parts. As a consequence the DNA binding by TMEM18 would bring the chromatin very near to nuclear membrane. We speculate that this closed perinuclear localisation of TMEM18-bound DNA might repress transcription from it.

  18. Expression cloning and characterization of a novel gene that encodes the RNA-binding protein FAU-1 from Pyrococcus furiosus.

    Science.gov (United States)

    Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi

    2003-05-15

    We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic.

  19. Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein

    DEFF Research Database (Denmark)

    Elholm, M; Bjerking, G; Knudsen, J

    1996-01-01

    Acyl-CoA-binding protein (ACBP) is an ubiquitously expressed 10-kDa protein which is present in high amounts in cells involved in solute transport or secretion. Rat ACBP is encoded by a gene containing the typical hallmarks of a housekeeping gene. Analysis of the promoter region of the rat ACBP...... gene by electrophoretic mobility shift assay (EMSA) revealed specific binding of proteins from rat liver nuclear extracts to potential recognition sequences of NF-1/CTF, Sp1, AP-1, C/EBP and HNF-3. In addition, specific binding to a DR-1 type element was observed. By using in vitro translated...... for the ACBP DR-1 element. Addition of peroxisome proliferators (PP) to H4IIEC3 rat hepatoma cells led to an increase in the ACBP mRNA level, indicating that the DR-1 element could be a functional peroxisome proliferator responsive element (PPRE). Analysis of the ACBP promoter by transient transfection showed...

  20. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2015-10-01

    There is an unprecedented interest in glycobiology due to the increasing appreciation of its impact on all aspects of life. Likewise, bacteriophage biology is enjoying a new renaissance as the post-antibiotic era fuels the search for novel ways to control harmful bacteria. Phages have spent the last 3 billion years developing ways of recognizing and manipulating bacterial surface glycans. Therefore, phages comprise a massive reservoir of glycan-binding and -hydrolyzing proteins with the potential to be exploited for glycan analysis, bacterial diagnostics and therapeutics. We discuss phage tail proteins that recognize bacterial surface polysaccharides, endolysins that bind and cleave peptidoglycan, Ig-like proteins that attach to mucin glycans, and phage effector proteins that recognize both bacterial and eukaryotic oligosaccharides.

  1. A distinct single-stranded DNA-binding protein encoded by the Lactococcus lactis bacteriophage bIL67.

    Science.gov (United States)

    Szczepanska, Agnieszka K; Bidnenko, Elena; Płochocka, Danuta; McGovern, Stephen; Ehrlich, S Dusko; Bardowski, Jacek; Polard, Patrice; Chopin, Marie-Christine

    2007-06-20

    Single-stranded binding proteins (SSBs) are found to participate in various processes of DNA metabolism in all known organisms. We describe here a SSB protein encoded by the Lactococcus lactis phage bIL67 orf14 gene. It is the first noted attempt at characterizing a SSB protein from a lactococcal phage. The purified Orf14(bIL67) binds unspecifically to ssDNA with the same high affinity as the canonical Bacillus subtilis SSB. Electrophoretic mobility-shift assays performed with mutagenized Orf14(bIL67) protein derivatives suggest that ssDNA-binding occurs via a putative OB-fold structure predicted by three-dimensional modeling. The native Orf14(bIL67) forms homotetramers as determined by gel filtration studies. These results allow distinguishing the first lactococcal phage protein with single-strand binding affinity, which defines a novel cluster of phage SSBs proteins. The possible role of Orf14(bIL67) in phage multiplication cycle is also discussed.

  2. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    Science.gov (United States)

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-08-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene.

  3. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L;

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated...... at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew...

  4. Deletion of potD, encoding a putative spermidine-binding protein, results in a complex phenotype in Legionella pneumophila.

    Science.gov (United States)

    Nasrallah, Gheyath K; Abdelhady, Hany; Tompkins, Nicholas P; Carson, Kaitlyn R; Garduño, Rafael A

    2014-07-01

    L. pneumophila is an intracellular pathogen that replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV). We previously observed that the polyamine spermidine, produced by host cells or added exogenously, enhances the intracellular growth of L. pneumophila. To study this enhancing effect and determine whether polyamines are used as nutrients, we deleted potD from L. pneumophila strain JR32. The gene potD encodes a spermidine-binding protein that in other bacteria is essential for the function of the PotABCD polyamine transporter. Deletion of potD did not affect L. pneumophila growth in vitro in the presence or absence of spermidine and putrescine, suggesting that PotD plays a redundant or no role in polyamine uptake. However, deletion of potD resulted in a puzzlingly complex phenotype that included defects in L. pneumophila's ability to form filaments, tolerate Na(+), associate with macrophages and amoeba, recruit host vesicles to the LCV, and initiate intracellular growth. Moreover, the ΔpotD mutant was completely unable to grow in L929 cells treated with a pharmacological inhibitor of spermidine synthesis. These complex and disparate effects suggest that the L. pneumophila potD encodes either: (i) a multifunctional protein, (ii) a protein that interacts with, or regulates a, multifunctional protein, or (iii) a protein that contributes (directly or indirectly) to a regulatory network. Protein function studies with the L. pneumophila PotD protein are thus warranted.

  5. Identification of genes encoding photoconvertible (Class I) water-soluble chlorophyll-binding proteins from Chenopodium ficifolium.

    Science.gov (United States)

    Takahashi, Shigekazu; Abe, Eriko; Nakayama, Katsumi; Satoh, Hiroyuki

    2015-01-01

    Photoconvertible water-soluble chlorophyll-binding proteins, called Class I WSCPs, have been detected in Chenopodiaceae, Amaranthaceae and Polygonaceae plant species. To date, Chenopodium album WSCP (CaWSCP) is the only cloned gene encoding a Class I WSCP. In this study, we identified two cDNAs encoding Chenopodium ficifolium Class I WSCPs, CfWSCP1, and CfWSCP2. Sequence analyses revealed that the open reading frames of CfWSCP1 and CfWSCP2 were 585 and 588 bp, respectively. Furthermore, both CfWSCPs contain cystein2 and cystein30, which are essential for the chlorophyll-binding ability of CaWSCP. Recombinant CfWSCP1 and CfWSCP2, expressed in Escherichia coli as hexa-histidine fusion proteins (CfWSCP1-His and CfWSCP2-His), formed inclusion bodies; however, we were able to solubilize these using a buffer containing 8 M urea and then refold them by dialysis. The refolded CfWSCP1-His and CfWSCP2-His could bind chlorophylls and exhibited photoconvertibility, confirming that the cloned CfWSCPs are further examples of Class I WSCPs.

  6. Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus.

    Science.gov (United States)

    Martínez-Turiño, Sandra; Hernández, Carmen

    2010-12-01

    Pelargonium flower break virus (PFBV) belongs to the genus Carmovirus (family Tombusviridae) and, as with the remaining members of the group, possesses a monopartite genome of single-stranded, positive-sense RNA that contains five ORFs. The two 5'-proximal ORFs (ORFs 1 and 2) encode two polypeptides of 27 and 86 kDa (p27 and p86), respectively, that show homology with replication proteins. The p27 does not present any motif to explain its presumed involvement in replication, while p86 has the motifs conserved in RNA-dependent RNA polymerases. In this work, we have confirmed the necessity of p27 and p86 for PFBV replication. To gain insights into the function(s) of p27, we have expressed and purified the protein from Escherichia coli and tested its ability to bind RNA in vitro. The results have shown that p27 is able to bind ssRNA with high affinity and in a cooperative fashion and that it is also capable of binding other types of nucleic acids, though to a lesser extent. Additionally, competition experiments suggest that p27 has a preference for PFBV-derived ssRNAs. Using truncated forms of p27, it can be concluded that several regions of the protein contribute to its RNA-binding properties and that this contribution is additive. This study is the first to show nucleic acid-binding ability of the ORF1 product of a carmovirus and the data obtained suggest that this product plays an essential role in selection and recruitment of viral RNA replication templates.

  7. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, E.; Clerc, R.G.

    1988-06-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, which have been characterized. Here the authors report that MRP8 and MRP14 mRNAs are specially expressed in human cells of myeloid origin and that their expression is regulated during monocycle-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, the authors cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100..cap alpha.., S100BETA, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting element responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.

  8. Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy.

    Science.gov (United States)

    Barthelmes, Dominic; Gränz, Markus; Barthelmes, Katja; Allen, Karen N; Imperiali, Barbara; Prisner, Thomas; Schwalbe, Harald

    2015-11-01

    We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1β (IL1β) and measured (1)H, (15)N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the Δχ-tensors associated with each Tm(3+)-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in protein-protein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1β-S2R2 and the respective single-loop-LBT constructs IL1β-S2, IL1β-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd(3+) as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed Electron-Electron Dipolar Resonance.

  9. Expression of cbsA encoding the collagen-binding S-protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    NARCIS (Netherlands)

    Martínez, B.; Sillanpää, J.; Smit, E.; Korhonen, T.K.; Pouwels, P.H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting sig

  10. Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase

    Directory of Open Access Journals (Sweden)

    Klein George

    2002-08-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV infects resting B-lymphocytes and transforms them into immortal proliferating lymphoblastoid cell lines (LCLs in vitro. The transformed immunoblasts may grow up as immunoblastic lymphomas in immuno-suppressed hosts. Results In order to identify cellular protein targets that may be involved in Epstein-Barr virus mediated B-cell transformation, human LCL cDNA library was screened with one of the transformation associated nuclear antigens, EBNA-3 (also called EBNA-3A, using the yeast two-hybrid system. A clone encoding a fragment of a novel human protein was isolated (clone 538. The interaction was confirmed using in vitro binding assays. A full-length cDNA clone (F538 was isolated. Sequence alignment with known proteins and 3D structure predictions suggest that F538 is a novel human uridine kinase/uracil phosphoribosyltransferase. The GFP-F538 fluorescent fusion protein showed a preferentially cytoplasmic distribution but translocated to the nucleus upon co-expression of EBNA-3. A naturally occurring splice variant of F538, that lacks the C-terminal uracil phosphoribosyltransferase part but maintain uridine kinase domain, did not translocate to the nucleus in the presence of EBNA3. Antibody that was raised against the bacterially produced GST-538 protein showed cytoplasmic staining in EBV negative Burkitt lymphomas but gave a predominantly nuclear staining in EBV positive LCL-s and stable transfected cells expressing EBNA-3. Conclusion We suggest that EBNA-3 by direct protein-potein interaction induces the nuclear accumulation of a novel enzyme, that is part of the ribonucleotide salvage pathway. Increased intranuclear levels of UK/UPRT may contribute to the metabolic build-up that is needed for blast transformation and rapid proliferation.

  11. The yeast CDP1 gene encodes a triple-helical DNA-binding protein.

    Science.gov (United States)

    Musso, M; Bianchi-Scarrà, G; Van Dyke, M W

    2000-11-01

    The formation of triple-helical DNA has been implicated in several cellular processes, including transcription, replication and recombination. While there is no direct evidence for triplexes in vivo, cellular proteins that specifically recognize triplex DNA have been described. Using a purine-motif triplex probe and southwestern library screening, we isolated five independent clones expressing the same C-terminal 210 amino acids of the Saccharomyces cerevisiae protein Cdp1p fused with beta-galactosidase. In electrophoretic mobility shift assays, recombinant Cdp1pDelta1-867 bound Pu-motif triplex DNAs with high affinity (K:(d) approximately 5 nM) and bound Py-motif triplex, duplex and single-stranded DNAs with far lower affinity (0.5-5.0 microM). Genetic analyses revealed that the CDP1 gene product was required for proper chromosome segregation. The possible involvement of triplex DNA in this process is discussed.

  12. Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose

    DEFF Research Database (Denmark)

    Mackenzie, A.K.; Pope, P.B.; Pedersen, Henriette Lodberg;

    2012-01-01

    We demonstrate that two characteristic Sus-like proteins encoded within a polysaccharide utilization locus (PUL) bind strongly to cellulosic substrates and interact with plant primary cell walls. This shows associations between uncultured Bacteroidetes-affiliated lineages and cellulose in the rumen...

  13. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Krusell, L; Rasmussen, I; Gausing, K

    1997-01-01

    The homeodomain of the knotted classes of transcription factors from plants differs from the well characterized Antp/En type homeodomains from Drosophila at key amino acid residues contributing to the DNA binding. A cDNA, Hvh21, derived from the hooded gene and encoding a full length homolog...... of knotted1 from maize was isolated from barley seedlings and expressed as a maltose binding protein fusion in E. coli. The purified HvH21-fusion protein selected DNA fragments with 1-3 copies of the sequence TGAC. Gel shift experiments showed that the TGAC element was required for binding and the results...... further indicate that the HvH21-fusion protein binds DNA as a monomer. Udgivelsesdato: 1997-May-12...

  14. Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi.

    Science.gov (United States)

    Hong, Yeon-Chul; Lee, Won-Myung; Kong, Hyun-Hee; Jeong, Hae-Jin; Chung, Dong-Il

    2004-01-01

    Adherence of Acanthamoeba to host tissue is believed to be crucial in the establishment of amoebic keratitis or GAE. We have isolated a cDNA from a GAE-causing gymnoamoeba, Acanthamoeba healyi, encoding a protein that binds laminin by screening with a peptide G-specific DNA probe. The cDNA clone (AhLBP) was identified on the basis of sequence homology to the nonintegrin mammalian metastasis-associated 67-kDa laminin receptor (67-LR). The predicted amino acid sequence is 256 residues long with a calculated molecular mass of 28.2kDa and a theoretical pI of 5.48. Southern and Northern blot analyses suggested the gene as a single copy in A. healyi genome and expressed as a single transcript of approximately 1.0kb. Virulent strains of Acanthamoeba revealed higher level of the AhLBP mRNA expression than soil isolates. Specific binding of the purified recombinant protein to laminin was confirmed by sandwich Western blot. The polypeptide encoded by AhLBP shared substantial identity with the acidic class ribosomal proteins involved in protein synthesis. Therefore, the AhLBP may be multifunctional in A. healyi, acting as a laminin-binding molecule but also playing a role in cell division and growth. AhLBP-EGFP fusion protein expressed in A. healyi was localized mainly at the cell membrane and nucleus and at cytoplasm with lesser degree. N-terminal 64 amino acids were important for the localization at the cell membrane. This is the first description of a cDNA encoding a laminin-binding protein from protozoan parasites.

  15. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  16. Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanine nucleotide triphosphate-binding motif

    Energy Technology Data Exchange (ETDEWEB)

    Carlow, D.A.; Teh, H.S.; Marth, J. [Univ. of British Columbia, Vancouver (Canada)] [and others

    1995-02-15

    In this study, we describe a novel full length cDNA clone designated Tgtp that encodes a predicted 415-amino acid a T cell-specific guanine nucleotide triphosphate-binding protein (TGTP) bearing the characteristic motifs of a guanine nucleotide triphosphate (GTP) binding protein. Tgtp is expressed preferentially, if not exclusively, in T cells, and is up-regulated in both unfractionated and in purified CD4{sup +}8{sup +} thymocytes upon TCR cross-linking. In contrast, expression of Tgtp in peripheral T cells is maintained at relatively high levels and is not grossly affected by TCR cross-linking. Antiserum generated against synthetic peptides from the predicted TGTP amino acid sequence recognized a single protein with a molecular mass of {approx}50 kDa, corresponding well with the computed molecular mass of 47 kDa. The only known relative of Tgtp is MUSGTP, which is reportedly expressed in B cells and bears a GTP binding motif. Thus, the discovery of Tgtp resolves a subfamily of molecules with GTP binding motifs and apparent lymphoid lineage-restricted expression. Given the restricted expression pattern in T cells, the up-regulated expression observed in response to TCR signaling in immature thymocytes, and the presence of the motifs characteristic of GTP binding proteins, we suggest that TGTP may have an important function in T cell development and/or T cell activation. 51 refs., 6 figs.

  17. Cloning and molecular characterization of the salt-regulated jojoba ScRab cDNA encoding a small GTP-binding protein.

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2002-10-01

    Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.

  18. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  19. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Matthew K., E-mail: mkh20@cam.ac.uk [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom)

    2008-03-01

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way.

  20. Smoking and polymorphisms of genes encoding mannose-binding lectin and surfactant protein-D in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Kristiansen, Malthe; Frisch, Morten; Madsen, Hans Ole;

    2014-01-01

    To investigate whether polymorphisms in genes coding for mannose-binding lectin (MBL) and surfactant protein-D (SP-D) are associated directly or by interaction with smoking with rheumatoid arthritis (RA), anti-citrullinated peptide antibody (ACPA) positive RA, and erosive RA. MBL2 genotypes, SFTPD...... genotype at codon 11, and HLA-shared epitope were determined in 456 patients with rheumatoid arthritis and 533 sex- and age-matched controls. Patients were grouped according to the presence of ACPA antibodies and RA-associated bone erosions and sub-stratified according to smoking status as never or ever...

  1. Molecular Characterization and Sequencing of a Gene Encoding Mannose Binding Protein in an Iranian Isolate of Acanthamoeba castellanii as a Major Agent of Acanthamoeba Keratitis

    Directory of Open Access Journals (Sweden)

    SH Farnia

    2008-07-01

    Full Text Available Background: Acanthamoeba castellanii is the important cause of amoebic keratitis in Iran. The key molecule in pathogenesis of Acanthamoeba keratitis is Mannose Binding Protein (MBP led to adhesion of amoeba to corneal epithelium. Subsequent to adhesion other cytopathic effects occur. The goal of this study was to identify the molecular characterization of a gene encoding MBP in an Iranian isolate of A.castellanii in order to pave the way for further investigations such as new therapeutic advances or immunization. Methods: A.castellanii was cultured on non nutrient agar. Extraction of DNA was performed by phenol-chloroform method. After designing a pair of primer for the gene encoding MBP, PCR analysis was performed. Finally, the PCR product has been sequenced and the result submitted to the gene data banks. Results: An MBP gene of 1081 nucleotides was sequenced. This fragment contained three introns and encodes a protein with 194 amino acids. Homology search by Blast program showed a significant homology with the MBP gene in gene data banks (96%. Besides, the identity of amino acids with the other MBPs in gene data banks was about 86%. Conclusion: We isolated and sequenced a gene fragment encoding MBP in an Iranian isolate of A.castellanii. Molecular characterization of this important gene is the first step in pursuing researches such as developing better therapeutic agents, immunization of population at risk or even developing a diagnostic tool by PCR techniques.

  2. Mapping of two genes encoding isoforms of the actin binding protein ABP-280, a dystrophin like protein, to Xq28 and to chromosome 7.

    Science.gov (United States)

    Maestrini, E; Patrosso, C; Mancini, M; Rivella, S; Rocchi, M; Repetto, M; Villa, A; Frattini, A; Zoppè, M; Vezzoni, P

    1993-06-01

    ABP-280 is a ubiquitous actin binding protein present in the cytoskeleton of many different cell types. ABP-280 was mapped to distal Xq28, 50-60 kb downstream of the Green Colour Pigment (GCP) genes. To establish if ABP-280 may be a candidate for one of the muscle disease localized by linkage analysis to distal Xq28 we looked for alternative forms of ABP-280 mRNA. Several different ABP-280 mRNAs were indeed identified: two are X-linked and are produced by alternative splicing of a small exon of 24 nucleotides. At least one additional gene encoding a RNA more than 70% identical to ABP-280 in the 1700 bp sequenced has also been found. It was mapped to chromosome 7. While both forms of the X-linked ABP-280 are ubiquitous, the gene on chromosome 7 is highly expressed only in skeletal muscle and heart. The two genes were therefore excellent candidates for the X-linked and for the autosomal dominant form of the Emery-Dreifuss Muscular Dystrophy (EDMD) both of which have been described. So far, however we were unable to demonstrate mutations in the coding region or affecting the alternative splicing of the X-linked form of ABP-280, in several patients studied, and we think that it is quite unlikely that this is the gene responsible for EDMD.

  3. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes.

    Science.gov (United States)

    Stephen, John R; Dent, Katherine C; Finch-Savage, William E

    2003-11-27

    A cDNA clone encoding a presumed full-length glycine-rich ribonucleic acid (RNA) binding protein was isolated from a lambda-ZAP Express cDNA library generated from primarily nondormant Prunus avium (wild cherry) embryonic axes. The cDNA, designated Pa-RRM-GRP1 (Prunus avium RNA recognition motif glycine-rich protein 1), contains a single N-terminal RNA recognition motif (RRM) and single C-terminal glycine-rich domain. The glycine-rich domain is unusually long at 91 amino acids, 58 of which are glycines. The 534-base pair (bp) open reading frame (ORF) of this clone encodes a 178-amino-acid polypeptide with a predicted molecular weight of 17.33 kDa and pI of 7.84. Comparative sequence alignment of Pa-RRM-GRP1 reveals extensive homology to known and presumed glycine-rich RNA binding proteins from angiosperms and gymnosperms. Genomic Southern blot analysis suggests that this gene exists as a single copy in P. avium. Expression of this gene in P. avium embryonic axes during low-temperature dormancy-breaking treatments was studied and found to be induced by cold (3 degrees C) using real-time PCR of total cDNA supported by Northern blot analysis of total RNA. Expression dropped during prolonged storage at 3 degrees C and was reduced to control levels by interruption of cold treatment by warming to 20 degrees C.

  4. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis.

    Science.gov (United States)

    Guerrero, Consuelo; Martín-Rufián, M; Reina, José J; Heredia, Antonio

    2006-01-01

    A cDNA encoding an acyl-CoA binding protein (ACBP) homologue has been cloned from a cDNA library made from mRNA isolated from epidermis of young leaves of Agave americana L. The derived amino acid sequence reveals a protein corresponding to the membrane-associated form of ACBPs only previously described in Arabidopsis and rice. Northern blot analysis showed that the A. americana ACBP gene is mainly expressed in the epidermis of mature zone of the leaves. The epidermis of A. americana leaves have a well developed cuticle with the highest amounts of the cuticular components waxes, cutin and cutan suggesting a potential role of the protein in cuticle formation.

  5. The bldC Developmental Locus of Streptomyces coelicolor Encodes a Member of a Family of Small DNA-Binding Proteins Related to the DNA-Binding Domains of the MerR Family

    OpenAIRE

    Hunt, AC; Servin-Gonzalez, L; Kelemen, GH; Buttner, MJ

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-n...

  6. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll

    Indian Academy of Sciences (India)

    Girdhar K Pandey; Amita Pandey; Vanga Siva Reddy; Renu Deswal; Alok Bhattacharya; Kailash C Upadhyaya; Sudhir K Sopory

    2007-03-01

    Entamoeba histolytica contains a novel calcium-binding protein like calmodulin, which was discovered earlier, and we have reported the presence of its homologue(s) and a dependent protein kinase in plants. To understand the functions of these in plants, a cDNA encoding a calcium-binding protein isolated from Entamoeba histolytica (EhCaBP) was cloned into vector pBI121 in antisense orientation and transgenic tobacco plants were raised. These plants showed variation in several phenotypic characters, of which two distinct features, more greenness and leaf thickness, were inherited in subsequent generations. The increase in the level of total chlorophyll in different plants ranged from 60% to 70%. There was no major change in chloroplast structure and in the protein level of D1, D2, LHCP and RuBP carboxylase. These morphological changes were not seen in antisense calmodulin transgenic tobacco plants, nor was the calmodulin level altered in EhCaBP antisense plants.

  7. Identification of an E-box DNA binding protein, activated protein 4, and its function in regulating the expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Helicoverpa armigera.

    Science.gov (United States)

    Hu, C-H; Hong, B; Xu, W-H

    2010-04-01

    Activated protein 4 (AP-4), an E-box DNA-binding protein, was cloned from the cotton bollworm, Helicoverpa armigera (Har). The expression of Har-AP-4 mRNA and the protein that it encodes are significantly higher in nondiapause pupae than in diapause pupae. In vitro-translated Har-AP-4 can bind specifically to the E-box motif on the promoter of the diapause hormone and pheromone biosynthesis-activating neuropeptide (DH-PBAN). Har-AP-4, fused with the green fluorescent protein (GFP), is localized to the nucleus, and overexpression of Har-AP-4 can significantly activate the promoter of the DH-PBAN gene that is involved in nondiapause pupal development in H. armigera. These results suggest that Har-AP-4, which binds to the promoter of DH-PBAN, may play a role in regulating pupal development in H. armigera.

  8. Characterization and expression analysis of two cDNAs encoding Xa1 and oxysterol binding proteins in sorghum (Sorghum bicolor)

    Science.gov (United States)

    Using suppression subtractive hybridization (SSH) and subsequent microarray analysis, expression profiles of sorghum genes responsive to greenbug phloem-feeding were obtained and identified. Among the profiles, two cDNAs designated to MM73 and MM95 were identified to encode Xa1 (Xa1) and oxysterol ...

  9. A cDNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in Helicoverpa armigera: molecular characterization and expression analysis associated with pupal diapause.

    Science.gov (United States)

    Liu, Ming; Zhang, Tian-Yi; Xu, Wei-Hua

    2005-06-01

    The diazepam binding inhibitor (DBI) or the acyl-CoA-binding protein (ACBP) is a 9-10 kDa highly conserved multifunctional protein that plays important roles in GABA(A) receptor activity regulation, lipid absorption and steroidogenesis in various organisms. To study the functions of DBI/ACBP in insect development or diapause, we cloned the cDNA from Helicoverpa armigera (Har) utilizing rapid amplification of cDNA ends (RACE). By homology search, Har-DBI/ACBP is conserved with the DBI/ACBPs known from other insects. Northern blot analysis showed that DBI/ACBP gene expressed in nonneural and neural tissues. RT-PCR combined Southern blot analysis revealed that DBI/ACBP mRNA in the brain of nondiapause individual was much higher than that in the brain of diapausing insects. At early and middle stages of 6th instar larvae, the level of DBI/ACBP mRNA was higher in the midgut of diapause type than that in nondiapause type and low at late 6th instar larval stage and early pupal stage in both types. In the prothoracic gland (PG), DBI/ACBP expression appeared at a high level at middle and late stages of 6th larval instar in both nondiapause and diapause types, and declined after pupation. In vitro experiments revealed that DBI/ACBP mRNA in PG could be stimulated by synthetic H. armigera diapause hormone (Har-DH), suggesting that Har-DH may stimulate the PG to produce ecdysteroids by the DBI/ACBP signal pathway. By in vitro assay, we also found that FGIN-1-27, which has similar functions to DBI/ACBP in ecdysteroidogenesis, could induce PG ecdysteroidogenesis effectively, suggesting that DBI/ACBP regulates biosynthesis of ecdysteroids in PG. Thus, DBI/ACBP indeed plays a key role in metabolism and development in H. armigera.

  10. Comparative analysis and molecular characterization of a gene BANF1 encoded a DNA-binding protein during mitosis from the Giant Panda and Black Bear.

    Science.gov (United States)

    Zeng, Yichun; Hou, Yi-Ling; Ding, Xiang; Hou, Wan-Ru; Li, Jian

    2014-01-01

    Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further.

  11. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    Science.gov (United States)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  12. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  13. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W., E-mail: abarb@iastate.edu; Subedi, Ganesh P. [Iowa State University, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology (United States)

    2016-01-15

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb{sup 3+} with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (−0.221 to 0.081 ppm) and residual dipolar couplings (−7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb{sup 3+}){sub 2} complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.

  14. Construction of eukaryotic expression vector encoding ATP synthase lipid-binding protein-like protein gene of Sj and its expression in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Ouyang Danming; Hu Yongxuan; Li Mulan; Zeng Xiaojun; He Zhixiong; Yuan Caijia

    2008-01-01

    Objective: To clone and construct the recombinant plasmid containing ATP synthase lipid-binding protein-like protein gene of Schistosoma japonicum,(SjAslp) and transfer it into mammalian cells to express the objective protein. Methods: By polymerase chain reaction (PCR) technique, SjAslp was amplified from the constructed recombinant plasmid pBCSK+/SjAslp, and inserted into cloning vector pUCm-T. Then, SjAslp was subcloned into an eukaryotic expression vector pcDNA3.1(+). After identifying it by PCR, restrictive enzymes digestion and DNA sequencing, the recombinant plasmid was transfected into HeLa cells using electroporation, and the expression of the recombinant protein was analyzed by immunocytochemical assay. Resnlts: The specific gene fragment of 558 bp was successfully amplified. The DNA vaccine of SjAslp was successfully constructed. Immunocytochemical assay showed that SjAslp was expressed in the cytoplasm of HeLa cells. Conclusion: SjAslp gene can be expressed in eukaryotic system, which lays the foundation for development of the SjAslp DNA vaccine against schitosomiasis.

  15. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.

    Science.gov (United States)

    Nichols, Grant S; DeBello, William M

    2008-10-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element-binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience: hunting live mice. CREB activation was analyzed within 30 min of hunting using phosphorylation state-specific CREB (pCREB) and CREB antibodies, confocal imaging, and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or readapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB and, by extension, transcription of CREB-dependent genes, whereas others received a signal that negatively regulated it. These changes were restricted to the subregion of the inferior colliculus that received optically displaced input, the rostral ICX, and were not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning.

  16. Nucleic acids encoding a cellulose binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. A Puf RNA-binding protein encoding gene PlM90 regulates the sexual and asexual life stages of the litchi downy blight pathogen Peronophythora litchii.

    Science.gov (United States)

    Jiang, Liqun; Ye, Wenwu; Situ, Junjian; Chen, Yubin; Yang, Xinyu; Kong, Guanghui; Liu, Yaya; Tinashe, Runyanga J; Xi, Pinggen; Wang, Yuanchao; Jiang, Zide

    2017-01-01

    Sexual and asexual reproduction are two key processes in the pathogenic cycle of many filamentous pathogens. However in Peronophythora litchii, the causal pathogen for the litchi downy blight disease, critical regulator(s) of sexual or asexual differentiation has not been elucidated. In this study, we cloned a gene named PlM90 from P. litchii, which encodes a putative Puf RNA-binding protein. We found that PlM90 was highly expressed during asexual development, and much higher than that during sexual development, while relatively lower during cyst germination and plant infection. By polyethylene glycol (PEG)-mediated protoplast transformation, we generated three PlM90-silenced transformants and found a severely impaired ability in sexual spore production and a delay in stages of zoospore release and encystment. However, the pathogenicity of P. litchii was not affected by PlM90-silencing. Therefore we conclude that PlM90 specifically regulates the sexual and asexual differentiation of P. litchii.

  18. Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes.

    Science.gov (United States)

    Ramachandran, V; McArthur, J D; Behm, C E; Gutzeit, C; Dowton, M; Fagan, P K; Towers, R; Currie, B; Sriprakash, K S; Walker, M J

    2004-11-01

    The group A Streptococcus (GAS) is an important pathogen that is responsible for a wide range of human diseases. Fibronectin binding proteins (FBPs) play an important role in promoting GAS adherence and invasion of host cells. The prtF2 gene encodes an FBP and is present in approximately 60% of GAS strains. In the present study we examined 51 prtF2-positive GAS strains isolated from the Northern Territory of Australia, and here we describe two genotypes of prtF2 which are mutually exclusive. The two genotypes have been identified previously as pfbp and fbaB. We show that these genotypes map to the same chromosomal location within the highly recombinatorial fibronectin-collagen-T antigen (FCT) locus, indicating that they arose from a common ancestor, and in this study these genotypes were designated the pfbp type and the fbaB type. Phylogenetic analysis of seven pfbp types, 14 fbaB types, and 11 prtF2-negative GAS strains by pulsed-field gel electrophoresis (PFGE) produced 32 distinct PFGE patterns. Interpretation of evolution based on the PFGE dendrogram by parsimony suggested that the pfbp type had a recent origin compared to the fbaB type. A comparison of multiple DNA sequences of the pfbp and fbaB types revealed a mosaic pattern for the amino-terminal region of the pfbp types. The fbaB type is generally conserved at the amino terminus but varies in the number of fibronectin binding repeats in the carboxy terminus. Our data also suggest that there is a possible association of the pfbp genotype with sof (84.2%), while the fbaB genotype was found in a majority of the GAS strains negative for sof (90.6%), indicating that these two prtF2 subtypes may be under different selective pressures.

  19. Cloning and expression of a cDNA encoding a Vorticella convallaria spasmin: an EF-hand calcium-binding protein.

    Science.gov (United States)

    Maciejewski, J J; Vacchiano, E J; McCutcheon, S M; Buhse, H E

    1999-01-01

    The stalked, ciliated protozoan Vorticella convallaria possesses a highly contractile cytoskeleton consisting of spasmonemes and myonemes. The major component of these contractile organelles is the calcium-binding protein(s) called spasmin. Cloning and characterization of spasmin would help elucidate this contractile system. Therefore, enriched spasmoneme protein preparations from these contractile stalks were used to produce a monoclonal antibody to spasmin. A monoclonal antibody, 1F5, was obtained that immunolocalized specifically to the spasmonemes and the myonemes and recognized a 20-kD calcium-binding protein in spasmoneme protein preparations. A putative spasmin cDNA was obtained from a V. convallaria cDNA library and the derived amino acid sequence of this cDNA revealed an acidic, 20-kD protein with calcium-binding helix-loop-helix domains. The physical properties of the putative spasmin were assessed by characterization of a recombinantly-produced spasmin protein. The recombinant spasmin protein was shown to bind calcium using calcium gel-shift assays and was recognized by the anti-spasmin antibody. Therefore, a V. convallaria spasmin was cloned and shown to be a member of the EF-hand superfamily of calcium-binding proteins.

  20. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  1. A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins

    DEFF Research Database (Denmark)

    Bruun, A W; Svendsen, I; Sørensen, S O;

    1998-01-01

    degree of specificity, showing a 200-fold higher Ki toward a carboxypeptidase from Candida albicans which is highly homologous to carboxypeptidase Y. The TFS1 gene product shows extensive similarity to a class of proteins termed "21-23-kDa lipid binding proteins", members of which are found in several...

  2. Oligomerization and DNA-binding capacity of Pmr, a histone-like protein H1 (H-NS) family protein encoded on IncP-7 carbazole-degradative plasmid pCAR1.

    Science.gov (United States)

    Suzuki, Chiho; Yun, Choong-Soo; Umeda, Takashi; Terabayashi, Tsuguno; Watanabe, Kazuya; Yamane, Hisakazu; Nojiri, Hideaki

    2011-01-01

    Pmr, a histone-like protein H1 (H-NS) family protein encoded on plasmid pCAR1, is a key factor in optimizing gene transcription on both pCAR1 and the host chromosome. To clarify the mode of function of Pmr, we performed gel filtration chromatography analysis and protein-protein cross-linking, and found that Pmr forms homo-oligomers, consisting of its homodimers. We also found, by atomic force microscopy, that Pmr has DNA-bridging capacity. From these results, Pmr was deduced to have features common to H-NS family proteins. Additionally, evaluating protein-DNA affinity is important to clarify the mode of function of Pmr, and hence we performed an electrophoretic mobility shift assay. Though Pmr formed high-order protein-DNA complexes and did not show preference for nucleic acid sequences, the C-terminal region of Pmr did, suggesting that the DNA-binding affinity of Pmr can be evaluated by using its C-terminal region.

  3. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  4. Molecular mechanisms for protein-encoded inheritance.

    Science.gov (United States)

    Wiltzius, Jed J W; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R; Apostol, Marcin I; Goldschmidt, Lukasz; Soriaga, Angela B; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-09-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  5. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.

    Science.gov (United States)

    Hunt, Alison C; Servín-González, Luis; Kelemen, Gabriella H; Buttner, Mark J

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed DeltabldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although DeltabldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein.

  6. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα-encoding (GNAS genomic imprinting domain are associated with performance traits

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2011-01-01

    Full Text Available Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486 were located upstream of the GNAS gene, while one SNP (rs41694646 was located in the second intron of the GNAS gene. The final SNP (rs41694656 was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646 is associated (P ≤ 0.05 with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf and gestation length. Association (P ≤ 0.01 with direct calving difficulty (i.e. due to calf size and maternal calving difficulty (i.e. due to the maternal pelvic width size was also observed at the rs

  7. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding.

    Science.gov (United States)

    Zelicof, A; Protopopov, V; David, D; Lin, X Y; Lustgarten, V; Gerst, J E

    1996-07-26

    The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.

  8. pTAR-Encoded Proteins in Plasmid Partitioning

    OpenAIRE

    Kalnin, Kirill; Stegalkina, Svetlana; Yarmolinsky, Michael

    2000-01-01

    Partition cassettes, essential for the segregational stability of low-copy-number bacterial plasmids, typically encode two autoregulated proteins and an adjacent cis-acting centromere analog to which one or perhaps both proteins bind. The diminutive partition region of pTAR of Agrobacterium spp. was reported to be exceptional, encoding only a single protein, ParA (D. R. Gallie and C. I. Kado, J. Mol. Biol. 193:465–478, 1987). However, resequencing of the region revealed two small downstream g...

  9. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Interspecies transfer of the penicillin-binding protein 3-encoding gene ftsI between Haemophilus influenzae and Haemophilus haemolyticus can confer reduced susceptibility to β-lactam antimicrobial agents.

    Science.gov (United States)

    Søndergaard, Annette; Witherden, Elizabeth A; Nørskov-Lauritsen, Niels; Tristram, Stephen G

    2015-07-01

    Mutations in ftsI, encoding penicillin-binding protein 3, can cause decreased β-lactam susceptibility in Haemophilus influenzae. Sequencing of ftsI from clinical strains has indicated interspecies recombination of ftsI between H. influenzae and Haemophilus haemolyticus. This study documented apparently unrestricted homologous recombination of ftsI between H. influenzae and H. haemolyticus in vitro. Transfer of ftsI from resistant isolates conferred similar but not identical increases in the MICs of susceptible strains of H. influenzae and H. haemolyticus.

  11. CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules.

    Directory of Open Access Journals (Sweden)

    Alihamze Fathinajafabadi

    Full Text Available The function of CERKL (CERamide Kinase Like, a causative gene of retinitis pigmentosa and cone-rod dystrophy, still awaits characterization. To approach its cellular role we have investigated the subcellular localization and interaction partners of the full length CERKL isoform, CERKLa of 532 amino acids, in different cell lines, including a photoreceptor-derived cell line. We demonstrate that CERKLa is a main component of compact and untranslated mRNPs and that associates with other RNP complexes such as stress granules, P-bodies and polysomes. CERKLa is a protein that binds through its N-terminus to mRNAs and interacts with other mRNA-binding proteins like eIF3B, PABP, HSP70 and RPS3. Except for eIF3B, these interactions depend on the integrity of mRNAs but not of ribosomes. Interestingly, the C125W CERKLa pathological mutant does not interact with eIF3B and is absent from these complexes. Compact mRNPs containing CERKLa also associate with microtubules and are found in neurites of neural differentiated cells. These localizations had not been reported previously for any member of the retinal disorders gene family and should be considered when investigating the pathogenic mechanisms and therapeutical approaches in these diseases.

  12. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins

    Directory of Open Access Journals (Sweden)

    Dias Ricardo

    2009-06-01

    Full Text Available Abstract Background The serine/threonine kinase StkP of Streptococcus pneumoniae is a major virulence factor in the mouse model of infection. StkP is a modular protein with a N-terminal kinase domain a C-terminal PASTA domain carrying the signature of penicillin-binding protein (PBP and prokaryotic serine threonine kinase. In laboratory cultures, one target of StkP is the phosphoglucosamine mutase GlmM involved in the first steps of peptidoglycan biosynthesis. In order to further elucidate the importance of StkP in S. pneumoniae, its role in resistance to β-lactams has been assessed by mutational analysis in laboratory cultures and its genetic conservation has been investigated in isolates from infected sites (virulent, asymptomatic carriers, susceptible and non-susceptible to β-lactams. Results Deletion replacement mutation in stkP conferred hypersensitivity to penicillin G and was epistatic on mutations in PBP2X, PBP2B and PBP1A from the resistant 9V clinical isolate URA1258. Genetic analysis of 55 clinical isolates identified 11 StkP alleles differing from the reference R6 allele. None relevant mutation in the kinase or the PASTA domains were found to account for susceptibility of the isolates. Rather the minimal inhibitory concentration (MIC values of the strains appeared to be determined by their PBP alleles. Conclusion The results of genetic dissection analysis in lab strain Cp1015 reveal that StkP is involved in the bacterial response to penicillin and is epistatic on mutations PBP 2B, 2X and 1A. However analysis of the clinical isolates did not allow us to find the StkP alleles putatively involved in determining the virulence or the resistance level of a given strain, suggesting a strong conservation of StkP in clinical isolates.

  13. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice

    Science.gov (United States)

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J.

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans. PMID:27358023

  14. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  15. The gene encoding acyl-CoA-binding protein is subject to metabolic regulation by both sterol regulatory element-binding protein and peroxisome proliferator-activated receptor alpha in hepatocytes

    DEFF Research Database (Denmark)

    Sandberg, Maria B; Bloksgaard, Maria; Duran-Sandoval, Daniel;

    2005-01-01

    gene in hepatocytes. Members of the SREBP family activate the rat ACBP gene through binding sites for SREBP and the auxiliary factors Sp1 and nuclear factor Y in the proximal promoter. In addition, we show that ACBP is a peroxisome proliferator-activated receptor (PPAR) alpha target gene in cultured...

  16. Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide.

    Directory of Open Access Journals (Sweden)

    Craig L Bennett

    Full Text Available Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia type 2 (AOA2, and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4. Senataxin contains an amino-terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between senataxin and ubiquitin-SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular pathology in ALS4.

  17. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  18. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  19. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Science.gov (United States)

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  20. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  1. The gene encoding the Acyl-CoA-binding protein is activated by peroxisome proliferator-activated receptor gamma through an intronic response element functionally conserved between humans and rodents

    DEFF Research Database (Denmark)

    Helledie, Torben; Grøntved, Lars; Jensen, Søren S;

    2002-01-01

    The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular protein that specifically binds acyl-CoA esters with high affinity and is structurally and functionally conserved from yeast to mammals. In vitro studies indicate that ACBP may regulate the availability of acyl-CoA esters for various m...

  2. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.

    Science.gov (United States)

    Steiner, Jennifer L; Pruznak, Anne M; Deiter, Gina; Navaratnarajah, Maithili; Kutzler, Lydia; Kimball, Scot R; Lang, Charles H

    2014-01-01

    Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.

  3. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  4. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  5. The prion protein binds thiamine.

    Science.gov (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  6. Interactome-Wide Prediction of Protein-Protein Binding Sites Reveals Effects of Protein Sequence Variation in Arabidopsis thaliana

    NARCIS (Netherlands)

    Valentim, F.L.; Neven, F.; Boyen, P.; Dijk, van A.D.J.

    2012-01-01

    The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in thos

  7. pTAR-encoded proteins in plasmid partitioning.

    Science.gov (United States)

    Kalnin, K; Stegalkina, S; Yarmolinsky, M

    2000-04-01

    Partition cassettes, essential for the segregational stability of low-copy-number bacterial plasmids, typically encode two autoregulated proteins and an adjacent cis-acting centromere analog to which one or perhaps both proteins bind. The diminutive partition region of pTAR of Agrobacterium spp. was reported to be exceptional, encoding only a single protein, ParA (D. R. Gallie and C. I. Kado, J. Mol. Biol. 193:465-478, 1987). However, resequencing of the region revealed two small downstream genes, parB and orf-84, of which only parB was found to be essential for partitioning in A. tumefaciens. Purified ParA exhibited a weak ATPase activity that was modestly increased by nonspecific DNA. ParB bound in vitro to repeated sequences present in a region, parS, that possesses centromere and operator functions and within which we identified the primary transcription start site by primer extension. In certain respects the Par proteins behave normally in the foreign host Escherichia coli. In E. coli, as in A. tumefaciens, ParB repressed the partition operon; ParA, inactive alone, augmented this repression. Functional similarities between the partition system of pTAR and those of other plasmids and bacteria are prominent, despite differences in size, organization, and amino acid sequence.

  8. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen;

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslin......Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  9. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology....

  10. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  11. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  13. The Sulfolobicin Genes of Sulfolobus acidocaldarius Encode Novel Antimicrobial Proteins

    NARCIS (Netherlands)

    Ellen, Albert F.; Rohulya, Olha V.; Fusetti, Fabrizia; Wagner, Michaela; Albers, Sonja-Verena; Driessen, Arnold J. M.

    2011-01-01

    Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The acti

  14. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  15. Characterizing the morphology of protein binding patches.

    Science.gov (United States)

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  16. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor.

    Science.gov (United States)

    Yao, Zhengbin; Fanslow, William C; Seldin, Michael F; Rousseau, Anne-Marie; Painter, Sally L; Comeau, Michael R; Cohen, Jeffrey I; Spriggs, Melanie K

    2011-11-01

    Herpesvirus Saimiri gene 13 (HVS13) exhibits 57% identity with the predicted sequence of a T cell-derived molecule termed CTLA8. Recombinant HVS13 and CTLA8 stimulate transcriptional factor NF-kappaB activity and Interleukin-6 (IL-6) secretion in fibroblasts, and costimulate T cell proliferation. An HVS13.Fc fusion protein was used to isolate a cDNA encoding a novel receptor that also binds CTLA8. This receptor is unrelated to previously identified cytokine receptor families. A recombinant soluble receptor inhibited T cell proliferation and IL-2 production induced by PHA, concanavalin A (conA), and anti-TCR MAb. These results define CTLA8 and HVS13 as novel cytokines that bind to a novel cytokine receptor. We propose to call these molecules IL-17, vIL-17, and IL-17R, respectively.

  17. Nucleic acid compositions and the encoding proteins

    Science.gov (United States)

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  18. Selection for Genes Encoding Secreted Proteins and Receptors

    Science.gov (United States)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  19. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    actions, in order to evade host immune responses. The murine gammaherpesvirus-68 encodes a chemokine-binding protein called M3, which has unique biochemical features that enable it to bind to and inhibit an unusually broad range of chemokines. We applied a replication-defective adenoviral vector encoding...

  20. The genes that encode the gonococcal transferrin binding proteins, TbpB and TbpA, are differentially regulated by MisR under iron-replete and iron-depleted conditions.

    Science.gov (United States)

    Kandler, Justin L; Acevedo, Rosuany Vélez; Dickinson, Mary Kathryne; Cash, Devin R; Shafer, William M; Cornelissen, Cynthia Nau

    2016-10-01

    Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two-component regulatory system that also includes the sensor kinase MisS. The tbp genes were up-regulated in the misR mutant under iron-replete conditions but were conversely down-regulated in the misR mutant under iron-depleted conditions. The misR mutant was capable of transferrin-iron uptake at only 50% of wild-type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR-regulated in previous studies using this related pathogen. This is the first report of a trans-acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation.

  1. Engineering RNA-binding proteins for biology

    OpenAIRE

    Chen,Yu; Varani, Gabriele

    2013-01-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequenc...

  2. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S;

    1993-01-01

    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one...

  3. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin.

    Science.gov (United States)

    Molugu, Sudheer K; Hildenbrand, Zacariah L; Morgan, David Gene; Sherman, Michael B; He, Lilin; Georgopoulos, Costa; Sernova, Natalia V; Kurochkina, Lidia P; Mesyanzhinov, Vadim V; Miroshnikov, Konstantin A; Bernal, Ricardo A

    2016-04-05

    Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.

  4. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  5. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  6. The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins.

    Science.gov (United States)

    Ellen, Albert F; Rohulya, Olha V; Fusetti, Fabrizia; Wagner, Michaela; Albers, Sonja-Verena; Driessen, Arnold J M

    2011-09-01

    Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The active sulfolobicin comprises two proteins that are equipped with a classical signal sequence. These proteins are secreted by the cells and found to be membrane vesicle associated. Gene inactivation studies demonstrate that both proteins are required for the bacteriostatic antimicrobial activity. Sulfolobicins constitute a novel class of antimicrobial proteins without detectable homology to any other protein.

  7. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus.

    Science.gov (United States)

    Kim, Seongman; Ahn, Byung Chul; O'Callaghan, Dennis J; Kim, Seong Kee

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  8. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongman; Chul Ahn, Byung; O' Callaghan, Dennis J. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States); Kim, Seong Kee, E-mail: skim1@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States)

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  9. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  10. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  11. Functional analysis of FarA transcription factor in the regulation of the genes encoding lipolytic enzymes and hydrophobic surface binding protein for the degradation of biodegradable plastics in Aspergillus oryzae.

    Science.gov (United States)

    Garrido, Sharon Marie; Kitamoto, Noriyuki; Watanabe, Akira; Shintani, Takahiro; Gomi, Katsuya

    2012-05-01

    FarA is a Zn(II)(2)Cys(6) transcription factor which upregulates genes required for growth on fatty acids in filamentous fungi like Aspergillus nidulans. FarA is also highly similar to the cutinase transcription factor CTF1α of Fusarium solani which binds to the cutinase gene promoter in this plant pathogen. This study determines whether FarA transcriptional factor also works in the regulation of genes responsible for the production of cutinase for the degradation of a biodegradable plastic, poly-(butylene succinate-co-adipate) (PBSA), in Aspergillus oryzae. The wild-type and the farA gene disruption strains were grown in minimal agar medium with emulsified PBSA, and the wild-type showed clear zone around the colonies while the disruptants did not. Western blot analysis revealed that the cutinase protein CutL1 and a hydrophobic surface binding protein such as HsbA were produced by the wild-type but not by the disruptants. In addition, the expressions of cutL1, triacylglycerol lipase (tglA), and mono- and di-acylglycerol lipase (mdlB) genes as well as the hsbA gene were significantly lower in the disruptants compared to the wild-type. These results indicated that the FarA transcriptional factor would be implicated in the expression of cutL1 and hsbA genes that are required for the degradation of PBSA as well as lipolytic genes such as mdlB and tglA for lipid hydrolysis.

  12. Fractal aspects of calcium binding protein structures

    Energy Technology Data Exchange (ETDEWEB)

    Isvoran, Adriana [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)], E-mail: aisvoran@cbg.uvt.ro; Pitulice, Laura [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania); Craescu, Constantin T. [INSERM U759/Institute Curie-Recherche, Centre Universitaire Paris-Sud, Batiment 112, 91405 Orsay (France); Chiriac, Adrian [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)

    2008-03-15

    The structures of EF-hand calcium binding proteins may be classified into two distinct groups: extended and compact structures. In this paper we studied 20 different structures of calcium binding proteins using the fractal analysis. Nine structures show extended shapes, one is semi-compact and the other 10 have compact shapes. Our study reveals different fractal characteristics for protein backbones belonging to different structural classes and these observations may be correlated to the physicochemical forces governing the protein folding.

  13. Genetically encoded cleavable protein photo-cross-linker.

    Science.gov (United States)

    Lin, Shixian; He, Dan; Long, Teng; Zhang, Shuai; Meng, Rong; Chen, Peng R

    2014-08-27

    We have developed a genetically encoded, selenium-based cleavable photo-cross-linker that allows for the separation of bait and prey proteins after protein photo-cross-linking. We have further demonstrated the efficient capture of the in situ generated selenenic acid on the cleaved prey proteins. Our strategy involves tagging the selenenic acid with an alkyne-containing dimethoxyaniline molecule and subsequently labeling with an azide-bearing fluorophore or biotin probe. This cleavage-and-capture after protein photo-cross-linking strategy allows for the efficient capture of prey proteins that are readily accessible by two-dimensional gel-based proteomics and mass spectrometry analysis.

  14. pipsqueak Encodes a Factor Essential for Sequence-Specific Targeting of a Polycomb Group Protein Complex

    Institute of Scientific and Technical Information of China (English)

    Der-HwaHuang; Yuh-LongChang; Chih-ChaoYang; I-ChingPan; BalasKing

    2005-01-01

    The Polycomb (Pc) group (Pc-G) of repressors is essential for transcriptional silencing of homeotic genes that determine the axial development of metazoan animals. It is generally believed that the multimeric complexes formed by these proteins nucleate certain chromatin structures to silence promoter activity upon binding to Pc-G response elements (PRE). Little is known, however, about the molecular mechanism involved in sequence-specific binding of these complexes. Here, we show that an immunoa ffinity-purified Pc protein complex contains a DNA binding activity specific to the (GA), motif in a PRE from the bithoraxoid region. We found that this activity can be attributed primarily to the large protein isoform encoded by pipsqueak (psq) instead of to the well-characterized GAGA factor. The functional relevance ofpsq to the silencing mechanismis strongly supported by its synergistic interactions with a subset of Pc-G that cause misexpression of homeotic genes.

  15. Tlys, a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes

    DEFF Research Database (Denmark)

    Fusco, Salvatore; She, Qunxin; Bartolucci, Simonetta;

    2013-01-01

    -binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and Tind transcripts, as well as of its own promoter. Binding...

  16. RNA-binding proteins in plants: the tip of an iceberg?

    Science.gov (United States)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  17. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  18. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  19. SRE elements are binding sites for the fusion protein EWS-FLI-1.

    OpenAIRE

    Magnaghi-Jaulin, L; Masutani, H; Robin, P.; Lipinski, M; Harel-Bellan, A

    1996-01-01

    EWS-FLI-1 is a chimeric protein produced in most Ewing's sarcomas. It results from the fusion of the N-terminal-encoding region of the EWS gene to the C-terminal DNA-binding domain (the ETS domain) encoded by the FLI-1 ets family gene. Both EWS-FLI-1 and FLI-1 proteins function as transcription factors that bind specifically to ets sequences (the ets boxes) present in promoter elements. EWS- FLI-1 is a powerful transforming protein, whereas FLI-1 is not. In a search for potential DNA binding ...

  20. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1).

    Science.gov (United States)

    Lugert, T; Werr, W

    1994-06-01

    South-western screening of lambda gt11 expression library with a fragment of the Shrunken promoter containing the initiator element resulted in cloning of a novel maize gene. The encoded initiator-binding protein (IBP1) interacts at the transcription start site of the Shrunken promoter. Analysis of the 680 amino acid (aa) long polypeptide revealed a novel bipartite DNA-binding domain at the carboxyl terminus. In its amino-terminal part, it is weakly related to Myb R-repeats but the following basic region is also essential for DNA binding. A region of similarity to the conserved 2.1 and 2.2 motifs in bacterial sigma-factors is located close to the IBP1 amino terminus. Two putative nuclear localization signals are compatible with the presence of antigenically related polypeptides in nuclear protein extracts. The IBP1 gene was mapped to the long arm of chromosome 9 (9L095); a second highly related gene IBP2 is located on the short arm of chromosome 1 (1S014). Both genes encode proteins sharing 93% similarity and are transcribed with similar activity in different plant organs. A small 82 nucleotide intron in the IBP2 transcript is found unspliced to a variable degree in different tissues. Translation of this incompletely processed transcript would result in a truncated amino-terminal polypeptide lacking the DNA-binding domain.

  1. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  2. Predicting where small molecules bind at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Peter Walter

    Full Text Available Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP complexes and protein-ligand (PL complexes with known three-dimensional structures for which (1 one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2 the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10,000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.

  3. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  4. ParA encoded on chromosome II of Deinococcus radiodurans binds to nucleoid and inhibits cell division in Escherichia coli

    Indian Academy of Sciences (India)

    Vijaya Kumar Charaka; Kruti P Mehta; H S Misra

    2013-09-01

    Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the `Min’ proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.

  5. ParA encoded on chromosome II of Deinococcus radiodurans binds to nucleoid and inhibits cell division in Escherichia coli.

    Science.gov (United States)

    Charaka, Vijaya Kumar; Mehta, Kruti P; Misra, H S

    2013-09-01

    Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the 'Min' proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.

  6. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-09-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  7. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.

  8. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    St Clair Dina A

    2007-10-01

    Full Text Available Abstract Background Nucleotide binding site-leucine rich repeat (NBS-LRR-encoding genes comprise the largest class of plant disease resistance genes. The 149 NBS-LRR-encoding genes and the 58 related genes that do not encode LRRs represent approximately 0.8% of all ORFs so far annotated in Arabidopsis ecotype Col-0. Despite their prevalence in the genome and functional importance, there was little information regarding expression of these genes. Results We analyzed the expression patterns of ~170 NBS-LRR-encoding and related genes in Arabidopsis Col-0 using multiple analytical approaches: expressed sequenced tag (EST representation, massively parallel signature sequencing (MPSS, microarray analysis, rapid amplification of cDNA ends (RACE PCR, and gene trap lines. Most of these genes were expressed at low levels with a variety of tissue specificities. Expression was detected by at least one approach for all but 10 of these genes. The expression of some but not the majority of NBS-LRR-encoding and related genes was affected by salicylic acid (SA treatment; the response to SA varied among different accessions. An analysis of previously published microarray data indicated that ten NBS-LRR-encoding and related genes exhibited increased expression in wild-type Landsberg erecta (Ler after flagellin treatment. Several of these ten genes also showed altered expression after SA treatment, consistent with the regulation of R gene expression during defense responses and overlap between the basal defense response and salicylic acid signaling pathways. Enhancer trap analysis indicated that neither jasmonic acid nor benzothiadiazole (BTH, a salicylic acid analog, induced detectable expression of the five NBS-LRR-encoding genes and one TIR-NBS-encoding gene tested; however, BTH did induce detectable expression of the other TIR-NBS-encoding gene analyzed. Evidence for alternative mRNA polyadenylation sites was observed for many of the tested genes. Evidence for

  9. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    the highly conserved 60 amino acid homeodomain. This peptide antiserum recognized a protein species of molecular weight 63,000 in immunoblots of nuclear extracts obtained from several tumor cell lines. The predominant molecular weight 63,000 nuclear protein recognized by the peptide antiserum...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...

  10. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  11. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  12. Periplasmic binding proteins: a versatile superfamily for protein engineering.

    Science.gov (United States)

    Dwyer, Mary A; Hellinga, Homme W

    2004-08-01

    The diversity of biological function, ligand binding, conformational changes and structural adaptability of the periplasmic binding protein superfamily have been exploited to engineer biosensors, allosteric control elements, biologically active receptors and enzymes using a combination of techniques, including computational design. Extensively redesigned periplasmic binding proteins have been re-introduced into bacteria to function in synthetic signal transduction pathways that respond to extracellular ligands and as biologically active enzymes.

  13. Proteins encoded near the adenovirus late messenger RNA leader segments

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J.B.; Anderson, C.W.

    1983-01-01

    Small fragments of adenovirus 2 DNA cloned into the single-strand phage M13 were used to select adenoviral messenger RNAs transcribed from the R-strand between map positions 16 and 30. Cell-free translation of these mRNAs produced proteins of 13.5K, 13.6K, and 11.5K, respectively encoded between the first and second segments of the tripartite major late leader, within the ''i''-leader segment, and immediately preceding the third leader segment. Partial sequence analysis of the 13.6K protein is consistent with the hypothesis that it is encoded within the i-leader segment.

  14. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite

    2012-09-01

    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  15. Lipid binding proteins from parasitic platyhelminthes.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  16. Direct Pathogenic Effects of HERV-encoded Proteins

    DEFF Research Database (Denmark)

    Hansen, Dorte Tranberg; Møller-Larsen, Anné; Petersen, Thor;

    and the possible direct pathogenic effects of HERV-encoded Env proteins on the CNS. Methods: Construction and characterization of a panel of recombinant Env-proteins is initiated and their pathogenic potential will be investigated: Fusiogenic potential analyzed by flow cytometry and confocal microscopy. Analysis...... of Env-induced apoptosis/necrosis in CNS cells will be performed by both DNA fragmentation ELISA and qPCR. Furthermore, the cellular localization of HERV-antigens on cells from patients with MS will be determined by confocal microscopy. A flow cytometric/confocal method has been optimized...

  17. Expression of genes encoding extracellular matrix proteins: a macroarray study.

    Science.gov (United States)

    Futyma, Konrad; Miotła, Paweł; Różyńska, Krystyna; Zdunek, Małgorzata; Semczuk, Andrzej; Rechberger, Tomasz; Wojcierowski, Jacek

    2014-12-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.

  18. Protein Collapse is Encoded in the Folded State Architecture

    CERN Document Server

    Samanta, Himadri S; Hinczewski, Michael; Hori, Naoto; Chakrabarti, Shaon; Thirumalai, D

    2016-01-01

    Natural protein sequences that self-assemble to form globular structures are compact with high packing densities in the folded states. It is known that proteins unfold upon addition of denaturants, adopting random coil structures. The dependence of the radii of gyration on protein size in the folded and unfolded states obeys the same scaling laws as synthetic polymers. Thus, one might surmise that the mechanism of collapse in proteins and polymers ought to be similar. However, because the number of amino acids in single domain proteins is not significantly greater than about two hundred, it has not been resolved if the unfolded states of proteins are compact under conditions that favor the folded states - a problem at the heart of how proteins fold. By adopting a theory used to derive polymer-scaling laws, we find that the propensity for the unfolded state of a protein to be compact is universal and is encoded in the contact map of the folded state. Remarkably, analysis of over 2000 proteins shows that protei...

  19. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  20. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda

    2011-01-01

    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  1. Theoretical model of the three-dimensional structure of a disease resistance gene homolog encoding resistance protein in Vigna mungo.

    Science.gov (United States)

    Basak, Jolly; Bahadur, Ranjit P

    2006-10-01

    Plant disease resistance (R) genes, the key players of innate immunity system in plants encode 'R' proteins. 'R' protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any 'R' proteins is available as yet. We have reported a 'R' gene homolog, the 'VMYR1', encoding 'R' protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1' protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any 'R' proteins.

  2. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    Science.gov (United States)

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  3. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    Science.gov (United States)

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  4. AIdentification of encoding proteins related to SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    MEI Hu; SUN Lili; ZHOU Yuan; XIONG Qing; LI Zhiliang

    2004-01-01

    By sampling 100 encoding proteins from SARS-coronavirus (SARS-CoV, NC 004718) and other six coronaviruses and selecting 23 variables through stepwise multiple regression (SMR) from 172 variables, the multiple linear regression (MLR) model was established with good results of the quantitative modelling correlation coefficient R2 = 0.645 and the cross-validation correlation coefficient 0.375. After removing 4 outliers, the quantitative modelling and cross-validation correlation coefficients were R2 = 0.743 and R2CV=0.543, respectively.

  5. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  6. The chicken CCAAT/Enhancer Binding Protein alpha gene. Cloning, characterisation and tissue distribution

    NARCIS (Netherlands)

    Calkhoven, CF; Gringhuis, SI; Ab, G

    1997-01-01

    We present the cloning and sequencing of the gene encoding the chicken CCAAT/Enhancer Binding Protein alpha (cC/EBP alpha). The coding region and 1.5 kb of 5' flanking DNA form a CpG island. Comparison of the chicken C/EBP alpha sequence to the homologous proteins of other species reveals several ev

  7. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    Science.gov (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  8. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  9. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  10. ABP: a novel AMPA receptor binding protein.

    Science.gov (United States)

    Srivastava, S; Ziff, E B

    1999-04-30

    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  11. Development of a glucose binding protein biosensor

    Science.gov (United States)

    Dweik, M.; Milanick, M.; Grant, S.

    2007-09-01

    Glucose binding protein (GBP) is a monomeric periplasmic protein. It is synthesized in the cytoplasm of Escherichia coli which functions as a receptor for transport D-glucose. GBP binds glucose with high affinity. The binding mechanism is based on a hinge motion due to the protein conformational change. This change was utilized as an optical sensing mechanism by applying Fluorescence Resonance Energy Transfer (FRET). The wild-type GBP lacks cysteine in its structure, but by introducing a single cysteine at a specific site by site-directed mutagenesis, this ensured single-label attachment at specific sites with a fluorescent probe. The other sites were amino sites, which were labeled with second fluorophore. The near IR FRET pair, Alexa Fluor 680 (AF680) and Alexa Fluor 750(AF750), was utilized. The AF680 targeted the amine sites, which was the donor fluorophore, while the AF750 labeled the single cysteine site, which was the acceptor fluorophore. The sensing system strategy was based on the fluorescence changes of the probe as the protein undergoes a structural change upon binding. This biosensor had the ability to detect down to 10 uM concentrations of glucose. Next the probes were uploaded into red blood cells via hypo osmotic dialysis. The sensor responded to glucose while encapsulated with the red cells. These results showed the feasibility of an intracellular glucose biosensor.

  12. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  13. Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo.

    Science.gov (United States)

    Bedbrook, Claire N; Kato, Mihoko; Ravindra Kumar, Sripriya; Lakshmanan, Anupama; Nath, Ravi D; Sun, Fei; Sternberg, Paul W; Arnold, Frances H; Gradinaru, Viviana

    2015-08-20

    Membrane proteins are the main gatekeepers of cellular state, especially in neurons, serving either to maintain homeostasis or instruct response to synaptic input or other external signals. Visualization of membrane protein localization and trafficking in live cells facilitates understanding the molecular basis of cellular dynamics. We describe here a method for specifically labeling the plasma membrane-localized fraction of heterologous membrane protein expression using channelrhodopsins as a case study. We show that the genetically encoded, covalent binding SpyTag and SpyCatcher pair from the Streptococcus pyogenes fibronectin-binding protein FbaB can selectively label membrane-localized proteins in living cells in culture and in vivo in Caenorhabditis elegans. The SpyTag/SpyCatcher covalent labeling method is highly specific, modular, and stable in living cells. We have used the binding pair to develop a channelrhodopsin membrane localization assay that is amenable to high-throughput screening for opsin discovery and engineering.

  14. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  15. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  16. Regulation of adhE (Encoding Ethanol Oxidoreductase) by the Fis Protein in Escherichia coli

    Science.gov (United States)

    Membrillo-Hernández, Jorge; Kwon, Ohsuk; De Wulf, Peter; Finkel, Steven E.; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes. PMID:10572146

  17. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    Science.gov (United States)

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  18. Quantifying drug-protein binding in vivo.

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  19. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  20. Discovery, SAR, and X-ray Binding Mode Study of BCATm Inhibitors from a Novel DNA-Encoded Library.

    Science.gov (United States)

    Deng, Hongfeng; Zhou, Jingye; Sundersingh, Flora S; Summerfield, Jennifer; Somers, Don; Messer, Jeffrey A; Satz, Alexander L; Ancellin, Nicolas; Arico-Muendel, Christopher C; Sargent Bedard, Katie L; Beljean, Arthur; Belyanskaya, Svetlana L; Bingham, Ryan; Smith, Sarah E; Boursier, Eric; Carter, Paul; Centrella, Paolo A; Clark, Matthew A; Chung, Chun-Wa; Davie, Christopher P; Delorey, Jennifer L; Ding, Yun; Franklin, G Joseph; Grady, LaShadric C; Herry, Kenny; Hobbs, Clare; Kollmann, Christopher S; Morgan, Barry A; Pothier Kaushansky, Laura J; Zhou, Quan

    2015-08-13

    As a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (R)-3-((1-(5-bromothiophene-2-carbonyl)pyrrolidin-3-yl)oxy)-N-methyl-2'-(methylsulfonamido)-[1,1'-biphenyl]-4-carboxamide (15e) from a novel compound library synthesized via on-DNA Suzuki-Miyaura cross-coupling showed BCATm inhibitory activity with IC50 = 2.0 μM. A protein crystal structure of 15e revealed that it binds to BCATm within the catalytic site adjacent to the PLP cofactor. The identification of this novel inhibitor series plus the establishment of a BCATm protein structure provided a good starting point for future structure-based discovery of BCATm inhibitors.

  1. Cloning of cDNA Encoding GRA1 Protein of Tachyzoite Toxoplasma Gondii Local Isolate

    Directory of Open Access Journals (Sweden)

    Erma Sulistyaningsih

    2015-10-01

    Full Text Available Gene encoding GRA1 protein is potent DNA-vaccine candidate against toxoplasmosis. The aim of the researchwas to clone the gene encoding GRA1 protein of tachyzoite Toxoplasma gondii local isolate by DNA recombinanttechnology. Tachyzoite was grown in Balb/c mice in vivo. Messenger RNA was isolated from total RNA and itwas used to synthesis cDNA. Complementary DNA encoding GRA1 protein of tachyzoite Toxoplasma gondii localisolate was amplified and cloned in a prokaryote cloning vector. The recombinant GRA1-encoding gene was thendigesting using EcoRI restriction endonuclease and sequencing. The result showed that the recombinant GRA1-encoding gene consisted of DNA sequences encoding all signal peptide and mature peptide of GRA1 protein.Alignment of recombinant GRA1 sequence to gene encoding GRA1 protein of Toxoplasma gondii RH isolate showed100% homologous.Keywords: GRA1 protein, Toxoplasma gondii, tachyzoite, cloning, cDNA

  2. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  3. High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries.

    Science.gov (United States)

    Buller, Fabian; Steiner, Martina; Scheuermann, Jörg; Mannocci, Luca; Nissen, Ina; Kohler, Manuel; Beisel, Christian; Neri, Dario

    2010-07-15

    DNA-encoded chemical libraries are large collections of small organic molecules, individually coupled to DNA fragments that serve as amplifiable identification bar codes. The isolation of specific binders requires a quantitative analysis of the distribution of DNA fragments in the library before and after capture on an immobilized target protein of interest. Here, we show how Illumina sequencing can be applied to the analysis of DNA-encoded chemical libraries, yielding over 10 million DNA sequence tags per flow-lane. The technology can be used in a multiplex format, allowing the encoding and subsequent sequencing of multiple selections in the same experiment. The sequence distributions in DNA-encoded chemical library selections were found to be similar to the ones obtained using 454 technology, thus reinforcing the concept that DNA sequencing is an appropriate avenue for the decoding of library selections. The large number of sequences obtained with the Illumina method now enables the study of very large DNA-encoded chemical libraries (>500,000 compounds) and reduces decoding costs.

  4. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  5. Development of Deduced Protein Database Using Variable Bit Binary Encoding

    Directory of Open Access Journals (Sweden)

    B. Parvathavarthini

    2008-01-01

    Full Text Available A large amount of biological data is semi-structured and stored in any one the following file formats such as flat, XML and relational files. These databases must be integrated with the structured data available in relational or object-oriented databases. The sequence matching process is difficult in such file format, because string comparison takes more computation cost and time. To reduce the memory storage size of amino acid sequence in protein database, a novel probability-based variable bit length encoding technique has been introduced. The number of mapping of triplet CODON for every amino acid evaluates the probability value. Then, a binary tree has been constructed to assign unique bits of binary codes to each amino acid. This derived unique bit pattern of amino acid replaces the existing fixed byte representation. The proof of reduced protein database space has been discussed and it is found to be reduced between 42.86 to 87.17%. To validate our method, we have collected few amino acid sequences of major organisms like Sheep, Lambda phage and etc from NCBI and represented them using proposed method. The comparison shows that of minimum and maximum reduction in storage space are 43.30% and 72.86% respectively. In future the biological data can further be reduced by applying lossless compression on this deduced data.

  6. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    Science.gov (United States)

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  7. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  8. Neural correlates of binding lyrics and melodies for the encoding of new songs.

    Science.gov (United States)

    Alonso, Irene; Davachi, Lila; Valabrègue, Romain; Lambrecq, Virginie; Dupont, Sophie; Samson, Séverine

    2016-02-15

    Songs naturally bind lyrics and melody into a unified representation. Using a subsequent memory paradigm, we examined the neural processes associated with binding lyrics and melodies during song encoding. Participants were presented with songs in two conditions: a unified condition (melodies sung with lyrics), and a separate condition (melodies sung with the syllable "la"). In both cases, written lyrics were displayed and participants were instructed to memorize them by repeating them covertly or by generating mental images of the songs. We expected the unified condition to recruit the posterior superior temporal gyrus, known to be involved in perceptual integration of songs, as well as the left inferior frontal gyrus (IFG). Conversely, we hypothesized that the separate condition would engage a larger network including the hippocampus to bind lyrics and melodies of songs, and the basal ganglia and the cerebellum to ensure the correct sequence coupling of verbal and musical information in time. Binding lyrics and melodies in the unified condition revealed activation of the left IFG, bilateral middle temporal gyrus (MTG), and left motor cortex, suggesting a strong linguistic processing for this condition. Binding in the separate compared to the unified condition revealed greater activity in the right hippocampus as well as other areas including the left caudate, left cerebellum, and right IFG. This study provides novel evidence for the role of the right hippocampus in binding lyrics and melodies in songs. Results are discussed in light of studies of binding in the visual domain and highlight the role of regions involved in timing and synchronization such as the basal ganglia and the cerebellum.

  9. Characteristics and phylogeny of light-harvesting complex gene encoded proteins from marine red alga Griffithsia japonica

    Institute of Scientific and Technical Information of China (English)

    LIU Chenlin; HUANG Xiaohang; LEE Yookyung; LEE Hongkum; LI Guangyou

    2005-01-01

    Six genes encoding light-harvesting complex (LHC) protein have been characterized in the multicellular red alga Griffithsia japonica EST analysis. Three of them were full sequences while others were partial sequences with 3'-UTRs. The cleavage sites between signal peptide and mature LHC protein were analyzed on these three full sequences. The sequence characteristics, calculated molecular weights and isoelectric point (pI) values and hydrophobieity of the mature proteins were deduced and analyzed. Comparing the LHC sequences of G. japonica with higher plant, Chlorophyta, chromophytes and other red algae, the high conservation of the chlorophyll (Chl) binding site among chromophytes and red algae were revealed. Phylogenetic analysis on LHC proteins from higher plant, green algae, euglena, brown algae, diatom, cryptomonad, Raphidophyte and red algae reveals that (1) there are two distinct groups of Chl a/b and Chl a/c -binding LHC; (2) Chl a binding proteins of red algae share greater similarities with the Chl a/c-binding proteins of the chromophytes and dinoflagellate than with the Chl a/b - binding proteins of the green algae and higher plants; (3) chromophyte' s LHC is supposed to be evolved from red algae LHC.

  10. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  11. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  12. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice

    OpenAIRE

    1999-01-01

    To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues. Analogous heterozygous defects in humans cause hypertrophic cardiomyopathy. Mice that are homozygous for the mutated MyBP-C alleles expre...

  13. Cloning of Mouse Enamel Matrix Serine Proteinase Encoding Mature Protein

    Institute of Scientific and Technical Information of China (English)

    MU Ya-bing; SUN Hong-chen; ZHANG Ze-bing; OUYANG Jie

    2003-01-01

    Objective: To clone cDNA of enamel matrix serine proteinase (EMSP1) encoding mature protein from mouse dental germs. Methods: Total RNA was isolated from developing incisors and molars of 7 days mouse pups and reverse-transcribed into cDNA. Two pairs of specific primers was designed to obtain the desired gene by Touchdown PCR and Nested PCR. The segment was inserted into Vector pMD-18T, and recombined vectors was transformed into E.coli JM109.The positive clone was chose and analysed by restriction endonuclease mapping and DNA sequencing. Results:700 bp of cDNA of mouse EMSP1 was sueccessfully cloned from mouse tooth germs tissue. The sequence was consistent with that displayed in PubMed. Conclusion:The mouse EMSP1 cDNA encoding mature protein is obtained for further study.%目的:克隆小鼠牙胚组织中釉基质丝氨酸蛋白酶(EMSP1)成熟肽编码区基因.方法:提取出生后7 d昆明种小白鼠切牙、磨牙牙胚总RNA,逆转录为cDNA,设计两对特异性引物,采用Touchdown PCR 和嵌套PCR方法,扩增出小鼠EMSP1起始密码子至终止密码子基因片段.将目的基因连入载体pMD-18T,转化入大肠杆菌JM109,通过蓝白筛选,挑选阳性克隆培养扩增,纯化重组质粒进行限制性酶切和核苷酸序列分析鉴定.结果:限制性酶切图谱和核苷酸序列分析均表明所克隆cDNA为小鼠700 bp的EMSP1成熟肽基因编码.结论:成功地克隆了小鼠编码EMSP1成熟肽基因片段.

  14. An HIV-1 encoded peptide mimics the DNA binding loop of NF-{kappa}B and binds thioredoxin with high affinity

    Energy Technology Data Exchange (ETDEWEB)

    Su Guoping [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: gsu@u.washington.edu; Wang Min [Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023 (United States)]. E-mail: wang.min@yale.edu; Taylor, Ethan Will [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States)]. E-mail: wtaylor@rx.uga.edu

    2005-11-11

    Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-{kappa}B), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-{kappa}B via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-{kappa}B/Rel family of transcription factors by the putative HIV-1 pro-fs protein.

  15. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  16. Caleosins: Ca+2 binding proteins associated with oil-bodies

    DEFF Research Database (Denmark)

    Næsted, Henrik; Frandsen, Gitte Inselmann; Jauh, G.Y.;

    2000-01-01

    We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1-5)...

  17. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    NARCIS (Netherlands)

    Maatz, H.; Jens, M.; Liss, M.; Schafer, S.; Heinig, M.; Kirchner, M.; Adami, E.; Rintisch, C.; Dauksaite, V.; Radke, M.H.; Selbach, M.; Barton, P.J.; Cook, S.A.; Rajewsky, N.; Gotthardt, M.; Landthaler, M.; Hubner, N.

    2014-01-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and

  18. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter.

    Science.gov (United States)

    Yang, Nuan; Driessen, Arnold J M

    2015-01-01

    Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporters with each subunit consisting of a membrane domain fused at the C-terminus to an ATP-binding domain, or as full transporters in which the two subunits are fused into a single polypeptide. The saci_2123 gene of the thermoacidophilic archaeon Sulfolobus acidocaldarius is the only gene in the genome that encodes an ATP-binding cassette half-transporter, while a homologous gene is present in the genomes of S. solfataricus, S. tokodaii and S islandicus. Saci_2123 shares homology with well-characterized bacterial and mammalian MDR transporters. The saci_2132 gene is up-regulated when cells are exposed to drugs. A deletion mutant of saci_2132 was found to be more vulnerable to a set of toxic compounds, including detergents, antibiotics and uncouplers as compared to the wild-type strain, while the drug resistance could be restored through the plasmid-based expression of saci_2132. These data demonstrate that Saci_2132 is an archaeal ABC-MDR transporter and therefore it was termed Smr1 (Sulfolobus multidrug resistance transporter 1).

  19. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  20. Multilocus sequence typing analysis of Streptococcus mutans strains with the cnm gene encoding collagen-binding adhesin.

    Science.gov (United States)

    Lapirattanakul, Jinthana; Nakano, Kazuhiko; Nomura, Ryota; Leelataweewud, Pattarawadee; Chalermsarp, Narumon; Klaophimai, Arthit; Srisatjaluk, Ratchapin; Hamada, Shigeyuki; Ooshima, Takashi

    2011-11-01

    Streptococcus mutans is one of the oral pathogens associated with infective endocarditis (IE). With respect to bacterial binding ability to the extracellular matrix, the Cnm protein, a cell surface collagen-binding adhesin of S. mutans, is known as one of the possible virulence factors with regard to IE. In this study, we aimed to determine the distribution of the cnm gene, which encodes Cnm, in a large number of clinical isolates of S. mutans from Thai subjects. Then, the cnm-positive strains were classified using a multilocus sequence typing (MLST) scheme, which we constructed previously. In addition, the data were analysed together with our previous MLST data of cnm-positive strains from Japan and Finland in order to evaluate the clonal relationship among S. mutans strains harbouring the cnm gene. The cnm gene was detected in 12.4 % of all 750 Thai isolates, and serotype f showed the highest rate of detection (54.5 %). According to the MLST data, two clonal complex groups were revealed as the important clones related to cnm-positive S. mutans from various origins of isolation. Moreover, the collagen-binding properties of S. mutans strains with the cnm gene were significantly greater than those of strains without the gene, although four cnm-negative strains classified into two sequence types (STs), ST110 and ST136, showed extremely high collagen-binding rates suggesting the presence of additional genes involved with collagen binding in these STs. Taken together, these results provided information on both epidemiological as well as evolutional aspects of S. mutans possessing the cnm gene.

  1. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    Science.gov (United States)

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  2. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Science.gov (United States)

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  3. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    Directory of Open Access Journals (Sweden)

    Bernhard Hochreiter

    2015-10-01

    Full Text Available Fluorescence- or Förster resonance energy transfer (FRET is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a cleavage; (b conformational-change; (c mechanical force and (d changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  4. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...... nmol l-1 and 16 nmol l-1. The binding protein has a Stokes radius of 2.49 nm when saturated with cobalamin and 2.61 nm when unsaturated. It binds cobalamin over a broad range of pH and is able to bind cobinamide also. With immunohistochemistry, we find haptocorrin immunoreactivity in the mammary glands...

  5. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  6. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    Science.gov (United States)

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  7. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein

    DEFF Research Database (Denmark)

    Goldberg, Y; Glineur, C; Gesquière, J C;

    1988-01-01

    of this nuclear receptor. The v-erbA product inhibits terminal differentiation of avian erythroblasts, presumably by affecting the transcription of specific genes. We show here that the c-erbA-encoded nuclear receptor (p46c-erbA) is phosphorylated on serine residues on two distinct sites. One of these sites......The c-erbA proto-oncogene encodes a nuclear receptor for thyroid hormone (T3), which is believed to stimulate transcription from specific target promoters upon binding to cis-acting DNA sequence elements. The v-erbA oncogene of avian erythroblastosis virus (AEV) encodes a ligand-independent version......-v-erbA is enhanced 10-fold following treatment of cells with activators of either protein kinase C or cAMP-dependent protein kinase. Since cAMP-dependent protein kinase phosphorylates both p46c-erbA and P75gag-v-erbA in vitro at the same site as that observed in vivo, at least part of the cAMP-dependent...

  8. Inactivation of a Gene for a Fibronectin-Binding Protein of the Oral Bacterium Streptococcus mutans Partially Impairs Its Adherence to Fibronectin

    OpenAIRE

    Miller-Torbert, Tracey A.; Sharma, Shvetank; Holt, Robert G.

    2008-01-01

    A sequence of 1,647 base pairs in length of S. mutans DNA that encodes for a 63 kDa protein with significant amino acid similarity with fibronectin-binding proteins of S. pyogenes and S. gordonii was cloned. The putative recombinant fibronectin-binding protein of S. mutans was purified using affinity chromatography and the cloned protein was used to prepare polyclonal antibodies against the recombinant protein. In immunoblot assays, antibodies against the S. pyogenes fibronectin-binding prote...

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins[W

    Science.gov (United States)

    Punwani, Jayson A.; Rabiger, David S.; Drews, Gary N.

    2007-01-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98–green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation. PMID:17693534

  11. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  12. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  13. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  14. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes.

    Science.gov (United States)

    Johnson, D G; Carayannopoulos, L; Capra, J D; Tucker, P W; Hanke, J H

    1990-03-01

    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. We have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  15. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.G.; Carayannopoulos, L.; Capra, J.D.; Tucker, P.W. (Dept. of Microbiology, Southwestern Medical Center at Dallas, Dallas, TX (US)); Hanke, J.H. (Central Research, Dept. of Molecular Genetics, Pfizer, Inc., Groton, CT (US))

    1990-03-01

    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. The authors have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  16. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hilal Kazan

    Full Text Available Metazoan genomes encode hundreds of RNA-binding proteins (RBPs. These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.

  17. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    SONG Xin; TAO Yongguang; TAN Yunnian; Leo M. Lee; DENG Xiyun; WU Qiao; CAO Ya

    2005-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.

  18. Phylogenetic and functional analysis of the bacteriophage P1 single-stranded DNA-binding protein

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nilsson, A.S.; Lehnherr, H.

    2002-01-01

    Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit...... phase. These results reconciled the observed evolutionary conservation with the seemingly redundant presence of ssb genes in many bacteriophages and conjugative plasmids....

  19. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    Science.gov (United States)

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  20. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  1. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  2. Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3.

    Science.gov (United States)

    Chaturvedi, Navaneet; Kajsik, Michal; Forsythe, Stephen; Pandey, Paras Nath

    2015-12-01

    The recently annotated genome of the bacterium Cronobacter sakazakii BAA-894 suggests that the organism has the ability to bind heavy metals. This study demonstrates heavy metal tolerance in C. sakazakii, in which proteins with the heavy metal interaction were recognized by computational and experimental study. As the result, approximately one-fourth of proteins encoded on the plasmid pESA3 are proposed to have potential interaction with heavy metals. Interaction between heavy metals and predicted proteins was further corroborated using protein crystal structures from protein data bank database and comparison of metal-binding ligands. In addition, a phylogenetic study was undertaken for the toxic heavy metals, arsenic, cadmium, lead and mercury, which generated relatedness clustering for lead, cadmium and arsenic. Laboratory studies confirmed the organism's tolerance to tellurite, copper and silver. These experimental and computational study data extend our understanding of the genes encoding for proteins of this important neonatal pathogen and provide further insights into the genotypes associated with features that can contribute to its persistence in the environment. The information will be of value for future environmental protection from heavy toxic metals.

  3. Neuronal calcium-binding proteins and schizophrenia.

    Science.gov (United States)

    Eyles, D W; McGrath, J J; Reynolds, G P

    2002-09-01

    Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings.

  4. Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4.

    Science.gov (United States)

    Repo, Susanna; Paldanius, Tiina A; Hytönen, Vesa P; Nyholm, Thomas K M; Halling, Katrin K; Huuskonen, Juhani; Pentikäinen, Olli T; Rissanen, Kari; Slotte, J Peter; Airenne, Tomi T; Salminen, Tiina A; Kulomaa, Markku S; Johnson, Mark S

    2006-10-01

    The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.

  5. A core viral protein binds host nucleosomes to sequester immune danger signals.

    Science.gov (United States)

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  6. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  7. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  8. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    OpenAIRE

    Martina L. Sanderson-Smith; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2006-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G strep...

  9. Methyl-CpG binding proteins in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Guoping FAN; Leah HUTNICK

    2005-01-01

    Classical methyl-CpG binding proteins contain the conserved DNA binding motif methyl-cytosine binding domain (MBD), which preferentially binds to methylated CpG dinucleotides. These proteins serve as transcriptional repressors,mediating gene silencing via DNA cytosine methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked to the human mental retardation disorder Rett syndrome, suggesting an important role for methyl-CpG binding proteins in brain development and function. This mini-review summarizes the recent advances in studying the diverse functions of MeCP2 as a prototype for other methyl-CpG binding proteins in the development and function of the vertebrate nervous system.

  10. Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella.

    Directory of Open Access Journals (Sweden)

    Derek K Ho

    Full Text Available Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH, we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP. Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.

  11. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    Science.gov (United States)

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  12. Protein function annotation by local binding site surface similarity.

    Science.gov (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  13. ANDROGEN REGULATION OF PROSTATIC STEROID BINDING PROTEIN GENE TRANSCRIPTION

    Institute of Scientific and Technical Information of China (English)

    ZHANGYong-Lian; ZHOUZong-Xun; ZHANGYou-Duan; PARKERMalcolmG

    1989-01-01

    Prostatic steroid binding protein (PSBP) is a major protein secreted in the rat ventral prostate (V.P.) and also one of the components in seminal fluid, The potential importance of this protein in male fertility emerged from its ability of binding cholesterol which might modulate the proportion of phospholipids and cholesterol in sperm making it suitable

  14. DBD2BS: connecting a DNA-binding protein with its binding sites

    OpenAIRE

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes c...

  15. A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity.

    Science.gov (United States)

    Stumpf, Craig R; Kimble, Judith; Wickens, Marvin

    2008-08-01

    PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and the PUF-8/9 groups bind different but related RNA sequences. We focus here on the binding specificity of representatives of a third cluster, comprising PUF-5, -6, and -7. We performed in vivo selection experiments using the yeast three-hybrid system to identify RNA sequences that bind PUF-5 and PUF-6, and we confirmed binding to optimal sites in vitro. The consensus sequences derived from the screens are similar for PUF-5 and PUF-6 but differ from those of the FBF or PUF-8/-9 groups. Similarly, neither PUF-5 nor PUF-6 bind the recognition sites preferred by the other clusters. Mutagenesis studies confirmed the unique RNA specificity of PUF-5/-6. Using the PUF-5 consensus derived from our experiments, we searched a database of C. elegans 3'UTRs to identify potential targets of PUF-5, several of which indeed bind PUF-5. Therefore the consensus has predictive value and provides a route to finding genuine targets of these proteins.

  16. Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS.

    Science.gov (United States)

    Buey, Rubén M; Monterroso, Begoña; Menéndez, Margarita; Diakun, Greg; Chacón, Pablo; Hermoso, Juan Antonio; Díaz, J Fernando

    2007-01-12

    Phosphocholine moieties decorating the pneumococcal surface are used as a docking station for a family of modular proteins, the so-called choline binding proteins or CBPs. Choline recognition is essential for CBPs function and may also be a determinant for their quaternary structure. There is little knowledge about modular arrangement or oligomeric structures in this family. Therefore, we have used the small angle X-ray scattering (SAXS) technique combined with analytical ultracentrifugation in order to model the three-dimensional envelope of two highly different CBPs: the phage encoded Cpl-1 lysozyme and the pneumococcal phosphorylcholine esterase Pce. Both enzymes have an N-terminal catalytic module and a C-terminal choline-binding module (CBM) that attaches them to the bacterial surface and comprises six and ten sequence repeats in Cpl-1 and Pce, respectively. SAXS experiments have shown an inherent conformational plasticity in Cpl-1 that accounts for the different relative position of these regions in the solution and crystal structures. Dimerization of Cpl-1 upon choline binding has been also visualised for the first time, and monomer-monomer interactions take place through the first CBR where a non-canonical choline binding site has now been identified. This mode of association seems to be independent of the absence or presence of the Cpl-1 catalytic module and reveals that the arrangement of the monomers differs from that previously found in the isolated CBM dimer of pneumococcal LytA amidase. In contrast, Pce displays the same modular disposition in the solution and crystal structures, and remains almost invariant upon choline binding. The present results suggest that protein dimerization and duplication of CBRs may be alternative but not equivalent ways of improving cell wall recognition by CBPs, since they provide different interaction geometries for choline residues present in (lipo)teichoic acids.

  17. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  18. Identification of putative DnaN-binding motifs in plasmid replication initiation proteins.

    Science.gov (United States)

    Dalrymple, Brian P; Kongsuwan, Kritaya; Wijffels, Gene

    2007-01-01

    Recently the plasmid RK2 replication initiation protein, TrfA, has been shown to bind to the beta subunit of DNA Polymerase III (DnaN) via a short pentapeptide with the consensus QL[S/D]LF. A second consensus peptide, the hexapeptide QLxLxL, has also been demonstrated to mediate binding to DnaN. Here we describe the results of a comprehensive survey of replication initiation proteins encoded by bacterial plasmids to identify putative DnaN-binding sites. Both pentapeptide and hexapeptide motifs have been identified in a number of families of replication initiation proteins. The distribution of sites is sporadic and closely related families of proteins may differ in the presence, location, or type of putative DnaN-binding motif. Neither motif has been identified in replication initiation proteins encoded by plasmids that replicate via rolling circles or strand displacement. The results suggest that the recruitment of DnaN to the origin of replication of a replisome by plasmid replication initiation proteins is not generally required for plasmid replication, but that in some cases it may be beneficial for efficiency of replication initiation.

  19. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  20. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  1. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast.

    Directory of Open Access Journals (Sweden)

    André P Gerber

    2004-03-01

    Full Text Available Genes encoding RNA-binding proteins are diverse and abundant in eukaryotic genomes. Although some have been shown to have roles in post-transcriptional regulation of the expression of specific genes, few of these proteins have been studied systematically. We have used an affinity tag to isolate each of the five members of the Puf family of RNA-binding proteins in Saccharomyces cerevisiae and DNA microarrays to comprehensively identify the associated mRNAs. Distinct groups of 40-220 different mRNAs with striking common themes in the functions and subcellular localization of the proteins they encode are associated with each of the five Puf proteins: Puf3p binds nearly exclusively to cytoplasmic mRNAs that encode mitochondrial proteins; Puf1p and Puf2p interact preferentially with mRNAs encoding membrane-associated proteins; Puf4p preferentially binds mRNAs encoding nucleolar ribosomal RNA-processing factors; and Puf5p is associated with mRNAs encoding chromatin modifiers and components of the spindle pole body. We identified distinct sequence motifs in the 3'-untranslated regions of the mRNAs bound by Puf3p, Puf4p, and Puf5p. Three-hybrid assays confirmed the role of these motifs in specific RNA-protein interactions in vivo. The results suggest that combinatorial tagging of transcripts by specific RNA-binding proteins may be a general mechanism for coordinated control of the localization, translation, and decay of mRNAs and thus an integral part of the global gene expression program.

  2. Lipopolysaccharide binding protein in preterm infants

    Science.gov (United States)

    Behrendt, D; Dembinski, J; Heep, A; Bartmann, P

    2004-01-01

    Objective: To assess serum concentrations of lipopolysaccharide binding protein (LBP) in preterm infants with neonatal bacterial infection (NBI). Methods: Blood samples were analysed of 57 preterm (28+1 to 36+6, median 33+2 weeks gestation) and 17 term infants admitted to the neonatal intensive care unit within the first 72 hours of life with suspicion of NBI. Samples were obtained at first suspicion of sepsis and after 12 and 24 hours. Diagnosis of NBI was confirmed by raised concentrations of C reactive protein and/or interleukin 6. The influence of gestational age and labour was analysed. Results: Maximum LBP concentrations in infants with NBI were greatly increased compared with infants without NBI (13.0–46.0 µg/ml (median 20.0 µg/ml) v 0.6–17.4 µg/ml (median 4.2 µg/ml)). LBP concentrations in infected infants were not yet significantly raised when NBI was first suspected. The LBP concentrations of preterm infants were comparable to those of term infants. Regression analysis revealed no significant effect of labour or gestational age on LBP. Conclusions: Raised LBP concentrations indicate NBI in preterm and term infants. Preterm infants of > 28 weeks gestation seem to be capable of producing LBP as efficiently as term infants. Neonatal LBP concentrations are not influenced by labour. LBP may be a useful diagnostic marker of NBI in preterm infants. PMID:15499153

  3. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Xian

    2007-12-01

    Full Text Available Abstract Background DING proteins constitute a conserved and broadly distributed set of proteins found in bacteria, fungi, plants and animals (including humans. Characterization of DING proteins from animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING homologue (named Psp here in the genome of Pseudomonas fluorescens SBW25 provided a unique opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report we genetically characterize Psp with a focus on conditions under which psp is expressed and the protein exported. Results Psp is closely related to the periplasmic Pi binding component of the ABC-type phosphate transporter system (Pst. psp is flanked by a gene cluster predicted to function as a type II protein secretion system (Hxc. Deletion analysis combined with chromosomally integrated 'lacZ fusions showed that both psp and pstC are induced by Pi limitation and that pstC is required for competitive growth of the bacterium in Pi limited medium. hxcR is not regulated by Pi limitation. Psp was detected (using anti-DING serum in the supernatant of wild-type culture but was greatly reduced in the supernatant of an isogenic strain carrying an hxcR mutation (ΔhxcR. A promoter fusion between hxcR and a promoterless copy of a gene ('dapB essential for growth in the plant environment showed that expression of hxcR is elevated during colonization of sugar beet seedlings. A similar analysis of psp showed that it is not induced in the plant environment. Conclusion Psp gene is expressed under conditions of Pi limitation. It is an exoprotein secreted mainly via the Hxc type II secretion

  4. AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins.

    Science.gov (United States)

    Parida, Adwaita Prasad; Sharma, Amrapali; Sharma, Arun Kumar

    2017-03-01

    DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.

  5. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  6. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  7. O-demethylase from Acetobacterium dehalogenans--cloning, sequencing, and active expression of the gene encoding the corrinoid protein.

    Science.gov (United States)

    Kaufmann, F; Wohlfarth, G; Diekert, G

    1998-10-15

    The ether-cleaving O-demethylase from the strictly anaerobic homoacetogen Acetobacterium dehalogenans catalyses the methyltransfer from 4-hydroxy-3-methoxy-benzoate (vanillate) to tetrahydrofolate. In the first step a vanillate :corrinoid protein methyltransferase (methyltransferase I) mediates the methylation of a 25-kDa corrinoid protein with the cofactor reduced to cob(I)alamin. The methyl group is then transferred to tetrahydrofolate by the action of a methylcorrinoid protein:tetrahydrofolate methyltransferase (methyltransferase II). Using primers derived from the amino-terminal sequences of the corrinoid protein and the vanillate:corrinoid protein methyltransferase (methyltransferase I), a 723-bp fragment was amplified by PCR, which contained the gene odmA encoding the corrinoid protein of O-demethylase. Downstream of odmA, part of the odmB gene encoding methyltransferase I was identified. The amino acid sequence deduced from odmA showed about 60% similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli (MetH) and to corrinoid proteins of methyltransferase systems involved in methanogenesis from methanol and methylamines. The sequence contained the DXHXXG consensus sequence typical for displacement of the dimethylbenzimidazole base of the corrinoid cofactor by a histidine from the protein. Heterologous expression of odmA in E. coli yielded a colourless, oxygen-insensitive apoprotein, which was able to bind one mol cobalamin or methylcobalamin/mol protein. Both of these reconstituted forms of the protein were active in the overall O-demethylation reaction. OdmA reconstituted with hydroxocobalamin and reduced by titanium(III) citrate to the cob(I)alamin form was methylated with vanillate by methyltransferase I in an irreversible reaction. Methylcobalamin carrying OdmA served as methyl group donor for the methylation of tetrahydrofolate by methyltransferase II. This reaction was found to be reversible, since methyltranSferase II

  8. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  9. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kal, A J; Hettema, E H; van den Berg, M; Koerkamp, M G; van Ijlst, L; Distel, B; Tabak, H F

    2000-01-01

    The biogenesis of peroxisomes involves the synthesis of new proteins that after, completion of translation, are targeted to the organelle by virtue of peroxisomal targeting signals (PTS). Two types of PTSs have been well characterized for import of matrix proteins (PTS1 and PTS2). Induction of the genes encoding these matrix proteins takes place in oleate-containing medium and is mediated via an oleate response element (ORE) present in the region preceding these genes. The authors have searched the yeast genome for OREs preceding open reading frames (ORFs), and for ORFs that contain either a PTS1 or PTS2. Of the ORFs containing an ORE, as well as either a PTS1 or a PTS2, many were known to encode bona fide peroxisomal matrix proteins. In addition, candidate genes were identified as encoding putative new peroxisomal proteins. For one case, subcellular location studies validated the in silicio prediction. This gene encodes a new peroxisomal thioesterase.

  10. Protein binding prodrugs : Synthesis and protein binding studies of didanonsine derivates

    OpenAIRE

    Olberg, Dag Erlend

    2004-01-01

    A novel series of 5 -O-ester prodrugs of the anti-HIV drug 2 ,3 -dideoxyinosine (ddI,didanosine) were synthesized for the purpose of increasing protein binding. Hope was that these derivates would exhibit superior pharmacodynamic and pharmacokinetic properties against HIV-infection than the parent drug, didanosine. Ten compounds were synthesized, five fatty acid derivates and five dicarboxylic acid monoester derivates. The fatty acid- and dicarboxylic acid derivates had the sam...

  11. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    Science.gov (United States)

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  12. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    Science.gov (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  13. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    Science.gov (United States)

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  14. Evolutionary conservation and DNA binding properties of the Ssh7 proteins from Sulfolobus shibatae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xulin(陈绪林); GUO; Rong(郭荣); HUANG; Li(黄力); Ray; Hong

    2002-01-01

    The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. Shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of ~ 6.6 base pairs and an apparent dissociation constant of (0.7-1.0)×10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA.

  15. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  16. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...

  17. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  18. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA

    OpenAIRE

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W

    2011-01-01

    molA(HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB2C2 (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7-Å resolution, respectively. The MolA binding protein binds molybdate and tungstate but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate binding protein structurally solved. The ~100 μM binding affinity...

  19. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    Science.gov (United States)

    Sanderson-Smith, Martina L.; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2007-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 μM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (Kd = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys96 and Lys101 reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg107 and His108 to alanine. Furthermore, mutagenesis of Arg107 and His108 abolished plasminogen binding by Prp despite the presence of Lys96 and Lys101 in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins. PMID:17012384

  20. The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues.

    Science.gov (United States)

    Sanderson-Smith, Martina L; Dowton, Mark; Ranson, Marie; Walker, Mark J

    2007-02-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.

  1. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    Science.gov (United States)

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.

  2. Hypoxia-inducible genes encoding small EF-hand proteins in rice and tomato.

    Science.gov (United States)

    Otsuka, Chie; Minami, Ikuko; Oda, Kenji

    2010-01-01

    Rice has evolved metabolic and morphological adaptations to low-oxygen stress to grow in submerged paddy fields. To characterize the molecular components that mediate the response to hypoxia in rice, we identified low-oxygen stress early response genes by microarray analysis. Among the highly responsive genes, five genes, OsHREF1 to OsHREF5, shared strong homology. They encoded small proteins harboring two EF-hands, typical Ca(2+)-binding motifs. Homologous genes were found in many land plants, including SlHREF in tomato, which is also strongly induced by hypoxia. SlHREF induction was detected in both roots and shoots of tomato plants under hypoxia. With the exception of OsHREF5, OsHREF expression was unaffected by drought, salinity, cold, or osmotic stress. Fluorescent signals of green fluorescent protein-fused OsHREFs were detected in the cytosol and nucleus. Ruthenium red, an inhibitor of intracellular Ca(2+) release, repressed induction of OsHREF1-4 under hypoxia. The HREFs may be related to the Ca(2+) response to hypoxia.

  3. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    Science.gov (United States)

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  4. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  5. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  6. Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics.

    Science.gov (United States)

    Xiao, Lin; Xian, Hongxu; Lee, Kit Yee; Xiao, Bin; Wang, Hongyan; Yu, Fengwei; Shen, Han-Ming; Liou, Yih-Cherng

    2015-10-09

    Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death.

  7. Quantitative analysis of pheromone-binding protein specificity

    OpenAIRE

    Katti, S.; Lokhande, N.; D González; Cassill, A.; Renthal, R

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-p...

  8. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  9. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  10. Calcium-binding proteins from human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-06-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with /sup 45/Ca/sup 2 +/ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with /sup 45/Ca/sup 2 +/. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with /sup 45/Ca/sup 2 +/ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of /sup 45/Ca/sup 2 +/.

  11. [Research on the gene structure of duck hepatitis B virus and its encoding proteins].

    Science.gov (United States)

    Liu, Qiang; Jia, Ren-Yong

    2012-11-01

    Duck hepatitis B virus (DHBV) belongs to the Avihepadnavirus genus of the Hepadnaviridae, and it not only has the same replication pattern, but also has the similar genomic and antigenic structures to Hepatitis B virus (HBV). The genome of DHBV is a partially double-stranded closed circular DNA. The genome consists of three distinct open reading frames (ORFs): ORF-PreS/S, ORF-PreC/C and ORF-P, which all locate on the negative DNA strand and encode four separate proteins. The ORF-PreS/S encodes envelope proteins L and S, and the ORF-PreC/C and ORF-P encode capsid proteins C and polymerase proteins P, respectively. The characteristics of genome structure,viral proteins features and functions were described in this review in order to provide useful information for the further study of DHBV and the duck model infected by DHBV.

  12. Affinity purification of sequence-specific DNA binding proteins.

    OpenAIRE

    1986-01-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed t...

  13. Stereoselective binding of chiral drugs to plasma proteins

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Lu WANG; Hui ZHOU; Hui-di JIANG; Lu-shan YU; Su ZENG

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body.The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity,which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles.In this review,the stereoselective binding of chiral drugs to human serum albumin (HSA),α1-acid glycoprotein (AGP)and lipoprotein,three most important proteins in human plasma,are detailed.Furthermore,the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed.Apart from the stereoselectivity of enantiomer-protein binding,enantiomer-enantiomer interactions that may induce allosteric effects are also described.Additionally,the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  14. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...... and by strengthening the interaction between mDNA and MBD proteins. Free-energy perturbation calculations also show that methylation yields favorable contribution to the binding free energy for MBD-mDNA complex....

  15. Lipids and lipid binding proteins: a perfect match.

    Science.gov (United States)

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.

  16. AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins

    Indian Academy of Sciences (India)

    ADWAITA PRASAD PARIDA; AMRAPALI SHARMA; ARUN KUMAR SHARMA

    2017-03-01

    DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome fromtransposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG bindingdomain proteins are members of a class of proteins that bind tomethylated DNA. The Arabidopsis thaliana genome encodes13 methyl CpG binding domain (MBD) proteins, but themolecular/biological functions of most of these proteins are still notclear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNAbinding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40Sribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physicallyinteracts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component ofthe RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci,pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved inRNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 alsointeracts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.

  17. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  18. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus.

    Science.gov (United States)

    Tandon, Ritesh; LePage, Keith T; Kaplan, Ray M

    2006-11-01

    The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses. Both genes possess the sequence characteristics typical of GluCls, and phylogenetic analysis confirms that these genes are evolutionarily closely related to GluCls of other nematodes and flies. Complete coding sequences of C. nassatus GluCl-alpha and GluCl-beta were subcloned into pTL1 mammalian expression vector, and proteins were expressed in COS-7 cells. Ivermectin-binding characteristics were determined by incubating COS-7 cell membranes expressing C. nassatus GluCl-alpha and GluCl-beta proteins with [(3)H]ivermectin. In competitive binding experiments, fitting the data to a one site competition model, C. nassatus GluCl-alpha was found to bind [(3)H]ivermectin with a high amount of displaceable binding (IC(50)=208 pM). Compared to the mock-transfected COS-7 cells, the means of [(3)H]ivermectin binding were significantly different for C. nassatus GluCl-alpha and the Haemonchus contortus GluCl (HcGluCla) (p=0.018 and 0.023, respectively) but not for C. nassatus GluCl-beta (p=0.370). This is the first report of orthologs of GluCl genes and in vitro expression of an ivermectin-binding protein in a cyathostomin species. These data suggest the likelihood of a similar mechanism of action of AM drugs in these parasites, and suggest that mechanisms of resistance may also be similar.

  19. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification is pro...

  20. The virally encoded killer proteins from Ustilago maydis

    Science.gov (United States)

    Several strains of Ustilago maydis, a causal agent of corn smut disease, exhibit a 'killer' phenotype that is due to persistent infection by double-stranded RNA Totiviruses. These viruses produce potent killer proteins that are secreted by the host. This is a rare example of virus/host symbiosis in ...

  1. Cloning of Full-Length cDNAs Encoding Two Methyl-Binding Domain Proteins and Their Expression Patterns in Wheat Seeds%两个小麦甲基结合蛋白基因cDNA全长克隆及其在种子中的表达特性

    Institute of Scientific and Technical Information of China (English)

    孟凡荣; 李永春; 凌娜; 王潇; 司志飞; 张艳霞; 尹钧

    2009-01-01

    [Objective] Analyzing the sequence characteristics of two wheat MBD genes,TaMBD1 and TaMBD6 and their expression patterns during the seed development and germination,which will provide an insight into epigenctic regulation mechanisms involved in the development and germination of wheat seeds.[Method] RACE technology was used in full-length cDNAs cloning and proper bioinformatics softwares were applied for characterizing the cloned genes and the deduced proteins.Semi-quantitative RT-PCR was performed to detect the expression patterns of cloned genes.[Result]Two full-length cDNAs of TaMBD1 and TaMBD6 were cloned,which encodes 193 and 187 amino acids,respectively.The amino acid sequence analysis showed that a typical methyl-CpG-binding domain was included in TaMBD1 and TaMBD6,and a CW-type Zinc finger domain was found in TaMBD1,additionally.Structure prediction revealed that both of TaMBD1 and TaMBD6 could fold into an alpha/beta sandwich structure comprising a layer of twisted beta sheet,backed by another layer formed by the aiphal helix and loops at the C terminus.The RT-PCR analysis showed that the TaMBD1 was steadily expressed with a relative higher level during the seed development,while gradually up-and down-regulated in embryo and endosperm tissues,respectively,along with the germination of wheat seeds.The expression of TaMBD6 is vibrated during the seed development and it was highly expressed at the time point of 15 days after pollination.However,the expression of TaMBD6 was not detected during the seed germination.[Conclusion]Two full-length cDNAs of TaMBD1 and TaMBD6 were firstly cloned from wheat and the typical DNA binding domains were found in the deduced proteins.The expression patterns of these two genes indicated that TaMBD1 might play an importan regulating role during the seed development and germination in wheat,while TaMBD6 was only involved in the regulation of seed development.The results provided important information for further studies on

  2. Mnemons: encoding memory by protein super-assembly

    Directory of Open Access Journals (Sweden)

    Fabrice Caudron

    2015-02-01

    Full Text Available Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences

  3. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  4. Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins

    Directory of Open Access Journals (Sweden)

    Burgoyne Robert D

    2010-04-01

    Full Text Available Abstract Background Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined. Findings We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1 are highly conserved suggesting essential functional roles. Conclusions The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.

  5. MAP1272c encodes an NlpC/P60 protein, an antigen detected in cattle with Johne's disease.

    Science.gov (United States)

    Bannantine, John P; Lingle, Cari K; Stabel, Judith R; Ramyar, Kasra X; Garcia, Brandon L; Raeber, Alex J; Schacher, Pascal; Kapur, Vivek; Geisbrecht, Brian V

    2012-07-01

    The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that contains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne's disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were expressed and evaluated with sera from cattle with Johne's disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a distinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis.

  6. Comparative serum protein binding of anthracycline derivatives.

    Science.gov (United States)

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1996-01-01

    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  7. Evolutionary Characteristics of Missing Proteins: Insights into the Evolution of Human Chromosomes Related to Missing-Protein-Encoding Genes.

    Science.gov (United States)

    Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu

    2015-12-01

    Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.

  8. Molecular cloning of MSSP-2, a c-myc gene single-strand binding protein: characterization of binding specificity and DNA replication activity.

    OpenAIRE

    Takai, Toshiki; Nishita, Yoshinori; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    1994-01-01

    We have previously reported the human cDNA encoding MSSP-1, a sequence-specific double- and single-stranded DNA binding protein [Negishi, Nishita, Saëgusa, Kakizaki, Galli, Kihara, Tamai, Miyajima, Iguchi-Ariga and Ariga (1994) Oncogene, 9, 1133-1143]. MSSP-1 binds to a DNA replication origin/transcriptional enhancer of the human c-myc gene and has turned out to be identical with Scr2, a human protein which complements the defect of cdc2 kinase in S.pombe [Kataoka and Nojima (1994) Nucleic Ac...

  9. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  10. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure.

  11. Identification of AOSC-binding proteins in neurons

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; NIE Qin; XIN Xianliang; GENG Meiyu

    2008-01-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  12. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  13. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    Science.gov (United States)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  14. Identification and characterization of a heme periplasmic-binding protein in Haemophilus ducreyi.

    Science.gov (United States)

    St Denis, Melissa; Sonier, Brigitte; Robinson, Renée; Scott, Fraser W; Cameron, D William; Lee, B Craig

    2011-08-01

    Haemophilus ducreyi, a gram-negative and heme-dependent bacterium, is the causative agent of chancroid, a genital ulcer sexually transmitted infection. Heme acquisition in H. ducreyi proceeds via a receptor mediated process in which the initial event involves binding of hemoglobin and heme to their cognate outer membrane proteins, HgbA and TdhA, respectively. Following this specific interaction, the fate of the periplasmic deposited heme is unclear. Using protein expression profiling of the H. ducreyi periplasmic proteome, a periplasmic-binding protein, termed hHbp, was identified whose expression was enhanced under heme-limited conditions. The gene encoding this protein was situated in a locus displaying genetic characteristics of an ABC transporter. The purified protein bound heme in a dose-dependent and saturable manner and this binding was specifically competitively inhibited by heme. The hhbp gene functionally complemented an Escherichia coli heme uptake mutant. Expression of the heme periplasmic-binding protein was detected in a limited survey of H. ducreyi and H. influenzae clinical strains. These results indicate that the passage of heme into the cytoplasm of H. ducreyi involves a heme dedicated ABC transporter.

  15. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.

    Science.gov (United States)

    Horikoshi, M; Wang, C K; Fujii, H; Cromlish, J A; Weil, P A; Roeder, R G

    1989-09-28

    The TATA sequence-binding factor TFIID plays a central role both in promoter activation by RNA polymerase II and other common initiation factors, and in promoter regulation by gene-specific factors. The sequence of yeast TFIID, which seems to be encoded by a single gene, contains interesting structural motifs that are possibly involved in these functions, and is similar to sequences of bacterial sigma factors.

  16. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  17. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Science.gov (United States)

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  18. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets.

    Science.gov (United States)

    Zhao, Peng; Chen, Zitian; Li, Yizhou; Sun, Dawei; Gao, Yuan; Huang, Yanyi; Li, Xiaoyu

    2014-09-15

    The selection of DNA-encoded libraries against biological targets has become an important discovery method in chemical biology and drug discovery, but the requirement of modified and immobilized targets remains a significant disadvantage. With a terminal protection strategy and ligand-induced photo-crosslinking, we show that iterated selections of DNA-encoded libraries can be realized with unmodified and non-immobilized protein targets.

  19. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction

    OpenAIRE

    Lang, Kathrin; Davis, Lloyd; Torres-Kolbus, Jessica; Chou, Chungjung; Deiters, Alexander; Chin, Jason W.

    2012-01-01

    The site-specific incorporation of bioorthogonal groups via genetic code expansion provides a powerful general strategy for site-specifically labelling proteins with any probe. However, the slow reactivity of the bioorthogonal functional groups that can be encoded genetically limits the utility of this strategy. We demonstrate the genetic encoding of a norbornene amino acid using the pyrrolysyl tRNA synthetase/tRNACUA pair in Escherichia coli and mammalian cells. We developed a series of tetr...

  20. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli.

    Science.gov (United States)

    Rech, S; Wolin, C; Gunsalus, R P

    1996-02-02

    The modABCD operon, located at 17 min on the Escherichia coli chromosome, encodes the protein components of a high affinity molybdate uptake system. Sequence analysis of the modA gene (GenBank L34009) predicts that it encodes a periplasmic binding protein based on the presence of a leader-like sequence at its N terminus. To examine the properties of the ModA protein, the modA structural gene was overexpressed, and its product was purified. The ModA protein was localized to the periplasmic space of the cell, and it was released following a gentle osmotic shock. The N-terminal sequence of ModA confirmed that a leader region of 24 amino acids was removed upon export from the cell. The apparent size of ModA is 31.6 kDa as determined by gel sieve chromatography, whereas it is 22.5 kDa when examined by SDS-polyacrylamide gel electrophoresis. A ligand-dependent protein mobility shift assay was devised using a native polyacrylamide gel electrophoresis protocol to examine binding of molybdate and other anions to the ModA periplasmic protein. Whereas molybdate and tungstate were bound with high affinity (approximately 5 microM), sulfate, chromate, selenate, phosphate, and chlorate did not bind even when tested at 2 mM. A UV spectral assay revealed apparent Kd values of binding for molybdate and tungstate of 3 and 7 microM, respectively. Strains defective in the modA gene were unable to transport molybdate unless high levels of the anion were supplied in the medium. Therefore the modA gene product is essential for high affinity molybdate uptake by the cell. Tungstate interference of molybdate acquisition by the cell is apparently due in part to the high affinity of the ModA protein for this anion.

  1. Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny

    DEFF Research Database (Denmark)

    Mahony, Jennifer; Kot, Witold Piotr; Murphy, James;

    2013-01-01

    Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been impli...

  2. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    Science.gov (United States)

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  3. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology...

  4. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  5. Helical propensity in an intrinsically disordered protein accelerates ligand binding

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Dogan, Jakob; Jemth, Per;

    2014-01-01

    Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activatio...

  6. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl......-CoA esters containing more than eight carbon atoms and that the 3'-phosphate of the ribose accounts for almost half of the binding energy. Binding of acyl-CoA esters, with increasing chain length, to ACBP was clearly enthalpically driven with a slightly unfavorable entropic contribution. Accessible surface...... areas derived from the measured enthalpies were compared to those calculated from sets of three-dimensional solution structures and showed reasonable correlation, confirming the enthalphically driven binding. Binding of dodecanoyl-CoA to ACBP was studied at various temperatures and was characterized...

  7. Conformational thermodynamics of metal-ion binding to a protein

    Science.gov (United States)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  8. Cloning and Sequence Analysis of Y-box Binding Protein Gene in Min Pig

    Institute of Scientific and Technical Information of China (English)

    Zhang Dong-jie; Liu Di; Wang Liang; He Xin-miao; Wang Wen-tao

    2014-01-01

    In order to study the gene sequence of Min pig Y-box binding protein (YB-1) gene, the complete coding sequence of Min pig YB-1 gene was cloned by RT-PCR, the sequence features were analyzed by some software and online website. The results showed that the complete CDS of Min pig Y-box was found to be 975 bp long, encoding 324 amino acids. It contained a conserved cold shock domain and several phosphorylation sites, but had no transmembrane domains, and was consistent with a protein found in the cytoplasm. Min pig YB-1 nucleotides shared high similarity (61.37%-97.66%) with other mammals.

  9. Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins.

    Directory of Open Access Journals (Sweden)

    Matthew Angel

    Full Text Available BACKGROUND: Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. METHODOLOGY/PRINCIPAL FINDINGS: RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-beta (Ifnb1, Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection.

  10. Predicting copper-, iron- and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    Directory of Open Access Journals (Sweden)

    Gabriel B Tristao

    2015-01-01

    Full Text Available Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the cooper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03 and Pb18. The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe- and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3% and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.

  11. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    Science.gov (United States)

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  12. Analogue Encoding of Physicochemical Properties of Proteins in their Cognate Messenger RNAs

    OpenAIRE

    Polyansky, Anton A; Hlevnjak, Mario; Zagrovic, Bojan

    2013-01-01

    Being related by the genetic code, mRNAs and their cognate proteins exhibit mutually interdependent compositions, which implies the possibility of a direct connection between their general physicochemical properties. Here we probe the general potential of the cell to encode information about proteins in the average characteristics of their cognate mRNAs and decode it in a ribosome-independent manner. We show that average protein hydrophobicity, calculated from either sequences or 3D structure...

  13. Fibronectin binding to protein A-containing staphylococci.

    OpenAIRE

    Doran, J E; Raynor, R H

    1981-01-01

    Fibronectin (Fn) was found to bind to protein A-containing isolates of Staphylococcus aureus, but not to mutant strains devoid of this protein nor to clinical isolates of S. epidermidis. Fn was purified from human plasma by affinity chromatography on gelatin-Sepharose. After elution with 4 M urea, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified material detected no immunoglobulin contamination. This purified Fn was radiolabeled with 125I and used in binding assays. Quant...

  14. Theoretical studies of protein-protein and protein-DNA binding rates

    Science.gov (United States)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  15. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for C4b-bindin

  16. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAKASHIMA; Yuka KURODA

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, He, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.

  17. Being a binding site: characterizing residue composition of binding sites on proteins.

    Science.gov (United States)

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  18. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee

    2013-10-01

    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  19. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins.

    Science.gov (United States)

    Riley, Sean P; Bykowski, Tomasz; Cooley, Anne E; Burns, Logan H; Babb, Kelly; Brissette, Catherine A; Bowman, Amy; Rotondi, Matthew; Miller, M Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G; Stevenson, Brian

    2009-04-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where 'n' can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5' of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel alpha-helical 'tweezer'-like structure.

  20. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  1. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    Science.gov (United States)

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits.

  2. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-12-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.

  3. Discodermolide interferes with the binding of tau protein to microtubules.

    Science.gov (United States)

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  4. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103

    2010-01-01

    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  5. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  6. Variation in genes encoding eosinophil granule proteins in atopic dermatitis patients from Germany

    Directory of Open Access Journals (Sweden)

    Epplen Jörg T

    2008-11-01

    Full Text Available Abstract Background Atopic dermatitis (AD is believed to result from complex interactions between genetic and environmental factors. A main feature of AD as well as other allergic disorders is serum and tissue eosinophilia. Human eosinophils contain high amounts of cationic granule proteins, including eosinophil cationic protein (ECP, eosinophil-derived neurotoxin (EDN, eosinophil peroxidase (EPO and major basic protein (MBP. Recently, variation in genes encoding eosinophil granule proteins has been suggested to play a role in the pathogenesis of allergic disorders. We therefore genotyped selected single nucleotide polymorphisms within the ECP, EDN, EPO and MBP genes in a cohort of 361 German AD patients and 325 healthy controls. Results Genotype and allele frequencies did not differ between patients and controls for all polymorphisms investigated in this study. Haplotype analysis did not reveal any additional information. Conclusion We did not find evidence to support an influence of variation in genes encoding eosinophil granule proteins for AD pathogenesis in this German cohort.

  7. Mapping of ligand-binding cavities in proteins.

    Science.gov (United States)

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs.

  8. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  9. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    Science.gov (United States)

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  10. Screening of a Protein That Interacts with the Matrix Attachment Region-Binding Protein from Dunaliella salina

    Directory of Open Access Journals (Sweden)

    Rui Yang

    2013-01-01

    Full Text Available We isolated the matrix attachment region-binding protein (MBP DMBP-1 from Dunaliella salina in our previous studies. MBPs are part of the cis-acting protein family cluster. The regulatory function possibly works through the interaction of the MBPs with each other. In the present study, DMBP-1 was used as the bait in screening the D. salina cDNA library for DMBP-1 interactors that could potentially mediate the DMBP-1-regulated functions. A novel MBP, namely, DMBP-2, was identified as a DMBP-1 binding partner. The cDNA of DMBP-1 was 823 bp long and contained a 573 bp open reading frame, which encoded a polypeptide of 191 amino acids. The interaction between DMBP-2 and DMBP-1 was further confirmed through glutathione S-transferase pull-down assays.

  11. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    GUO; Ming(郭明); KONG; Liang(孔亮); MAO; Xiqin(毛希琴); LI; Xin(历欣); ZOU; Hanfa(邹汉法)

    2002-01-01

    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  12. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites.

    Science.gov (United States)

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R

    2015-09-15

    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  13. Lamprey IGF-Binding Protein-3 Has IGF-Dependent and -Independent Actions

    Science.gov (United States)

    Zhong, Yingbin; Duan, Cunming

    2017-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) are multifunctional proteins that possess IGF-dependent and -independent actions. Recent studies suggest that its IGF-independent action appeared early and that the IGF-binding function may have been acquired later in evolution. The timing of the emergence of IGF-dependent actions is unclear. Here, we identified and characterized an igfbp gene from sea lamprey, an agnathan, which was separated from the jawed vertebrates 450 million years ago. Phylogenetic and structural analyses suggested that the encoded protein belongs to the IGFBP-3 clade in the IGFBP family. Lamprey IGFBP-3 contains an IGF-binding domain (IBD), nuclear localization signal, and transactivation (TA) domain. Biochemical and functional analyses showed that these domains are all functional. Lamprey IGFBP-3 can bind IGFs and modulate IGF signaling when tested in mammalian cells. Lamprey IGFBP-3 also has the capacity to enter the nucleus and has strong TA activity. Forced expression of lamprey IGFBP-3, but not its IBD mutant, in zebrafish embryos decreased body growth and developmental speed. Lamprey IGFBP-3 inhibited BMP2 signaling in cultured cells and in zebrafish embryos, and this action is independent of its IGF-binding function. These results suggest that lamprey IGFBP-3 has both IGF-dependent and -independent actions and provide new insights into the functional evolution of the IGFBP family. PMID:28149290

  14. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  15. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  16. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  17. Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins.

    Science.gov (United States)

    Yadava, N; Chandok, M R; Prasad, J; Bhattacharya, S; Sopory, S K; Bhattacharya, A

    1997-01-01

    A novel calcium-binding protein (EhCaBP) has been recently identified and characterized from the protozoan parasite Entamoeba histolytica. In order to decipher the function of this protein, a few basic properties were investigated and compared with the ubiquitous Ca(2+)-signal transducing protein calmodulin (CaM). Indirect immunofluorescence and immunoprecipitation analyses using specific antibodies against EhCaBP suggest that it is a soluble cytoplasmic protein with no major post-translational modification. EhCaBP did not stimulate cAMP-phosphodiesterase activity, differentiating it from all known CaMs. Affinity chromatography of [35S]methionine-labelled proteins of E. histolytica trophozoites using EhCaBP-sepharose column showed Ca(2+)-dependent binding of a group of proteins. Radiolabelled proteins from the same extract also bound to CaM-sepharose. However, the proteins bound to the two columns were different as revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At least one of the EhCaBP-binding proteins became phosphorylated as revealed by in vivo phosphorylation analysis. The binding-proteins could not be detected in E. invadens (a species that is pathogenic in reptiles) and E. moshkovskii (which is found in the human gut but is not pathogenic), two species in which EhCaBP-like protein has not been found. Two distinct Ca(2+)-dependent protein kinases, which get activated by EhCaBP and CaM respectively, were detected in E. histolytica. These kinases require different levels of Ca2+ for their maximal activities. Affinity chromatography also showed the binding of protein kinase(s) to EhCaBP in a Ca(2+)-dependent manner. Our data suggest that there may be novel Ca(2+)-signal transduction pathway in E. histolytica mediated by EhCaBP.

  18. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  19. Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size

    DEFF Research Database (Denmark)

    Knudsen, J; Faergeman, N J; Skøtt, H;

    1994-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein characterized in vertebrates. We have isolated two ACBP homologues from the yeast Saccharomyces carlsbergensis, named yeast ACBP types 1 and 2. Both proteins contain 86 amino acid residues and are identical except for four conservative substitut...... resulted in a significant expansion of the intracellular acyl-CoA pool. Finally, Southern-blotting analysis of the two genes encoding ACBP types 1 and 2 in S. carlsbergensis strongly indicated that this species is a hybrid between S. cerevisiae and Saccharomyces monacensis....

  20. Detergent activation of the binding protein in the folate radioassay

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  1. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    Science.gov (United States)

    Hogan, Gregory J; Brown, Patrick O; Herschlag, Daniel

    2015-01-01

    Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport

  2. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.

    Directory of Open Access Journals (Sweden)

    Gregory J Hogan

    Full Text Available Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1 Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2 In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3 The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4 Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron

  3. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E;

    1995-01-01

    heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...... origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r...

  4. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    Science.gov (United States)

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-07

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome.

  5. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis.

    NARCIS (Netherlands)

    Hollander, A.I. den; Koenekoop, R.K.; Mohamed, M.D.; Arts, H.H.; Boldt, K.; Towns, K.V.; Sedmak, T.; Beer, M. de; Nagel-Wolfrum, K.; McKibbin, M.; Dharmaraj, S.; Lopez, I.; Ivings, L.; Williams, G.A.; Springell, K.; Woods, C.G.; Jafri, H.; Rashid, Y.; Strom, T.M.; Zwaag, B. van der; Gosens, I.; Kersten, F.F.J.; Wijk, E. van; Veltman, J.A.; Zonneveld, M.N.; Beersum, S.E.C. van; Maumenee, I.H.; Wolfrum, U.; Cheetham, M.E.; Ueffing, M.; Cremers, F.P.M.; Inglehearn, C.F.; Roepman, R.

    2007-01-01

    Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We dete

  6. Lipophilic proteins encoded by mitochondrial and nuclear genes in Neurospora crassa.

    Science.gov (United States)

    Küntzel, H; Pieniaźek, N J; Pieniaźek, D; Leister, D E

    1975-06-01

    Mitochondrial proteins soluble in neutral chloroform-methanol (2:1) were separated from lipids by ether precipitation and resolved by Sephadex G-200 filtration in the presence of dodecylsulfate into two major fractions eluting in the excluded region (peak I) and in a region of an apparent molecular weight 8000 (peak II). Residual phospholipids are found only in peak II. Peak I consists of several aggregated small polypeptides of molecular weights around 8000, which can be disaggregated by mild oxidation with performic acid. Cycloheximide stimulates almost two-fold incorporation of radioactive phenylalanine into peak I proteins but inhibits labelling of peak II proteins by 95%. Chloramphenicol and ethidium bromide inhibit the synthesis of peak I proteins by 70% and 95% respectively, but do not affect labelling of peak II proteins. At least 30% of the translation products of mitochondrial DNA in vitro behave like peak I proteins: they are soluble in organic solvents, they aggregate in dodecylsulfate buffer after removal of phospholipids and they contain species of molecular weights around 8000 that disaggregate upon oxidation. The data strongly suggest that the proteins of peak I are encoded by mitochondrial genes and synthesized on mitochondrial ribosomes, whereas the proteins of peak II are encoded by nuclear genes and synthesized on cytoplasmic ribosomes. Both groups of lipophilic proteins are very similar in their molecular weights, but the mitochondrially coded peak I proteins have the unique property of forming large heat-stable aggregates in the presence of dodecylsulfate.

  7. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.

    Science.gov (United States)

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy

    2002-12-03

    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  8. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  9. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton

    OpenAIRE

    Folkers, U; Kirik, V.; Schöbinger, U.; Falk, S; Krishnakumar, S; Pollock, M A; Oppenheimer, D.G.; Day, I.; Reddy, A.R.; Jürgens, G; Hülskamp, M

    2002-01-01

    The ANGUSTIFOLIA (AN) gene is required for leaf hair (trichome) branching and is also involved in polarized expansion underlying organ shape. Here we show that the AN gene encodes a C-terminal binding proteins/brefeldin A ADP-ribosylated substrates (CtBP/BARS) related protein. AN is expressed at low levels in all organs and the AN protein is localized in the cytoplasm. In an mutant trichomes, the organization of the actin cytoskeleton is normal but the distribution of microtubules is aberrant...

  10. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    Science.gov (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  11. Isolation and characterization of the plasma hyaluronan-binding protein (PHBP) gene (HABP2).

    Science.gov (United States)

    Sumiya, J; Asakawa, S; Tobe, T; Hashimoto, K; Saguchi, K; Choi-Miura, N H; Shimizu, Y; Minoshima, S; Shimizu, N; Tomita, M

    1997-11-01

    PHBP is a novel human plasma hyaluronan-binding protein that shows significant homology in amino acid sequence to hepatocyte growth factor activator. Two overlapping clones that encode the human plasma hyaluronan-binding protein (PHBP) gene (HABP2) were isolated and characterized. The PHBP gene spans 35 kb and is composed of 13 exons from 37 to 1,394 bp in size with consensus splice sites. The gene's regulatory sequences contain putative promoter elements, but no typical TATA box. Some exons of this gene showed significant similarities to those of coagulation factor XII, tissue-type plasminogen activator, and urokinase genes in nucleotide length and in intron phasing. We also report the chromosome mapping of this gene by fluorescence in situ hybridization (FISH) using a genomic DNA fragment as a probe. The PHBP gene (HABP2) was located on chromosome 10q25-q26.

  12. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  13. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection.

    Science.gov (United States)

    Gong, Xiaoqun; Yan, Huan; Yang, Jiumin; Wu, Yudong; Zhang, Jian; Yao, Yingyi; Liu, Ping; Wang, Huiquan; Hu, Zhidong; Chang, Jin

    2016-10-01

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe3O4 nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe3O4 nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection.

  14. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  15. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  16. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence...... spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...

  17. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  18. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA.

    Science.gov (United States)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C; Pinkett, Heather W

    2011-11-09

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  19. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  20. A statistical mechanics handbook for protein-ligand binding simulation.

    Science.gov (United States)

    Rocchia, Walter; Bonella, Sara

    2013-01-01

    In this work, the fundamental elements of statistical mechanics underlying the simulation of the protein-ligand binding process, such as statistical ensembles and the concept of microscopic estimators of macroscopic observables and free energy, are summarized in a self consistent fashion. Particular attention is then devoted to the introduction of some mathematical tools that are used in atomistic simulations aimed at estimating binding affinities and free energy profiles, and to the illustration of the origins of the difficulties encountered in this endeavor.

  1. Carotenoid Antenna Binding and Function in Retinal Proteins

    Science.gov (United States)

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  2. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  3. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi.

    Science.gov (United States)

    Jäger, Adriana V; De Gaudenzi, Javier G; Mild, Jesica G; Mc Cormack, Bárbara; Pantano, Sergio; Altschuler, Daniel L; Edreira, Martin M

    2014-12-01

    Cyclic AMP has been implicated as second messenger in a wide range of cellular processes. In the protozoan parasite Trypanosoma cruzi, cAMP is involved in the development of the parasite's life cycle. While cAMP effectors have been widely studied in other eukaryotic cells, little is known about cAMP's mechanism of action in T. cruzi. To date, only a cAMP-dependent protein kinase A (PKA) has been cloned and characterised in this parasite; however experimental evidence indicates the existence of cAMP-dependent, PKA-independent events. In order to identify new cAMP binding proteins as potential cAMP effectors, we carried out in silico studies using the predicted T. cruzi proteome. Using a combination of search methods 27 proteins with putative cNMP binding domains (CBDs) were identified. Phylogenetic analysis of the CBDs presented a homogeneous distribution, with sequences segregated into two main branches: one containing kinases-like proteins and the other gathering hypothetical proteins with different function or no other known. Comparative modelling of the strongest candidates provides support for the hypothesis that these proteins may give rise to structurally viable cyclic nucleotide binding domains. Pull-down and nucleotide displacement assays strongly suggest that TcCLB.508523.80 could bind cAMP and eventually be a new putative PKA-independent cAMP effector in T. cruzi.

  4. IQGAP1 and its binding proteins control diverse biological functions.

    Science.gov (United States)

    White, Colin D; Erdemir, Huseyin H; Sacks, David B

    2012-04-01

    IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.

  5. Metal toxicity and opportunistic binding of Pb2+ in proteins

    OpenAIRE

    Kirberger, Michael; Wong, Hing C; Jiang, Jie; Yang, Jenny J.

    2013-01-01

    Lead toxicity is associated with various human diseases. While Ca2+ binding proteins such as calmodulin (CaM) are often reported to be molecular targets for Pb2+-binding and lead toxicity, the effect of Pb2+ on the Ca2+/CaM regulated biological activities cannot be described by the primary mechanism of ionic displacement (e.g., ionic mimicry). The focus of this study was to investigate the mechanism of lead toxicity through binding differences between Ca2+ and Pb2+ for CaM, an essential intra...

  6. Zinc-protein from rat prostate fluid binds epididymal spermatozoa.

    Science.gov (United States)

    Sansone, G; Abrescia, P

    1991-09-01

    The detection and the isolation of a zinc-protein from the secretion of the rat dorsolateral prostate is described. The purification procedure, based on gel filtration and cationic exchange chromatography, allowed to separate a minor protein (Mr approximately 66,000) from free zinc ions and other secretory components. Two zinc ions were estimated to be associated with one molecule of isolated protein. The zinc-protein was labelled with 125I and then incubated at 37 degrees C with spermatozoa from rat epididymal cauda. Time-dependent in vitro binding of the radioactive protein to sperm cells was demonstrated. This binding was not affected by the presence of proteins from the seminal vesicle during the incubation, while it was blocked in the presence of an excess of unlabelled zinc-protein. After binding, the labelled spermatozoa were treated with a buffer containing 0.5% sodium deoxycholate and 40 mM EDTA; only very small amounts of label were removed from the cells, thus suggesting that the zinc-proteins were kept on the plasma membrane by interactions which do not involve merely hydrophobic bonds.

  7. Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis.

    Science.gov (United States)

    Kakuda, Tsutomu; Sarataphan, Nopporn; Tanaka, Tetsuya; Takai, Shinji

    2006-11-26

    The complete nucleotide sequence of a plasmid, pMBO-1, from Moraxella bovis strain Epp63 was determined. We identified 30 open reading frames (ORFs) encoded by the 44,215bp molecule. Two large ORFs, flpA and flpB, encoding proteins with similarity to Bordetella pertussis filamentous haemagglutinin (FHA), were identified on the same plasmid. The gene for a specific accessory protein (Fap), which may play a role in the secretion of Flp protein, was also identified. Reverse transcriptase PCR analysis of total RNA isolated from M. bovis Epp63 indicated that the flpA, flpB, and fap genes are all transcribed. Southern blot analysis indicated that the flp and fap genes are present in other clinical isolates of geographically diverse M. bovis.

  8. Differential plasma protein binding to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F [School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia); Schiller, Tara; Musumeci, Anthony; Martin, Darren, E-mail: r.minchin@uq.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072 (Australia)

    2009-11-11

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO{sub 2}, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO{sub 2} and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  9. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22.

    Directory of Open Access Journals (Sweden)

    Jennifer L Houmani

    Full Text Available The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

  10. SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein.

    Science.gov (United States)

    Sakinc, Türkan; Kleine, Britta; Gatermann, Sören G

    2006-08-01

    A gene encoding a serine-aspartate repeat protein of Staphylococcus saprophyticus, an important cause of urinary tract infections in young women, has been cloned and sequenced. In contrast to other SD repeat proteins, SdrI carries 21 additional N-terminal repeats with a consensus sequence of (P/A)ATKE(K/E)A(A/V)(T/I)(A/T/S)EE and has the longest SD(AD)(1-5) repetitive region (854 amino acids) described so far. This highly repetitive sequence contains only the amino acids serine, asparagine, and a distinctly greater amount of alanine (37%) than all other known SD repeat proteins (2.3 to 4.4%). In addition, it is a collagen-binding protein of S. saprophyticus and the second example in this organism of a surface protein carrying the LPXTG motif. We constructed an isogenic sdrI knockout mutant that showed decreased binding to immobilized collagen compared with wild-type S. saprophyticus strain 7108. Binding could be reconstituted by complementation. Collagen binding is specifically caused by SdrI, and the recently described UafA protein, the only LPXTG-containing protein in the genome sequence of the type strain, is not involved in this trait. Our experiments suggest that, as in other staphylococci, the presence of different LPXTG-anchored cell wall proteins is common in S. saprophyticus and support the notion that the presence of matrix-binding surface proteins is common in staphylococci.

  11. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-08

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  12. Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins.

    Science.gov (United States)

    Maki, Masatoshi; Maemoto, Yuki; Osako, Yohei; Shibata, Hideki

    2012-04-01

    The name calpain was historically given to a protease that is activated by Ca(2+) and whose primary structure contains a Ca(2+)-binding penta-EF-hand (PEF) as well as a calpain cysteine protease (CysPc) domain and a C2-domain-like (C2L) domain. In the human genome, CysPc domains are found in 15 genes, but only nine of them encode PEF domains. Fungi and budding yeasts have calpain-like sequences that lack the PEF domain, and each protein (designated PalB and Rim13, respectively) is orthologous to human calpain-7, indicating that the calpain-7 orthologs are evolutionarily more conserved than classical calpains possessing PEF domains. An N-terminal region of calpain-7 has a tandem repeat of microtubule-interacting and transport domains that interact with a subset of endosomal sorting complex required for transport (ESCRT) III proteins. In addition to calpains, PEF domains are found in other Ca(2+)-binding proteins including ALG-2 that associates with ALIX (an ESCRT-III accessory protein) and TSG101 (an ESCRT-I subunit). Phylogenetic comparison of dissected domain structures of calpains and experimentally confirmed protein-protein interaction networks imply that there is an evolutionary and physical linkage between mammalian calpains and PEF proteins involving the ESCRT system.

  13. A general approach to visualize protein binding and DNA conformation without protein labelling.

    Science.gov (United States)

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  14. Newly identified RNAs of raspberry leaf blotch virus encoding a related group of proteins.

    Science.gov (United States)

    Lu, Yuwen; McGavin, Wendy; Cock, Peter J A; Schnettler, Esther; Yan, Fei; Chen, Jianping; MacFarlane, Stuart

    2015-11-01

    Members of the genus Emaravirus, including Raspberry leaf blotch virus (RLBV), are enveloped plant viruses with segmented genomes of negative-strand RNA, although the complete genome complement for any of these viruses is not yet clear. Currently, wheat mosaic virus has the largest emaravirus genome comprising eight RNAs. Previously, we identified five genomic RNAs for RLBV; here, we identify a further three RNAs (RNA6-8). RNA6-8 encode proteins that have clear homologies to one another, but not to any other emaravirus proteins. The proteins self-interacted in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments, and the P8 protein interacted with the virus nucleocapsid protein (P3) using BiFC. Expression of two of the proteins (P6 and P7) using potato virus X led to an increase in virus titre and symptom severity, suggesting that these proteins may play a role in RLBV pathogenicity; however, using two different tests, RNA silencing suppression activity was not detected for any of the RLBV proteins encoded by RNA2-8.

  15. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    Science.gov (United States)

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  16. Oxypred: Prediction and Classification of Oxygen-Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    S.; Muthukrishnan; Aarti; Garg; G.P.S.; Raghava

    2007-01-01

    This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).

  17. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    Science.gov (United States)

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R.

    2012-01-01

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ~70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into phosphonate uptake by bacteria and facilitated the rational design of high signal-to-noise phosphonate biosensors based both on coupled small molecule dyes and autocatalytic fluorescent proteins. PMID:22019591

  18. Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Alicea, Ismael; Marvin, Jonathan S.; Miklos, Aleksandr E.; Ellington, Andrew D.; Looger, Loren L.; Schreiter, Eric R. (Puerto Rico); (HHMI); (Texas)

    2012-09-17

    The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by {approx}70{sup o} between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.

  19. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  20. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    Science.gov (United States)

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines.

  1. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    Science.gov (United States)

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.

  2. The chromatin-binding protein HMGN1 regulates the expression of methyl CpG-binding protein 2 (MECP2) and affects the behavior of mice.

    Science.gov (United States)

    Abuhatzira, Liron; Shamir, Alon; Schones, Dustin E; Schäffer, Alejandro A; Bustin, Michael

    2011-12-01

    High mobility group N1 protein (HMGN1), a nucleosomal-binding protein that affects the structure and function of chromatin, is encoded by a gene located on chromosome 21 and is overexpressed in Down syndrome, one of the most prevalent genomic disorders. Misexpression of HMGN1 affects the cellular transcription profile; however, the biological function of this protein is still not fully understood. We report that HMGN1 modulates the expression of methyl CpG-binding protein 2 (MeCP2), a DNA-binding protein known to affect neurological functions including autism spectrum disorders, and whose alterations in HMGN1 levels affect the behavior of mice. Quantitative PCR and Western analyses of cell lines and brain tissues from mice that either overexpress or lack HMGN1 indicate that HMGN1 is a negative regulator of MeCP2 expression. Alterations in HMGN1 levels lead to changes in chromatin structure and histone modifications in the MeCP2 promoter. Behavior analyses by open field test, elevated plus maze, Reciprocal Social Interaction, and automated sociability test link changes in HMGN1 levels to abnormalities in activity and anxiety and to social deficits in mice. Targeted analysis of the Autism Genetic Resource Exchange genotype collection reveals a non-random distribution of genotypes within 500 kbp of HMGN1 in a region affecting its expression in families predisposed to autism spectrum disorders. Our results reveal that HMGN1 affects the behavior of mice and suggest that epigenetic changes resulting from altered HMGN1 levels could play a role in the etiology of neurodevelopmental disorders.

  3. Vif proteins from diverse primate lentiviral lineages use the same binding site in APOBEC3G.

    Science.gov (United States)

    Letko, Michael; Silvestri, Guido; Hahn, Beatrice H; Bibollet-Ruche, Frederick; Gokcumen, Omer; Simon, Viviana; Ooms, Marcel

    2013-11-01

    APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) and other lentiviruses. Most of these viruses encode a Vif protein that directly binds A3G and leads to its proteasomal degradation. Both Vif proteins of HIV-1 and African green monkey simian immunodeficiency virus (SIVagm) bind residue 128 of A3G. However, this position does not control the A3G degradation by Vif variants derived from HIV-2 and SIVmac, which both originated from SIV of sooty mangabey monkeys (SIVsmm), suggesting that the A3G binding site for Vif proteins of the SIVsmm/HIV-2 lineage differs from that of HIV-1. To map the SIVsmm Vif binding site of A3G, we performed immunoprecipitations of individual A3G domains, Vif/A3G degradation assays and a detailed mutational analysis of human A3G. We show that A3G residue 129, but not the adjacent position 128, confers susceptibility to degradation by SIVsmm Vif. An artificial A3G mutant, the P129D mutant, was resistant to degradation by diverse Vifs from HIV-1, HIV-2, SIVagm, and chimpanzee SIV (SIVcpz), suggesting a conserved lentiviral Vif binding site. Gorilla A3G naturally contains a glutamine (Q) at position 129, which makes its A3G resistant to Vifs from diverse lineages. We speculate that gorilla A3G serves as a barrier against SIVcpz strains. In summary, we show that Vif proteins from distinct lineages bind to the same A3G loop, which includes positions 128 and 129. The multiple adaptations within this loop among diverse primates underscore the importance of counteracting A3G in lentiviral evolution.

  4. Tetranectin, a plasminogen kringle 4-binding protein. Cloning and gene expression pattern in human colon cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    BACKGROUND: Tetranectin is a recently discovered protein that binds to kringle 4 region of plasminogen (Clemmensen I, Petersen LC, Kluft C. Eur J Biochem 1986; 156:327. EXPERIMENTAL DESIGN: The mRNA encoding human tetranectin was cloned by using degenerate primers in a reverse transcriptase...... reaction followed by polymerase chain reaction amplification. The resulting polymerase chain reaction product was examined by DNA sequencing and subsequently used as probe for screening a human placental cDNA library. A full length cDNA clone (TET-1) was isolated, characterized, and used for Northern blot...

  5. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  6. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter

    NARCIS (Netherlands)

    Yang, Nuan; Driessen, Arnold J. M.

    2015-01-01

    Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporte

  7. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    Science.gov (United States)

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  8. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.

  9. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity

    Directory of Open Access Journals (Sweden)

    Alexander S. Goryashchenko

    2015-07-01

    Full Text Available This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to acceptor—the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds, pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.

  10. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    Science.gov (United States)

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  11. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  12. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistan...

  13. Binding-regulated click ligation for selective detection of proteins.

    Science.gov (United States)

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins.

  14. Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein

    Directory of Open Access Journals (Sweden)

    Biswas-Fiss Esther E

    2012-06-01

    Full Text Available Abstract Background Single-stranded DNA binding proteins (SSB are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase. Results We have cloned and purified SSB from Bacillus anthracis (SSBBA. In the absence of DNA, at concentrations ≤100 μg/ml, SSBBA did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSBBA bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT70 binding suggested that SSBBA forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure. Conclusions Unlike other prokaryotic SSB proteins, SSBBA from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSBBA retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSBBA appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSBBA could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.

  15. Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins.

    Science.gov (United States)

    Teertstra, Wieke R; Krijgsheld, Pauline; Wösten, Han A B

    2011-08-01

    The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation. We here assessed changes in global gene expression as a consequence of the inactivation of the rep1 gene. Microarray analysis revealed that only 31 genes in the ∆rep1 SG200 strain had a fold change in expression of ≥2. Twenty-two of these genes were up-regulated and half of them encode small secreted proteins (SSPs) with unknown functions. Seven of the SSP genes and two other genes that are over-expressed in the ∆rep1 SG200 strain encode proteins that can be classified as secreted cysteine-rich proteins (SCRPs). Interestingly, most of the SCRPs are predicted to form amyloids. The SCRP gene um00792 showed the highest up-regulation in the ∆rep1 strain. Using GFP as a reporter, it was shown that this gene is over-expressed in the layer of hyphae at the medium-air interface. Taken together, it is concluded that inactivation of rep1 hardly affects the expression profile of U. maydis, despite the fact that the mutant strain has a strong reduced ability to form aerial hyphae.

  16. Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae.

    Science.gov (United States)

    Allen, Courtni E; Burgos, Jonathan M; Schmitt, Michael P

    2013-06-01

    Corynebacterium diphtheriae utilizes hemin and hemoglobin (Hb) as iron sources during growth in iron-depleted environments, and recent studies have shown that the surface-exposed HtaA protein binds both hemin and Hb and also contributes to the utilization of hemin iron. Conserved (CR) domains within HtaA and in the associated hemin-binding protein, HtaB, are required for the ability to bind hemin and Hb. In this study, we identified and characterized two novel genetic loci in C. diphtheriae that encode factors that bind hemin and Hb. Both genetic systems contain two-gene operons that are transcriptionally regulated by DtxR and iron. The gene products of these operons are ChtA-ChtB and ChtC-CirA (previously DIP0522-DIP0523). The chtA and chtB genes are carried on a putative composite transposon associated with C. diphtheriae isolates that dominated the diphtheria outbreak in the former Soviet Union in the 1990s. ChtA and ChtC each contain a single N-terminal CR domain and exhibit significant sequence similarity to each other but only limited similarity with HtaA. The chtB and htaB gene products exhibited a high level of sequence similarity throughout their sequences, and both proteins contain a single CR domain. Whole-cell binding studies as well as protease analysis indicated that all four of the proteins encoded by these two operons are surface exposed, which is consistent with the presence of a transmembrane segment in their C-terminal regions. ChtA, ChtB, and ChtC are able to bind hemin and Hb, with ChtA showing the highest affinity. Site-directed mutagenesis showed that specific tyrosine residues within the ChtA CR domain were critical for hemin and Hb binding. Hemin iron utilization assays using various C. diphtheriae mutants indicate that deletion of the chtA-chtB region and the chtC gene has no affect on the ability of C. diphtheriae to use hemin or Hb as iron sources; however, a chtB htaB double mutant exhibits a significant decrease in hemin iron use

  17. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii

    Directory of Open Access Journals (Sweden)

    Gross Roy

    2007-11-01

    Full Text Available Abstract Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a

  18. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    Science.gov (United States)

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  19. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Matsumi, Y; Fujita, K; Takashima, Y; Yanagida, K; Morikawa, Y; Matsumoto-Nakano, M

    2015-06-01

    Glucan-binding proteins (Gbps) of Streptococcus mutans, a major pathogen of dental caries, mediate the binding of glucans synthesized from sucrose by the action of glucosyltransferases (GTFs) encoded by gtfB, gtfC, and gtfD. Several stress proteins, including DnaK and GroEL encoded by dnaK and groEL, are related to environmental stress tolerance. The contribution of Gbp expression to biofilm formation was analyzed by focusing on the expression levels of genes encoding GTFs and stress proteins. Biofilm-forming assays were performed using GbpA-, GbpB-, and GbpC-deficient mutant strains and the parental strain MT8148. The expression levels of gtfB, gtfC, gtfD, dnaK, and groEL were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the structure of biofilms formed by these Gbp-deficient mutant strains was observed using confocal laser scanning microscopy (CLSM). Biofilm-forming assay findings demonstrated that the amount formed by the GbpA-deficient mutant strain (AD1) was nearly the same as that by the parental strain, while the GbpB- and GbpC-deficient mutant strains produced lower amounts than MT8148. Furthermore, RT-qPCR assay results showed that the expressions of gtfB, dnaK, and groEL in AD1 were elevated compared with MT8148. CLSM also revealed that the structure of biofilm formed by AD1 was prominently different compared with that formed by the parental strain. These results suggest that a defect in GbpA influences the expression of genes controlling biofilm formation, indicating its importance as a protein for firm and stable biofilm formation.

  20. Free enthalpies of replacing water molecules in protein binding pockets

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J.; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F.

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  1. SLIDE, the Protein Interacting Domain of Imitation Switch Remodelers, Binds DDT-Domain Proteins of Different Subfamilies in Chromatin Remodeling Complexes

    Institute of Scientific and Technical Information of China (English)

    Jiaqiang Dong; Zheng Gao; Shujing Liu; Guang Li; Zhongnan Yang; Hai Huang; Lin Xu

    2013-01-01

    The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes with members from a family of proteins, termed DDT-domain proteins. Although it is well documented that ISWIs play important roles in different biological processes in many eukaryotic species, the molecular basis for protein interactions in ISWI complexes has not been fully addressed. Here, we report the identification of interaction domains for both ISWI and DDT-domain proteins. By analyzing CHROMATIN REMODELING11 (CHR11) and RINGLET1 (RLT1), an Arabidopsis thaliana ISWI (AtISWI) and AtDDT-domain protein, respectively, we show that the SLIDE domain of CHR11 and the DDT domain together with an adjacent sequence of RLT1 are responsible for their binding. The Arabidopsis genome contains at least 12 genes that encode DDT-domain proteins, which could be grouped into five subfamilies based on the sequence similarity. The SLIDE domain of AtISWI is able to bind members from different AtDDT subfamilies. Moreover, a human ISWI protein SNF2H is capable of binding AtDDT-domain proteins through its SLIDE domain, suggesting that binding to DDT-domain proteins is a conserved biochemical function for the SLIDE domain of ISWIs in eukaryotes.

  2. Using the telobox to search for plant telomere binding proteins.

    Science.gov (United States)

    Peška, Vratislav; Schrumpfová, Petra Procházková; Fajkus, Jiŕí

    2011-03-01

    Telobox is a Myb-related DNA-binding domain which is present in a number of yeast, plant and animal proteins. Its capacity to bind preferentially double-stranded telomeric DNA has been used in numerous studies to search for candidate telomeric proteins in various organisms, including plants. Here we provide an overview of these studies with a special emphasis on plants, where a specific subfamily of the proteins possessing the N-terminally positioned telobox is present in addition to more common C-terminal telobox proteins. We further demonstrate the presence of a telobox protein (CpTBP1) in Cestrum parqui, a plant lacking typical telomeres and telomerase. The protein shows nuclear localisation and association with chromatin. The role of this protein in ancestral and current telomere structure is discussed in the evolutionary context. Altogether, the present overview shows the importance of the telobox domain in a search for candidate telomere proteins but at the same time warns against oversimplified identification of any telobox protein with telomere structure without appropriate evidence of its telomeric localisation and function.

  3. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  4. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-11-15

    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  5. An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis.

    Science.gov (United States)

    Ren, Qian; Du, Zhi-Qiang; Zhao, Xiao-Fan; Wang, Jin-Xing

    2009-12-01

    Acyl-CoA-binding protein (ACBP) and fatty acid-binding protein (FABP) are involved in lipid metabolism. ACBP plays a key role in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, vesicular trafficking, and gene regulation. In our study, a 536 bp cDNA of ACBP (FcACBP) was cloned and identified as a widely distributed gene in the Chinese white shrimp, Fenneropenaeus chinensis. Its expression in intestine was upregulated in response to white spot syndrome virus (WSSV) or Vibrio anguillarum infection. The expression patterns were confirmed by Western blot analysis. FABPs, members of the lipid-binding protein superfamily, play an important role in lipid metabolism and also participate in vertebrate innate immunity. A cDNA of FABP (FcFABP) cloned from the hepatopancreas of the shrimp was 715 bp in size and encoded a 14 kDa protein. FcFABP appeared to be a basic fatty acid binding protein with a predicted isoelectric point of 9.16. It showed sequence similarity to both vertebrate and invertebrate FABPs. Phylogenetic analysis showed that FcFABP, together with LvFABP, were clustered into one group. FcFABP was detected mainly in the hepatopancreas and expression level increased after a challenge with WSSV. FcFABP was down-regulated by V. anguillarum challenge. The protein also had bacterial binding activity. These two lipid metabolism related proteins may play important roles in shrimp innate immunity.

  6. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  7. Insights into the mechanism of DNA recognition by the methylated LINE binding protein EhMLBP of Entamoeba histolytica.

    Science.gov (United States)

    Lavi, Tal; Siman-Tov, Rama; Ankri, Serge

    2009-08-01

    EhMLBP is an essential Entamoeba histolytica protein that binds preferentially to methylated long interspersed nuclear elements and rDNA. In an effort to identify more EhMLBP DNA substrates, we developed an affinity-based technique in which the C-terminal DNA binding domain of EhMLBP (GST-CterEhMLBP) was used as the ligand. Bioinformatic analysis of the DNA sequences that were isolated by this affinity method revealed the presence of a 29-nucleotide consensus motif that includes a stretch of ten adenines. Gel retardation analysis showed that EhMLBP binds to the consensus motif with a preference for its methylated form. Four DNA sequences, namely those that encoded either dihydrouridine synthetase, RAP GTPase activating protein, serine/threonine protein kinase or leucine-rich repeat containing protein (LRPP) were then selected for further analysis. In vivo binding of EhMLBP to these genes was confirmed by chromatin immunoprecipitation. The presence of methylated cytosines was detected in DNA encoding LRPP and to a lower extent in the other genes. EhMLBP binds preferentially to the methylated forms of these DNA targets. The ability of the consensus motif to compete with EhMLBP binding to its DNA substrates indicates that the adenine stretch is involved in the mechanism of DNA recognition. The results of this investigation extend our existing knowledge on the number of DNA sequences that are recognized by EhMLBP and reinforce the notion that this protein is an innate methylated DNA binding protein in E. histolytica.

  8. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-03-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example.

  9. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  10. DNA-Binding Proteins Regulating pIP501 Transfer and Replication

    Science.gov (United States)

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  11. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    Science.gov (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  12. Calcium-binding ability of soy protein hydrolysates

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Bao; Mei Song; Jing Zhang; Yang Chen; Shun Tang Guo

    2007-01-01

    This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase,flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.

  13. Flexibility of PCNA-protein interface accommodates differential binding partners.

    Directory of Open Access Journals (Sweden)

    Anthony M Pedley

    Full Text Available The expanding roles of PCNA in functional assembly of DNA replication and repair complexes motivated investigation of the structural and dynamic properties guiding specificity of PCNA-protein interactions. A series of biochemical and computational analyses were combined to evaluate the PIP Box recognition features impacting complex formation. The results indicate subtle differences in topological and molecular descriptors distinguishing both affinity and stoichiometry of binding among PCNA-peptide complexes through cooperative effects. These features were validated using peptide mimics of p85α and Akt, two previously unreported PCNA binding partners. This study characterizes for the first time a reverse PIP Box interaction with PCNA. Small molecule ligand binding at the PIP Box interaction site confirmed the adaptive nature of the protein in dictating overall shape and implicates allosterism in transmitting biological effects.

  14. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  15. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  16. Cloning and expression analysis of a prion protein encoding gene in guppy ( Poecilia reticulata)

    Science.gov (United States)

    Wu, Suihan; Wei, Qiwei; Yang, Guanpin; Wang, Dengqiang; Zou, Guiwei; Chen, Daqing

    2008-11-01

    The full length cDNA of a prion protein (PrP) encoding gene of guppy ( Poecilia reticulata) and the corresponding genomic DNA were cloned. The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a protein of 515 amino acids, which held all typical structural characteristics of the functional PrP. The cloned genomic DNA fragment corresponding to the cDNA was 3720 bp in length, consisting of 2 introns and 2 exons. The 5' untranslated region of cDNA originated from the 2 exons, while the ORF originated from the second exon. Although the gene was transcribed in diverse tissues including brain, eye, liver, intestine, muscle and tail, its transcript was most abundant in the brain. In addition, the transcription of the gene was enhanced by 5 salinity, implying that it was associated with the response of guppy to saline stress.

  17. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  18. Methods of use of cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  20. RNA-protein binding kinetics in an automated microfluidic reactor.

    Science.gov (United States)

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R

    2009-11-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  1. W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Zhao-Shi Xu; Li Liu; Zhi-Yong Ni; Pei Liu; Ming Chen; Lian-Cheng Li; Yao-Feng Chen; You-Zhi Ma

    2009-01-01

    Protein kinases play crucial roles In response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5' cDNA ends (5'-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1029-bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonata, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexprassing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions.

  2. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    Science.gov (United States)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  3. Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 genes of Herpesviridae

    Institute of Scientific and Technical Information of China (English)

    Long-ding LIU; Wen-juan WU; Min HONG; Hai-jing SHI; Shao-hui MA; Jing-jing WANG; Hong-ling ZHAO; Yun LIAO; Qi-han LI

    2007-01-01

    The proteins encoded by the Herpesviridae β-gene play a critical role in the replication stage of the virus. In this paper, phylogenetic analyses provided evidence that someβ-gene products, such as UL2 and UL23 from HSV1, have their homologous genes in its family, and also exist in prokaryotic organisms, indicating that these viruses appear to have been assembled over evolutionary time by numerous independent events of horizontal gene transfer.

  4. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    over the nucleoid. ParB ribbon-helix-helix dimers bind cooperatively to direct repeats in parC1 and parC2. Using four different assays we obtain solid evidence that ParB can pair parC1- and parC2-encoding DNA fragments in vitro. Convincingly, electron microscopy revealed that ParB mediates binary...... pairing of parC fragments. In addition to binary complexes, ParB mediated the formation of higher order complexes consisting of several DNA fragments joined by ParB at centromere site parC. N-terminal truncated versions of ParB still possessing specific DNA binding activity were incompetent in pairing...

  5. Structure fluctuations and conformational changes in protein binding

    CERN Document Server

    Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A

    2011-01-01

    Structure fluctuations and conformational changes accompany all biological processes involving macromolecules. The paper presents a classification of protein residues based on the normalized equilibrium fluctuations of the residue centers of mass in proteins and a statistical analysis of conformation changes in the side-chains upon binding. Normal mode analysis and an elastic network model were applied to a set of protein complexes to calculate the residue fluctuations and develop the residue classification. Comparison with a classification based on normalized B-factors suggests that the B-factors may underestimate protein flexibility in solvent. Our classification shows that protein loops and disordered fragments are enriched with highly fluctuating residues and depleted with weakly fluctuating residues. To calculate the dihedral angles distribution functions, the configuration space was divided into cells by a cubic grid. The effect of protein association on the distribution functions depends on the amino a...

  6. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    Science.gov (United States)

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  7. Sequence diversity in the A domain of Staphylococcus aureus fibronectin-binding protein A

    Directory of Open Access Journals (Sweden)

    Speziale Pietro

    2008-05-01

    Full Text Available Abstract Background Fibronectin-binding protein A (FnBPA mediates adhesion of Staphylococcus aureus to fibronectin, fibrinogen and elastin. We previously reported that S. aureus strain P1 encodes an FnBPA protein where the fibrinogen/elastin-binding domain (A domain is substantially divergent in amino acid sequence from the archetypal FnBPA of S. aureus NCTC8325, and that these variations created differences in antigenicity. In this study strains from multilocus sequence types (MLST that spanned the genetic diversity of S.aureus were examined to determine the extent of FnBPA A domain variation within the S. aureus population and its effect on ligand binding and immuno-crossreactivity. Results Seven different isotype forms (I – VII of the FnBPA A domain were identified which were between 66 to 76% identical in amino acid sequence in any pair-wise alignment. The fnbA allelic variants in strains of different multilocus sequence type were identified by DNA hybridization using probes specific for sequences encoding the highly divergent N3 sub-domain of different isotypes. Several isotypes were not restricted to specific clones or clonal complexes but were more widely distributed. It is highly likely that certain fnbA genes have been transferred horizontally. Residues lining the putative ligand-binding trench were conserved, which is consistent with the ability of each A domain isotype to bind immobilized fibrinogen and elastin by the dock-latch-lock mechanism. Variant amino acid residues were mapped on a three-dimensional model of the FnBPA A domain and were predicted to be surface-exposed. Polyclonal antibodies raised against the recombinant isotype I A domain bound that protein with a 4 – 7 fold higher apparent affinity compared to the A domains of isotypes II – VII, while some monoclonal antibodies generated against the isotype I A domain showed reduced or no binding to the other isotypes. Conclusion The FnBPA A domain occurs in at least 7

  8. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  9. Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda.

    OpenAIRE

    Barik, S

    1993-01-01

    The predicted amino acid sequence encoded by the open reading frame 221 (orf221) of bacteriophage lambda exhibited a high degree of similarity to the catalytic subunits of a variety of protein serine/threonine phosphatases belonging to PP1, PP2A, and PP2B groups. Cloning and expression of the orf221 gene in Escherichia coli provided direct evidence that the gene codes for a protein serine/threonine phosphatase. The single-subunit recombinant enzyme was purified in soluble form and shown to po...

  10. Phage display screen for peptides that bind Bcl-2 protein.

    Science.gov (United States)

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young

    2011-01-01

    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  11. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  12. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  13. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  14. DBD2BS: connecting a DNA-binding protein with its binding sites.

    Science.gov (United States)

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-07-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein-DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD-DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein-DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.

  15. Molecular cloning and characterization of a cDNA encoding the Paracoccidioides brasiliensis 135 ribosomal protein.

    Science.gov (United States)

    Jesuino, Rosália S A; Pereira, Maristela; Felipe, M Sueli S; Azevedo, Maristella O; Soares, Célia M A

    2004-06-01

    A 630 bp cDNA encoding an L35 ribosomal protein of Paracoccidioides brasiliensis, designated as Pbl35, was cloned from a yeast expression library. Pbl35 encodes a polypeptide of 125 amino acids, with a predicted molecular mass of 14.5 kDa and a pI of 11.0. The deduced PbL35 shows significant conservation in respect to other described ribosomal L35 proteins from eukaryotes and prokaryotes. Motifs of ribosomal proteins are present in PbL35, including a bipartite nuclear localization signal (NLS) that could be related to the protein addressing to the nucleolus for the ribosomal assembly. The mRNA for PbL35, about 700 nucleotides in length, is expressed at a high level in P. brasiliensis. The PbL35 and the deduced amino acid sequence constitute the first description of a ribosomal protein in P. brasiliensis. The cDNA was deposited in GenBank under accession number AF416509.

  16. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein.

    Science.gov (United States)

    Dempsey, L A; Li, M J; DePace, A; Bray-Ward, P; Maizels, N

    1998-05-01

    The hnRNP D protein interacts with nucleic acids both in vivo and in vitro. Like many other proteins that interact with RNA, it contains RBD (or "RRM") domains and arg-gly-gly (RGG) motifs. We have examined the organization and localization of the human and murine genes that encode the hnRNP D protein. Comparison of the predicted sequences of the hnRNP D proteins in human and mouse shows that they are 96.9% identical (98.9% similar). This very high level of conservation suggests a critical function for hnRNP D. Sequence analysis of the human HNRPD gene shows that the protein is encoded by eight exons and that two additional exons specify sequences in the 3' UTR. Use of two of the coding exons is determined by alternative splicing of the HNRPD mRNA. The human HNRPD gene maps to 4q21. The mouse Hnrpd gene maps to the F region of chromosome 3, which is syntenic with the human 4q21 region.

  17. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that f

  18. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    are the oldest evolutionary derivatives followed by IF and HC (the latter being present only in reptiles and most but not all mammals). Our findings suggest that the only cobalamin-binding protein in zebrafish is an intermediate between the three human cobalamin binders. These findings support the hypothesis...

  19. Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement.

    Directory of Open Access Journals (Sweden)

    Brian Stevenson

    Full Text Available The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts' alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM components. The LenA outer surface protein (formerly called LfhA and Lsa24 was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1. We now demonstrate that infectious L. interrogans contain five additional paralogs of lenA, which we designated lenB, lenC, lenD, lenE and lenF. All six genes encode domains predicted to bear structural and functional similarities with mammalian endostatins. Sequence analyses of genes from seven infectious L. interrogans serovars indicated development of sequence diversity through recombination and intragenic duplication. LenB was found to bind human factor H, and all of the newly-described Len proteins bound laminin. In addition, LenB, LenC, LenD, LenE and LenF all exhibited affinities for fibronectin, a distinct host extracellular matrix protein. These characteristics suggest that Len proteins together facilitate invasion and colonization of host tissues, and protect against host immune responses during mammalian infection.

  20. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity.

    Science.gov (United States)

    Echeverria, Gloria V; Cooper, Thomas A

    2012-06-26

    Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.

  1. EhNCABP166: a nucleocytoplasmic actin-binding protein from Entamoeba histolytica.

    Science.gov (United States)

    Campos-Parra, A D; Hernández-Cuevas, N A; Hernandez-Rivas, R; Vargas, M

    2010-07-01

    The actin cytoskeleton consists of multiple actin binding proteins (ABPs) that participate cooperatively in different cellular functions such as the maintenance of polarity and cell motility as well as the invasion of target cells and regulation of gene expression, among others. Due to the important role of ABPs in the pathogenesis of Entamoeba histolytica, the role of a new nucleocytoplasmic ABP from E. histolytica named EhNCABP166 was investigated. The EhNCABP166 gene encodes a protein with an estimated molecular weight of 166kDa. Structurally, this peptide is composed of two CH domains arranged in tandem at the N-terminus of the protein, followed by an alpha-helical region containing a number of different domains with a low level of homology. Two (Bin1/Amphiphysin/Rvs167) (BAR) domains, one GTPase-binding/formin 3 homology (GBD/FH3) domain, three Bcl2-associated athanogene (BAG) domains, one basic-leucine zipper (bZIP) domain and one poly(A)-binding protein C-terminal (PABC) domain were also present. Molecular and biochemical studies showed that the EhNCABP166 protein is transcribed and translated in trophozoites of E. histolytica. It was also shown that the CH domains are functional and bind to F-actin, whereas the BAR and GBD/FH3 domains interact in vitro and in vivo with different families of GTPases such as Rho and Ras, and with different phosphoinositides. These findings suggest that these domains have the conserved functional properties described in other eukaryotic systems. These domains also interacted with additional GTPase and lipid targets that have not been previously described. Finally, cellular studies showed that EhNCABP166 is localized to the cytoplasm and nucleus of E. histolytica and that it has an important role in phagocytosis, proliferation, and motility of E. histolytica.

  2. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2016-01-11

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  3. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.

    Science.gov (United States)

    Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  4. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Science.gov (United States)

    Simpson, David J.; Sacher, Jessica C.; Szymanski, Christine M.

    2016-01-01

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages. PMID:26761028

  5. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Directory of Open Access Journals (Sweden)

    David J. Simpson

    2016-01-01

    Full Text Available Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs. These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  6. The QKI-6 and QKI-7 RNA binding proteins block proliferation and promote Schwann cell myelination.

    Directory of Open Access Journals (Sweden)

    Daniel Larocque

    Full Text Available BACKGROUND: The quaking viable (qk(v mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS. The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qk(v mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination. METHODOLOGY/PRINCIPAL FINDINGS: To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27(KIP1 and myelin basic protein (MBP, markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27(KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.

  7. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  8. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  9. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  10. A fully genetically encoded protein architecture for optical control of peptide ligand concentration

    Science.gov (United States)

    Schmidt, Daniel; Tillberg, Paul W.; Chen, Fei; Boyden, Edward S.

    2014-01-01

    Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K+ channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.

  11. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  12. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    Science.gov (United States)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  13. The cAMP-binding Popdc proteins have a redundant function in the heart.

    Science.gov (United States)

    Brand, Thomas; Simrick, Subreena L; Poon, Kar Lai; Schindler, Roland F R

    2014-04-01

    Popdc (Popeye-domain-containing) genes encode membrane-bound proteins and are abundantly present in cardiac myocytes and in skeletal muscle fibres. Functional analysis of Popdc1 (Bves) and Popdc2 in mice and of popdc2 in zebrafish revealed an overlapping role for proper electrical conduction in the heart and maintaining structural integrity of skeletal muscle. Popdc proteins mediate cAMP signalling and modulate the biological activity of interacting proteins. The two-pore channel TREK-1 interacts with all three Popdc proteins. In Xenopus oocytes, the presence of Popdc proteins causes an enhanced membrane transport leading to an increase in TREK-1 current, which is blocked when cAMP levels are increased. Another important Popdc-interacting protein is caveolin 3, and the loss of Popdc1 affects caveolar size. Thus a family of membrane-bound cAMP-binding proteins has been identified, which modulate the subcellular localization of effector proteins involved in organizing signalling complexes and assuring proper membrane physiology of cardiac myocytes.

  14. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains.

    Science.gov (United States)

    Stephens, Dominique C; Poon, Gregory M K

    2016-10-14

    Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited.

  15. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules.

    Science.gov (United States)

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N

    2016-05-17

    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs.

  16. Molecular characterization of a defense-related AMP-binding protein gene, OsBIABP1, from rice

    Institute of Scientific and Technical Information of China (English)

    Xin-chun ZHANG; Xin YU; Hui-juan ZHANG; Feng-ming SONG

    2009-01-01

    We cloned and characterized a rice gene OsBIABPI encoding an AMP-binding protein. The full-length cDNA of OsBIABP1 is 1912-bp long and is predicted to encode a 558-aa protein. OsBIABP1 contains a typical AMP-binding signature motif and shows high similarity to members of AMP-binding protein family. OsBIABP1 is expressed in stems, leaves and flowers of rice plants, but is not expressed, or expressed at a very low level, in rice roots. The expression of OsBIABP1 was induced by some defense-related signal molecules, e.g., salicylic acid (SA), benzothiadiazole, jasmonic acid (JA), and 1-amino cyclopropane-1-carboxylic acid, which mediate SA-and JA/ethylene (ET)-dependent defense signaling pathways, respectively. Furthermore, the expression of OsBIABP1 is activated by the infection of Magnaporthe oryzae, and the induced expression is quicker and stronger during early stages of pathogenesis in incompatible interaction than that in compatible interaction between rice and M. oryzae. Our results suggest that OsBIABP1 may be a defense-related AMP-binding protein that is involved in the regulation of defense re-sponse through SA and/or JA/ET signaling pathways.

  17. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae.

    Science.gov (United States)

    Hammerschmidt, S; Bethe, G; Remane, P H; Chhatwal, G S

    1999-04-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10(-18) M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hLf binding significantly, indicating that the hLf receptor is proteinaceous. Binding assays performed with 63 clinical isolates belonging to different serotypes showed that 88% of the tested isolates interacted with hLf. Scatchard analysis showed the existence of two hLf-binding proteins with dissociation constants of 5.7 x 10(-8) and 2.74 x 10(-7) M. The receptors were purified by affinity chromatography, and internal sequence analysis revealed that one of the S. pneumoniae proteins was homologous to pneumococcal surface protein A (PspA). The function of PspA as an hLf-binding protein was confirmed by the ability of purified PspA to bind hLf and to competitively inhibit hLf binding to pneumococci. S. pneumoniae may use the hLf-PspA interaction to overcome the iron limitation at mucosal surfaces, and this might represent a potential virulence mechanism.

  18. Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    TAO; Yongguang; SONG; Xin; TAN; Yunnian; LIN; Xiaofeng; ZH

    2004-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Traditional receptor theory demonstrates that cell surface receptors exert biological functions on the membrane, which neither enter into the nucleus nor directly affect the transcription of the target genes. But, advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly developed our knowledge of the biological function of cell surface receptors. In this study, we used Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1 integrated NPC cell line and the expression of LMP1 in which could be regulated by Tet system. We found that LMP1 could regulate the nuclear translocation of EGFR in a dose-dependent manner from both quantitative and qualitative levels through the Western blot analysis and the immunofluorescent analysis with a laser scanning confocal microscope. We further demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation, and the nuclear accumulation of EGFR regulated by LMP1 was in a ligand-independent manner. These findings provide a novel view that the regulation of LMP1 on the nuclear translocation of EGFR is critical for the process of nasopharyngeal carcinoma.

  19. NOF1 encodes an Arabidopsis protein involved in the control of rRNA expression.

    Directory of Open Access Journals (Sweden)

    Erwana Harscoët

    Full Text Available The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life's cycle, and preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of which may be conserved in eukaryotes.

  20. Efficient and inexpensive method for purification of heparin binding proteins.

    Science.gov (United States)

    Batra, Sumit; Sahi, Nilesh; Mikulcik, Kristen; Shockley, Heather; Turner, Camille; Laux, Zachary; Badwaik, Vivek D; Conte, Eric; Rajalingam, Dakshinamurthy

    2011-08-15

    Heparin binding (HB) proteins mediate a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins may bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to currently available methods. One of the most important classes of HB proteins are fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak Amberlite cation (IRC) exchanger. FGF-1 and the D2 domain have been expressed in Escherichia coli and purified to homogeneity using IRC resin. This approach is an alternative to conventional affinity column chromatography, which exhibits several disadvantages, including time-consuming experimental procedures for purification and regeneration and results in the expensive production of recombinant proteins. Results of the heparin binding chromatography and steady state fluorescence experiments show that the FGF-1 and the D2 are in a native conformation. The findings of this study will not only aid an in-depth investigation of this class of proteins but will also provide avenues for inexpensive and efficient purification of other important biological macromolecules.

  1. Identification and Molecular Characterization of a Gene Encoding a Protective Leishmania amazonensis Trp-Asp (WD) Protein

    OpenAIRE

    2004-01-01

    Several Leishmania proteins have been identified and characterized in pursuit of understanding pathogenesis and protection in cutaneous leishmaniasis. In the present study, we utilized sera from infected BALB/c mice to screen a Leishmania amazonensis amastigote cDNA expression library and obtained the full-length gene that encodes a novel Trp-Asp (WD) protein designated LAWD (for Leishmania antigenic WD protein). The WD family of proteins mediates protein-protein interactions and coordinates ...

  2. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  3. Staphylococcus aureus isolates encode variant staphylococcal enterotoxin B proteins that are diverse in superantigenicity and lethality.

    Directory of Open Access Journals (Sweden)

    Petra L Kohler

    Full Text Available Staphylococcus aureus produces superantigens (SAgs that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the β-chains of T cell receptors (Vβ-TCRs, and each SAg binds a unique subset of Vβ-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS. The most abundantly produced staphylococcal SAgs and the most common causes of staphylococcal TSS are TSS toxin-1 (TSST-1, and staphylococcal enterotoxins B and C (SEB and SEC, respectively. There are several characterized variants of humans SECs, designated SEC1-4, but only one variant of SEB has been described. Sequencing the seb genes from over 20 S. aureus isolates show there are at least five different alleles of seb, encoding forms of SEB with predicted amino acid substitutions outside of the predicted immune-cell binding regions of the SAgs. Examination of purified, variant SEBs indicates that these amino acid substitutions cause differences in proliferation of rabbit splenocytes in vitro. Additionally, the SEBs varied in lethality in a rabbit model of TSS. The SEBs were diverse in their abilities to cause proliferation of human peripheral blood mononuclear cells, and differed in their activation of subsets of T cells. A soluble, high-affinity Vβ-TCR, designed to neutralize the previously characterized variant of SEB (SEB1, was able to neutralize the variant SEBs, indicating that this high-affinity peptide may be useful in treating a variety of SEB-mediated illnesses.

  4. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  5. FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins.

    Science.gov (United States)

    Boyd, Jeffery M; Endrizzi, James A; Hamilton, Trinity L; Christopherson, Melissa R; Mulder, David W; Downs, Diana M; Peters, John W

    2011-02-01

    The periplasmic protein ApbE was identified through the analysis of several mutants defective in thiamine biosynthesis and was implicated as having a role in iron-sulfur cluster biosynthesis or repair. While mutations in apbE cause decreased activity of several iron-sulfur enzymes in vivo, the specific role of ApbE remains unknown. Members of the AbpE family include NosX and RnfF, which have been implicated in oxidation-reduction associated with nitrous oxide and nitrogen metabolism, respectively. In this work, we show that ApbE binds one FAD molecule per monomeric unit. The structure of ApbE in the presence of bound FAD reveals a new FAD-binding motif. Protein variants that are nonfunctional in vivo were generated by random and targeted mutagenesis. Each variant was substituted in the environment of the FAD and analyzed for FAD binding after reconstitution. The variant that altered a key tyrosine residue involved in FAD binding prevented reconstitution of the protein.

  6. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Kaido, Masanori; Inoue, Yosuke; Takeda, Yoshika; Sugiyama, Kazuhiko; Takeda, Atsushi; Mori, Masashi; Tamai, Atsushi; Meshi, Tetsuo; Okuno, Tetsuro; Mise, Kazuyuki

    2007-06-01

    The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.

  7. Protein universe containing a PUA RNA-binding domain.

    Science.gov (United States)

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  8. Surface selective binding of nanoclay particles to polyampholyte protein chains

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2009-07-01

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 °C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R+)=(q-/2ɛ)[(Q-/R-)e-kR--(Q+/R+)e-kR+], where the protein dipole has charges Q+ and Q_ that are located at distances R+ and R_ from the point Laponite charge q- and the dispersion liquid has dielectric constant (ɛ). U(R+) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position θ. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (Re) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by Re˜[NaCl]α where α =0.6±0.2 for gelatin-A and α =0.4±0.2 for gelatin-B systems. The equilibrium separations were ≈30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  9. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  10. Structural dynamics of cisplatin binding to histidine in a protein

    Directory of Open Access Journals (Sweden)

    Simon W. M. Tanley

    2014-05-01

    Full Text Available The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K, several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature.

  11. Structural dynamics of cisplatin binding to histidine in a protein

    Science.gov (United States)

    Tanley, Simon W. M.; Helliwell, John R.

    2014-01-01

    The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K), several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature. PMID:26798779

  12. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  13. PEDV ORF3 encodes an ion channel protein and regulates virus production.

    Science.gov (United States)

    Wang, Kai; Lu, Wei; Chen, Jianfei; Xie, Shiqi; Shi, Hongyan; Hsu, Haojen; Yu, Wenjing; Xu, Ke; Bian, Chao; Fischer, Wolfgang B; Schwarz, Wolfgang; Feng, Li; Sun, Bing

    2012-02-17

    Several studies suggest that the open reading frame 3 (ORF3) gene of porcine epidemic diarrhea virus (PEDV) is related to viral infectivity and pathogenicity, but its function remains unknown. Here, we propose a structure model of the ORF3 protein consisting of four TM domains and forming a tetrameric assembly. ORF3 protein can be detected in PEDV-infected cells and it functions as an ion channel in both Xenopus laevis oocytes and yeast. Mutation analysis showed that Tyr170 in TM4 is important for potassium channel activity. Furthermore, viral production is reduced in infected Vero cells when ORF3 gene is silenced by siRNA. Interestingly, the ORF3 gene from an attenuated PEDV encodes a truncated protein with 49 nucleotide deletions, which lacks the ion channel activity.

  14. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    Science.gov (United States)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  15. QSAR Models for the Prediction of Plasma Protein Binding

    Directory of Open Access Journals (Sweden)

    Zeshan Amin

    2013-02-01

    Full Text Available Introduction: The prediction of plasma protein binding (ppb is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure – Activity Relationships (QSAR for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART, Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set.

  16. Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Directory of Open Access Journals (Sweden)

    Roberto Favilla

    2011-04-01

    Full Text Available The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.

  17. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  18. Characterization of DNA-binding proteins from pea mitochondria

    DEFF Research Database (Denmark)

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.;

    1998-01-01

    in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp......We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still...... unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific...

  19. Maltose-Binding Protein (MBP, a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    Directory of Open Access Journals (Sweden)

    Raphael Reuten

    Full Text Available Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST, SlyD, and serum albumin (ser alb tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome, which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems.

  20. Are odorant-binding proteins involved in odorant discrimination?

    Science.gov (United States)

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  1. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Meng Sun

    2014-12-01

    Full Text Available The pink stem borer, Sesamia inferens (Walker, is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  2. Yeast Interacting Proteins Database: YJR091C, YKL076C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...NA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing the

  3. Yeast Interacting Proteins Database: YJR091C, YNR048W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...y of RNA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing

  4. Yeast Interacting Proteins Database: YJR091C, YML015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available encoding membrane-associated proteins; involved in localizing the Arp2/3 complex to mitochondria; overexpre...y of RNA-binding proteins, interacts with mRNAs encoding membrane-associated proteins; involved in localizing

  5. Posttranslational processing of the Epstein-Barr virus-encoded p63/LMP protein.

    OpenAIRE

    Mann, K P; Thorley-Lawson, D

    1987-01-01

    In this paper we describe the posttranslational processing of the p63/LMP (latent membrane protein) encoded by Epstein-Barr virus in transformed B cells. Specifically, we show that after synthesis, free LMP disappeared with a half-life of about 0.5 h. This was caused by the association of LMP with an insoluble complex. All detectable LMP in the plasma membrane was insoluble. This interaction was resistant to nondenaturing detergents but readily dissociated with 8 M urea or by boiling in 0.5% ...

  6. Cloning and expression of prion protein encoding gene of flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiwen; SUN Xiuqin; ZHANG Jinxing; ZAN Jindong

    2008-01-01

    The prion protein (PrP) encoding gene of flounder (Paralichthys olivaceus) was cloned.It was not interrupted by an intron.This gene has two promoters in its 5' upstream,indicating that its transcription may be intensive,and should have an important function.It was expressed in all 14 tissues tested,demonstrating that it is a house-keeping gene.Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  7. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein.

    Science.gov (United States)

    Kim, Juri; Nagami, Sara; Lee, Kyu-Ho; Park, Soon-Jung

    2014-01-01

    End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102-238, but not rGlEB11-184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11-238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.

  8. The cell morphogenesis gene ANGUSTIFOLIA encodes a CtBP/BARS-like protein and is involved in the control of the microtubule cytoskeleton.

    Science.gov (United States)

    Folkers, U; Kirik, V; Schöbinger, U; Falk, S; Krishnakumar, S; Pollock, M A; Oppenheimer, D G; Day, I; Reddy, A S M; Jürgens, G; Hülskamp, M; Reddy, A R

    2002-03-15

    The ANGUSTIFOLIA (AN) gene is required for leaf hair (trichome) branching and is also involved in polarized expansion underlying organ shape. Here we show that the AN gene encodes a C-terminal binding proteins/brefeldin A ADP-ribosylated substrates (CtBP/BARS) related protein. AN is expressed at low levels in all organs and the AN protein is localized in the cytoplasm. In an mutant trichomes, the organization of the actin cytoskeleton is normal but the distribution of microtubules is aberrant. A role of AN in the control of the microtubule cytoskeleton is further supported by the finding that AN genetically and physically interacts with ZWICHEL, a kinesin motor molecule involved in trichome branching. Our data suggest that CtBP/BARS-like protein function in plants is directly associated with the microtubule cytoskeleton.

  9. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  10. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    Science.gov (United States)

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  11. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  12. Endogenous murine leukemia virus-encoded proteins in radiation leukemias of BALB/c mice

    Energy Technology Data Exchange (ETDEWEB)

    Tress, E.; Pierotti, M.; DeLeo, A.B.; O' Donnell, P.V.; Fleissner, E.

    1982-02-01

    To explore the role of endogenous retroviruses in radiation-induced leukemogenesis in the mouse, we have examined virus-encoded proteins in nine BALB/c leukemias by pulsechase labeling procedures and serological typing with monospecific and monoclonal antibodies. The major gag precursor protein, Pr65/sup gag/, was observed in all cases, but only three leukemias expressed detectable amounts of the glycosylated gag species, gP95/sup gag/, or its precursor, Pr75/sup gag/. No evidence was found for synthesis of gag-host fusion proteins. None of the leukemias released infectious xenotropic or dualtropic virus, but all nine expressed at least one env protein with xenotropic properties. In two instances a monoclonal antibody, 35/56, which is specific for the NuLV G/sub IX/ antigen, displayed a distinctive reactivity with this class of env protein, although this antibody is unreactive with replicating xenotropic viruses. An ecotropic/xenotropic recombinant env protein with the same 35/56 phenotype was observed in a leukemia induced by a strongly leukemogenic virus isolated from a BALB/c radiation leukemia.

  13. An apicoplast localized ubiquitylation system is required for the import of nuclear-encoded plastid proteins.

    Directory of Open Access Journals (Sweden)

    Swati Agrawal

    Full Text Available Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway.

  14. Bioinformatic identification of genes encoding C1q-domain containing proteins in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.

  15. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available BACKGROUND: The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. METHODOLOGY/PRINCIPAL FINDINGS: We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. CONCLUSIONS: Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene

  16. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope)

    Science.gov (United States)

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  17. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  18. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  19. Prediction of Protein-DNA binding by Monte Carlo method

    Science.gov (United States)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  20. Functional analysis of expressed peptides that bind yeast STE proteins.

    Science.gov (United States)

    Caponigro, Giordano; Abedi, Majid; Kamb, Alexander

    2003-08-15

    Peptides are potentially useful for target validation and other reverse genetic applications. For instance, if a specific protein is susceptible to peptide inhibition, it may have a higher probability of being vulnerable to small molecules. We used the yeast two-hybrid technique to identify and study peptide binders for three yeast proteins involved in pheromone response: Ste11p, Ste18p, and Ste50p. A subset of peptide binders was shown to inhibit pheromone response in cells using two different functional assays. In addition, we utilized a variant of the yeast two-hybrid method to examine relative binding affinities based on competitive interactions in yeast. Our results suggest that binding affinity and inhibitory potency of peptides do not correlate perfectly and that peptide-protein interactions can be complex and unpredictable. Taken together these results suggest that while peptides are useful as in vivo inhibitors of protein function, caution must be exercised when choosing peptides for further studies and when inferring affinities from expression phenotypes.

  1. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Myon-Hee Lee

    2007-12-01

    Full Text Available Mitogen-activated protein kinase (MAPK and PUF (for Pumilio and FBF [fem-3 binding factor] RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3' untranslated region (3' UTR and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3'UTR elements in both Erk2 and p38alpha mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38alpha 3' UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP, to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.

  2. Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV BZLF-1 (ZEBRA protein: implications for interactions with NF-κB and p53

    Directory of Open Access Journals (Sweden)

    Ghoda Lucy Y

    2011-09-01

    Full Text Available Abstract Background The carboxyl terminal of Epstein-Barr virus (EBV ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral

  3. Cloning and characterization of a novel hepatitis B virus core binding protein C12

    Institute of Scientific and Technical Information of China (English)

    Yin-Ying Lu; Jun Cheng; Yong-Ping Yang; Yan Liu; Lin Wang; Ke Li; Ling-Xia Zhang

    2005-01-01

    AIM: To elucidate the biological function of HBV core antigen (HBcAg) on pathogenesis of hepatitis B, a novel gene C12 coding for protein with unknown function interacting with HBcAg in hepatocytes was identified and characterized. METHODS: HBcAg bait plasmid pGBKT7-HBcAg was constructed and transformed into yeast AH109, then the transformed yeast was mated with yeast Y187 containing liver complementary DNA (cDNA) library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) and synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade)containing X-α-gal for screening twice. After extracting and sequencing of plasmid from blue colonies, we isolated a cDNA clone encoding a novel protein designated as C12that directly interacted with HBcAg. The interaction between HBcAg and C12 was verified again by re-mating.pEGFP-N1-C12 fluorescent protein fusion gene was transfected in 293 and L02 cell, and observed by fluorescent microscope. MTT reduction assay was used to study the action of C12 protein effect on metabolism of mammal cell. Yeast two-hybrid and cDNA microarray were performed to search binding protein and differential expression genes regulated by C12 protein.RESULTS: C12 gene was screened and identified by yeast two-hybrid system 3. The interaction between HBcAg and the novel protein coded by the new gene C12 was further confirmed by re-mating. After 48 h, fluorescence of fusion protein could be observed steadily in the 293 and L02 cell plasma. Under MTT assay, we found that the expression of C12 did not influence the growth of liver cells. Seventeen differential expression genes in HepG2 cells transfected with C12 protein expression plasmid by cDNA microarray,of which 16 genes were upregulated and 1 gene was downregulated by C12 protein. Twenty-one colonies containing 16 different genes coding for C12 protein binding proteins were isolated by yeast two-hybrid, there were 2 new genes with unknown function

  4. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvo