WorldWideScience

Sample records for binding protein calmodulin

  1. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    International Nuclear Information System (INIS)

    Blackburn, W.D.; Tallant, E.A.; Wallace, R.W.

    1986-01-01

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca 2+ . One mechanism by which Ca 2+ may trigger neutrophil activation is through Ca 2+ /calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca 2+ /CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and 125 I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound 125 I-CaM in a Ca 2+ -dependent manner. One predominant region of 125 I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca 2+ -dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 μg/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca 2+ -dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca 2+ /calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase

  2. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  3. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  4. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  5. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for protein...

  6. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  7. Altered binding of 125I-labeled calmodulin to a 46.5-kilodalton protein in skin fibroblasts cultured from patients with cystic fibrosis

    International Nuclear Information System (INIS)

    Tallant, E.A.; Wallace, R.W.

    1987-01-01

    The levels of calmodulin and calmodulin-binding proteins have been determined in cultured skin fibroblasts from patients with cystic fibrosis (CF) and age- and sex-matched controls. Calmodulin ranged from 0.20 to 0.76 microgram/mg protein; there was no difference between calmodulin concentration in fibroblasts from CF patients and controls. Calmodulin-binding proteins of 230, 212, 204, 164, 139, 70, 59, 46.5, and 41 kD were identified. A protein with a mobility identical to the 59-kD calmodulin-binding protein was labeled by antiserum against calmodulin-dependent phosphatase. Although Ca 2+ /calmodulin-dependent phosphatase activity was detected, there was no different in activity between control and CF fibroblasts or in the level of phosphatase protein as determined by radioimmunoassay. Lower amounts of 125 I-calmodulin were bound to the 46.5-kD calmodulin-binding protein in CF fibroblasts as compared with controls. The 46.5-kD calmodulin-binding protein may be reduced in CF fibroblasts or its structure may be altered resulting in a reduced binding capacity and/or affinity for calmodulin and perhaps reflecting, either directly or indirectly, the genetic defect responsible for cystic fibrosis

  8. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization.

    Directory of Open Access Journals (Sweden)

    Maia V Vinogradova

    Full Text Available Kinesin-like calmodulin binding protein (KCBP, a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+ signaling since Ca(2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.

  9. Isolation and characterization of a novel calmodulin-binding protein from potato

    Science.gov (United States)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  10. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for prote...

  11. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation

    Science.gov (United States)

    Zou, Bo; Wan, Dongli; Li, Ruili; Han, Xiaomin; Li, Guojing; Wang, Ruigang

    2017-01-01

    Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g. PMID:28253311

  12. Human platelet calmodulin-binding proteins: Ca2+-dependent proteolysis upon platelet activation

    International Nuclear Information System (INIS)

    Wallace, R.W.; Tallant, E.A.; McManus, M.C.

    1986-01-01

    Calmodulin (CaM)-binding proteins have been identified in human platelets using Western blotting techniques and 125 I-CaM. Ten distinct proteins with molecular weights of 245, 225K, 175K, 150K, 90K, 82K(2), 60K and 41K(2) bound 125 I-CaM in a Ca 2+ -dependent manner; the binding was blocked by both trifluoperazine and nonradiolabeled CaM. The 225K and 90K proteins were labeled by antisera against myosin light chain kinase (MLCK); the 60K and one of the 82K proteins were identified as the CaM-dependent phosphatase and caldesmon. The remaining proteins have not yet been identified. Most of the CaM-binding proteins were degraded upon addition of Ca 2+ to a platelet homogenate; the degradation could be blocked by either EGTA, leupeptin or N-ethyl-maleimide which suggests that it was due to a Ca 2+ -dependent protease. Activation of intact platelets by thrombin, ADP, collagen and the Ca 2+ -ionophores A23187 and ionomycin under conditions which promote platelet aggregation (i.e. stirring with extracellular Ca 2+ ) also resulted in limited proteolysis of CaM-binding proteins including those labeled with anti-MLCK and the phosphatase. Many Ca 2+ /CaM-regulated enzymes have been shown to be irreversibly activated in vitro by limited proteolysis. Their data indicates that limited proteolysis also occurs in vivo; under certain conditions proteolysis may be an important physiological mechanism for irreversibly activating Ca 2+ /CaM-regulated enzymes

  13. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  14. Differentiation inducing factor-1 (DIF-1) induces gene and protein expression of the Dictyostelium nuclear calmodulin-binding protein nucleomorphin.

    Science.gov (United States)

    O'Day, Danton H; Poloz, Yekaterina; Myre, Michael A

    2009-02-01

    The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH(3)/NH(4)(+); antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia.

  15. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    2006-01-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions

  16. Uptake and binding of 125I-calmodulin by isolated rat renal brush border membrane vesicles

    International Nuclear Information System (INIS)

    Meezan, E.; Elgavish, A.; Wallace, R.W.

    1986-01-01

    The authors have investigated the interaction of 125 I-calmodulin with isolated rat renal brush border membrane vesicles (BBV) using an experimental protocol which allows us to distinguish between ligand binding to the outside of the vesicles vs. uptake and possible binding to the vesicle interior. By examining the association of 125 I-calmodulin with BBV as a function of medium osmolarity (300-1100 mosm) to alter intravesicular space, virtually all ligand interaction with BBV was found to represent uptake of intact 125 I-calmodulin into the intravesicular space. Uptake appeared specific by the following criteria: (1) it was largely calcium dependent (2) it was inhibited in a dose dependent fashion by calmodulin and the homologous protein troponin C, but not by unrelated proteins (lysozyme, cytochrome C, insulin) (3) it was inhibited by known calmodulin antagonists (calmidazolium, mellitin, trifluoperazine). Calmodulin uptake may be followed by binding of 125 I-calmodulin to intravesicular BBV proteins; calmodulin-binding proteins in BBV with molecular weights of 143K, 118K, 50K, 47.5K, 46.5K and 35K were identified by Western blotting techniques. The specific association of 125 I-calmodulin with isolated BBV is of interest in regard to the possible role of this calcium regulatory protein in the protein reabsorptive and ion transport functions of this renal tubular membrane fraction

  17. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R

    1997-01-01

    Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and DNA repair. It is a molecular matchmaker required for loading of the proliferating cell nuclear antigen (PCNA) sliding clamp onto double-strand DNA and for PCNA-dependent DNA synthesis by DNA polymerases...... delta and epsilon. The DNA and PCNA binding domains of the large 140 kDa subunit of human RF-C have been recently cloned [Fotedar, R., Mossi, R., Fitzgerald, P., Rousselle, T., Maga, G., Brickner, H., Messier, H., Khastilba. S., Hübscher, U., & Fotedar, A. (1996) EMBO J. 15, 4423-4433]. Here we show...... that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF-C...

  18. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus1[OPEN

    Science.gov (United States)

    Plötner, Romina; Stamm, Gina; Hause, Gerd; Mitra, Dipannita; Abel, Steffen

    2017-01-01

    Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth. PMID:28115582

  19. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus.

    Science.gov (United States)

    Bürstenbinder, Katharina; Möller, Birgit; Plötner, Romina; Stamm, Gina; Hause, Gerd; Mitra, Dipannita; Abel, Steffen

    2017-03-01

    Calcium (Ca 2+ ) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca 2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis ( Arabidopsis thaliana ) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca 2+ -CaM signaling modules to specific subcellular sites for precise regulation of Ca 2+ -dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca 2+ signaling at multiple cellular sites to regulate cell function, shape, and growth. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Identification and characterization of wolframin, the product of the wolfram syndrome gene (WFS1), as a novel calmodulin-binding protein.

    Science.gov (United States)

    Yurimoto, Saki; Hatano, Naoya; Tsuchiya, Mitsumasa; Kato, Kiyohito; Fujimoto, Tomohito; Masaki, Tsutomu; Kobayashi, Ryoji; Tokumitsu, Hiroshi

    2009-05-12

    To search for calmodulin (CaM) targets, we performed affinity chromatography purification of a rat brain extract using CaM fused with GST as the affinity ligand. Proteomic analysis was then carried out to identify CaM-binding proteins. In addition to identifying 36 known CaM-binding proteins, including CaM kinases, calcineurin, nNOS, the IP(3) receptor, and Ca(2+)-ATPase, we identified an ER transmembrane protein, wolframin [the product of the Wolfram syndrome gene (WFS1)] as interacting. A CaM overlay and an immunoprecipitation assay revealed that wolframin is capable of binding the Ca(2+)/CaM complex in vitro and in transfected cells. Surface plasmon resonance analysis and zero-length cross-linking showed that the N-terminal cytoplasmic domain (residues 2-285) of wolframin binds to an equimolar unit of CaM in a Ca(2+)-dependent manner with a K(D) for CaM of 0.15 muM. Various truncation and deletion mutants showed that the Ca(2+)/CaM binding region in wolframin is located from Glu90 to Trp186. Furthermore, we demonstrated that three mutations (Ala127Thr, Ala134Thr, and Arg178Pro) associated with Wolfram syndrome completely abolished CaM binding of wolframin. This observation may indicate that CaM binding is important for wolframin function and that impairment of this interaction by mutation contributes to the pathology seen in Wolfram syndrome.

  1. TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana.

    Science.gov (United States)

    Parvin, Nargis; Carrie, Chris; Pabst, Isabelle; Läßer, Antonia; Laha, Debabrata; Paul, Melanie V; Geigenberger, Peter; Heermann, Ralf; Jung, Kirsten; Vothknecht, Ute C; Chigri, Fatima

    2017-04-03

    The translocon on the outer membrane of mitochondria (TOM) facilitates the import of nuclear-encoded proteins. The principal machinery of mitochondrial protein transport seems conserved in eukaryotes; however, divergence in the composition and structure of TOM components has been observed between mammals, yeast, and plants. TOM9, the plant homolog of yeast Tom22, is significantly smaller due to a truncation in the cytosolic receptor domain, and its precise function is not understood. Here we provide evidence showing that TOM9.2 from Arabidopsis thaliana is involved in the formation of mature TOM complex, most likely by influencing the assembly of the pore-forming subunit TOM40. Dexamethasone-induced RNAi gene silencing of TOM9.2 results in a severe reduction in the mature TOM complex, and the assembly of newly imported TOM40 into the complex is impaired. Nevertheless, mutant plants are fully viable and no obvious downstream effects of the loss of TOM complex, i.e., on mitochondrial import capacity, were observed. Furthermore, we found that TOM9.2 can bind calmodulin (CaM) in vitro and that CaM impairs the assembly of TOM complex in the isolated wild-type mitochondria, suggesting a regulatory role of TOM9.2 and a possible integration of TOM assembly into the cellular calcium signaling network. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  2. The Calmodulin-like calcium binding protein EhCaBP3 of Entamoeba histolytica regulates phagocytosis and is involved in actin dynamics.

    Directory of Open Access Journals (Sweden)

    Saima Aslam

    2012-12-01

    Full Text Available Phagocytosis is required for proliferation and pathogenesis of Entamoeba histolytica and erythrophagocytosis is considered to be a marker of invasive amoebiasis. Ca²⁺ has been found to play a central role in the process of phagocytosis. However, the molecular mechanisms and the signalling mediated by Ca²⁺ still remain largely unknown. Here we show that Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease pathomechanism by its capacity to participate in cytoskeleton dynamics and scission machinery during erythrophagocytosis. Using imaging techniques EhCaBP3 was found in phagocytic cups and newly formed phagosomes along with actin and myosin IB. In vitro studies confirmed that EhCaBP3 directly binds actin, and affected both its polymerization and bundling activity. Moreover, it also binds myosin 1B in the presence of Ca²⁺. In cells where EhCaBP3 expression was down regulated by antisense RNA, the level of RBC uptake was reduced, myosin IB was found to be absent at the site of pseudopod cup closure and the time taken for phagocytosis increased, suggesting that EhCaBP3 along with myosin 1B mediate the closure of phagocytic cups. Experiments with EhCaBP3 mutant defective in Ca²⁺-binding showed that Ca²⁺ binding is required for phagosome formation. Liposome binding assay revealed that EhCaBP3 recruitment and enrichment to membrane is independent of any cellular protein as it binds directly to phosphatidylserine. Taken together, our results suggest a novel pathway mediating phagocytosis in E. histolytica, and an unusual mechanism of modulation of cytoskeleton dynamics by two calcium binding proteins, EhCaBP1 and EhCaBP3 with mostly non-overlapping functions.

  3. Identification of spectrin as a calmodulin-binding component in the pituitary gonadotrope

    International Nuclear Information System (INIS)

    Wooge, C.H.

    1989-01-01

    Gonadotropin releasing hormone (GnRH) is a hypothalamic decapeptide which stimulates the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the pituitary. Ca 2+ fulfills the requirements of a second messenger for this system. Inhibition of calmodulin will inhibit GnRH stimulated LH release. The aim of the present studies has been to identify the locus of action of calmodulin within the pituitary. By use of an 125 I-calmodulin gel overlayer assay, five major Ca 2+ -dependent 125 I-calmodulin labelled components of subunit M r > 205,000; 200,000; 135,000; 60,000; and 52,000 have been identified. This labeling was found to be phenothiazine-sensitive. Ca 2+ -independent binding that was observed appears to be due to hydrophobic interactions of calmodulin with acid-soluble proteins, principally histones. Subcellular fractionation revealed that the Ca 2+ -dependent calmodulin-binding components are localized primarily in the cytosolic fraction. Separation of dispersed anterior pituitary cells through a linear Metrizamide gradient yielded gonadotrope-enriched fractions, which were found to contain all five 125 I-calmodulin binding components corresponding to the major bands in the pituitary homogenate. The calmodulin-binding component levels do not appear to be differentially regulated by steroids. The calmodulin binding component with a M r > 205,000 has been identified as spectrin. Spectrin-like immunoreactivity and 125 I-calmodulin-binding activity in pituitary tissue homogenates co-migrated in various percentage acrylamide gels with avian erythrocyte spectrin. Spectrin was detected in a gonadotrope-enriched fraction by immunoblotting, and confirmed in gonadotropes by indirect immunofluorescence of cultured pituitary cells in which spectrin- and LH-immunoreactivity co-localized

  4. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    International Nuclear Information System (INIS)

    Myre, Michael A.; O'Day, Danton H.

    2005-01-01

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ( 171 EDVSRFIKGKLLQKQQKIYKDLERF 195 ) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48 KKSYQDPEIIAHSRPRK 64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48 EF 49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48 EF 49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium

  5. Monoclonal antibody against brain calmodulin-dependent protein kinase type II detects putative conformational changes induced by Ca2+-calmodulin

    International Nuclear Information System (INIS)

    LeVine, H. III; Su, J.L.; Sahyoun, N.E.

    1988-01-01

    A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca 2+ for the interaction. Other divalent cations such as Zn 2+ , Mn 2+ , Cd 2+ , Co 2+ , and Ni 2+ will substitute for Ca 2+ , while Mg 2+ and Ba 2+ will not. The antibody reacts with both the α- and β-subunits on Western blots in a similar Ca 2+ -dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of 125 I Bolton-Hunter-labeled kinase with unlabeled enzyme. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the K/sub m app/ for calmodulin and an increase in the V/sub max/ for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the M/sub r/ 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca 2+ -dependent conformational change. Thus, monoclonal antibodies can be useful tools in elucidating the mechanism by which Ca 2+ and calmodulin act on the kinase molecule

  6. Calcium-dependent binding of Myc to calmodulin

    Science.gov (United States)

    Raffeiner, Philipp; Schraffl, Andrea; Schwarz, Thomas; Röck, Ruth; Ledolter, Karin; Hartl, Markus; Konrat, Robert; Stefan, Eduard; Bister, Klaus

    2017-01-01

    The bHLH-LZ (basic region/helix-loop-helix/leucine zipper) oncoprotein Myc and the bHLH-LZ protein Max form a binary transcription factor complex controlling fundamental cellular processes. Deregulated Myc expression leads to neoplastic transformation and is a hallmark of most human cancers. The dynamics of Myc transcription factor activity are post-translationally coordinated by defined protein-protein interactions. Here, we present evidence for a second messenger controlled physical interaction between the Ca2+ sensor calmodulin (CaM) and all Myc variants (v-Myc, c-Myc, N-Myc, and L-Myc). The predominantly cytoplasmic Myc:CaM interaction is Ca2+-dependent, and the binding site maps to the conserved bHLH domain of Myc. Ca2+-loaded CaM binds the monomeric and intrinsically disordered Myc protein with high affinity, whereas Myc:Max heterodimers show less, and Max homodimers no affinity for CaM. NMR spectroscopic analyses using alternating mixtures of 15N-labeled and unlabeled preparations of CaM and a monomeric Myc fragment containing the bHLH-LZ domain corroborate the biochemical results on the Myc:CaM interaction and confirm the interaction site mapping. In electrophoretic mobility shift assays, addition of CaM does not affect high-affinity DNA-binding of Myc:Max heterodimers. However, cell-based reporter analyses and cell transformation assays suggest that increasing CaM levels enhance Myc transcriptional and oncogenic activities. Our results point to a possible involvement of Ca2+ sensing CaM in the fine-tuning of Myc function. PMID:27926480

  7. Characterization of a Calmodulin-binding Transcription Factor from Strawberry (Fragaria × ananassa

    Directory of Open Access Journals (Sweden)

    Xiangpeng Leng

    2015-07-01

    Full Text Available Calmodulin-binding transcription activator (CAMTA is a calmodulin-binding transcription factor that has a broad range of functions from sensory mechanisms to regulating many growth and developmental processes. In this study, we isolated four strawberry ( genes using HMMER and BLAST analysis. The chromosome scaffold locations of these genes in the strawberry genome were determined and the protein domain and motif organization [CG-1, transcription factor immunoglobulin, ankyrin (ANK repeats, calmodulin-binding IQ motif of FaCAMTAs were also assessed. All FaCAMTAs were predicted to be Ca- and calmodulin-binding proteins. The expression profiles of genes were measured in different tissues and revealed distinct gene expression patterns under heat, cold, and salt stress. These data not only contribute to a better understanding of the complex regulation of the gene family but also provide evidence supporting the role of in multiple signaling pathways involved in stress responses. This investigation can provide useful information for further study.

  8. Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure

    Directory of Open Access Journals (Sweden)

    Hayashi Nobuhiro

    2008-02-01

    Full Text Available Abstract Background The myelin sheath is a multilamellar membrane structure wrapped around the axon, enabling the saltatory conduction of nerve impulses in vertebrates. Myelin basic protein, one of the most abundant myelin-specific proteins, is an intrinsically disordered protein that has been shown to bind calmodulin. In this study, we focus on a 19-mer synthetic peptide from the predicted calmodulin-binding segment near the C-terminus of human myelin basic protein. Results The interaction of native human myelin basic protein with calmodulin was confirmed by affinity chromatography. The binding of the myelin basic protein peptide to calmodulin was tested with isothermal titration calorimetry (ITC in different temperatures, and Kd was observed to be in the low μM range, as previously observed for full-length myelin basic protein. Surface plasmon resonance showed that the peptide bound to calmodulin, and binding was accompanied by a conformational change; furthermore, gel filtration chromatography indicated a decrease in the hydrodynamic radius of calmodulin in the presence of the peptide. NMR spectroscopy was used to map the binding area to reside mainly within the hydrophobic pocket of the C-terminal lobe of calmodulin. The solution structure obtained by small-angle X-ray scattering indicates binding of the myelin basic protein peptide into the interlobal groove of calmodulin, while calmodulin remains in an extended conformation. Conclusion Taken together, our results give a detailed structural insight into the interaction of calmodulin with a C-terminal segment of a major myelin protein, the myelin basic protein. The used 19-mer peptide interacts mainly with the C-terminal lobe of calmodulin, and a conformational change accompanies binding, suggesting a novel mode of calmodulin-target protein interaction. Calmodulin does not collapse and wrap around the peptide tightly; instead, it remains in an extended conformation in the solution structure

  9. Investigations into the binding of 125I-calmodulin to CA++ transport ATPase of human erythrocytes

    International Nuclear Information System (INIS)

    Sterk, V.

    1983-01-01

    The study described was carried out in order to investigate the binding of 125 I-calmodulin to Ca ++ transport ATPase using different Ca ++ concentrations and temperatures. The data obtained from these experiments were subsequently analysed in such as a way as to yield meaningful information relating to the mechanisms underlying the attachment of calmodulin to Ca ++ transport ATPase, the % proportion of membrane protein that was attributable to the enzyme as well as the number of calmodulin receptor sites on the individual erythrocytes, etc. Comparisons with data from the relevant literature permitted conclusions to be drawn concerning the mode of Ca ++ transport at the level of the erythrocytes. A new methodology and processing technique had to be developed prior to the beginning of the experiments. (orig./MG) [de

  10. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses

    OpenAIRE

    Galon, Yael; Snir, Orli; Fromm, Hillel

    2010-01-01

    Phenotypic plasticity is an adaptive feature of all organisms, which, in land plants, entails changes in orientation of growth (tropism), patterns of development, organ architecture, timing of developmental processes and resource allocation. However, little is known about the molecular components that integrate exogenous environmental cues with internal hormonal signaling pathways. This addendum describes a role for calcium-regulated calmodulin-binding transcription 1 (CAMTA1) in auxin signal...

  11. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  12. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  13. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    Science.gov (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  14. Fesselin is a target protein for calmodulin in a calcium-dependent manner

    International Nuclear Information System (INIS)

    KoIakowski, Janusz; Wrzosek, Antoni; Dabrowska, Renata

    2004-01-01

    Fesselin is a basic protein isolated from smooth muscle which binds G-actin and accelerates its polymerization as well as cross-links assembled filaments [J. Muscle Res. Cell Motil. 20 (1999) 539; Biochemistry 40 (2001) 14252]. In this report experimental evidence is provided for the first time proving that fesselin can interact with calmodulin in a Ca 2+ -dependent manner in vitro. Using ion exchange, followed by calmodulin-affinity chromatography, enabled us to simplify and shorten the fesselin preparation procedure and increase its yield by about three times in comparison to the procedure described by Leinweber et al. [J. Muscle Res. Cell Motil. 20 (1999) 539]. Fesselin interaction with dansyl-labelled calmodulin causes a 2-fold increase in maximum fluorescence intensity of the fluorophore and a 21 nm blue shift of the spectrum. The transition of complex formation between fesselin and calmodulin occurs at submicromolar concentration of calcium ions. The dissociation constant of fesselin Ca 2+ /calmodulin complexes amounted to 10 -8 M. The results suggest the existence of a direct link between Ca 2+ /calmodulin and fesselin at the level of actin cytoskeleton dynamics in smooth muscle

  15. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    lin-dependent protein kinase homolog; Planta 203 S91–. S97. Lu Y-T, Hidaka H and Feldman L J 1996 Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism; Planta. 199 18–24. Mitra D and Johri M M 2000 Enhanced expression of a cal-.

  16. Computational comparison of a calcium-dependent jellyfish protein (apoaequorin) and calmodulin-cholesterol in short-term memory maintenance.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2017-03-06

    Memory reconsolidation and maintenance depend on calcium channels and on calcium/calmodulin-dependent kinases regulating protein turnover in the hippocampus. Ingestion of a jellyfish protein, apoaequorin, reportedly protects and/or improves verbal learning in adults and is currently widely advertised for use by the elderly. Apoaequorin is a member of the EF-hand calcium binding family of proteins that includes calmodulin. Calmodulin-1 (148 residues) differs from Apoaequorin (195 residues) in that it contains four rather than three Ca 2+ -binding sites and three rather than four cholesterol-binding (CRAC, CARC) domains. All three cholesterol-binding CARC domains in calmodulin have a high interaction affinity for cholesterol compared to only two high affinity CARC domains in apoaequorin. Both calmodulin and apoaequorin can form dimers with a potential of eight bound Ca 2+ ions and six high affinity-bound cholesterol molecules in calmodulin with six bound Ca 2+ ions and a mixed population of eight cholesterols bound to both CARC and CRAC domains in apoaqueorin. MEMSAT-SVM analysis indicates that both calmodulin and apoaqueorin have a pore-lining region. The Peptide-Cutter algorithm predicts that calmodulin-1 contains 11 trypsin-specific cleavage sites (compared to 21 in apoaqueorin), four of which are potentially blocked by cholesterol and three are within the Ca-binding domains and/or the pore-lining region. Three are clustered between the third and fourth Ca 2+ -binding sites. Only calmodulin pore-lining regions contain Ca 2+ binding sites and as dimers may insert into the plasma membrane of neural cells and act as Ca 2+ channels. In a dietary supplement, bound cholesterol may protect both apoaequorin and calmodulin from proteolysis in the gut as well as facilitate uptake across the blood-brain barrier. Our results suggest that a physiological calmodulin-cholesterol complex, not cholesterol-free jellyfish protein, may better serve as a dietary supplement to

  17. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  18. Temperature dependent conformation studies of Calmodulin Protein using Molecular Dynamics

    Science.gov (United States)

    Aneja, Sahil; Bhartiya, Vivek Kumar; Negi, Sunita

    2016-10-01

    Calmodulin (CaM) protein plays a very crucial role in the calcium signaling inside the eukaryotic cell structure [1, 2]. It can also bind to other proteins/targets and facilitate various activities inside the cell [3, 4]. Temperature dependent conformation changes in the CaM protein are studied with extensive molecular dynamics simulations. The quantitative comparison of simulation data with various forms of experimental results probing different aspects of the folding process can facilitate robust assessment of the accuracy of the calculations. It can also provide a detailed structural interpretation for the experimental observations as well as physical interpretation for theory behind different aspects of the experiment. Earlier these kinds of studies have been performed experimentally using fluorescence measurements as in [5]. The calcium bound form of CaM is observed to undergo a reversible conformation change in the range 295-301 K at calcium ion concentration 150 mM. The transition temperature was observed to depend on the calcium ion concentration of the protein. Leap-dynamics approach was used earlier to study the temperature dependent conformation change of CaM [6]. At 290 K, both the N- and C-lobes were stable, at 325 K, the C-lobe unfolds whereas at 360 both the lobes unfold [6]. In this work, we perform molecular dynamics simulations of 100 ns each for the temperatures 325 K and 375 K on the apo form of CaM, 3CLN and 1CFD. A remarkable dependence of the temperature is observed on the overall dynamics of both the forms of the protein as reported in our earlier study [7, 8]. 1CFD shows a much flexible linker as compared to 3CLN whereas the overall dynamics of the lobes mainly N-lobe is observed to be more in later case. Salt bridge formation between the residues 2 (ASP) and 148 (LYS) leads to a more compact form of 1CFD at 325 K. The unfolding of the protein is observed to increase with the increase in the temperature similar to the earlier reported

  19. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    Science.gov (United States)

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  20. Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase

    Science.gov (United States)

    Xu, Bing; Chelikani, Prashen; Bhullar, Rajinder P.

    2012-01-01

    Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration. PMID:22905193

  1. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  2. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  3. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  4. Calcium binding to calmodulin by molecular dynamics with effective polarization

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Lepšík, Martin; Jungwirth, Pavel

    2014-01-01

    Roč. 5, č. 22 (2014), s. 3964-3969 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Institutional support: RVO:61388963 Keywords : EF-hand motif * free energy calculations * charge scaling * calcium -binding protein * umbrella sampling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.458, year: 2014

  5. Structure of Calmodulin Bound to a Calcineurin Peptide: A New Way of Making an Old Binding Mode

    International Nuclear Information System (INIS)

    Ye, Q.; Li, X.; Wong, A.; Wei, Q.; Jia, Z.

    2006-01-01

    Calcineurin is a calmodulin-binding protein in brain and the only serine/threonine protein phosphatase under the control of Ca 2+ /calmodulin (CaM), which plays a critical role in coupling Ca 2+ signals to cellular responses. CaM up-regulates the phosphatase activity of calcineurin by binding to the CaM-binding domain (CBD) of calcineurin subunit A. Here, we report crystal structural studies of CaM bound to a CBD peptide. The chimeric protein containing CaM and the CBD peptide forms an intimate homodimer, in which CaM displays a native-like extended conformation and the CBD peptide shows -helical structure. Unexpectedly, the N-terminal lobe from one CaM and the C-terminal lobe from the second molecule form a combined binding site to trap the peptide. Thus, the dimer provides two binding sites, each of which is reminiscent of the fully collapsed conformation of CaM commonly observed in complex with, for example, the myosin light chain kinase (MLCK) peptide. The interaction between the peptide and CaM is highly specific and similar to MLCK

  6. Revealing Two-State Protein-Protein Interaction of Calmodulin by Single-Molecule Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruchuan; Hu, Dehong; Tan, Xin; Lu, H PETER.

    2006-08-09

    We report a single-molecule fluorescence resonance energy transfer (FRET) and polarization study of conformational dynamics of calmodulin (CaM) interacting with a target peptide, C28W of 28 amino-acid oligomer. The C28W peptide represents the essential binding sequence domain of the Ca-ATPase protein interacting with CaM, which is important in cellular signaling for the regulation of energy in metabolism. However, the mechanism of the CaM-C28W recognition complex formation is still unclear. The amino-terminal (N-terminal) domain of the CaM was labeled with a fluorescein-based arsenical hairpin binder (F1AsH) that enables our unambiguously probing the CaM N-terminal target-binding domain motions at a millisecond timescale without convolution of the probe-dye random motions. By analyzing the distribution of FRET efficiency between F1AsH labeled CaM and Texas Red labeled C28W and the polarization fluctuation dynamics and distributions of the CaM N-terminal domain, we reveal slow (at sub-second time scale) binding-unbinding motions of the N-terminal domain of the CaM in CaM-C28W complexes, which is a strong evidence of a two-state binding interaction of CaM-mediated cell signaling.

  7. Engineering of specific uranyl-coordination sites in the calcium-binding motif of Calmodulin

    International Nuclear Information System (INIS)

    Beccia, M.; Pardoux, R.; Sauge-Merle, S.; Bremond, N.; Lemaire, D.; Berthomieu, C.; Delangle, P.; Guilbaud, P.

    2014-01-01

    Complete text of publication follows: Characterization of heavy metals interactions with proteins is fundamental for understanding the molecular factors and mechanisms governing ions toxicity and speciation in cells. This line of research will also help in developing new molecules able to selectively and efficiently bind toxic metal ions, which could find application for bio-detection or bioremediation purposes. We have used the regulatory calcium-binding protein Calmodulin (CaM) from A. thaliana as a structural model and, starting from it, we have designed various mutants by site-directed mutagenesis. We have analysed thermodynamics of uranyl ion binding to both sites I and II of CaM N-terminal domain and we have identified structural factors governing this interaction. Selectivity for uranyl ion has been tested by studying reactions of the investigated peptides with Ca 2+ , in the same conditions used for UO 2 2+ . Spectro-fluorimetric titrations and FTIR analysis have shown that the affinity for uranyl increases by phosphorylation of a threonine in site I, especially approaching the physiological pH, where the phospho-threonine side chain is deprotonated. Based on structural models obtained by Molecular Dynamics, we tested the effect of a two residues deletion on site I properties. We obtained an almost two orders of magnitude increase in affinity for uranyl, with a sub-nanomolar dissociation constant for the uranyl complex with the non phosphorylated peptide, and an improved uranyl/calcium selectivity. Allosteric effects depending on Ca 2+ and UO 2 2+ binding have been investigated by comparing thermodynamic parameters obtained for mutants having both sites I and II able to chelate metal ions with those of mutants consisting of just one active site

  8. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  9. Site I Inactivation Impacts Calmodulin Calcium Binding and Activation of Bordetella pertussis Adenylate Cyclase Toxin.

    Science.gov (United States)

    Johns, Christian W; Finley, Natosha L

    2017-11-30

    Site I inactivation of calmodulin (CaM) was used to examine the importance of aspartic acid 22 at position 3 in CaM calcium binding, protein folding, and activation of the Bordetella pertussis adenylate cyclase toxin domain (CyaA-ACD). NMR calcium titration experiments showed that site I in the CaM mutant (D22A) remained largely unperturbed, while sites II, III, and IV exhibited calcium-induced conformational changes similar to wild-type CaM (CaMWt). Circular dichroism analyses revealed that D22A had comparable α -helical content to CaMWt, and only modest differences in α -helical composition were detected between CaMWt-CyaA-ACD and D22A-CyaA-ACD complexes. However, the thermal stability of the D22A-CyaA-ACD complex was reduced, as compared to the CaMWt-CyaA-ACD complex. Moreover, CaM-dependent activity of CyaA-ACD decreased 87% in the presence of D22A. Taken together, our findings provide evidence that D22A engages CyaA-ACD, likely through C -terminal mediated binding, and that site I inactivation exerts functional effects through the modification of stabilizing interactions that occur between N -terminal CaM and CyaA-ACD.

  10. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants.

    Science.gov (United States)

    Mohanta, Tapan Kumar; Kumar, Pradeep; Bae, Hanhong

    2017-02-03

    Ca 2+ ion is a versatile second messenger that operate in a wide ranges of cellular processes that impact nearly every aspect of life. Ca 2+ regulates gene expression and biotic and abiotic stress responses in organisms ranging from unicellular algae to multi-cellular higher plants through the cascades of calcium signaling processes. In this study, we deciphered the genomics and evolutionary aspects of calcium signaling event of calmodulin (CaM) and calmodulin like- (CML) proteins. We studied the CaM and CML gene family of 41 different species across the plant lineages. Genomic analysis showed that plant encodes more calmodulin like-protein than calmodulins. Further analyses showed, the majority of CMLs were intronless, while CaMs were intron rich. Multiple sequence alignment showed, the EF-hand domain of CaM contains four conserved D-x-D motifs, one in each EF-hand while CMLs contain only one D-x-D-x-D motif in the fourth EF-hand. Phylogenetic analysis revealed that, the CMLs were evolved earlier than CaM and later diversified. Gene expression analysis demonstrated that different CaM and CMLs genes were express differentially in different tissues in a spatio-temporal manner. In this study we provided in detailed genome-wide identifications and characterization of CaM and CML protein family, phylogenetic relationships, and domain structure. Expression study of CaM and CML genes were conducted in Glycine max and Phaseolus vulgaris. Our study provides a strong foundation for future functional research in CaM and CML gene family in plant kingdom.

  11. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src.

    Directory of Open Access Journals (Sweden)

    Silviya R Stateva

    Full Text Available Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W-7 inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR, in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred.

  12. The Recognition of Calmodulin to the Target Sequence of Calcineurin—A Novel Binding Mode

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chyan

    2017-09-01

    Full Text Available Calcineurin (CaN is a Ca2+/calmodulin-dependent Ser/Thr protein phosphatase, which plays essential roles in many cellular and developmental processes. CaN comprises two subunits, a catalytic subunit (CaN-A, 60 kDa and a regulatory subunit (CaN-B, 19 kDa. CaN-A tightly binds to CaN-B in the presence of minimal levels of Ca2+, but the enzyme is inactive until activated by CaM. Upon binding to CaM, CaN then undergoes a conformational rearrangement, the auto inhibitory domain is displaced and thus allows for full activity. In order to elucidate the regulatory role of CaM in the activation processes of CaN, we used NMR spectroscopy to determine the structure of the complex of CaM and the target peptide of CaN (CaNp. The CaM/CaNp complex shows a compact ellipsoidal shape with 8 α-helices of CaM wrapping around the CaNp helix. The RMSD of backbone and heavy atoms of twenty lowest energy structures of CaM/CaNp complex are 0.66 and 1.14 Å, respectively. The structure of CaM/CaNp complex can be classified as a novel binding mode family 1–18 with major anchor residues Ile396 and Leu413 to allocate the largest space between two domains of CaM. The relative orientation of CaNp to CaM is similar to the CaMKK peptide in the 1–16 binding mode with N- and C-terminal hydrophobic anchors of target sequence engulfed in the hydrophobic pockets of the N- and C-domain of CaM, respectively. In the light of the structural model of CaM/CaNp complex reported here, we provide new insight in the activation processes of CaN by CaM. We propose that the hydrophobic interactions between the Ca2+-saturated C-domain and C-terminal half of the target sequence provide driving forces for the initial recognition. Subsequent folding in the target sequence and structural readjustments in CaM enhance the formation of the complex and affinity to calcium. The electrostatic repulsion between CaM/CaNp complex and AID may result in the displacement of AID from active site for full

  13. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  14. Mapping of calmodulin binding site on the C-tail of TRPC6 channel

    Czech Academy of Sciences Publication Activity Database

    Friedlová, Eliška; Gryčová, Lenka; Lánský, Petr; Šulc, Miroslav; Teisinger, Jan

    2007-01-01

    Roč. 102, Suppl.1 (2007), s. 259-259 ISSN 0022-3042. [Biennial meeting of the International Society for Neurochemistry /21./ and Annual meeting of the American Society for Neurochemistry /38./. 19.08.2007-24.08.2007, Cancun] R&D Projects: GA AV ČR(CZ) IAA600110701; GA ČR(CZ) GA303/07/0915; GA MŠk(CZ) LC554; GA ČR(CZ) GD305/03/H148 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : cpo1 * TRPC6 * calmodulin binding site * fluorescence Subject RIV: BO - Biophysics

  15. Structural and thermodynamic studies of the tobacco calmodulin-like rgs-CaM protein.

    Science.gov (United States)

    Makiyama, Rodrigo K; Fernandes, Carlos A H; Dreyer, Thiago R; Moda, Bruno S; Matioli, Fabio F; Fontes, Marcos R M; Maia, Ivan G

    2016-11-01

    The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca 2+ -binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca 2+ binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the k d values obtained for Ca 2+ binding to the three functional sites are not within the affinity range of a typical Ca 2+ sensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Targeting the Small- and Intermediate-Conductance Ca2+-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface

    Directory of Open Access Journals (Sweden)

    Meng Cui

    2014-10-01

    Full Text Available The small- and intermediate-conductance Ca2+-activated potassium (SK/IK channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca2+ sensitivity of the SK/IK channels stems from a constitutively bound Ca2+-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca2+ sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators. © 2014 S. Karger AG, Basel

  17. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  18. Identification of calcium-binding proteins in human platelets

    International Nuclear Information System (INIS)

    Brumley, L.M.; Wallace, R.W.

    1986-01-01

    In human platelets, intracellular Ca 2+ is a second messenger for platelet agonists. Two targets for the Ca 2+ signal are calmodulin and the C-,inase; however, other Ca 2+ -binding proteins may also play a role in platelet function. The Western blotting technique of Maruyama et al., which utilizes 45 Ca 2+ to detect Ca 2+ -binding proteins, has been used to identify numerous platelet Ca 2+ -binding proteins ranging in molecular weight from 165K to 15K. The greatest quantity of 45 Ca 2+ was bound to a 165 kilodalton protein which has been identified as thrombospondin based upon its release from thrombin-stimulated platelets and its comigration on SDS gels with purified thrombospondin. Two other major sites for 45 Ca 2+ -binding correspond to proteins of 120K and 108K which are present only in the platelet particulate fraction; they have been identified as glycoproteins IIb and IIIa based upon their labeling by 125 I-concanavalin A. Two proteins with molecular weights of 20K and 15K bound much less 45 Ca 2+ and correspond on SDS gels to calmodulin and subunit B of the calmodulin-dependent phosphatase. A number of other, yet to be identified, Ca 2+ -binding proteins were also detected. These data indicate that human platelets contain numerous Ca 2+ -binding proteins and that Western blotting techniques utilizing 45 Ca 2+ may be useful as an assay system in future attempts to purify platelet Ca 2+ -binding proteins

  19. Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Keizo Takao

    Full Text Available Calcium-calmodulin dependent protein kinase IV (CaMKIV is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.

  20. Charge isomers of myelin basic protein: structure and interactions with membranes, nucleotide analogues, and calmodulin.

    Directory of Open Access Journals (Sweden)

    Chaozhan Wang

    Full Text Available As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8, two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM, various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids--a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.

  1. Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase.

    Science.gov (United States)

    Douglas, P; Moorhead, G; Hong, Y; Morrice, N; MacKintosh, C

    1998-10-01

    Spinach (Spinacea oleracea L.) nitrate reductase (NR) is inactivated by phosphorylation on serine-543, followed by binding of the phosphorylated enzyme to 14-3-3 proteins. We purified one of several chromatographically distinct NRserine-543 kinases from spinach leaf extracts, and established by Edman sequencing of 80 amino acid residues that it is a calcium-dependent (calmodulin-domain) protein kinase (CDPK), with peptide sequences very similar to Arabidopsis CDPK6 (accession no. U20623; also known as CPK3). The spinach CDPK was recognized by antibodies raised against Arabidopsis CDPK. Nitrate reductase was phosphorylated at serine-543 by bacterially expressed His-tagged CDPK6, and the phosphorylated NR was inhibited by 14-3-3 proteins. However, the bacterially expressed CDPK6 had a specific activity approx. 200-fold lower than that of the purified spinach enzyme. The physiological control of NR by CDPK is discussed, and the regulatory properties of the purified CDPK are considered with reference to current models for reversible intramolecular binding of the calmodulin-like domain to the autoinhibitory junction of CDPKs.

  2. Tau regulates the subcellular localization of calmodulin

    International Nuclear Information System (INIS)

    Barreda, Elena Gomez de; Avila, Jesus

    2011-01-01

    Highlights: → In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  3. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  4. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    Directory of Open Access Journals (Sweden)

    Grant S. Nichols

    2015-01-01

    Full Text Available Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX, the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults.

  5. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    Science.gov (United States)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  6. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  7. Secreted calmodulin-like skin protein ameliorates scopolamine-induced memory impairment.

    Science.gov (United States)

    Hayashi, Masaaki; Tajima, Hirohisa; Hashimoto, Yuichi; Matsuoka, Masaaki

    2014-06-18

    Humanin, a short bioactive peptide, inhibits cell death in a variety of cell-based death models through Humanin receptors in vitro. In vivo, Humanin ameliorates both muscarinic receptor antagonist-induced memory impairment in normal mice and memory impairment in Alzheimer's disease (AD)-relevant mouse models including aged transgenic mice expressing a familial AD-linked gene. Recently, calmodulin-like skin protein (CLSP) has been shown to be secreted from skin tissues, contain a region minimally similar to the core region of Humanin, and inhibit AD-related neuronal death through the heterotrimeric Humanin receptor on the cell surface in vitro. As CLSP is much more potent than Humanin and efficiently transported through blood circulation across the blood-brain barrier to the central nervous system, CLSP is considered as a physiological agonist that binds to the heterotrimeric Humanin receptor and triggers the Humanin-induced signals in central nervous system. However, it remains unknown whether CLSP ameliorates memory impairment in mouse dementia models as Humanin does. In this study, we show that recombinant CLSP, administered intracerebroventricularly or intraperitoneally, ameliorates scopolamine-induced dementia in mice.

  8. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  9. Protective effects of Humanin and calmodulin-like skin protein in Alzheimer's disease and broad range of abnormalities.

    Science.gov (United States)

    Matsuoka, Masaaki

    2015-01-01

    Humanin is a 24-amino acid, secreted bioactive peptide that prevents various types of cell death and improves some types of cell dysfunction. Humanin inhibits neuronal cell death that is caused by a familial Alzheimer's disease (AD)-linked gene via binding to the heterotrimeric Humanin receptor (htHNR). This suggests that Humanin may play a protective role in AD-related pathogenesis. Calmodulin-like skin protein (CLSP) has recently been identified as a physiological agonist of htHNR with 10(5)-fold more potent anti-cell death activity than Humanin. Humanin has also shown to have protective effects against some metabolic disorders. In this review, the broad range of functions of Humanin and the functions of CLSP that have been characterized thus far are summarized.

  10. Inhibitor and peptide binding to calmodulin characterized by high pressure Fourier transform infrared spectroscopy and Förster resonance energy transfer.

    Science.gov (United States)

    Cinar, Süleyman; Czeslik, Claus

    2018-03-17

    We compare the binding of an inhibitor with that of a natural peptide to Ca 2+ saturated calmodulin (holo-CaM). As inhibitor we have chosen trifluoperazine (TFP) that is inducing a huge conformational change of holo-CaM from the open dumbbell-shaped to the closed globular conformation upon binding. On the other hand, melittin is used as model peptide, which is a well-known natural binding partner of holo-CaM. The experiments are carried out as a function of pressure to reveal the contribution of volume or packing effects to the stability of the calmodulin-ligand complexes. From high-pressure Fourier transform infrared (FTIR) spectroscopy, we find that the holo-CaM/TFP complex has a much higher pressure stability than the holo-CaM/melittin complex. Although the analysis of the secondary structure of holo-CaM (without and with ligand) indicates no major changes up to several kbar, pressure-induced exposure of α-helices to water is most pronounced for holo-CaM without ligand, followed by holo-CaM/melittin and then holo-CaM/TFP. Moreover, structural pressure resistance of the holo-CaM/TFP complex in comparison with the holo-CaM/melittin complex is also clearly visible by higher Ca 2+ affinity. Förster resonance energy transfer (FRET) from the Tyr residues of holo-CaM to the Trp residue of melittin even suggests some partial dissociation of the complex under pressure which points to void volumes at the protein-ligand interface and to electrostatic binding. Thus, all results of this study show that the inhibitor TFP binds to holo-CaM with higher packing density than the peptide melittin enabling a favorable volume contribution to the inhibitor efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  12. Reduced expressions of calmodulin genes and protein and reduced ability of calmodulin to activate plasma membrane Ca(2+)-ATPase in the brain of protein undernourished rats: modulatory roles of selenium and zinc supplementation.

    Science.gov (United States)

    Adebayo, Olusegun L; Khera, Alka; Sandhir, Rajat; Adenuga, Gbenga A

    2016-03-01

    The roles of protein undernutrition as well as selenium (Se) and zinc (Zn) supplementation on the ability of calmodulin (CaM) to activate erythrocyte ghost membrane (EGM) Ca(2+)-ATPase and the calmodulin genes and protein expressions in rat's cortex and cerebellum were investigated. Rats on adequate protein diet and protein-undernourished (PU) rats were fed with diet containing 16% and 5% casein, respectively, for a period of 10 weeks. The rats were then supplemented with Se and Zn at a concentration of 0.15 and 227 mg l(-1), respectively, in drinking water for 3 weeks. The results obtained from the study showed significant reductions in synaptosomal plasma membrane Ca(2+)-ATPase (PMCA) activity, Ca(2+)/CaM activated EGM Ca(2+) ATPase activity and calmodulin genes and protein expressions in PU rats. Se or Zn supplementation improved the ability of Ca(2+)/CaM to activate EGM Ca(2+)-ATPase and protein expressions. Se or Zn supplementation improved gene expression in the cerebellum but not in the cortex. Also, the activity of PMCA was significantly improved by Zn. In conclusion, it is postulated that Se and Zn might be beneficial antioxidants in protecting against neuronal dysfunction resulting from reduced level of calmodulin such as present in protein undernutrition. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Identification and quantification of calcium-binding proteins in squid axoplasm

    International Nuclear Information System (INIS)

    Krinks, M.H.; Klee, C.B.; Pant, H.C.; Gainer, H.

    1988-01-01

    The identities and quantities of calcium-binding proteins were determined in axoplasm isolated from the squid giant axon. 45 Ca-binding assays on nitrocellulose filters containing axoplasm proteins separated by SDS-polyacrylamide electrophoresis revealed 4 major calcium-binding bands. These included the high-molecular-weight (Mr greater than 330 and 220 X 10(3] neurofilament proteins, an unidentified protein band that migrated around Mr 55,000, and a diverse group of proteins that migrated together around Mr 17,000. The low-molecular-weight (Mr 17,000) calcium-binding proteins could be resolved into calmodulin (ca. 120 mumol/kg axoplasm), 2 other Mr 17,000 calcium-binding proteins, and a small amount of calcineurin B. It is estimated that these calcium-binding proteins in squid axoplasm could theoretically bind about 1 mmol Ca 2+ /kg axoplasm. 125 I-Calmodulin overlay and Western blot analyses disclosed a number of calmodulin-binding proteins in axoplasm. These included fodrin, calcineurin A, and Ca 2+ /CaM protein kinase II subunits

  14. Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin

    Czech Academy of Sciences Publication Activity Database

    Gryčová, Lenka; Lánský, Zdeněk; Friedlová, Eliška; Obšilová, Veronika; Janoušková, Hana; Obšil, Tomáš; Teisinger, Jan

    2008-01-01

    Roč. 375, č. 4 (2008), s. 680-683 ISSN 0006-291X R&D Projects: GA AV ČR(CZ) IAA600110701; GA ČR(CZ) GA303/07/0915; GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : calmodulin * TRPV receptor * fluorescence Subject RIV: CE - Biochemistry Impact factor: 2.648, year: 2008

  15. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  16. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging.

    Science.gov (United States)

    Oscar, Breland G; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E; Fang, Chong

    2014-07-15

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.

  17. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Wang Qingshan; Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-01-01

    Calcium-dependent mechanisms, particularly those mediated by Ca 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca 2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  18. Identification of peptides in wheat germ hydrolysate that demonstrate calmodulin-dependent protein kinase II inhibitory activity.

    Science.gov (United States)

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Guo, Jian; Tanaka, Mitsuru; Matsui, Toshiro

    2016-12-15

    Hydrolysis of wheat germ by proteases resulted in bioactive peptides that demonstrated an inhibitory effect against the vasoconstrictive Ca(2+)-calmodulin (CaM)-dependent protein kinase II (CaMK II). The hydrolysate by thermolysin (1.0wt%, 5h) showed a particularly potent CaMK II inhibition. As a result of mixed mode high-performance liquid chromatography of thermolysin hydrolysate with pH elution gradient ranging between 4.8 and 8.9, the fraction eluted at pH 8.9 was the most potent CaMK II inhibitor. From this fraction, Trp-Val and Trp-Ile were identified as CaMK II inhibitors. In Sprague-Dawley rats, an enhanced aortic CaMK II activity by 1μM phenylephrine was significantly (p<0.05) suppressed by 15-min incubation with 300μM Trp-Val or Trp-Ile. On the basis of Ca(2+)-chelating fluorescence and CaMK II activity assays, it was concluded that Trp-Val and Trp-Ile competed with Ca(2+)-CaM complex to bind to CaMK II with Ki values of 5.4 and 3.6μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  20. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer

    Science.gov (United States)

    Abu-Soud, Husam M.; Stuehr, Dennis J.

    1993-11-01

    Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O_2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

  1. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  2. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis

    OpenAIRE

    Scholz, Sandra S; Reichelt, Michael; Vadassery, Jyothilakshmi; Mithöfer, Axel

    2015-01-01

    Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca2+ concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca2+ sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsi...

  3. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Studies on two calcium-binding proteins from squid optic lobe

    International Nuclear Information System (INIS)

    Sheldon, A.

    1988-01-01

    Investigations focused on the physicochemical and functional properties of squid calcium-binding protein (SCaBP) and squid calmodulin (SCaM). The physiochemical studies included characterization of Ca 2+ - and Mg 2+ -binding properties, and the effects of metal ion-binding on protein conformation. These studies were performed using various ionic conditions, including those physiological for the squid. Ca 2+ -binding by SCaBP, SCaM, and bovine brain calmodulin (BCaM) (for comparison) was measured by equilibrium dialysis. All three proteins bound 4 Ca 2+ per mol protein under each set of ionic conditions. Under conditions physiological for the squid, both the squid proteins bound Ca 2+ over a similar range of free Ca 2+ concentrations. Ca 2+ - and Mg 2+ -induced changes in the conformation of the proteins were studied by polyacrylamide gel electrophoresis, fluphenazine-Sepharose affinity chromatography, and ultraviolet absorption difference spectroscopy. The functional studies focused on the identification of squid optic lobe proteins which interacted with SCaBP and SCaM in a Ca 2+ - dependent manner. These proteins were identified by SCaBP- and SCaM-Sepharose affinity chromatography, an immunoblotting technique using a polyclonal anti-SCaBP antibody, and a 125 I-calmodulin overlay procedure

  5. Is a calmodulin-opiopeptide interaction related to the mechanism of opioid action?

    Science.gov (United States)

    Clouet, D H; Williams, N; Yonehara, N

    1983-01-01

    The effect of several opioids: methadone, etorphine, beta-endorphin and D-ala2met enkephalin on Ca++/calmodulin stimulation of enzyme activities either in pure solution (cyclic nucleotide phosphodiesterase) or in striatal membranes (protein kinases in synaptic membranes) were compared to see if a direct opioid/calmodulin interaction could eliminate the stimulation of enzyme activity as part of the mechanism by which opioids alter ion flow and neurotransmitter release. In other experiments, in which endogenous phosphorylation of proteins in striatal synaptic membranes was altered by opioid treatments, the possibility of restoring protein kinase activity to normal levels in the membrane preparation by supplementation with calmodulin at optimal Ca++ concentration was examined. Some opioids (methadone and D-ala2met enkephalin) did not inhibit calmodulin-stimulated phosphodiesterase, which suggests that they were not able to bind to calmodulin. In addition, it was not possible to restore decreases in protein kinase activity to normal levels by adding calmodulin to the assay in the presence of optimal Ca++. We conclude that a direct binding of opioids to calmodulin is not a general mechanism of opioid action, although the binding may participate in the action of some neuropeptides, including beta-endorphin.

  6. Ca2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle.

    Science.gov (United States)

    Saddouk, F Z; Ginnan, R; Singer, H A

    2017-01-01

    Ca 2+ -dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca 2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca 2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca 2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca 2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies. © 2017 Elsevier Inc. All rights reserved.

  7. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  8. Trifluoperazine, a Well-Known Antipsychotic, Inhibits Glioblastoma Invasion by Binding to Calmodulin and Disinhibiting Calcium Release Channel IP3R.

    Science.gov (United States)

    Kang, Seokmin; Hong, Jinpyo; Lee, Jung Moo; Moon, Hyo Eun; Jeon, Borami; Choi, Jungil; Yoon, Nal Ae; Paek, Sun Ha; Roh, Eun Joo; Lee, C Justin; Kang, Sang Soo

    2017-01-01

    Calcium (Ca 2+ ) signaling is an important signaling process, implicated in cancer cell proliferation and motility of the deadly glioblastomas that aggressively invade neighboring brain tissue. We have previously demonstrated that caffeine blocks glioblastoma invasion and extends survival by inhibiting Ca 2+ release channel inositol 1,4,5-trisphosphate receptor (IP 3 R) subtype 3. Trifluoperazine (TFP) is an FDA-approved antipsychotic drug for schizophrenia. Interestingly, TFP has been recently reported to show a strong anticancer effect on lung cancer, hepatocellular carcinoma, and T-cell lymphoma. However, the possible anticancer effect of TFP on glioblastoma has not been tested. Here, we report that TFP potently suppresses proliferation, motility, and invasion of glioblastoma cells in vitro, and tumor growth in in vivo xenograft mouse model. Unlike caffeine, TFP triggers massive and irreversible release of Ca 2+ from intracellular stores by IP 3 R subtype 1 and 2 by directly interacting at the TFP-binding site of a Ca 2+ -binding protein, calmodulin subtype 2 (CaM2). TFP binding to CaM2 causes a dissociation of CaM2 from IP 3 R and subsequent opening of IP 3 R. Compared with the control neural stem cells, various glioblastoma cell lines showed enhanced expression of CaM2 and thus enhanced sensitivity to TFP. On the basis of these findings, we propose TFP as a potential therapeutic drug for glioblastoma by aberrantly and irreversibly increasing Ca 2+ in glioblastoma cells. Mol Cancer Ther; 16(1); 217-27. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Role of intramolecular interaction in connexin50: mediating the Ca2+-dependent binding of calmodulin to gap junction.

    Science.gov (United States)

    Zhang, Xianrong; Qi, Yipeng

    2005-08-15

    Gap junction channels formed by connexin50 (Cx50) are critical for maintenance of eye lens transparency. Cleavage of the carboxyl terminus (CT) of Cx50 to produce truncated Cx50 (Cx50trunc) occurred naturally during maturation of lens fiber cells. The mechanism of its altered properties is under confirmation. It has been suggested that calmodulin (CaM) participates in gating some kinds of gap junction. Here, we performed confocal colocalization and co-immunoprecipitation experiments to study the relationships between Cx50 and CaM. Results exhibited that the CaM could colocalize Ca2+ dependently with CT in the linear area of cell-to-cell contact formed by Cx50trunc, while it could not localize in the linear area without expression of CT. Further study indicated that the CT could interact Ca2+ independently with the cytoplasmic loop (CL) of Cx50. These data put forward the importance of Ca2+-independent intramolecular interaction between CT and CL of Cx50, which mediate the Ca2+-dependent binding of CaM to Cx50. These intra- and intermolecular interactions may further improve our understanding of biological significance of the Cx50 in the eye lens.

  10. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  11. Ca²+/calmodulin-dependent protein kinase II (CaMKII activity and sinoatrial nodal pacemaker cell energetics.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available : Ca(2+-activated basal adenylate cyclase (AC in rabbit sinoatrial node cells (SANC guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+ releases that prompt rhythmic, spontaneous action potentials (APs. This high-throughput signaling consumes ATP.We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca(2+ indirectly, regulate mitochondrial ATP production. While, clearly, Ca(2+-calmodulin-CaMKII activity regulates ATP consumption, whether it has a role in the control of ATP production is unknown.We superfused single, isolated rabbit SANC at 37°C with physiological saline containing CaMKII inhibitors, (KN-93 or autocamtide-2 Related Inhibitory Peptide (AIP, or a calmodulin inhibitor (W-7 and measured cytosolic Ca(2+, flavoprotein fluorescence and spontaneous AP firing rate. We measured cAMP, ATP and O2 consumption in cell suspensions. Graded reductions in basal CaMKII activity by KN-93 (0.5-3 µmol/L or AIP (2-10 µmol/L markedly slow the kinetics of intracellular Ca(2+ cycling, decrease the spontaneous AP firing rate, decrease cAMP, and reduce O2 consumption and flavoprotein fluorescence. In this context of graded reductions in ATP demand, however, ATP also becomes depleted, indicating reduced ATP production.CaMKII signaling, a crucial element of normal automaticity in rabbit SANC, is also involved in SANC bioenergetics.

  12. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  13. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin

    Science.gov (United States)

    Veluthambi, K.; Poovaiah, B. W.

    1986-01-01

    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  14. Protein binding of psychotropic agents

    International Nuclear Information System (INIS)

    Hassan, H.A.

    1990-01-01

    Based upon fluorescence measurements, protein binding of some psychotropic agents (chlorpromazine, promethazine, and trifluoperazine) to human IgG and HSA was studied in aqueous cacodylate buffer, PH7. The interaction parameters determined from emission quenching of the proteins. The interaction parameters determined include the equilibrium constant (K), calculated from equations derived by Borazan and coworkers, the number of binding sites (n) available to the monomer molecules on a single protein molecule. The results revealed a high level of affinity, as reflected by high values of K, and the existence of specific binding sites, since a limited number of n values are obtained. 39 tabs.; 37 figs.; 83 refs

  15. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding

    Science.gov (United States)

    Bicket, Alex; Mehrabi, Pedram; Naydenova, Zlatina; Wong, Victoria; Donaldson, Logan; Stagljar, Igor

    2016-01-01

    Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is not known. Here we report the identification of the calcium signaling transducer calmodulin (CaM) as an ENT1-interacting protein, via a conserved classic 1-5-10 motif in ENT1. Calcium-dependent human ENT1-CaM protein interactions were confirmed in human cell lines (HEK293, RT4, U-87 MG) using biochemical assays (HEK293) and the functional assays (HEK293, RT4), which confirmed modified nucleoside uptake that occurred in the presence of pharmacological manipulations of calcium levels and CaM function. Nucleoside and NA drug uptake was significantly decreased (∼12% and ∼39%, respectively) by chelating calcium (EGTA, 50 μM; BAPTA-AM, 25 μM), whereas increasing intracellular calcium (thapsigargin, 1.5 μM) led to increased nucleoside uptake (∼26%). Activation of N-methyl-d-aspartate (NMDA) receptors (in U-87 MG) by glutamate (1 mM) and glycine (100 μM) significantly increased nucleoside uptake (∼38%) except in the presence of the NMDA receptor antagonist, MK-801 (50 μM), or CaM antagonist, W7 (50 μM). These data support the existence of a previously unidentified novel receptor-dependent regulatory mechanism, whereby intracellular calcium modulates nucleoside and NA drug uptake via CaM-dependent interaction of ENT1. These findings suggest that ENT1 is regulated via receptor-dependent calcium-linked pathways resulting in an alteration of purine flux, which may modulate purinergic signaling and influence NA drug efficacy. PMID:27009875

  16. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  17. Human calmodulin-like protein (CLP) expression in oral squamous mucosa and in malignant transformation.

    Science.gov (United States)

    Brooks, Michael D; Bennett, Richard D; Strehler, Emanuel E; Sebo, Thomas J; Eckert, Stephen E; Carr, Alan B

    2009-01-01

    The purpose of this study was to test whether calmodulin-like protein (CLP) is expressed in normal human oral mucosal cells and if downregulation of CLP occurs in malignant transformation. Oral mucosal tissue was taken from three individuals in a double-blind manner. The samples were cut, measured, and homogenized. Total RNA was extracted and reverse transcribed. Each cDNA sample was subjected to polymerase chain reaction (PCR). PCR fragments were purified, cloned, and sequenced to verify the presence of CLP. Three oral mucosal tissue samples with biopsy-confirmed squamous cell carcinoma were obtained. These samples demonstrated regions of normal epithelial cells as well as invasive squamous cell carcinoma. One normal breast epithelial sample was also obtained for positive control. Sections were stained with an affinity-purified CLP antibody and counterstained with a diluted hematoxylin. Two observers evaluated the specimens for expression of CLP. Staining patterns and intensity were noted in normal oral mucosa, comparing them to the normal breast epithelium sample. Staining patterns and intensity were then observed in squamous tumor cells, comparing them to the patterns of benign squamous mucosa. CLP coding sequences were positively identified from the normal oral mucosal tissue samples by reverse transcription and polymerase chain reaction (RT-PCR) with 100% identity to the published CLP sequence (accession #M58026). In the three oral mucosa tissue samples with known squamous cell carcinoma, expression of CLP was readily detected in areas of normal oral mucosa, while a notable downregulation of CLP expression occurred in areas of malignant transformation. The staining intensity was equivalent to the staining seen in the benign breast epithelium used as a control. In the areas of squamous cell carcinoma, a decrease in CLP immunoreactivity occurred. There was a sharp contrast in staining quality and clarity between benign and malignant tissue. In the majority of

  18. binding protein (HABP1)

    Indian Academy of Sciences (India)

    Unknown

    adsorbed on carbon coated copper grid (400 mesh) for. 5 min at room temperature. The grids were subsequently .... and inhibition by GAGs and DMA were determined on polystyrene wells of microtitre plates (Costar, ... for binding inhibition assays was carried out by mixing equal volumes of the conjugate and the inhibitor at ...

  19. binding protein (HABP1)

    Indian Academy of Sciences (India)

    Unknown

    of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity ... site is seen to correspond to the carbohydrate-binding site in E-selectin, which has similarity in the ... adsorbed on carbon coated copper grid (400 mesh) for. 5 min at room temperature.

  20. W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Edgard Jauregui

    2017-11-01

    Full Text Available The calcium/calmodulin-dependent protein kinase (CCaMK is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmodulin, providing an effective approach to study how calmodulin regulates CCaMK in terms of kinase activity and regulation of rhizobial symbiosis in Medicago truncatula. We observed that mutating the tryptophan at position 342 to phenylalanine (W342F markedly increased the calmodulin-binding capability of the mutant. The mutant CCaMK underwent autophosphorylation and catalyzed substrate phosphorylation in the absence of calcium and calmodulin. When the mutant W342F was expressed in ccamk-1 roots, the transgenic roots exhibited an altered nodulation phenotype. These results indicate that altering the calmodulin-binding domain of CCaMK could generate a constitutively activated kinase with a negative role in the physiological function of CCaMK.

  1. Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase

    Directory of Open Access Journals (Sweden)

    Ilya Igorevich Grigoriev

    2012-03-01

    Full Text Available Phosphorylation of photoactivated rhodopsin by rhodopsin kinase (RK or GRK1, a first step of the phototransduction cascade turnoff, is under the control of Ca2+/recoverin. Here, we demonstrate that calmodulin, a ubiquitous Ca2+-sensor, can inhibit RK, though less effectively than recoverin does. We have utilized the surface plasmon resonance (SPR technology to map the calmodulin binding site in the RK molecule. Calmodulin does not interact with the recoverin binding site within amino acid residues M1-S25 of the enzyme. Instead, the high affinity calmodulin binding site is localized within a stretch of amino acid residues V150-K175 in the N-terminal regulatory region of RK. Moreover, the inhibitory effect of calmodulin and recoverin on RK activity is synergetic, which is in agreement with the existence of separate binding sites for each Ca2+-sensing protein. The synergetic inhibition of RK by both Ca2+-sensors occurs over a broader range of Ca2+-concentration than by recoverin alone, indicating increased Ca2+-sensitivity of RK regulation in the presence of both Ca2+-sensors. Taken together, our data suggest that RK regulation by calmodulin in photoreceptor cells could complement the well-known inhibitory effect of recoverin on RK.

  2. Identification of amino acid residues essential for binding of calmodulin in C-terminal region of TRPC6

    Czech Academy of Sciences Publication Activity Database

    Friedlová, Eliška; Gryčová, Lenka; Lánský, Zdeněk; Šulc, Miroslav; Teisinger, Jan

    2008-01-01

    Roč. 275, Suppl.1 (2008), s. 217-217 ISSN 1742-464X. [FEBS Congress /33./ and IUBMB Conference /11./. 28.06.2008-03.07.2008, Athens] R&D Projects: GA AV ČR(CZ) IAA600110701; GA ČR(CZ) GA303/07/0915; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * TRPC6 receptor * calmodulin * fluorescence anisotropy Subject RIV: BO - Biophysics

  3. Rat vas deferens SERCA2 is modulated by Ca{sup 2+}/calmodulin protein kinase II-mediated phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.B.R.; Muzi-Filho, H. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Valverde, R.H.F. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Quintas, L.E.M. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Noel, F. [Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Einicker-Lamas, M. [Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ (Brazil); Cunha, V.M.N. [Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-03-19

    Ca{sup 2+} pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca{sup 2+}-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca{sup 2+} (Ca{sub 0.5} = 780 nM) and a low sensitivity to vanadate (IC{sub 50} = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca{sup 2+} and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca{sup 2+} accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca{sup 2+} and CaM, possibly via CaMKII, in a process that results in stimulation of Ca{sup 2+} pumping activity.

  4. When is protein binding important?

    Science.gov (United States)

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development. Copyright © 2013 Wiley Periodicals, Inc.

  5. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2009-02-01

    Full Text Available Salicylic acid (SA-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and MAMP treatments. Pseudomonas syringae growth is enhanced in cbp60g mutants. Expression profiles of a cbp60g mutant after MAMP treatment are similar to those of sid2 and pad4, suggesting a defect in SA signaling. Accordingly, cbp60g mutants accumulate less SA when treated with the MAMP flg22 or a P. syringae hrcC strain that activates MAMP signaling. MAMP-induced production of reactive oxygen species and callose deposition are unaffected in cbp60g mutants. CBP60g is a calmodulin-binding protein with a calmodulin-binding domain located near the N-terminus. Calmodulin binding is dependent on Ca(2+. Mutations in CBP60g that abolish calmodulin binding prevent complementation of the SA production and bacterial growth defects of cbp60g mutants, indicating that calmodulin binding is essential for the function of CBP60g in defense signaling. These studies show that CBP60g constitutes a Ca(2+ link between MAMP recognition and SA accumulation that is important for resistance to P. syringae.

  6. Characterization of the S100A1 protein binding site on TRPC6 C-terminus.

    Directory of Open Access Journals (Sweden)

    Jan Bily

    Full Text Available The transient receptor potential (TRP protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals. Calcium binding proteins such as Calmodulin or the family of S100A proteins are regulators of TRPC channels. Here we characterized the overlapping integrative binding site for S100A1 at the C-tail of TRPC6, which is also able to accomodate various ligands such as Calmodulin and phosphatidyl-inositol-(4,5-bisphosphate. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864 were determined by fluorescence anisotropy measurements for their participation in the calcium-dependent binding of S100A1 to the C terminus of TRPC6. The triple mutation Arg852/Lys859/Arg860 exhibited significant disruption of the binding of S100A1 to TRPC6. This indicates a unique involvement of these three basic residues in the integrative overlapping binding site for S100A1 on the C tail of TRPC6.

  7. Characterization of the S100A1 protein binding site on TRPC6 C-terminus.

    Science.gov (United States)

    Bily, Jan; Grycova, Lenka; Holendova, Blanka; Jirku, Michaela; Janouskova, Hana; Bousova, Kristyna; Teisinger, Jan

    2013-01-01

    The transient receptor potential (TRP) protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals. Calcium binding proteins such as Calmodulin or the family of S100A proteins are regulators of TRPC channels. Here we characterized the overlapping integrative binding site for S100A1 at the C-tail of TRPC6, which is also able to accomodate various ligands such as Calmodulin and phosphatidyl-inositol-(4,5)-bisphosphate. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864) were determined by fluorescence anisotropy measurements for their participation in the calcium-dependent binding of S100A1 to the C terminus of TRPC6. The triple mutation Arg852/Lys859/Arg860 exhibited significant disruption of the binding of S100A1 to TRPC6. This indicates a unique involvement of these three basic residues in the integrative overlapping binding site for S100A1 on the C tail of TRPC6.

  8. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  9. Ca(2+) -calmodulin interacts with DdCAD-1 and promotes DdCAD-1 transport by contractile vacuoles in Dictyostelium cells.

    Science.gov (United States)

    Sriskanthadevan, Shrivani; Brar, Simuran K; Manoharan, Kumararaaj; Siu, Chi-Hung

    2013-04-01

    The Ca(2+) -dependent cell-cell adhesion molecule DdCAD-1, encoded by the cadA gene of Dictyostelium discoideum, is synthesized at the onset of development as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Calmodulin associates with contractile vacuoles in a Ca(2+) -dependent manner, and co-localizes with DdCAD-1 on the surface of contractile vacuoles. Bioinformatics analysis revealed multiple calmodulin-binding motifs in DdCAD-1. Co-immunoprecipitation and pull-down studies showed that only Ca(2+) -bound calmodulin was able to bind DdCAD-1. Structural integrity of DdCAD-1, but not the native conformation, was required for its interaction with calmodulin. To investigate the role of calmodulin in the import of DdCAD-1 into contractile vacuoles, an in vitro import assay consisting of contractile vacuoles derived from cadA(-) cells and recombinant proteins was employed. Prior stripping of the bound calmodulin from contractile vacuoles by EGTA impaired import of DdCAD-1, which was restored by addition of exogenous calmodulin. The calmodulin antagonists W-7 and compound 48/80 blocked the binding of calmodulin onto stripped contractile vacuoles, and inhibited the import of DdCAD-1. Together, the data show that calmodulin forms a complex with DdCAD-1 and promotes the docking and import of DdCAD-1 into contractile vacuoles. CaM physically interacts with DdCAD-1 by pull down (View Interaction: 1, 2) DdCAD-1 binds to CaM by far western blotting (View interaction) DdCAD-1 physically interacts with CaM by anti bait coimmunoprecipitation (View interaction). © 2013 The Authors Journal compilation © 2013 FEBS.

  10. Phosphorylation and activation of nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) by Ca{sup 2+}/calmodulin-dependent protein kinase I (CaMKI)

    Energy Technology Data Exchange (ETDEWEB)

    Onouchi, Takashi [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795 (Japan); Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795 (Japan); Ishida, Atsuhiko [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CaMKP-N/PPM1E underwent proteolytic processing and translocated to cytosol. Black-Right-Pointing-Pointer The proteolysis was effectively inhibited by the proteasome inhibitors. Black-Right-Pointing-Pointer Ser-480 of zebrafish CaMKP-N was phosphorylated by cytosolic CaMKI. Black-Right-Pointing-Pointer Phosphorylation-mimic mutants of CaMKP-N showed enhanced activity. Black-Right-Pointing-Pointer These results suggest that CaMKP-N is regulated by CaMKI. -- Abstract: Nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca{sup 2+}/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.

  11. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism

    Science.gov (United States)

    Nakayama, S.; Kretsinger, R. H.

    1993-01-01

    In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.

  12. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  13. Polymeric competitive protein binding adsorbents for radioassay

    International Nuclear Information System (INIS)

    Adams, R.J.

    1976-01-01

    Serum protein comprising specific binding proteins such as antibodies, B 12 intrinsic factor, thyroxin binding globulin and the like may be copolymerized with globulin constituents of serum by the action of ethylchloroformate to form readily packed insoluble precipitates which, following purification as by washing, are eminently suited for employment as competitive binding protein absorbents in radioassay procedures. 10 claims, no drawings

  14. Actin binding proteins and spermiogenesis

    Science.gov (United States)

    Mruk, Dolores D

    2011-01-01

    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also

  15. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...... diffract X-rays to at least 2.0 A resolution. A complete diffraction data set has been collected to 2.7 A resolution. The crystals of TN, obtained by the vapour-diffusion reverse salting-in method at 280 K, are rhombohedral, space group R3, with the hexagonal axes a = b = 89.1, c = 75.8 A, and diffract...

  16. An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels

    Directory of Open Access Journals (Sweden)

    Atsushi Inanobe

    2015-07-01

    Full Text Available Background/Aims: KCNQ channels transport K+ ions and participate in various cellular functions. The channels directly assemble with auxiliary proteins such as a ubiquitous Ca2+-sensor protein, calmodulin (CaM, to configure the physiological properties in a tissue-specific manner. Although many CaM-like Ca2+-sensor proteins have been identified in eukaryotes, how KCNQ channels selectively interact with CaM and how the homologues modulate the functionality of the channels remain unclear. Methods: We developed protocols to evaluate the interaction between the green fluorescent protein-tagged C-terminus of KCNQ1 (KCNQ1cL and Ca2+-sensors by detecting its fluorescence in size exclusion chromatography and electrophoresed gels. The effects of Ca2+-sensor proteins on KCNQ1 activity was measured by two electrode voltage clamp technique of Xenopus oocytes. Results: When co-expressed CaM and KCNQ1cL, they assemble in a 4:4 stoichiometry, forming a hetero-octamer. Among nine CaM homologues tested, Calml3 was found to form a hetero-octamer with KCNQ1cL and to associate with the full-length KCNQ1 in a competitive manner with CaM. When co-expressed in oocytes, Calml3 rendered KCNQ1 channels resistant to the voltage-dependent depletion of phosphatidylinositol 4,5-bisphosphate by voltage-sensitive phosphatase. Conclusion: Since Calml3 is closely related to CaM and is prominently expressed in epithelial cells, Calml3 may be a constituent of epithelial KCNQ1 channels and underscores the molecular diversity of endogenous KCNQ1 channels.

  17. An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels.

    Science.gov (United States)

    Inanobe, Atsushi; Tsuzuki, Chizuru; Kurachi, Yoshihisa

    2015-01-01

    KCNQ channels transport K+ ions and participate in various cellular functions. The channels directly assemble with auxiliary proteins such as a ubiquitous Ca2+- sensor protein, calmodulin (CaM), to configure the physiological properties in a tissue-specific manner. Although many CaM-like Ca2+-sensor proteins have been identified in eukaryotes, how KCNQ channels selectively interact with CaM and how the homologues modulate the functionality of the channels remain unclear. We developed protocols to evaluate the interaction between the green fluorescent protein-tagged C-terminus of KCNQ1 (KCNQ1cL) and Ca2+-sensors by detecting its fluorescence in size exclusion chromatography and electrophoresed gels. The effects of Ca2+-sensor proteins on KCNQ1 activity was measured by two electrode voltage clamp technique of Xenopus oocytes. When co-expressed CaM and KCNQ1cL, they assemble in a 4:4 stoichiometry, forming a hetero-octamer. Among nine CaM homologues tested, Calml3 was found to form a hetero-octamer with KCNQ1cL and to associate with the full-length KCNQ1 in a competitive manner with CaM. When co-expressed in oocytes, Calml3 rendered KCNQ1 channels resistant to the voltage-dependent depletion of phosphatidylinositol 4,5-bisphosphate by voltage-sensitive phosphatase. Since Calml3 is closely related to CaM and is prominently expressed in epithelial cells, Calml3 may be a constituent of epithelial KCNQ1 channels and underscores the molecular diversity of endogenous KCNQ1 channels. Copyright © 2015 S. Karger AG, Basel

  18. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity.

    Science.gov (United States)

    Astegno, Alessandra; Bonza, Maria Cristina; Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Luoni, Laura; Molesini, Barbara; Dominici, Paola

    2017-09-08

    Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca 2+ )-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca 2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca 2+ and Mg 2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca 2+ /Mg 2+ mixed binding sites and two low-affinity Ca 2+ -specific sites. Binding of Ca 2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca 2+ or Mg 2+ , stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca 2+ -ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca 2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca 2+ pumps. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Evolution and functional diversity of the Calcium Binding Proteins (CaBPs

    Directory of Open Access Journals (Sweden)

    Lee P Haynes

    2012-02-01

    Full Text Available The mammalian central nervous system (CNS exhibits a remarkable ability to process, store and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors are those related to the small EF-hand containing protein calmodulin (CaM. In order to maximise the usefulness of calcium as a signalling species and to permit the evolution and fine tuning of the mammalian CNS, families of related proteins have arisen that exhibit characteristic calcium binding properties and tissue-, cellular- and sub-cellular distribution profiles. The Calcium Binding Proteins (CaBPs represent one such family of vertebrate specific calmodulin like proteins that have emerged in recent years as important regulators of essential neuronal target proteins. Bioinformatic analyses indicate that the CaBPs consist of two subfamilies and that the ancestral members of these are CaBP1 and CaBP8. The CaBPs have distinct intracellular localisations based on different targeting mechanisms including a novel type-II transmembrane domain in CaBPs 7 and 8. Recent work has led to the identification of new target interactions and possible functions for the CaBPs suggesting that they have multiple physiological roles with relevance for the normal functioning of the CNS.

  20. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  1. Calmodulin Gates Aquaporin 0 Permeability through a Positively Charged Cytoplasmic Loop*

    OpenAIRE

    Fields, James B.; Németh-Cahalan, Karin L.; Freites, J. Alfredo; Vorontsova, Irene; Hall, James E.; Tobias, Douglas J.

    2016-01-01

    Aquaporin 0 (AQP0), the major intrinsic protein of the eye lens, plays a vital role in maintaining lens clarity by facilitating the transport of water across lens fiber cell membranes. AQP0 reduces its osmotic water permeability constant (Pf) in response to increases in the external calcium concentration, an effect that is mediated by an interaction with the calcium-binding messenger protein, calmodulin (CaM), and phosphorylation of the CaM-binding site abolishes calcium sensitivity. Despite ...

  2. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  3. Eukaryotic initiation factor 5A and Ca2+/calmodulin-dependent protein kinase 1D modulate trophoblast cell function.

    Science.gov (United States)

    Qin, Xiaoli; Liang, Yan; Guo, Yuna; Liu, Xiaorui; Zeng, Weihong; Wu, Fan; Lin, Yi; Zhang, Yan

    2018-03-13

    Trophoblast cells regulate embryo implantation and placental development. Eukaryotic initiation factor 5A (eIF5A) is an initiator of translation involved in cellular processes, such as migration, proliferation, and apoptosis. However, the function of eIF5A in trophoblast cells is unknown. We inhibited eIF5A and Ca 2+ /calmodulin-dependent protein kinase 1D (CAMK1D) expression in HTR8 cells using RNA interference. The effects of eIF5A and CAMK1D on HTR8 cells were investigated using real-time polymerase chain reaction, Western blotting, flow cytometry, cell transfection assays, cell migration assays, and terminal deoxynucleotidyl transferase dUTP nick-end labeling. eIF5A inhibition decreased CAMK1D expression, proliferation, migration, and invasion, but upregulated apoptosis, in HTR8 cells. Cross-talk between eIF5A and CAMK1D enhances proliferation, migration, and invasion, but inhibits apoptosis, in trophoblasts. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis.

    Science.gov (United States)

    Scholz, Sandra S; Reichelt, Michael; Vadassery, Jyothilakshmi; Mithöfer, Axel

    2015-01-01

    Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca(2+) concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca(2+) sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.

  5. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein a...

  6. Interaction between Salt-inducible Kinase 2 and Protein Phosphatase 2A Regulates the Activity of Calcium/Calmodulin-dependent Protein Kinase I and Protein Phosphatase Methylesterase-1*

    Science.gov (United States)

    Lee, Chia-Wei; Yang, Fu-Chia; Chang, Hsin-Yun; Chou, Hanyi; Tan, Bertrand Chin-Ming; Lee, Sheng-Chung

    2014-01-01

    Salt-inducible kinase 2 (SIK2) is the only AMP-activated kinase (AMPK) family member known to interact with protein phosphatase 2 (PP2A). However, the functional aspects of this complex are largely unknown. Here we report that the SIK2·PP2A complex preserves both kinase and phosphatase activities. In this capacity, SIK2 attenuates the association of the PP2A repressor, the protein phosphatase methylesterase-1 (PME-1), thus preserving the methylation status of the PP2A catalytic subunit. Furthermore, the SIK2·PP2A holoenzyme complex dephosphorylates and inactivates Ca2+/calmodulin-dependent protein kinase I (CaMKI), an upstream kinase for phosphorylating PME-1/Ser15. The functionally antagonistic SIK2·PP2A and CaMKI and PME-1 networks thus constitute a negative feedback loop that modulates the phosphatase activity of PP2A. Depletion of SIK2 led to disruption of the SIK2·PP2A complex, activation of CaMKI, and downstream effects, including phosphorylation of HDAC5/Ser259, sequestration of HDAC5 in the cytoplasm, and activation of myocyte-specific enhancer factor 2C (MEF2C)-mediated gene expression. These results suggest that the SIK2·PP2A complex functions in the regulation of MEF2C-dependent transcription. Furthermore, this study suggests that the tightly linked regulatory loop comprised of the SIK2·PP2A and CaMKI and PME-1 networks may function in fine-tuning cell proliferation and stress response. PMID:24841198

  7. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Science.gov (United States)

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  8. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  9. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  10. Curcumin Attenuates Opioid Tolerance and Dependence by Inhibiting Ca2+/Calmodulin-Dependent Protein Kinase II α Activity

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena

    2015-01-01

    Chronic use of opioid analgesics has been hindered by the development of opioid addiction and tolerance. We have reported that curcumin, a natural flavonoid from the rhizome of Curcuma longa, attenuated opioid tolerance, although the underlying mechanism remains unclear. In this study, we tested the hypothesis that curcumin may inhibit Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein kinase that has been previously proposed to be critical for opioid tolerance and dependence. In this study, we used state-of-the-art polymeric formulation technology to produce poly(lactic-co-glycolic acid) (PLGA)-curcumin nanoparticles (nanocurcumin) to overcome the drug’s poor solubility and bioavailability, which has made it extremely difficult for studying in vivo pharmacological actions of curcumin. We found that PLGA-curcumin nanoparticles reduced the dose requirement by 11- to 33-fold. Pretreatment with PLGA-curcumin (by mouth) prevented the development of opioid tolerance and dependence in a dose-dependent manner, with ED50 values of 3.9 and 3.2 mg/kg, respectively. PLGA-curcumin dose-dependently attenuated already-established opioid tolerance (ED50 = 12.6 mg/kg p.o.) and dependence (ED50 = 3.1 mg/kg p.o.). Curcumin or PLGA-curcumin did not produce antinociception by itself or affect morphine (1–10 mg/kg) antinociception. Moreover, we found that the behavioral effects of curcumin on opioid tolerance and dependence correlated with its inhibition of morphine-induced CaMKIIα activation in the brain. These results suggest that curcumin may attenuate opioid tolerance and dependence by suppressing CaMKIIα activity. PMID:25515789

  11. Expression of Beta Subunit 2 of Ca²+/Calmodulin-Dependent Protein Kinase I in the Developing Rat Retina.

    Science.gov (United States)

    Jusuf, Ahmad Aulia; Sakagami, Hiroyuki; Kikkawa, Satoshi; Terashima, Toshio

    2016-03-07

    Expression of beta 2 subunit of Ca²+/calmodulin-dependent protein kinase I (CaMKIβ2) of the rat retina during the developmental period and in the adulthood was studied immunohistochemically. The immunoreactivity of CaMKIβ2 was detected in the earliest development of the primordial retina at embryological day (E) 12. The inner neuroblastic layer from which the presumptive ganglion cells are generated showed the ubiquitous CaMKIβ2 immunoreactivity at E15 and persistently expressed at the same level until postnatal day (P) 0 when the inner neuroblastic layer divides into the ganglionic cell layer and the inner plexiform layer. The strong immunoreactivity was detected in the ganglion cell layer and the moderate one in the internal plexiform layer. CaMKIβ2 immunoreactivities were persistantly expressed throughout the postnatal development at the same level. The low level of intensity was first found in the inner nuclear layer at P7, followed by the outer plexiform, outer nuclear and rod-cone cell layers at the age of P12, respectively. The intensities of CaMKIβ2 immunoreactivities in the inner nuclear and rod-cone cell layers were gradually increased to the strong level by P18 and persisted until adulthood. The present study revealed that the expression of CaMKIβ2 in the retina was detected from the earliest development until adulthood, indicating that CaMKIβ2 may be required in both proliferation and differentiation of the retinal precursor cells and subsequent formation of the functional layers. In addition, CaMKIβ2 immunoreactivity in the rod-cone cell layer implies that this protein may be involved in the visual signaling process.

  12. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  13. CAP binding proteins associated with the nucleus.

    OpenAIRE

    Patzelt, E; Blaas, D; Kuechler, E

    1983-01-01

    Cap binding proteins of HeLa cells were identified by photo-affinity labelling using the cap analogue gamma-[32P]-[4-(benzoyl-phenyl)methylamido]-7-methylguanosine-5'- triphosphate. Photoreaction with whole cell homogenates resulted in specific labelling of five major polypeptides. The small molecular weight polypeptide appeared to be identical to the 24 000 to 26 000 dalton cap binding protein previously identified in initiation factors. A cap binding protein of 37 000 dalton was found in in...

  14. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  15. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+tolerance in Arabidopsis.

    Science.gov (United States)

    Fang, Huihui; Liu, Zhiqiang; Long, Yanping; Liang, Yali; Jin, Zhuping; Zhang, Liping; Liu, Danmei; Li, Hua; Zhai, Jixian; Pei, Yanxi

    2017-09-01

    Heavy metal (HM) contamination on agricultural land not only reduces crop yield but also causes human health concerns. As a plant gasotransmitter, hydrogen sulfide (H 2 S) can trigger various defense responses and help reduce accumulation of HMs in plants; however, little is known about the regulatory mechanisms of H 2 S signaling. Here, we provide evidence to answer the long-standing question about how H 2 S production is elevated in the defense of plants against HM stress. During the response of Arabidopsis to chromium (Cr 6+ ) stress, the transcription of L-cysteine desulfhydrase (LCD), the key enzyme for H 2 S production, was enhanced through a calcium (Ca 2+ )/calmodulin2 (CaM2)-mediated pathway. Biochemistry and molecular biology studies demonstrated that Ca 2+ /CaM2 physically interacts with the bZIP transcription factor TGA3, a member of the 'TGACG'-binding factor family, to enhance binding of TGA3 to the LCD promoter and increase LCD transcription, which then promotes the generation of H 2 S. Consistent with the roles of TGA3 and CaM2 in activating LCD expression, both cam2 and tga3 loss-of-function mutants have reduced LCD abundance and exhibit increased sensitivity to Cr 6+ stress. Accordingly, this study proposes a regulatory pathway for endogenous H 2 S generation, indicating that plants respond to Cr 6+ stress by adjusting the binding affinity of TGA3 to the LCD promoter, which increases LCD expression and promotes H 2 S production. This suggests that manipulation of the endogenous H 2 S level through genetic engineering could improve the tolerance of grains to HM stress and increase agricultural production on soil contaminated with HMs. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Calmodulin dependent protein kinase II activation by exercise regulates saturated & unsaturated fatty acids and improves some metabolic syndrome markers.

    Science.gov (United States)

    Mukwevho, Emmanuel; Joseph, Jitcy S

    2014-08-28

    Activation of Calmodulin dependent protein kinase (CaMK)-II by exercise has a plethora of benefits in health. Fatty acids play a pivotal role in the pathogenesis of metabolic syndrome (MetS). Prevention of MetS and treatment of its main characteristics are very significant to fight against type 2 diabetes. CaMKII activation in the regulation of saturated and unsaturated fatty acids in relation to type 2 diabetes and MetS has not been studied, which became the focus of this present study. Using Gas chromatography-Mass spectrometry, we investigated saturated fatty acids and unsaturated fatty acids. Quantitative real time PCR was also used to assess the gene expression. Results indicate that both palmitoleic acid and oleic acid which are monounsaturated fatty acids were increased in response to CaMKII activation. On the other hand, myristic acid and palmitic acid which are saturated fatty acids known to increase the risk factors of MetS and type 2 diabetes were decreased by exercise induction of CaMKII. Conversely, lauric acid also a saturated fatty acid was increased in response to CaMKII activation by exercise. This fatty acid is known to have beneficial effects in alleviating symptoms of both type 2 diabetes and MetS. According to our knowledge, this is the first study to show that CaMKII activation by exercise regulates fatty acids essential in type 2 diabetes and MetS. CaMKII can be an avenue of designing novel therapeutic drugs in the management and treatment of type 2 diabetes and MetS. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    Science.gov (United States)

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  18. The Calponin Regulatory Region Is Intrinsically Unstructured: Novel Insight into Actin-Calponin and Calmodulin-Calponin Interfaces Using NMR Spectroscopy

    Science.gov (United States)

    Pfuhl, Mark; Al-Sarayreh, Sameeh; El-Mezgueldi, Mohammed

    2011-01-01

    Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that the recombinant calponin fragment 131–228 contained actin and calmodulin recognition sites but failed to precisely identify the actin-binding determinants. In this study, we used NMR spectroscopy to investigate the structure of this functionally important region of calponin and map its interaction with actin and calmodulin at amino-acid resolution. Our data indicates that the free calponin peptide is largely unstructured in solution, although four short amino-acid stretches corresponding to residues 140–146, 159–165, 189–195, and 199–205 display the propensity to form α-helices. The presence of four sequential transient helices probably provides the conformational malleability needed for the promiscuous nature of this region of calponin. We identified all amino acids involved in actin binding and demonstrated for the first time, to our knowledge, that the N-terminal flanking region of Lys137-Tyr144 is an integral part of the actin-binding site. We have also delineated the second actin-binding site to amino acids Thr180-Asp190. Ca2+-calmodulin binding extends beyond the previously identified minimal sequence of 153–163 and includes most amino acids within the stretch 143–165. In addition, we found that calmodulin induces chemical shift perturbations of amino acids 188–190 demonstrating for the first time, to our knowledge, an effect of Ca2+-calmodulin on this region. The spatial relationship of the actin and calmodulin contacts as well as the transient α-helical structures within the regulatory region of calponin provides a structural framework for understanding the Ca2+-dependent regulation of the actin-calponin interaction by calmodulin. PMID:21463585

  19. 1H, 13C and 15N resonance assignments of the Calmodulin-Munc13-1 peptide complex

    OpenAIRE

    Rodr?guez-Casta?eda, Fernando; Coudevylle, Nicolas; Becker, Stefan; Brose, Nils; Carlomagno, Teresa; Griesinger, Christian

    2009-01-01

    Ca2+-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca2+-Calmodulin/Munc13-1458?492 peptide complex at pH 6.8 and 35?C (BMRB No. 15470). Electronic supplementary material The online version of this article (doi:10.1007/s12104-009-9204-2) contains supplementar...

  20. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    Science.gov (United States)

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  1. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  2. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses.

    Science.gov (United States)

    Yue, Runqing; Lu, Caixia; Sun, Tao; Peng, Tingting; Han, Xiaohua; Qi, Jianshuang; Yan, Shufeng; Tie, Shuanggui

    2015-01-01

    The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the -1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca(2+) signaling in maize tolerance to environmental stresses.

  3. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L. under abiotic and biotic stresses

    Directory of Open Access Journals (Sweden)

    Runqing eYue

    2015-07-01

    Full Text Available The calmodulin-binding transcription activators (CAMTA play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L. is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the −1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt and cold, various stress-related hormones ( abscisic acid, auxin, salicylic acid and jasmonic acid and biotic stress (rice black-streaked dwarf virus (RBSDV infection. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca2+ signaling in maize tolerance to environmental stresses.

  4. Are many Z-DNA binding proteins actually phospholipid-binding proteins?

    OpenAIRE

    Krishna, P; Kennedy, B P; Waisman, D M; van de Sande, J H; McGhee, J D

    1990-01-01

    We used a Z-DNA affinity column to isolate a collection of Z-DNA binding proteins from a high salt extract of Escherichia coli. We identified one of the major Z-DNA binding proteins of this fraction, not as a protein involved in gene regulation or genetic recombination, but rather as an outer membrane porin protein. We then showed that several other known phospholipid-binding proteins (bovine lung annexins and human serum lipoproteins) also bind much more tightly to Z-DNA than to B-DNA. In al...

  5. Fatty Acid Binding Proteins in Prostate Cancer

    National Research Council Canada - National Science Library

    Jett, Marti

    2000-01-01

    We have shown that there is a distinct pattern of fatty acid binding protein (FAEP) expression in prostate cancer vs normal cells and that finding has be confirmed in patient samples of biopsy specimens...

  6. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    and phosphatases, specific sets of ubiquitinating/deubiquitinating enzymes control the degree of ubiquitination. A large number of ubiquitin-binding proteins act at different steps in the downstream pathways, followed by the ubiquitinated protein. Different families of ubiquitin-binding proteins have been...... described. UBA (ubiquitin-associated) domain-containing proteins is the largest family and includes members involved in different cell processes. The smaller groups of UIM (ubiquitin-interacting motif), GAT [GGA (Golgi-associated gamma-adaptin homologous) and Tom1 (target of Myb 1)], CUE (coupling...

  7. Telomere-binding proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Zentgraf, U

    1995-02-01

    The nucleoprotein structure of Arabidopsis thaliana telomeres was investigated. A protein specifically binding to telomeric sequences was characterized by gel mobility shift assays with synthetic oligonucleotides consisting of four 7 bp telomeric repeats of Arabidopsis (TTTAGGG) and crude nuclear protein extracts of Arabidopsis leaves. These DNA-protein binding studies revealed that the binding affinity of this telomere-binding protein to the G-rich single-strand as well as to the double-stranded telomeric DNA is much higher than to the C-rich single-strand. The molecular mass of the protein was identified by SDS-PAGE to be 67 kDa. The isoelectric points were determined to be 5.0, 4.85 and 4.7, respectively, indicating that either one protein with different modifications or three slightly different proteins have been isolated. An RNA component, possibly serving as a template for reverse transcription of a plant telomerase, does not mediate the DNA-protein contact because the DNA-protein interactions were not RNAse-sensitive.

  8. Secreted calmodulin-like skin protein inhibits neuronal death in cell-based Alzheimer's disease models via the heterotrimeric Humanin receptor.

    Science.gov (United States)

    Hashimoto, Y; Nawa, M; Kurita, M; Tokizawa, M; Iwamatsu, A; Matsuoka, M

    2013-03-21

    Humanin is a secreted bioactive peptide that is protective in a variety of death models, including cell-based neuronal death models related to Alzheimer's disease (AD). To mediate the protective effect in AD-related death models, Humanin signals via a cell-surface receptor that is generally composed of three subunits: ciliary neurotrophic factor receptor α, WSX-1 and gp130 (heterotrimeric Humanin receptor; htHNR). However, the protective effect of Humanin via the htHNR is weak (EC50=1-10 μM); therefore, it is possible that another physiological agonist for this receptor exists in vivo. In the current study, calmodulin-like skin protein (CLSP), a calmodulin relative with an undefined function, was shown to be secreted and inhibit neuronal death via the htHNR with an EC50 of 10-100 pM. CLSP was highly expressed in the skin, and the concentration in circulating normal human blood was ~5 nM. When administered intraperitoneally in mice, recombinant CLSP was transported across the blood-cerebrospinal fluid (CSF)-barrier and its concentration in the CSF reaches 1/100 of its serum concentration at 1 h after injection. These findings suggest that CLSP is a physiological htHNR agonist.

  9. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda

    2011-01-01

    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  10. Computational search for aflatoxin binding proteins

    Science.gov (United States)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  11. Dendritic spine changes in the development of alcohol addiction regulated by α-calcium/calmodulin-dependent protein kinase II

    Directory of Open Access Journals (Sweden)

    Zofia Mijakowska

    2014-03-01

    Full Text Available Introduction Alcohol has many adverse effects on the brain. Among them are dendritic spine morphology alterations, which are believed to be the basis of alcohol addiction. Autophosphorylation of α-calcium/calmodulin-dependent protein kinase II (αCaMKII has been shown to regulate spine morphology in vitro. Here we show that αCaMKII can also regulate addiction related behaviour and dendritic spine morphology changes caused by alcohol consumption in vivo. Method 12 αCaMKII-autophosphorylation deficient female mice (T286A and 12 wild type littermates were used in the study. T286A strain was created by Giese et al. (1998. Mice were housed and tested in two IntelliCages from NewBehavior (www.newbehavior.com. IntelliCage is an automated learning system. After 95 days of alcohol drinking interrupted by tests for motivation, persistence in alcohol seeking and probability of relapse, mice were ascribed to ‘high’ or ‘low’ drinkers group according to their performance in the tests. Additional criterion was the amount of alcohol consumed during the whole experiment. Result of each test was evaluated separately. 1/3 of the mice that scored highest in each criterion were considered ‘positive’ for this trait. ‘Positive’ animals were given 1 point, negative 0 points. Mice that were positive in at least 2 criteria were ascribed to ‘high’ drinkers (‘+’ group. Remaining mice – to ‘low’ drinkers (‘–‘. This method of behavioral phenotyping, developed by Radwanska and Kaczmarek (2012, is inspired by DSM-IV. Since the results of this evaluation are discrete (i.e. by definition all the animals score between 0 to +4, we developed also a continuous method of addiction rating, which we call ‘addiction index’. The result of the second method is a sum of the standardized (z-score results of the above mentioned tests. We use it to examine the correlations between addiction-like behavior and spine parameters. Control group (12 WT, 8

  12. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  13. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2Areceptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    Science.gov (United States)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  16. Regulation of brain adenylate cyclase by calmodulin

    International Nuclear Information System (INIS)

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca 2+ -binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-[ 125 I]-CaM-diazopyruvamide ( 125 I-CAM-DAP) behaved like native CaM with respect to Ca 2+ -enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca 2+ -dependent stimulation of adenylate cyclase. 125 I-CaM-DAP cross-linked to CaM-binding proteins in a Ca 2+ -dependent, concentration-dependent, and CaM-specific manner. Photolysis of 125 I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000

  17. Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself.

    Science.gov (United States)

    Gachhui, R; Presta, A; Bentley, D F; Abu-Soud, H M; McArthur, R; Brudvig, G; Ghosh, D K; Stuehr, D J

    1996-08-23

    Rat neuronal NO synthase (nNOS) is comprised of a flavin-containing reductase domain and a heme-containing oxygenase domain. Calmodulin binding to nNOS increases the rate of electron transfer from NADPH into its flavins, triggers electron transfer from flavins to the heme, activates NO synthesis, and increases reduction of artificial electron acceptors such as cytochrome c. To investigate what role the reductase domain plays in calmodulin's activation of these functions, we overexpressed a form of the nNOS reductase domain (amino acids 724-1429) in the yeast Pichia pastoris that for the first time exhibits a complete calmodulin response. The reductase domain was purified by 2',5'-ADP affinity chromatography yielding 25 mg of pure protein per liter of culture. It contained 1 FAD and 0.8 FMN per molecule. Most of the protein as isolated contained an air-stable flavin semiquinone radical that was sensitive to FeCN6 oxidation. Anaerobic titration of the FeCN6-oxidized reductase domain with NADPH indicated the flavin semiquinone re-formed after addition of 1-electron equivalent and the flavins could accept up to 3 electrons from NADPH. Calmodulin binding to the recombinant reductase protein increased its rate of NADPH-dependent flavin reduction and its rate of electron transfer to cytochrome c, FeCN6, or dichlorophenolindophenol to fully match the rate increases achieved when calmodulin bound to native full-length nNOS. Calmodulin's activation of the reductase protein was associated with an increase in domain tryptophan and flavin fluorescence. We conclude that many of calmodulin's actions on native nNOS can be fully accounted for through its interaction with the nNOS reductase domain itself.

  18. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways.

    Science.gov (United States)

    Luo, Zhirong; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; Qu, Tiejun; He, Wen-xi

    2014-07-01

    Biodentine (Septodont, Saint-Maur-des-Fossès, France), a new tricalcium silicate cement formulation, has been introduced as a bioactive dentine substitute to be used in direct contact with pulp tissue. The aim of this study was to investigate the response of human dental pulp stem cells (hDPSCs) to the material and whether mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and calcium-/calmodulin-dependent protein kinase II (CaMKII) signal pathways played a regulatory role in Biodentine-induced odontoblast differentiation. hDPCs obtained from impacted third molars were incubated with Biodentine. Odontoblastic differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time reverse-transcriptase polymerase chain reaction for the analysis of messenger RNA expression of the following differentiation gene markers: osteocalcin (OCN), dentin sialophosprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). Cell cultures in the presence of Biodentine were exposed to specific inhibitors of MAPK (U0126, SB203580, and SP600125), NF-κB (pyrrolidine dithiocarbamate), and CaMKII (KN-93) pathways to evaluate the regulatory effect on the expression of these markers and mineralization assay. Biodentine significantly increased alkaline phosphatase activity and mineralized nodule formation and the expression of OCN, DSPP, DMP1, and BSP. The MAPK inhibitor for extracellular signal-regulated kinase 1/2 (U0126) and Jun N-terminal kinase (SP600125) significantly decreased the Biodentine-induced mineralized differentiation of hDPSCs and OCN, DSPP, DMP1, and BSP messenger RNA expression, whereas p38 MAPK inhibitors (SB203580) had no effect. The CaMKII inhibitor KN-93 significantly attenuated and the NF-κB inhibitor pyrrolidine dithiocarbamate further enhanced the up-regulation of Biodentine-induced gene expression and mineralization. Biodentine is a bioactive and biocompatible material capable

  19. AUXIN BINDING PROTEIN1: the outsider.

    Science.gov (United States)

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-06-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence.

  20. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article d...

  1. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+channels that initiates long-range signaling to the nucleus.

    Science.gov (United States)

    Wang, Xiaohan; Marks, Christian R; Perfitt, Tyler L; Nakagawa, Terunaga; Lee, Amy; Jacobson, David A; Colbran, Roger J

    2017-10-20

    Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca 2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca 2+ -sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of Ca V 1 LTCC α1 subunits that is not conserved in Ca V 2 or Ca V 3 voltage-gated Ca 2+ channel subunits. Mutations in the Ca V 1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Complementarity of structure ensembles in protein-protein binding.

    Science.gov (United States)

    Grünberg, Raik; Leckner, Johan; Nilges, Michael

    2004-12-01

    Protein-protein association is often accompanied by changes in receptor and ligand structure. This interplay between protein flexibility and protein-protein recognition is currently the largest obstacle both to our understanding of and to the reliable prediction of protein complexes. We performed two sets of molecular dynamics simulations for the unbound receptor and ligand structures of 17 protein complexes and applied shape-driven rigid body docking to all combinations of representative snapshots. The crossdocking of structure ensembles increased the likelihood of finding near-native solutions. The free ensembles appeared to contain multiple complementary conformations. These were in general not related to the bound structure. We suggest that protein-protein binding follows a three-step mechanism of diffusion, free conformer selection, and refolding. This model combines previously conflicting ideas and is in better agreement with the current data on interaction forces, time scales, and kinetics.

  3. Protein Binding Capacity of Different Forages Tannin

    Science.gov (United States)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (Ptannin (HT) level (Ptannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (Ptannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  4. End binding proteins are obligatory dimers.

    Directory of Open Access Journals (Sweden)

    Indrani Sen

    Full Text Available End binding (EB proteins are responsible for the recruitment of an array of microtubule plus-end tracking proteins (+TIPs to growing microtubules ends. EBs encompass an N-terminal calponin homology domain that confers microtubule tip tracking activity to the protein. The C-terminal domain of EBs contains a coiled coil that mediates the parallel dimerization of EB monomers. This part of the protein is also responsible for partner binding. While dimerization is not essential for microtubule tip tracking by EBs it is a prerequisite for +TIP partner binding. The concentration of EBs in cells has been estimated to be in the range of hundreds of nanomoles. In contrast, in in vitro single molecule experiments EB concentrations of subnanomoles are employed. From a mechanistic point of view it is important to assess the oligomerization state of EBs at physiologically and experimentally relevant protein concentrations, in particular if the goal of a study is to model the behavior of EB-dependent dynamic +TIP networks. Here we have determined the stability of the EB1 and EB3 dimers using multi-angle light scattering and fluorescence analytical ultracentrifugation. We show that these EBs form stable dimers and do not dissociate even at very low nanomolar concentrations. The dimers remained stable at both room temperature as well as at the physiologically relevant temperature of 37°C. Together, our results reveal that EBs are obligatory dimers, a conclusion that has implications for the mechanistic understanding of these key proteins involved in the orchestration of dynamic protein networks at growing microtubule ends.

  5. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  6. Proteomic Analysis of Calcium- and Phosphorylation-dependentCalmodulin Complexes in Mammalian Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Deok-Jin; Wang, Daojing

    2006-05-26

    Protein conformational changes due to cofactor binding (e.g. metal ions, heme) and/or posttranslational modifications (e.g. phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium (Ca{sup 2+}) signaling and homeostasis. No systematic approach on the identification of phosphorylation-dependent Ca{sup 2+}/CaM binding proteins has been published. Herein, we report a proteome-wide study of phosphorylation-dependent CaM binding proteins from mammalian cells. This method, termed 'Dynamic Phosphoprotein Complex Trapping', 'DPPC Trapping' for short, utilizes a combination of in vivo and in vitro assays. The basic strategy is to drastically shift the equilibrium towards endogenous phosphorylation of Ser, Thr, and Tyr at the global scale by inhibiting corresponding phosphatases in vivo. The phosphorylation-dependent calmodulin-binding proteins are then trapped in vitro in a Ca{sup 2+}-dependent manner by CaM-Sepharose chromatography. Finally, the isolated calmodulin-binding proteins are separated by SDS-PAGE and identified by LC/MS/MS. In parallel, the phosphorylation-dependent binding is visualized by silver staining and/or Western blotting. Using this method, we selectively identified over 120 CaM-associated proteins including many previously uncharacterized. We verified ubiquitin-protein ligase EDD1, inositol 1, 4, 5-triphosphate receptor type 1 (IP{sub 3}R1), and ATP-dependent RNA helicase DEAD box protein 3 (DDX3), as phosphorylation-dependent CaM binding proteins. To demonstrate the utilities of our method in understanding biological pathways, we showed that pSer/Thr of IP{sub 3}R1 in vivo by staurosporine-sensitive kinase(s), but not by PKA/PKG/PKC, significantly reduced the affinity of its Ca{sup 2+}-dependent CaM binding. However, pSer/Thr of IP{sub 3}R1 did not substantially affect its Ca{sup 2+}-independent CaM binding. We further showed that phosphatase PP1, but not PP2A or PP2B

  7. Structure of Ca2+-binding protein-6 from Entamoeba histolytica and its involvement in trophozoite proliferation regulation.

    Directory of Open Access Journals (Sweden)

    Deepshikha Verma

    2017-05-01

    Full Text Available Cell cycle of Entamoeba histolytica, the etiological agent of amoebiasis, follows a novel pathway, which includes nuclear division without the nuclear membrane disassembly. We report a nuclear localized Ca2+-binding protein from E. histolytica (abbreviated hereafter as EhCaBP6, which is associated with microtubules. We determined the 3D solution NMR structure of EhCaBP6, and identified one unusual, one canonical and two non-canonical cryptic EF-hand motifs. The cryptic EF-II and EF-IV pair with the Ca2+-binding EF-I and EF-III, respectively, to form a two-domain structure similar to Calmodulin and Centrin proteins. Downregulation of EhCaBP6 affects cell proliferation by causing delays in transition from G1 to S phase, and inhibition of DNA synthesis and cytokinesis. We also demonstrate that EhCaBP6 modulates microtubule dynamics by increasing the rate of tubulin polymerization. Our results, including structural inferences, suggest that EhCaBP6 is an unusual CaBP involved in regulating cell proliferation in E. histolytica similar to nuclear Calmodulin.

  8. Ca2+/Calmodulin-dependent Protein Kinase IIα (αCaMKII) Controls the Activity of the Dopamine Transporter

    Science.gov (United States)

    Steinkellner, Thomas; Yang, Jae-Won; Montgomery, Therese R.; Chen, Wei-Qiang; Winkler, Marie-Therese; Sucic, Sonja; Lubec, Gert; Freissmuth, Michael; Elgersma, Ype; Sitte, Harald H.; Kudlacek, Oliver

    2012-01-01

    The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP+) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKIIT305D), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP+ efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome. PMID:22778257

  9. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells.

    Directory of Open Access Journals (Sweden)

    Cong Haolong

    Full Text Available Enterovirus 71 (EV71 is one of the main causative agents of foot, hand and mouth disease. Its infection usually causes severe central nervous system diseases and complications in infected infants and young children. In the present study, we demonstrated that EV71 infection caused the rearrangement of vimentin in human astrocytoma cells. The rearranged vimentin, together with various EV71 components, formed aggresomes-like structures in the perinuclear region. Electron microscopy and viral RNA labeling indicated that the aggresomes were virus replication sites since most of the EV71 particles and the newly synthesized viral RNA were concentrated here. Further analysis revealed that the vimentin in the virus factories was serine-82 phosphorylated. More importantly, EV71 VP1 protein is responsible for the activation of calmodulin-dependent protein kinase II (CaMK-II which phosphorylated the N-terminal domain of vimentin on serine 82. Phosphorylation of vimentin and the formation of aggresomes were required for the replication of EV71 since the latter was decreased markedly after phosphorylation was blocked by KN93, a CaMK-II inhibitor. Thus, as one of the consequences of CaMK-II activation, vimentin phosphorylation and rearrangement may support virus replication by playing a structural role for the formation of the replication factories. Collectively, this study identified the replication centers of EV71 in human astrocyte cells. This may help us understand the replication mechanism and pathogenesis of EV71 in human.

  10. Binding of radionuclides to proteins in fish

    International Nuclear Information System (INIS)

    Suzuki, Yuzuru

    1981-01-01

    Radioisotope tracer experiments on binding of radionuclides to proteins in fish were carried out in order to gain further information on biochemical behavior of radionuclides in marine fish. The radionuclides, which were bound to proteins in fish through sea water and food, were extracted with a Trisacetate buffer solution and separated by gel filtration on Sephadex G-75. Most of 137 Cs in the fish liver were bound only to a peptide with a molecular weight of 1,100 - 1,300. The most remarkable feature of 60 Co in the profiles of the gel filtration was the presence of two clear radioactivity pearks and the radioactivity appeared to transfer from a low molecular weight protein to a high molecular weight protein in the case of the uptake, and the reverse phenomenon was observed in the case of the excretion. Therefore, this suggested that these proteins had each inherent turnover rate for 60 Co. The profiles of the gel filtration of 65 Zn varied widely among species of fish, tissues or organs even in the same fish and pathways of the uptake. 125 I was bound to a relatively low molecular weight substance in cultured eel, however, the binding of 125 I to a protein with higher molecular weight was observed in the eel head including thyroid gland marked through food, and this protein was estimated to be thyroglobulin with molecular weight of 670,000. Although 95 Nb, 144 Ce- 144 Pr and 106 Ru- 106 Rh probably have no biological function in fish, it was apparently found to be organically bound in tissues or organs of the marine fish. (author)

  11. Maximizing binding capacity for protein A chromatography.

    Science.gov (United States)

    Ghose, Sanchayita; Zhang, Jennifer; Conley, Lynn; Caple, Ryan; Williams, Kevin P; Cecchini, Douglas

    2014-01-01

    Advances in cell culture expression levels in the last two decades have resulted in monoclonal antibody titers of ≥10 g/L to be purified downstream. A high capacity capture step is crucial to prevent purification from being the bottleneck in the manufacturing process. Despite its high cost and other disadvantages, Protein A chromatography still remains the optimal choice for antibody capture due to the excellent selectivity provided by this step. A dual flow loading strategy was used in conjunction with a new generation high capacity Protein A resin to maximize binding capacity without significantly increasing processing time. Optimum conditions were established using a simple empirical Design of Experiment (DOE) based model and verified with a wide panel of antibodies. Dynamic binding capacities of >65 g/L could be achieved under these new conditions, significantly higher by more than one and half times the values that have been typically achieved with Protein A in the past. Furthermore, comparable process performance and product quality was demonstrated for the Protein A step at the increased loading. © 2014 American Institute of Chemical Engineers.

  12. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  13. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase

    DEFF Research Database (Denmark)

    Fischer, R; Julsgart, J; Berchtold, M W

    1998-01-01

    In this study we report that phosphatidylinositol 3-kinase (PI 3-kinase), a lipid kinase which participates in downstream signalling events of heterotrimeric G protein-coupled receptors and receptor tyrosine kinases, contains a high affinity binding site for calmodulin (CaM). The putative Ca......M. Furthermore, a sequence comparison among different PI 3-kinase isoforms revealed that the sequence which can bind CaM is highly conserved within different PI 3-kinase isoforms. These results indicate a novel mechanism for regulating PI 3-kinase and provide a new direct link between Ca2+ and phospholipid...

  14. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    Science.gov (United States)

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.

  15. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...... nmol l-1 and 16 nmol l-1. The binding protein has a Stokes radius of 2.49 nm when saturated with cobalamin and 2.61 nm when unsaturated. It binds cobalamin over a broad range of pH and is able to bind cobinamide also. With immunohistochemistry, we find haptocorrin immunoreactivity in the mammary glands...

  16. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures.

    Directory of Open Access Journals (Sweden)

    Qing Lu

    Full Text Available We have recently shown that p38MAP kinase (p38MAPK stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.

  17. Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Michael D. Brooks

    2013-01-01

    Full Text Available Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3 could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.

  18. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  19. Molecular characterization of calmodulin from Sarcoptes scabiei.

    Science.gov (United States)

    He, Ran; Shen, Nengxing; Lin, Hai; Gu, Xiaobin; Lai, Weimin; Peng, Xuerong; Yang, Guangyou

    2017-04-01

    Scabies, caused by the mite Sarcoptes scabiei, is a highly contagious parasitic disease that affects millions of people and other mammals worldwide. Calmodulin (CaM) is an important calcium sensor that participates in various critical physiological processes. In this study, the CaM of Sarcoptes scabiei (SsCaM) was cloned and expressed, and sequence analyses were performed using bioinformatics tools. Recombinant SsCaM (rSsCaM) was used to detect antigenicity using immunoblotting assays, and the serodiagnostic potential of rSsCaM was assessed by indirect enzyme-linked immuno-sorbent assay (ELISA). The calcium binding properties and 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescence of rSsCaM were also measured. The results indicated that SsCaM contains a 450-bp open reading frame that encodes for a polypeptide with 149 amino acids, and SsCaM was expressed as a soluble protein. Multiple sequence alignment and phylogenetic analyses indicated similarity and genetic distance between SsCaM and other species. The calcium binding properties and ANS fluorescence of rSsCaM indicated typical calcium binding characteristics. Immunolocalizaton assay showed that SsCaM was widespread in S. scabiei. SsCaM-based ELISA exhibited a sensitivity of 87.5% (28/32) and a specificity of 22.5% (9/40) for detecting anti-CaM antibodies in the sera of naturally infected rabbits. The findings of this study provide a comprehensive molecular characterization of SsCaM and suggest that rSsCaM is inappropriate for detecting S. scabiei. The results may also contribute to future studies on the molecular characteristics of the CaM of parasites. Copyright © 2016. Published by Elsevier B.V.

  20. What Happened to the IGF Binding Proteins?

    Science.gov (United States)

    Bach, Leon A

    2018-02-01

    Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential. Copyright © 2018 Endocrine Society.

  1. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  2. Ice-Binding Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Melissa Bredow

    2017-12-01

    Full Text Available Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs, that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.

  3. Apolipoprotein B is a calcium binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, N.; Lee, D.M.; Mok, T.

    1986-05-29

    Human hepatocarcinoma Hep G2 cells were grown in culture medium containing (/sup 45/Ca/sup 2 +/). The secreted lipoproteins of d < 1.063 g/ml and d 1.063-1.21 g/ml were isolated from the culture media and analyzed by 3.3% and 7% SDS-polyacrylamide gel electrophoresis. Radioactivity profiles of (/sup 45/Ca) from the gels showed that the peak of radioactivity corresponded to the apolipoprotein B band. The molar ratio of the incorporated (/sup 45/Ca/sup 2 +/) and apolipoprotein B was close to unity. No radioactivity was found associated with any other secreted apolipoproteins. To confirm these findings, apolipoprotein B-containing lipoproteins were precipitated with anti-apolipoprotein B and high density lipoproteins were precipitated with anti-apolipoprotein A-I. Only the former precipitate was radioactive. These results suggest that apolipoprotein B is a calcium binding protein.

  4. Oxidized CaMKII (Ca2+/Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Wang, Qiongling; Quick, Ann P; Cao, Shuyi; Reynolds, Julia; Chiang, David Y; Beavers, David; Li, Na; Wang, Guoliang; Rodney, George G; Anderson, Mark E; Wehrens, Xander H T

    2018-04-01

    Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca 2+ ) homeostasis and elevated reactive oxygen species. CaMKII (Ca 2+ /calmodulin-dependent protein kinase II) is vital for normal Ca 2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca 2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca 2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx :MM-VV mice revealed normalization of intracellular Ca 2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca 2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca 2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy. © 2018 American Heart Association, Inc.

  5. Helical propensity in an intrinsically disordered protein accelerates ligand binding

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Dogan, Jakob; Jemth, Per

    2014-01-01

    domain of the activator for thyroid hormone and retinoid receptors (ACTR) is intrinsically disordered and folds upon binding to the nuclear coactivator binding domain (NCBD) of the CREB binding protein. A number of mutants was designed that selectively perturbs the amount of secondary structure......Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activation...... the notion of preformed secondary structure as an important determinant for molecular recognition in intrinsically disordered proteins....

  6. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  7. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  8. In vitro binding of germanium to proteins of rice shoots

    International Nuclear Information System (INIS)

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  9. Development of radioimmunoassay for prolactin binding protein

    International Nuclear Information System (INIS)

    Raikar, R.S.; Sheth, A.R.

    1982-01-01

    Using a homogenous prolactin binding protein (PBP) preparations from rat seminal vesicle secretion, a sensitive and specific radioimmunoassay (RIA) for PBP has been developed. The assay was highly specific and showed no cross-reaction with other protein hormones from various species. The antiserum had an affinity constant (Ka) of 2.66 x 10 10 M -1 . The assay sensitivity was in the range of 0.5-1.0 ng of pure PBP per assay tube and the intra- and inter-assay coefficients of variations were 6-8% and 12-14.5% respectively. The overall recovery of PBP to the rat seminal vesicle secretion was 96.8%. Using this RIA, PBP levels in various biological fluids and reproductive tissues were measured. Azoospermic human semen contained significantly higher levels of PBP than normospermic semen. The seminal vesicle of rat exhibited the highest concentration of PBP. Administration of antiserum to PBP to mature male rats resulted in a significant reduction in the weight of ventral prostrate and serum prolactin levels were significantly elevated in these animals suggesting that the antibody raised against the PBP was capable of blocking prolactin receptors. (author)

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  11. Ca2+/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Javier Duran

    2017-09-01

    Full Text Available Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca2+/calmodulin-dependent protein kinase II (CaMKII and myocyte-enhancer factor 2 (MEF2 play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX rats. In cardiac myocytes, MEF2 activity was monitored using a luciferase reporter plasmid, and the effects of CaMKII and AR signaling pathways on MEF2C were examined by using siRNAs and pharmacological inhibitors targeting these two pathways. In the in vivo studies, ORX rats were randomly assigned to groups that were administered vehicle or testosterone (125 mg⋅kg-1⋅week-1 for 5 weeks, and plasma testosterone concentrations were determined using ELISA. Cardiac hypertrophy was evaluated by measuring well-characterized hypertrophy markers. Moreover, western blotting was used to assess CaMKII and phospholamban (PLN phosphorylation, and MEF2C and AR protein levels in extracts of left-ventricle tissue from control and testosterone-treated ORX rats. Whereas testosterone treatment increased the phosphorylation levels of CaMKII (Thr286 and phospholambam (PLN (Thr17 in cardiac myocytes in a time- and concentration-dependent manner, testosterone-induced MEF2 activity and cardiac myocyte hypertrophy were prevented upon inhibition of CaMKII, MEF2C, and AR signaling pathways. Notably, in the hypertrophied hearts obtained from testosterone-administered ORX rats, both CaMKII and PLN phosphorylation levels and AR and MEF2 protein levels were increased. Thus, this study presents the first evidence indicating that

  12. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression.

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2014-02-01

    Full Text Available In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV. Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6 expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and

  13. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8

    International Nuclear Information System (INIS)

    Tidow, Henning; Hein, Kim L.; Baekgaard, Lone; Palmgren, Michael G.; Nissen, Poul

    2010-01-01

    Plant plasma-membrane Ca 2+ -ATPase is regulated via binding of calmodulin to its autoinhibitory N-terminal domain. In this study, the expression, purification, crystallization and preliminary X-ray diffraction analysis of this protein complex from A. thaliana are reported. Plasma-membrane Ca 2+ -ATPases (PMCAs) are calcium pumps that expel Ca 2+ from eukaryotic cells to maintain overall Ca 2+ homoeostasis and to provide local control of intracellular Ca 2+ signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca 2+ regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca 2+ -CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca 2+ -ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 Å, β = 113.2°. A complete data set was collected to 3.0 Å resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin

  14. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  15. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  16. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  17. Partial characterization of GTP-binding proteins in Neurospora

    International Nuclear Information System (INIS)

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-01-01

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. [ 35 S]GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of [ 35 S]GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin

  18. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Hui Peng; Tianbao Yang; Wayne M. Jurick II

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  19. Thermodynamics of Ligand Binding to Acyl-Coenzyme A Binding Protein Studied by Titration Calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils Joakim; Sigurskjold, Bent Walther; Kragelund, Birthe B.

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  20. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  1. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    Science.gov (United States)

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Actin binding proteins, spermatid transport and spermiation*

    Science.gov (United States)

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  3. Interleukin-18 and interleukin-18 Binding Protein

    Directory of Open Access Journals (Sweden)

    Charles eDinarello

    2013-10-01

    Full Text Available Interleukin-18 (IL 18 is a member of the IL 1 family of cytokines. Increasing reports have expanded the role of IL 18 in mediating inflammation in animal models of disease using IL 18 deficient mice, neutralization of IL 18 or deficiency in the IL 18 receptor alpha chain. Similar to IL 1β, IL 18 is synthesized as an inactive precursor requiering processing by caspase 1 into an active cytokine but unlike IL 1β, the IL 18 precursor is constitutively present in nearly all cells in healthy humans and animals. The activity of IL 18 is balanced by the presence of a high-affinity naturally occuring IL 18 binding protein (IL 18BP. In humans, disease increased disease severity can be associated with an imbalance of IL 18 to IL 18BP such that the levels of free IL 18 are elevated in the circulation. A role for IL 18 has been implicated in several autoimmune diseases, myocardial function, emphysema, metabolic syndromes, psoriasis, inflammatory bowel disease, hemophagocytic syndromes, macrophage activation syndrome, sepsis and acute kidney injury, although in some diseases, IL 18 is protective. IL 18 plays a major role in the production of interferon-g from natural killer cells. The IL 18BP has been used safely in humans and clinical trials of IL 18BP as well as neutralizing anti-IL 18 antibodies are in clinical trials. This review updates the biology of IL 18 as well as its role in human disease

  4. IGF Binding Protein-5 Induces Cell Senescence

    Directory of Open Access Journals (Sweden)

    Fumihiro Sanada

    2018-02-01

    Full Text Available Cellular senescence is the complex process of deterioration that drives the aging of an organism, resulting in the progressive loss of organ function and eventually phenotypic aging. Senescent cells undergo irreversible growth arrest, usually by inducing telomere shortening. Alternatively, senescence may also occur prematurely in response to various stress stimuli, such as oxidative stress, DNA damage, or activated oncogenes. Recently, it has been shown that IGF binding protein-5 (IGFBP-5 with the induction of the tumor suppressor p53 is upregulated during cellular senescence. This mechanism mediates interleukin-6/gp130-induced premature senescence in human fibroblasts, irradiation-induced premature senescence in human endothelial cells (ECs, and replicative senescence in human ECs independent of insulin-like growth factor I (IGF-I and IGF-II. Additionally, a link between IGFBP-5, hyper-coagulation, and inflammation, which occur with age, has been implicated. Thus, IGFBP-5 seems to play decisive roles in controlling cell senescence and cell inflammation. In this review, we describe the accumulating evidence for this role of IGFBP-5 including our new finding.

  5. Immobilized purified folate-binding protein: binding characteristics and use for quantifying folate in erythrocytes

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Nexo, E.

    1987-01-01

    Purified folate-binding protein from cow's milk was immobilized on monodisperse polymer particles (Dynospheres) activated by rho-toluenesulfonyl chloride. Leakage from the spheres was less than 0.1%, and the binding properties were similar to those of the soluble protein with regard to dissociation, pH optimum for binding pteroylglutamic acid, and specificity for binding various folate derivatives. We used the immobilized folate-binding protein as binding protein in an isotope-dilution assay for quantifying folate in erythrocytes. The detection limit was 50 nmol/L and the CV over a six-month period was 2.3% (means = 1.25 mumol/L, n = 15). The reference interval, for folate measured in erythrocytes of 43 blood donors, was 0.4-1.5 mumol/L

  6. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  7. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  8. Accurate prediction of peptide binding sites on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Evangelia Petsalaki

    2009-03-01

    Full Text Available Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.

  9. Antigenic and structural conservation of herpesvirus DNA-binding proteins.

    Science.gov (United States)

    Littler, E; Yeo, J; Killington, R A; Purifoy, D J; Powell, K L

    1981-10-01

    Previously, we have shown a common antigen of several herpesviruses (pseudorabies virus, equine abortion virus and bovine mammillitis virus) to be antigenically related to the major DNA-binding proteins of herpes simplex virus types 1 and 2. In this study we have purified the cross-reacting polypeptide from cells infected with pseudorabies virus, equine abortion virus and bovine mammillitis virus and shown the cross-reacting protein to be a major DNA-binding protein for each virus. Tryptic peptide analysis of the cross-reacting DNA-binding proteins of all five viruses has shown structural similarities. The proteins thus were shown to share common antigenic sites, to have similar biological properties and to have a highly conserved amino acid sequence. This unexpected similarity between proteins from diverse herpes viruses suggests an essential and fundamental role of the major DNA-binding protein in herpes virus replication.

  10. Biophysical characterization and functional studies on calbindin-D28K: A vitamin D-induced calcium-binding protein

    International Nuclear Information System (INIS)

    Leathers, V.L.

    1989-01-01

    Vitamin D dependent calcium binding protein, or calbindin-D, is the principal protein induced in the intestine in response to the steroid hormone 1,25(OH) 2 -vitamin D 3 . A definitive role for calbindin-D in vitamin D 3 mediated biological responses remains unclear. Biophysical and functional studies on chick intestinal calbindin-D 28K (CaBP) were initiated so that some insight might be gained into its relevance to the process of intestinal calcium transport. Calbindin-D belongs to a class of high affinity calcium binding proteins which includes calmodulin, parvalbumin and troponin C. The Ca 2+ binding stoichiometry and binding constants for calbindin-D 28K were quantitated by Quin 2 titration analysis. The protein was found to bind 5-6 Ca 2+ ions with a K D on the order of 10 -8 , in agreement with the 6 domains identified from the amino acid sequence. A slow Ca 2+ exchange rate (80 s -1 ) as assessed by 43 Ca NMR and extensive calcium dependent conformational changes in 1 H NMR spectra were also observed. Functional studies on chick intestinal CaBP were carried out by two different methods. Interactions between CaBP and intestinal cellular components were assessed via photoaffinity labeling techniques. Specific calcium dependent complexes for CaBP were identified with bovine intestinal alkaline phosphatase and brush border membrane proteins of 60 and 150 kD. CaBP was also found to co-migrate with the alkaline phosphatase activity of chick intestinal brush border membranes as evaluated by gel filtration chromatography. The second procedure for evaluating CaBP functionality has involved the quantitation of CaBP association with vesicular transport components as assessed by ELISA. CaBP, immunoreactivity was observed in purified lysosomes, microsomes and microtubules

  11. FhCaBP1 (FH22): A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Cheung, Sarah; Thomas, Charlotte M; Timson, David J

    2016-11-01

    FH22 has been previously identified as a calcium-binding protein from the common liver fluke, Fasciola hepatica. It is part of a family of at least four proteins in this organism which combine an EF-hand containing N-terminal domain with a C-terminal dynein light chain-like domain. Here we report further biochemical properties of FH22, which we propose should be renamed FhCaBP1 for consistency with other family members. Molecular modelling predicted that the two domains are linked by a flexible region and that the second EF-hand in the N-terminal domain is most likely the calcium ion binding site. Native gel electrophoresis demonstrated that the protein binds both calcium and manganese ions, but not cadmium, magnesium, strontium, barium, cobalt, copper(II), iron (II), nickel, zinc, lead or potassium ions. Calcium ion binding alters the conformation of the protein and increases its stability towards thermal denaturation. FhCaBP1 is a dimer in solution and calcium ions have no detectable effect on the protein's ability to dimerise. FhCaBP1 binds to the calmodulin antagonists trifluoperazine and chlorpromazine. Overall, the FhCaBP1's biochemical properties are most similar to FhCaBP2 a fact consistent with the close sequence and predicted structural similarity between the two proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    Science.gov (United States)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  13. A brave new world of RNA-binding proteins.

    Science.gov (United States)

    Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas

    2018-01-17

    RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

  14. Rate Constants and Mechanisms of Protein-Ligand Binding.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-05-22

    Whereas protein-ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms.

  15. Calcium/calmodulin-dependent protein kinase II is a ubiquitous molecule in human long-term memory synaptic plasticity: A systematic review

    Directory of Open Access Journals (Sweden)

    Negar Ataei

    2015-01-01

    Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory.

  16. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    In humans, three soluble extracellular cobalamin-binding proteins; transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are involved in the uptake and transport of cobalamin. In this study, we investigate a cobalamin-binding protein from zebrafish (Danio rerio) and summarize current...

  17. Calcium-binding proteins from human platelets

    International Nuclear Information System (INIS)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-01-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with 45 Ca 2 + and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with 45 Ca 2 + . These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4 Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with 45 Ca 2 + prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was wekly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelt-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of 45 Ca 2 + . (orig.)

  18. The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors.

    Science.gov (United States)

    Sorriento, Daniela; Santulli, Gaetano; Ciccarelli, Michele; Maione, Angela Serena; Illario, Maddalena; Trimarco, Bruno; Iaccarino, Guido

    2018-03-15

    We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK) type 5, (GRK5-NT) inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE). These results were confirmed in vivo in spontaneously hypertensive rats (SHR), in which intramyocardial adenovirus-mediated gene transfer of GRK5-NT reduced both wall thickness and ventricular mass by modulating NFAT and GATA-4 activity. To further verify in vitro the contribution of calmodulin in linking GRK5-NT to the NFAT/GATA-4 pathway, we examined the effects of a mutant of GRK5 (GRK5-NTPB), which is not able to bind calmodulin. When compared to GRK5-NT, GRK5-NTPB did not modify PE-induced NFAT and GATA-4 activation. In conclusion, this study identifies a double effect of GRK5-NT in the inhibition of LVH that is based on the regulation of multiple transcription factors through means of different mechanisms and proposes the amino-terminal sequence of GRK5 as a useful prototype for therapeutic purposes.

  19. The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors

    Directory of Open Access Journals (Sweden)

    Daniela Sorriento

    2018-03-01

    Full Text Available We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK type 5, (GRK5-NT inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE. These results were confirmed in vivo in spontaneously hypertensive rats (SHR, in which intramyocardial adenovirus-mediated gene transfer of GRK5-NT reduced both wall thickness and ventricular mass by modulating NFAT and GATA-4 activity. To further verify in vitro the contribution of calmodulin in linking GRK5-NT to the NFAT/GATA-4 pathway, we examined the effects of a mutant of GRK5 (GRK5-NTPB, which is not able to bind calmodulin. When compared to GRK5-NT, GRK5-NTPB did not modify PE-induced NFAT and GATA-4 activation. In conclusion, this study identifies a double effect of GRK5-NT in the inhibition of LVH that is based on the regulation of multiple transcription factors through means of different mechanisms and proposes the amino-terminal sequence of GRK5 as a useful prototype for therapeutic purposes.

  20. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  1. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  2. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  3. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  4. Discrete persistent-chain model for protein binding on DNA.

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  5. Characterization of a cocaine binding protein in human placenta

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zhou, D.H.; Maulik, D.; Eldefrawi, M.E.

    1990-01-01

    [ 3 H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [ 3 H]-cocaine with a high affinity site of 170 fmole/mg protein. The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [ 3 H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S 20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear

  6. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  7. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein.

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    Full Text Available A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.

  8. Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit

    Science.gov (United States)

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding the stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various physiological responses in plants. To determine the functional significance of calmodulin in fl...

  9. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  10. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.

    2012-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  11. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of ...

  12. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple

  13. Measurement of plasma protein and lipoprotein binding of pyrethroids.

    Science.gov (United States)

    Sethi, Pankaj K; Muralidhara, S; Bruckner, James V; White, Catherine A

    2014-01-01

    A simple, reliable procedure was developed to measure binding of pyrethroid insecticides to total proteins and lipoproteins of rat and human plasma. The extent of binding of (14)C-labeled deltamethrin (DLM), cis-permethrin (CIS) and trans-permethrin (TRANS) was quantified by a 3-step organic solvent extraction technique. Rat and human plasma samples, containing NaF to inhibit esterases, were spiked with a range of concentrations of each radiolabeled pyrethroid. Protein binding reached equilibrium within ~1h of incubation at 37°C. The samples were extracted in turn with: isooctane to collect the unbound fraction; 2-octanol to extract the lipoprotein-bound fraction; and acetonitrile to obtain the protein-bound fraction. Absolute recoveries of DLM, CIS and TRANS ranged from 86 to 95%. Adherence of these very lipophilic chemicals to glass and plastic was minimized by using silanized glass vials and LoBind® plastic pipettes. The method's ability to distinguish lipoprotein from protein binding was confirmed by experiments with diazepam and cyclosporine, drugs that bind selectively to albumin and lipoproteins, respectively. This procedure was effectively utilized for studies of the species-dependence of plasma protein and lipoprotein binding of three pyrethroids for inclusion in physiologically-based pharmacokinetic models of pyrethroids for use in health risk assessments of the insecticides in children and adults. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S. J.; van't Veer, C.; Sixma, J. J.; Bouma, B. N.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  15. New fluorescent reagents specific for Ca2+-binding proteins

    International Nuclear Information System (INIS)

    Ben-Hail, Danya; Lemelson, Daniela; Israelson, Adrian; Shoshan-Barmatz, Varda

    2012-01-01

    Highlights: ► New reagents specifically inhibit the activity of Ca 2+ -dependent proteins. ► FITC-Ru and EITC-Ru allow for mechanism-independent probing of Ca 2+ -binding proteins. ► Changes in reagents fluorescence allow characterization of protein Ca 2+ -binding properties. -- Abstract: Ca 2+ carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca 2+ -dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with and markedly inhibit Ca 2+ -dependent activities but not the activity of Ca 2+ -independent reactions. In contrast to many reagents that serve as probes for Ca 2+ , FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca 2+ -binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca 2+ -binding proteins, thereby facilitating better understanding of the function of Ca 2+ as a key bio-regulator.

  16. Identification of Putative Vero Cell Protein(s) that Bind Specifically to ...

    African Journals Online (AJOL)

    Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets. Competitive binding assay showed these proteins competing with dengue virus binding. MTT assay indicate that viability of vero cells increases in cultures pretreated with 45 KDa, 43 KDa and 30 KDa proteins ...

  17. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  18. Water-binding of protein particles

    NARCIS (Netherlands)

    Peters, J.P.C.M.

    2016-01-01

    As overweight and obesity become more prevalent in society, the demand for food products that can help maintain body weight increases. One way to make such products is by decreasing the protein and fat content through increasing the water content. This thesis describes the potential of protein

  19. Estrogen receptor diminishes DNA-binding activities of chicken GATA-1 and CACCC-binding proteins.

    Science.gov (United States)

    Holth, L T; Sun, J M; Coutts, A S; Murphy, L C; Davie, J R

    1997-12-01

    The estrogen receptor (ER) repressed erythroid differentiation and erythroid-specific gene expression. In this study, we investigated the effect of ER alpha (referred to throughout as ER) on DNA-binding activities of transcription factors involved in regulating the expression of erythroid-specific genes, and, in particular, the histone H5 gene. Using electrophoretic mobility shift assays, we found that in the presence of rabbit reticulocyte lysate, human ER reduced the binding activities of chicken immature erythrocyte nuclear extracted proteins to GATA and CACCC sites in the H5 promoter and enhancer. In contrast, the binding activities of NF1 and Sp1 were not affected by ER. Binding of ER to an estrogen response element was enhanced by addition of rabbit reticulocyte lysate. This lysate was also necessary for ER to diminish the DNA-binding activity of GATA-1. These results suggest that additional factor(s) are necessary for full ER function. Both GATA-1 and CACCC-binding proteins are critical for the developmentally regulated expression of erythroid-specific genes. We hypothesize that interference in DNA-binding activities of GATA-1 and CACCC-binding proteins is the mechanism by which the ER inhibits regulation of these genes.

  20. Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment

    Directory of Open Access Journals (Sweden)

    Luca Mollica

    2016-09-01

    Full Text Available In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs. In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed e.g. in the fly-casting hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit, are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  1. Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors*

    Science.gov (United States)

    Navarro, Gemma; Aymerich, Marisol S.; Marcellino, Daniel; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I.; Agnati, Luigi; Woods, Amina S.; Fuxe, Kjell; Lluís, Carmen; Lanciego, Jose Luis; Ferré, Sergi; Franco, Rafael

    2009-01-01

    The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents. PMID:19632986

  2. Binding and measuring natural rubber latex proteins on glove powder.

    Science.gov (United States)

    Tomazic-Jezic, Vesna J; Lucas, Anne D; Sanchez, Beatriz A

    2004-01-01

    Cornstarch used as a donning powder on natural rubber latex (NRL) gloves adsorbs NRL proteins. During glove use, powder-carried proteins can be aerosolized and can cause allergic reactions in NRL sensitized individuals. The amount of NRL proteins bound to glove powder and its relative relationship to the total amount of proteins on the glove has not been studied, due to the difficulty in measuring proteins on powder. Using the ELISA inhibition assay for NRL proteins [Standard test method for the immunological measurement of antigenic protein in natural rubber and its products. In: The Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, 2000; ASTM D 64-0] we have investigated possible protocol modifications in order to include measurement of proteins bound to glove powder, as well as the water-extractable glove proteins. Possible interference of the starch itself was evaluated by adding clean cornstarch to the assay. No significant interference was observed with powder concentrations below 5 mg/mL. We analyzed 19 extracts of powdered surgical and examination gloves before and after removal of the particulate component. Comparison of NRL glove extracts with, and without, the cornstarch powder fraction indicated significant variations in the ratios of powder-bound protein and corresponding water-extractable protein. The ratios did not appear to correlate with either the total protein on the glove, the glove weight, or the total amount of powder on the glove. However, when virgin glove powders were exposed to NRL proteins, binding was proportional to the protein concentration in the suspension. Temperature in the range from 4 degrees C to 37 degrees C, did not affect binding intensity, while a higher pH resulted in a higher level of protein associated with, or bound to, the starch. The major differences in the propensity for NRL protein binding were observed among different glove powders. The data indicate that the amount of protein that binds to glove powder

  3. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  4. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    of ubiquitin conjugation to endoplasmic reticulum degradation), UEV [ubiquitin E2 (ubiquitin-conjugating enzyme) variant] and NZF (nuclear protein localization gene 4 zinc finger) domain-containing proteins appear to have more specialized functions. Here we discuss functional and structural properties......Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Typically, ubiquitinated proteins are targeted for degradation by the 26 S proteasome. However, more recently the ubiquitin signal has also been connected with many other cell processes, including...... endocytosis, vesicle fusion, DNA repair and transcriptional silencing. Hence ubiquitination may be comparable with phosphorylation in its importance as an intracellular switch, controlling various signal-transduction pathways. Similar to the regulation of the extent of phosphorylation by kinases...

  5. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases

    International Nuclear Information System (INIS)

    Iacopino, A.M.; Christakos, S.

    1990-01-01

    The present studies establish that there are specific, significant decreases in the neuronal calcium-binding protein (28-kDa calbindin-D) gene expression in aging and in neurodegenerative diseases. The specificity of the changes observed in calbindin mRNA levels was tested by reprobing blots with calmodulin, cyclophilin, and B-actin cDNAs. Gross brain regions of the aging rat exhibited specific, significant decreases in calbindin·mRNA and protein levels in the cerebellum, corpus striatum, and brain-stem region but not in the cerebral cortex or hippocampus. Discrete areas of the aging human brain exhibited significant decreases in calbindin protein and mRNA in the cerebellum, corpus striatum, and nucleus basalis but not in the neocortex, hippocampus, amygdala, locus ceruleus, or nucleus raphe dorsalis. Comparison of diseased human brain tissue with age- and sex-matched controls yielded significant decreases calbindin protein and mRNA in the substantia nigra (Parkinson disease), in the corpus striatum (Huntington disease), in the nucleus basalis (Alzheimer disease), and in the hippocampus and nucleus raphe dorsalis (Parkinson, Huntington, and Alzheimer diseases) but not in the cerebellum, neocortex, amygdala, or locus ceruleus. These findings suggest that decreased calbindin gene expression may lead to a failure of calcium buffering or intraneuronal calcium homeostasis, which contributes to calcium-mediated cytotoxic events during aging and in the pathogenesis of neurodegenerative diseases

  6. Species specificity for HBsAg binding protein endonexin II

    NARCIS (Netherlands)

    deBruin, WCC; Leenders, WPJ; Moshage, H; vanHaelst, UJGM

    Background/Aims: Hepatitis B virus displays a distinct species and tissue tropism, Previously we have demonstrated that a human liver plasma membrane protein,vith a molecular weight of approximately 34 kiloDalton specifically binds to HBsAg. This protein was identified as endonexin II, a Ca2+

  7. Selectivity determinants of GPCR-G-protein binding

    DEFF Research Database (Denmark)

    Flock, Tilman; Hauser, Alexander S; Lund, Nadia

    2017-01-01

    The selective coupling of G-protein-coupled receptors (GPCRs) to specific G proteins is critical to trigger the appropriate physiological response. However, the determinants of selective binding have remained elusive. Here we reveal the existence of a selectivity barcode (that is, patterns of ami...

  8. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    International Nuclear Information System (INIS)

    Wallen-Friedman, M.A.

    1988-01-01

    My work on pantophobiac A 2 (pntA 2 ), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca ++ -binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca ++ -related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/ 2 CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA 2 . Once pntA 2 CaM is N-methylated, the [methyl- 3 H] group does not turn over in either wild-type or pntA 2 cytoplasmic fractions. The methylating enzymes in pntA 2 high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM

  9. An ion-current mutant of Paramecium tetraurelia with defects in the primary structure and post-translational N-methylation of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Wallen-Friedman, M.A.

    1988-01-01

    My work on pantophobiac A{sup 2} (pntA{sup 2}), a behavioral mutant of Paramecium tetraurelia, suggest that the Ca{sup ++}-binding protein calmodulin (CaM), and post-translation N-methylation of CaM, are important for Ca{sup ++}-related ion-current function. Calmodulin from wild-type Paramecium has two sites of lysine-N-methylation. Both of these sites are almost fully methylated in vivo; thus wild-type calmodulin is a poor substrate for N-methylation in vitro. In contrast, pntA/{sup 2} CaM can be heavily N-methylated in vitro, suggesting that the mutant calmodulin is under-methylated in vivo. Amino-acid composition analysis showed that CaM lysine 115 is undermethylated in pntA{sup 2}. Once pntA{sup 2} CaM is N-methylated, the (methyl-{sup 3}H) group does not turn over in either wild-type or pntA{sup 2} cytoplasmic fractions. The methylating enzymes in pntA{sup 2} high-speed supernatant fractions are active, but may be less robust than those of the wild type, suggesting a possible control of these enzymes by CaM.

  10. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    modulator of the GABAA receptor in brain membranes. ACBP/DBI, or proteolytically derived polypeptides of ACBP/DBI, have also been implicated in the control of steroidogenesis in mitochondria and glucose-stimulated insulin secretion. Thus, it appears that ACBP/DBI is a remarkable, versatile protein. Now we......Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous....... There is a remarkable correspondence between the structural modules of ACBP/DBI as determined by 1H nuclear magnetic resonance spectroscopy and the exon-intron architecture of the ACBP/DBI gene. Detailed analyses of transcription of the ACBP/DBI gene in brain and liver were performed to map transcription initiation...

  11. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  12. RNA-Binding Domain Proteins in Kinetoplastids: a Comparative Analysis†

    Science.gov (United States)

    De Gaudenzi, Javier; Frasch, Alberto C.; Clayton, Christine

    2005-01-01

    RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein. PMID:16339728

  13. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Science.gov (United States)

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  14. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  15. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein.

    Science.gov (United States)

    Bertaccini, Edward J; Lindahl, Erik; Sixma, Titia; Trudell, James R

    2008-04-01

    Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.

  16. Differential binding of heavy chain variable domain 3 antigen binding fragments to protein A chromatography resins.

    Science.gov (United States)

    Bach, Julia; Lewis, Nathaniel; Maggiora, Kathy; Gillespie, Alison J; Connell-Crowley, Lisa

    2015-08-28

    This work examines the binding of 15 different VH3 IgGs and their corresponding F(ab')2 fragments to two different protein A chromatography resins: MabSelect(®), which utilizes a recombinant protein A ligand, and MabSelect SuRe(®) (SuRe), which utilizes a tetrameric Z domain ligand. The results show that VH3 F(ab')2 fragments can exhibit a variety of binding behaviours for the two resins. Contrary to previously published data, a subset of these molecules show strong interaction with the Z domain of SuRe(®). Furthermore, the results show that sequence variability of residue 57 in the VH3 heavy chain CDR2 domain correlates with binding behaviour on MabSelect(®) and SuRe(®). Site-directed mutagenesis of this residue confers gain or loss of VH3 F(ab')2 binding to these resins in 3 mAbs, demonstrating that it plays a key role in both recombinant protein A and Z domain interaction. A fourth mAb with a longer CDR2 loop was not affected by mutation of residue 57, indicating that CDR2 domain length may alter the binding interface and lead to the involvement of other residues in protein A binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  18. Computational design of binding proteins to EGFR domain II.

    Directory of Open Access Journals (Sweden)

    Yoon Sup Choi

    Full Text Available We developed a process to produce novel interactions between two previously unrelated proteins. This process selects protein scaffolds and designs protein interfaces that bind to a surface patch of interest on a target protein. Scaffolds with shapes complementary to the target surface patch were screened using an exhaustive computational search of the human proteome and optimized by directed evolution using phage display. This method was applied to successfully design scaffolds that bind to epidermal growth factor receptor (EGFR domain II, the interface of EGFR dimerization, with high reactivity toward the target surface patch of EGFR domain II. One potential application of these tailor-made protein interactions is the development of therapeutic agents against specific protein targets.

  19. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-09-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  20. CNE, a collagen-binding protein of Streptococcus equi.

    Science.gov (United States)

    Lannergård, Jonas; Frykberg, Lars; Guss, Bengt

    2003-05-16

    Streptococcus equi subspecies equi is an important horse pathogenic bacterium causing a serious disease called strangles. Using bioinformatics we identified a gene denoted cne (gene encoding collagen-binding protein from S. equi) coding for a novel potential virulence factor of this species called protein CNE. The protein is composed of 657 amino acids and has the typical features found in cell surface-anchored proteins in Gram-positive bacteria. CNE displays amino acid sequence similarities to the previously well-studied collagen-binding protein CNA from Staphylococcus aureus, a proven virulence factor in septic arthritis. Based on similarity to CNA the structure of the mature CNE protein can be divided into an N-terminal A domain and a C-terminal B domain. The highest similarity between CNA and CNE is found in the A domains. The A domain in CNA is known to be the collagen-binding domain. Two parts of cne were amplified using polymerase chain reaction (PCR) and ligated into an expression vector, and recombinant CNE proteins were produced in Escherichia coli. The purified CNE proteins were shown to display collagen-binding activity in a Western ligand blot and to inhibit collagen binding to cells of subsp. equi and to CNE-coated microtitre wells. Furthermore, the A domain of CNE was sufficient for binding collagen, and was shown to compete for the same site on collagen as CNA in inhibition studies. Using PCR, the cne gene was detected in all studied strains of subsp. equi and S. equi subsp. zooepidemicus.

  1. Role of Calmodulin in Cell Proliferation

    Science.gov (United States)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  2. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    Science.gov (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm -positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis , respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis . The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  3. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  4. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein. © 2014 The Authors.

  5. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  6. Cooperative binding mitigates the high-dose hook effect.

    Science.gov (United States)

    Roy, Ranjita Dutta; Rosenmund, Christian; Stefan, Melanie I

    2017-08-14

    The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. We use a combinatorial model of a "perfect linker protein" (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+ /calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of

  7. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  8. T3: Targeted Proteomics of DNA-Binding Proteins

    OpenAIRE

    Nagore, Linda I.; Jarrett, Harry W.

    2015-01-01

    A technique that allows the inclusion of a specific DNA to enrich and direct proteomic identification of transcription factors (TF) while providing a route for high throughput screening on a single platform would be valuable in investigations of gene expression and regulation. Polyvinylpyrrolidone binds DNA avidly while binding negligible amounts of protein. This observation is used in a proof-of-concept method to enrich for TF by combining nuclear extract with a specific DNA sequence and imm...

  9. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  10. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-04-04

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  13. Solvation structure of ice-binding antifreeze proteins

    Science.gov (United States)

    Hansen-Goos, Hendrik; Wettlaufer, John

    2009-03-01

    Antifreeze proteins (AFPs) can be found in organisms which survive at subzero temperatures. They were first discovered in polar fishes since the 1950's [1] and have been isolated meanwhile also from insects, plants, and bacteria. While AFPs shift the freezing point of water below the bulk melting point and hence can prevent recrystallization; the effect is non-colligative and there is a pronounced hysteresis between freezing and melting. For many AFPs it is generally accepted that they function through an irreversible binding to the ice-water interface which leads to a piecewise convex growth front with a lower nonequilibrium freezing point due to the Kelvin effect. Recent molecular dynamics simulations of the AFP from Choristoneura fumiferana reveal that the solvation structures of water at ice-binding and non-ice-binding faces of the protein are crucial for understanding how the AFP binds to the ice surface and how it is protected from being overgrown [2]. We use density functional theory of classical fluids in order to assess the microscopic solvent structure in the vicinity of protein faces with different surface properties. With our method, binding energies of different protein faces to the water-ice-interface can be computed efficiently in a simplified model. [1] Y. Yeh and R.E. Feeney, Chem. Rev. 96, 601 (1996). [2] D.R. Nutt and J.C. Smith, J. Am. Chem. Soc. 130, 13066 (2008).

  14. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    to individual structures that bind to phosphate groups; here, we investigate a total of 8307 structures obtained from the RCSB Protein Data Bank (PDB). An analysis of the binding site amino acid propensities reveals very characteristic first shell residue distributions, which are found to be influenced...... by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  15. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  16. Molecular and biochemical characterization of calmodulin from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Ning; Zhong, Xiuqin; Song, Xingju; Gu, Xiaobin; Lai, Weiming; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2017-12-04

    Echinococcus granulosus is a harmful cestode parasite that causes cystic echinococcosis in humans as well as various livestock species and wild animals. Calmodulin (CaM), a Ca 2+ sensor protein, is widely expressed in eukaryotes and mediates a variety of cellular signaling activities. In the present study, the cDNA encoding CaM in Echinococcus granulosus (rEgCaM) was successfully cloned and the molecular and biochemical characterizations carried out. The antigenicity and immunoreactivity of rEgCaM was detected and the preliminary enzyme-linked immunosorbent assay (ELISA)-based serodiagnostic potential of EgCaM was assessed. The locations of this protein in the adult worm and larval stage, and the mRNA expression in different states of E. granulosus protoscoleces (PSCs) were defined clearly. Moreover, the Ca 2+ -binding properties of EgCaM were measured. rEgCaM is a highly conserved calcium-binding protein, consisting of 149 amino acids. Immunoblotting analysis revealed that rEgCaM could be identified using E. granulosus infected sheep serum. The use of rEgCaM as an antigen was evaluated by indirect ELISA which exhibited a high sensitivity (90.3%), but low specificity (47.1%). rEgCaM was ubiquitously expressed in protoscoleces and adults of E. granulosus, as well as in the germinal layer of the cyst wall. The mRNA expression level of rEgCaM was increased from the start of H 2 O 2 exposure and then gradually decreased because of the increased apoptosis of PSCs. In electrophoretic mobility tests and 1-anilinonaphthalene-8-sulfonic acid assays, rEgCaM showed a typical characteristic of a calcium-binding protein. To our knowledge, this is the first report on CaM from E. granulosus and rEgCaM is likely to be involved in some important biological function of E. granulosus as a calcium-binding protein.

  17. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y

    1990-01-01

    Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......, the presence of the homeobox transcript in human carcinoma was documented by in situ hybridization and RNase protection mapping. These results demonstrate that human cancer is associated with the expression of homeobox proteins. Such homeobox proteins, as well as other regulatory proteins, could be involved...

  18. Free enthalpies of replacing water molecules in protein binding pockets.

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  19. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E. (Lawrence Berkeley Lab., CA (United States))

    1991-06-04

    Tritium-labeled {alpha}- and {beta}-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10{degrees}C, MBP bound {alpha}-maltose with 2.7 {plus minus} 0.5-fold higher affinity than {beta}-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound {alpha}-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound {beta}-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the {beta}-maltodextrin is bound by its reducing end, and, in the other complex, the {beta}-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins.

  20. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  1. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-11-15

    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  2. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B

    1999-01-01

    spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...... is cooperative, with Hill coefficients of 1.5 and 4, respectively. The apparent affinities are described by K(0.5), determined to be 65 microM and 19 microM for constructs containing two and six domains, respectively. Our data reveal a unique regulation of Menkes protein upon a change in copper(I) concentration...

  3. RBPmap: a web server for mapping binding sites of RNA-binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kosti, Idit; Ares, Manuel; Cline, Melissa; Mandel-Gutfreund, Yael

    2014-07-01

    Regulation of gene expression is executed in many cases by RNA-binding proteins (RBPs) that bind to mRNAs as well as to non-coding RNAs. RBPs recognize their RNA target via specific binding sites on the RNA. Predicting the binding sites of RBPs is known to be a major challenge. We present a new webserver, RBPmap, freely accessible through the website http://rbpmap.technion.ac.il/ for accurate prediction and mapping of RBP binding sites. RBPmap has been developed specifically for mapping RBPs in human, mouse and Drosophila melanogaster genomes, though it supports other organisms too. RBPmap enables the users to select motifs from a large database of experimentally defined motifs. In addition, users can provide any motif of interest, given as either a consensus or a PSSM. The algorithm for mapping the motifs is based on a Weighted-Rank approach, which considers the clustering propensity of the binding sites and the overall tendency of regulatory regions to be conserved. In addition, RBPmap incorporates a position-specific background model, designed uniquely for different genomic regions, such as splice sites, 5' and 3' UTRs, non-coding RNA and intergenic regions. RBPmap was tested on high-throughput RNA-binding experiments and was proved to be highly accurate. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... In Arabidopsis,. At5g35220 gene being sterol regulatory element-binding protein site 2, protease and metalloendopeptidase activity were required for chloroplast development and play a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-.

  5. Cloning and expression analysis of a blue copper- binding protein ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... Full Length Research Paper. Cloning and expression analysis of a blue copper- binding protein gene from Dasypyrum Villosum. Huagang He1*, Shanying Zhu1, Wenbing Wang1, Tongde Bie2 and Peidu Chen3. 1Jiangsu University. Zhenjiang 212013, P. R. China. 2Yangzhou Academy of Agricultural ...

  6. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons

    NARCIS (Netherlands)

    Vreugdenhil, Anita C. E.; Rousseau, Corine H.; Hartung, Thomas; Greve, Jan Willem M.; van 't Veer, Cornelis; Buurman, Wim A.

    2003-01-01

    Chylomicrons have been shown to protect against endotoxin-induced lethality. LPS-binding protein (LBP) is involved in the inactivation of bacterial toxin by lipoproteins. The current study examined the interaction among LBP, chylomicrons, and bacterial toxin. LBP was demonstrated to associate with

  7. MTBindingSim: simulate protein binding to microtubules.

    Science.gov (United States)

    Philip, Julia T; Pence, Charles H; Goodson, Holly V

    2012-02-01

    Many protein-protein interactions are more complex than can be accounted for by 1:1 binding models. However, biochemists have few tools available to help them recognize and predict the behaviors of these more complicated systems, making it difficult to design experiments that distinguish between possible binding models. MTBindingSim provides researchers with an environment in which they can rapidly compare different models of binding for a given scenario. It is written specifically with microtubule polymers in mind, but many of its models apply equally well to any polymer or any protein-protein interaction. MTBindingSim can thus both help in training intuition about binding models and with experimental design. MTBindingSim is implemented in MATLAB and runs either within MATLAB (on Windows, Mac or Linux) or as a binary without MATLAB (on Windows or Mac). The source code (licensed under the GNU General Public License) and binaries are freely available at http://mtbindingsim.googlecode.com. jphilip@nd.edu; cpence@nd.edu.

  8. Genome-wide regulation of TATA-binding protein activity

    NARCIS (Netherlands)

    van Werven, F.J.

    2009-01-01

    Transcription, the synthesis of RNA from a DNA template, is a well-controlled process. TATA binding protein (TBP) recruitment to promoters is essential for transcription by all three RNA polymerases, and often is the rate-limiting step of transcription initiation. TBP is incorporated into different

  9. Cyclic AMP response element binding protein and brain-derived ...

    Indian Academy of Sciences (India)

    Madhu

    the role of CREB and BDNF in depression and as targets/mediators of antidepressant action. [Nair A and Vaidya V A 2006 Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?; J. Biosci. 31 423–434]. Keywords. Antidepressant; depression; hippocampus ...

  10. Controlling transcription fidelity via TATA-binding protein dynamics

    NARCIS (Netherlands)

    Koster, M.J.E.

    2015-01-01

    Transcription underlies all cellular processes and responses to internal and external cues. Deregulation of transcription has implications for the fitness of the cell or organism. During my PhD I have investigated the importance of proper TATA-binding protein (TBP) regulation as a mechanism to

  11. Evidence for covalent binding of epicocconone with proteins from ...

    Indian Academy of Sciences (India)

    TECS

    Evidence for covalent binding of epicocconone with proteins from synchronous fluorescence spectra ... the interaction of epicocconone with human serum albumin is significantly different from its interaction with surfactant assemblies. .... at 620 nm is collected at right angles to the direction of the excitation beam, at magic ...

  12. Immunoglobulin classes, metal binding proteins, and trace metals in ...

    African Journals Online (AJOL)

    , IgA and IgM), metal binding proteins (Transferrin, Caeruloplasmin, Alpha-2- Macroglobulin and Haptoglobin) and nutritionally essential trace metals/heavy metals (Zn, Fe, Se, Cu, Mg, Cd and Pb) in Nigerian cassava processors using single ...

  13. molecular interactions of the TATA-binding protein

    Indian Academy of Sciences (India)

    Unknown

    variants and lacking a UASGAL, showed that TATA-binding protein (TBP)-TATA complex gets stabilized in the presence of the acidic activator GAL4-VP16. Activator also greatly suppressed the non-specific TBP-DNA complex formation. The effects were more pronounced over weaker TATA boxes. Activator also reduced the.

  14. Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lisa Gerner

    2016-09-01

    Full Text Available Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2 has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501 in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]. Keywords: CaMKK2, Calmodulin, Fermentation

  15. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes.

    Science.gov (United States)

    Xue, Li C; Rodrigues, João Pglm; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-12-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface. PRODIGY is freely available at: http://milou.science.uu.nl/services/PRODIGY CONTACT: a.m.j.j.bonvin@uu.nl, a.vangone@uu.nl. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Ca(2+)/calmodulin-dependent protein kinase IIα (αCaMKII) controls the activity of the dopamine transporter: implications for Angelman syndrome.

    Science.gov (United States)

    Steinkellner, Thomas; Yang, Jae-Won; Montgomery, Therese R; Chen, Wei-Qiang; Winkler, Marie-Therese; Sucic, Sonja; Lubec, Gert; Freissmuth, Michael; Elgersma, Ype; Sitte, Harald H; Kudlacek, Oliver

    2012-08-24

    The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.

  17. Small world network strategies for studying protein structures and binding.

    Science.gov (United States)

    Taylor, Neil R

    2013-01-01

    Small world network concepts provide many new opportunities to investigate the complex three dimensional structures of protein molecules. This mini-review explores the published literature on using small-world network approaches to study protein structure, with emphasis on the different combinations of descriptors that have been tested, on studies involving ligand binding in protein-ligand complexes, and on protein-protein complexes. The benefits and success of small world network approaches, which change the focus from specific interactions to the local environment, even to non-local phenomenon, are described. The purpose is to show the different ways that small world network concepts have been used for building new computational models for studying protein structure and function, and for extending and improving existing modelling approaches.

  18. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  19. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  20. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  1. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  2. Thermal unfolding of a Ca- and Lanthanide-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Goettfert, M. [Technische Univ. Dresden (Germany); Knoeppel, J.

    2017-06-01

    The MIIA (metal ion-induced autocleavage)-domain of the protein Vic001052 from the pathogen Vibrio coralliilyticus, comprises 173 amino acids and exhibits Ca-dependent autoproteolytic activity. It shows homology to nodulation proteins which are secreted by Rhizobiacea into plant host cells where they exert Ca-dependent functions. We have studied the structural and energetic aspects of metal protein interactions of the MIIA domain which appear attractive for engineering metal-binding synthetic peptides. Using a non-cleavable MIIA domain construct, we detected very similar structural changes upon binding to Ca{sup 2+} and Eu{sup 3+}. The thermal denaturation of the Ca-bound state was studied by circular dichroism spectroscopy. The metal-bound folded state unfolds reversibly into an unstructured metal-free state similar to the metal-free state at room temperature.

  3. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  4. An angiogenin-binding protein from endothelial cells

    International Nuclear Information System (INIS)

    Hu, Guofu; Chang, Sooik; Riordan, J.F.; Vallee, B.L.

    1991-01-01

    A 42-kDa bovine protein that binds bovine angiogenin [angiogenin binding protein (AngBP)] has been identified as a dissociable cell-surface component of calf pulmonary artery endothelial cells and a transformed bovine endothelial cell line, GM7373. 125 I-Ang can be crosslinked efficiently to AngBP by a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbo-diimide. Bovine ribonuclease A competes with the binding of 125 I-Ang to AngBP, but lysozyme does not. Direct binding to AngBP of 125 I-labeled bovine ribonuclease A is, however, much weaker than that of 125 I-Ang. Two enzymatically active derivatives of angiogenin cleaved at residues 60-61 and 67-68, respectively, fail to induce angiogenesis and also bind to AngBP only weakly. AngBP has been isolated by treatment of cells with heparan sulfate, affinity chromatography on angiogenin-Sepharose of the material dissociated from the cell surface, and gel filtration HPLC. The results suggest that AngBP has the characteristics of a receptor that may likely function in angiogenesis

  5. Insulin-like growth factor binding proteins: a structural perspective

    Directory of Open Access Journals (Sweden)

    Briony eForbes

    2012-03-01

    Full Text Available Insulin-like growth factor binding proteins (IGFBP-1 to -6 bind insulin-like growth factors-I and -II (IGF-I and IGF-II with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation and survival via the type 1 IGF receptor (IGF-1R. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that influence processes such as cell migration and apoptosis by influencing gene transcription.IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, Linker and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP to date, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarises structural studies reported so far and highlights features important for binding not only IGF but also other partners. It also highlights future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.

  6. Polyamine binding to proteins in oat and Petunia protoplasts

    Science.gov (United States)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  7. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  8. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  9. Binding free energy analysis of protein-protein docking model structures by evERdock

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  10. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  11. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G.; Ribeiro, José M. C.; Andersen, John F.

    2017-07-27

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  12. Identification of Putative Vero Cell Protein(s) that Bind Specifically to ...

    African Journals Online (AJOL)

    with a cellular membrane [3,4]. The initial binding of dengue virus to target cells is mediated by binding of the envelope protein to a specific and unidentified cell surface receptor(s) [5]. Viral interaction with its targets observed by electron microscopy has been already reported. [6]. The structure of the ectodomain of DEN-2E.

  13. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  14. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  15. Identification of two nuclear N-acetylglucosamine-binding proteins.

    Science.gov (United States)

    Felin, M; Doyennette-Moyne, M A; Hadj-Sahraoui, Y; Aubery, M; Hubert, J; Sève, A P

    1994-12-01

    Using neoglycoproteins, lectins that recognize different sugars, including N-acetylglucosamine residues, were previously detected in animal cell nuclei. We report herein the isolation of two N-acetylglucosamine-binding proteins from HL60 cell nuclei: i) a 22 kDa polypeptide (CBP22) with an isoelectric point of 4.5 was isolated for the first time and ii) a 70 kDa polypeptide with an isoelectric point of 7.8. This latter protein corresponds to the glucose-binding protein (CBP70) previously isolated, based on the following similarities: i) they have the same molecular mass, ii) they have the same isoelectric point, iii) they are recognized by antibodies raised against CBP70, and iv) both are lectins from the C group of Drickamer's classification. CBP70 appeared to recognize glucose and N-acetylglucosamine; however, its affinity for N-acetylglucosamine was found to be twice that for glucose. The presence in the nucleus of two nuclear N-acetylglucosamine-binding proteins and their potential ligands, such as O-N-acetylglucosamine glycoproteins, strongly argues for possible intranuclear glycoprotein-lectin interactions.

  16. Role of adipocyte lipid-binding protein (ALBP) and acyl-coA binding protein (ACBP) in PPAR-mediated transactivation

    DEFF Research Database (Denmark)

    Helledie, Torben; Jørgensen, Claus; Antonius, Marianne

    2002-01-01

    lipid binding protein (ALBP), the keratinocyte lipid binding protein (KLBP) and the acyl-CoA binding protein (ACBP) exhibit a prominent nuclear localization in differentiating 3T3-L1 adipocytes. Similarly, ectopic expression of these proteins in CV-1 cells resulted in a primarily nuclear localization...... appears to sequester or increase the turn-over of the agonist. Similarly, our results are in keeping with a model in which ACBP increase the metabolism of these ligands....

  17. Regulation of IGF binding protein proteolysis by pregnancy-associated plasma protein-ARegulation of IGF binding protein proteolysis by pregnancy-associated plasma protein-A

    DEFF Research Database (Denmark)

    Gaidamauskas, Ervinas

    recognised role for PAPP-A in ageing and in the development of age-related disease. PAPP-A is a secreted metalloproteinase that cleaves insulin-like growth factor binding proteins (IGFBPs). Ervinas Gaidamauskas studied the mechanism of IGF-modulated proteolysis of IGFBPs by PAPP-A and the structural......During his PhD studies, Ervinas Gaidamauskas researched the proteins pregnancy-associated plasma protein-A (PAPP-A) and its homologue PAPP-A2 in vitro. As suggested by its name, PAPP-A plays an important role in pregnancy and fetal development. Additionally, recent studies indicate a newly...... determinants for cleavage. Using small-angle X-ray scattering (SAXS), he also analysed the intermodular structural organisation of the C-terminal domain of PAPP-A involved in substrate binding. Detailed knowledge of interactions between PAPP-A and its substrates is required to understand the modulatory role...

  18. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  19. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Science.gov (United States)

    Kirjavainen, Vesa; Jarva, Hanna; Biedzka-Sarek, Marta; Blom, Anna M; Skurnik, Mikael; Meri, Seppo

    2008-08-29

    Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  20. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  1. FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Thomas, Charlotte M; Timson, David J

    2015-09-01

    FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.

  2. Surface selective binding of nanoclay particles to polyampholyte protein chains.

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H B

    2009-07-28

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 degrees C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R(+)) = (q(-)/2epsilon)[(Q(-)/R(-))e(-kR(-))-(Q(+)/R(+))e(-kR(+))], where the protein dipole has charges Q(+) and Q(-) that are located at distances R(+) and R(-) from the point Laponite charge q(-) and the dispersion liquid has dielectric constant (epsilon). U(R(+)) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position theta. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (R(e)) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by R(e) approximately [NaCl](alpha) where alpha = 0.6+/-0.2 for gelatin-A and alpha = 0.4+/-0.2 for gelatin-B systems. The equilibrium separations were approximately 30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  3. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  4. Impact of methionine oxidation on calmodulin structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States); Moen, Rebecca J. [Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001 (United States); Olenek, Michael J. [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Klein, Jennifer C., E-mail: jklein@uwlax.edu [Biology Department, University of Wisconsin, La Crosse, WI 54601 (United States); Thomas, David D., E-mail: ddt@umn.edu [Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  5. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  6. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    Energy Technology Data Exchange (ETDEWEB)

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  7. Boar seminal plasma proteins and their binding prperties. A review

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Tichá, M.

    2004-01-01

    Roč. 69, - (2004), s. 461-475 ISSN 0010-0765 R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915; CEZ:MSM 113100001 Keywords : seminal plasma proteins * binding properties * spermadhesins Subject RIV: CE - Biochemistry Impact factor: 1.062, year: 2004

  8. Studies of Fibronectin-Binding Proteins of Streptococcus equi

    OpenAIRE

    Lannergård, Jonas; Flock, Margareta; Johansson, Staffan; Flock, Jan-Ingmar; Guss, Bengt

    2005-01-01

    Streptococcus equi subsp. equi is the causative agent of strangles, a disease of the upper respiratory tract in horses. The initiation of S. equi subsp. equi infection is likely to involve cell surface-anchored molecules mediating bacterial adhesion to the epithelium of the host. The present study describes the cloning and characterization of FNEB, a fibronectin-binding protein with cell wall-anchoring motifs. FNEB can thus be predicted as cell surface located, contrary to the two previously ...

  9. RNA Binding Proteins Posttranscriptionally Regulate Genes Involved In Oncogenesis

    Science.gov (United States)

    2010-06-01

    lysed in triple- detergent RIPA buffer with protease inhibitor cocktail (Roche, Pleasanton, CA). For nuclear and cytoplasmic fractionation, the NE-PER kit...Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. The Journal of allergy and clinical immunology 2008, 121(4):853-859...and western blot analysis. Western analysis was performed as described previously.12 For detection of VEGFα and TSP1 from tumors, triple- detergent

  10. Mannan-binding proteins from boar seminal plasma

    Czech Academy of Sciences Publication Activity Database

    Jelínková-Slavíčková, Petra; Liberda, J.; Maňásková, Pavla; Ryšlavá, H.; Jonáková, Věra; Tichá, M.

    2004-01-01

    Roč. 62, 1-2 (2004), s. 167-182 ISSN 0165-0378. [Congress of the European Society for Reproductive & Developmental Immunology /4./. Rhodes, 04.06.2003-06.06.2003] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA MŠk VS96141; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : boar seminal plasma proteins * mannan-binding proteins * oviductal epithelium Subject RIV: CE - Biochemistry Impact factor: 2.726, year: 2004

  11. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  12. Binding properties and immunolocalization of a fatty acid-binding protein in Giardia lamblia.

    Science.gov (United States)

    Hassan, S M T; Maache, M; de la Guardia, R Díaz; Córdova, O M; García, J R Gil; Galiana, M; Acuña Castroviejo, D; Martins, M; Osuna, Antonio

    2005-04-01

    We describe here a fatty acid-binding protein (FABP) isolated and purified from the parasitic protozoon Giardia lamblia. The protein has a molecular mass of 8 kDa and an isoelectric point of 4.96. A Scatchard analysis of the data at equilibrium revealed a dissociation constant of 3.12 x 10(-8) M when the labeled oleic acid was displaced by a 10-fold greater concentration of unlabeled oleic acid. Testosterone, sodium desoxycholate, taurocholate, metronidazol, and alpha-tocopherol, together with butyric, arachidonic, palmitic, retinoic, and glycocholic acids, were also bound to the protein. Assays with polyclonal antibodies revealed that the protein is located in the ventral disk and also appears in the dorsal membrane, the cytoplasm, and in the vicinity of the lipid vacuoles.

  13. Fluctuations in Mass-Action Equilibrium of Protein Binding Networks

    Science.gov (United States)

    Yan, Koon-Kiu; Walker, Dylan; Maslov, Sergei

    2008-12-01

    We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by slow changes in total concentrations of interacting proteins. The second type (spontaneous) is caused by quickly decaying thermodynamic deviations away from equilibrium. We investigate the effects of network connectivity on fluctuations by comparing them to scenarios in which the interacting pair is isolated from the network and analytically derives bounds on fluctuations. Collective effects are shown to sometimes lead to large amplification of spontaneous fluctuations. The strength of both types of fluctuations is positively correlated with the complex connectivity and negatively correlated with complex concentration. Our general findings are illustrated using a curated network of protein interactions and multiprotein complexes in baker’s yeast, with empirical protein concentrations.

  14. Decreased protein binding of moxifloxacin in patients with sepsis?

    Directory of Open Access Journals (Sweden)

    Dorn, Christoph

    2017-02-01

    Full Text Available The mean (SD unbound fraction of moxifloxacin in plasma from patients with severe sepsis or septic shock was determined by ultrafiltration to 85.5±3.0% (range 81.9 and 91.6% indicating a decreased protein binding of moxifloxacin in this population compared with the value of 58–60% provided in the Summary of Product Characteristics. However, previous investigations neglected the influence of pH and temperature on the protein binding of moxifloxacin. Maintaining physiological conditions (pH 7.4, 37°C – as in the present study – the unbound fraction of moxifloxacin in plasma from healthy volunteers was 84%. In contrast, the unbound fraction of moxifloxacin was 77% at 4°C and 66–68% in unbuffered plasma or at pH 8.5 in fair agreement with previously published data. PK/PD parameters e.g. AUC/MIC or ratios between interstitial fluid and free plasma concentrations, which were obtained assuming a protein binding rate of moxifloxacin of 40% or more, should be revised.

  15. PRODIGY : a web server for predicting the binding affinity of protein-protein complexes

    NARCIS (Netherlands)

    Xue, Li; Garcia Lopes Maia Rodrigues, João; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-01-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given

  16. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  17. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Science.gov (United States)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  18. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  19. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  20. A conserved NAD+binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  1. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell.

    Science.gov (United States)

    Robison, Alfred J; Vialou, Vincent; Mazei-Robison, Michelle; Feng, Jian; Kourrich, Saïd; Collins, Miles; Wee, Sunmee; Koob, George; Turecki, Gustavo; Neve, Rachael; Thomas, Mark; Nestler, Eric J

    2013-03-06

    The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

  2. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  3. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    NARCIS (Netherlands)

    Bosdriesz, E.; Magnúsdóttir, S.; Bruggeman, F.J.; Teusink, B.; Molenaar, D.

    2015-01-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is

  4. Activity of cefixime against Helicobacter pylori and affinities for the penicillin-binding proteins.

    Science.gov (United States)

    Ikeda, F; Yokota, Y; Mine, Y; Tatsuta, M

    1990-12-01

    Cefixime induced the formation of rounded cells from the spiral bacillary form of Helicobacter pylori at the MIC or less. Three main penicillin-binding proteins, called A, B and C, were separated from H. pylori. Cefixime had the strongest affinity to penicillin-binding protein B. The binding of cefixime to this protein may induce the formation of rounded H. pylori cells.

  5. DMPD: LPS-binding proteins and receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9665271 LPS-binding proteins and receptors. Fenton MJ, Golenbock DT. J Leukoc Biol.... 1998 Jul;64(1):25-32. (.png) (.svg) (.html) (.csml) Show LPS-binding proteins and receptors. PubmedID 9665271 Title LPS-binding prot...eins and receptors. Authors Fenton MJ, Golenbock DT. Publication J Leukoc Biol. 199

  6. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    Science.gov (United States)

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  8. Folding energetics of ligand binding proteins. I. Theoretical model.

    Science.gov (United States)

    Rösgen, J; Hinz, H J

    2001-03-02

    Heat capacity curves as obtained from differential scanning calorimetry are an outstanding source for molecular information on protein folding and ligand-binding energetics. However, deconvolution of C(p) data of proteins in the presence of ligands can be compromised by indeterminacies concerning the correct choice of the statistical thermodynamic ensemble. By convent, the assumption of constant free ligand concentration has been used to derive formulae for the enthalpy. Unless the ligand occurs at large excess, this assumption is incorrect. Still the relevant ensemble is the grand canonical ensemble. We derive formulae for both constraints, constancy of total or free ligand concentration and illustrate the equations by application to the typical equilibrium Nx N + x D + x. It is demonstrated that as long as the thermodynamic properties of the ligand can be completely corrected for by performing a reference measurement, the grand canonical approach provides the proper and mathematically significantly simpler choice. We demonstrate on the two cases of sequential or independent ligand-binding the fact, that similar binding mechanisms result in different and distinguishable heat capacity equations. Finally, we propose adequate strategies for DSC experiments as well as for obtaining first estimates of the characteristic thermodynamic parameters, which can be used as starting values in a global fit of DSC data. Copyright 2001 Academic Press.

  9. Retinoic acid binding protein in normal and neopolastic rat prostate.

    Science.gov (United States)

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  10. The Collagen Binding Proteins of Streptococcus mutans and Related Streptococci

    Science.gov (United States)

    Avilés-Reyes, Alejandro; Miller, James H.; Lemos, José A.; Abranches, Jacqueline

    2016-01-01

    Summary The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms utilized by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. PMID:26991416

  11. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  12. A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Sorensen, Boe S

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin......-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases......, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding...

  13. The Movable Type Method Applied to Protein-Ligand Binding.

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N; Merz, Kenneth M

    2013-12-10

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term "movable type". Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the free

  14. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  15. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Science.gov (United States)

    Das, Shubhadip; Paul, Sandip

    2018-01-01

    The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS) cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  16. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  17. Characterization and functional analysis of Calmodulin and Calmodulin-like genes in Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2016-12-01

    Full Text Available Calcium is a universal messenger that is involved in the modulation of diverse developmental and adaptive processes in response to various stimuli. Calmodulin (CaM and calmodulin-like (CML proteins are major calcium sensors in all eukaryotes, and they have been extensively investigated for many years in plants and animals. However, little is known about CaMs and CMLs in woodland strawberry (Fragaria vesca. In this study, we performed a genome-wide analysis of the strawberry genome and identified 4 CaM and 36 CML genes. Bioinformatics analyses, including gene structure, phylogenetic tree, synteny and three-dimensional model assessments, revealed the conservation and divergence of FvCaMs and FvCMLs, thus providing insight regarding their functions. In addition, the transcript abundance of four FvCaM genes and the four most related FvCML genes were examined in different tissues and in response to multiple stress and hormone treatments. Moreover, we investigated the subcellular localization of several FvCaMs and FvCMLs, revealing their potential interactions based on the localizations and potential functions. Furthermore, overexpression of five FvCaM and FvCML genes could not induce a hypersensitive response, but four of the five genes could increase resistance to Agrobacterium tumefaciens in Nicotiana benthamiana leaves. This study provides evidence for the biological roles of FvCaM and CML genes, and the results lay the foundation for future functional studies of these genes.

  18. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  19. Rbfox2 controls autoregulation in RNA-binding protein networks.

    Science.gov (United States)

    Jangi, Mohini; Boutz, Paul L; Paul, Prakriti; Sharp, Phillip A

    2014-03-15

    The tight regulation of splicing networks is critical for organismal development. To maintain robust splicing patterns, many splicing factors autoregulate their expression through alternative splicing-coupled nonsense-mediated decay (AS-NMD). However, as negative autoregulation results in a self-limiting window of splicing factor expression, it is unknown how variations in steady-state protein levels can arise in different physiological contexts. Here, we demonstrate that Rbfox2 cross-regulates AS-NMD events within RNA-binding proteins to alter their expression. Using individual nucleotide-resolution cross-linking immunoprecipitation coupled to high-throughput sequencing (iCLIP) and mRNA sequencing, we identified >200 AS-NMD splicing events that are bound by Rbfox2 in mouse embryonic stem cells. These "silent" events are characterized by minimal apparent splicing changes but appreciable changes in gene expression upon Rbfox2 knockdown due to degradation of the NMD-inducing isoform. Nearly 70 of these AS-NMD events fall within genes encoding RNA-binding proteins, many of which are autoregulated. As with the coding splicing events that we found to be regulated by Rbfox2, silent splicing events are evolutionarily conserved and frequently contain the Rbfox2 consensus UGCAUG. Our findings uncover an unexpectedly broad and multilayer regulatory network controlled by Rbfox2 and offer an explanation for how autoregulatory splicing networks are tuned.

  20. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities.

    OpenAIRE

    Swanson, M S; Dreyfuss, G

    1988-01-01

    Several proteins of heterogeneous nuclear ribonucleoprotein (hnRNP) particles display very high binding affinities for different ribonucleotide homopolymers. The specificity of some of these proteins at high salt concentrations and in the presence of heparin allows for their rapid one-step purification from HeLa nucleoplasm. We show that the hnRNP C proteins are poly(U)-binding proteins and compare their specificity to that of the previously described cytoplasmic poly(A)-binding protein. Thes...

  1. Comparison of two methods forecasting binding rate of plasma protein.

    Science.gov (United States)

    Hongjiu, Liu; Yanrong, Hu

    2014-01-01

    By introducing the descriptors calculated from the molecular structure, the binding rates of plasma protein (BRPP) with seventy diverse drugs are modeled by a quantitative structure-activity relationship (QSAR) technique. Two algorithms, heuristic algorithm (HA) and support vector machine (SVM), are used to establish linear and nonlinear models to forecast BRPP. Empirical analysis shows that there are good performances for HA and SVM with cross-validation correlation coefficients Rcv(2) of 0.80 and 0.83. Comparing HA with SVM, it was found that SVM has more stability and more robustness to forecast BRPP.

  2. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    Science.gov (United States)

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  4. Thermostability and reversibility of silver nanoparticle-protein binding.

    Science.gov (United States)

    Wang, Bo; Seabrook, Shane A; Nedumpully-Govindan, Praveen; Chen, Pengyu; Yin, Hong; Waddington, Lynne; Epa, V Chandana; Winkler, David A; Kirby, Jason K; Ding, Feng; Ke, Pu Chun

    2015-01-21

    The interactions between nanoparticles (NPs) and proteins in living systems are a precursor to the formation of a NP-protein "corona" that underlies cellular and organism responses to nanomaterials. However, the thermodynamic properties and reversibility of NP-protein interactions have rarely been examined. Using an automated, high-throughput and temperature-controlled dynamic light scattering (DLS) technique we observed a distinct hysteresis in the hydrodynamic radius of branched polyethyleneimine (BPEI) coated-silver nanoparticles (bAgNPs) exposed to like-charged lysozyme during the processes of heating and cooling, in contrast to the irreversible interactions between bAgNPs and oppositely charged alpha lactalbumin (ALact). Our discrete molecular dynamics (DMD) simulations offered a new molecular insight into the differential structure, dynamics and thermodynamics of bAgNPs binding with the two protein homologs and further revealed the different roles of the capping agents of citrate and BPEI in NP-protein interactions. This study facilitates our understanding of the transformation of nanomaterials in living systems, whose implications range from the field study of nanotoxicology to nanomaterials synthesis, nanobiotechnology and nanomedicine.

  5. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  6. Distinct Structural Features of G Protein-Coupled Receptor Kinase 5 (GRK5) Regulate Its Nuclear Localization and DNA-Binding Ability

    Science.gov (United States)

    Johnson, Laura R.; Robinson, James D.; Lester, Katrina N.; Pitcher, Julie A.

    2013-01-01

    G protein-coupled receptor kinases (GRKs) act to desensitize G protein-coupled receptors (GPCRs). In addition to this role at the plasma membrane, a nuclear function for GRK5, a member of the GRK4 subfamily of GRKs, has been reported. GRK5 phosphorylates and promotes the nuclear export of the histone deacetylase, HDAC5. Here we demonstrate that the possession of a nuclear localization sequence (NLS) is a common feature of GRK4 subfamily members (GRKs 4, 5 and 6). However, the location of the NLS and the ability of these GRKs to bind DNA in vitro are different. The NLSs of GRK5 and 6 bind DNA in vitro, whilst the NLS of GRK4 does not. Using mutants of GRK5 we identify the regions of GRK5 required for DNA-binding in vitro and nuclear localization in cells. The DNA-binding ability of GRK5 requires both the NLS and an N-terminal calmodulin (CaM)-binding site. A functional nuclear export sequence (NES), required for CaM-dependent nuclear export of the kinase, is also identified. Based on our observations we propose a model to explain how nuclear localization of GRK5 may be regulated. Notably, the nuclear localization of GRK5 and 6 is differentially regulated. These results suggest subfamily specific nuclear functions for the GRK4 subfamily members. Identification of GRK specific small molecule inhibitors of nuclear localization and/or function for the GRK4 subfamily may thus be an achievable goal. PMID:23658733

  7. Protein-protein binding before and after photo-modification of albumin

    Science.gov (United States)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  8. Efficient purification of recombinant proteins fused to maltose-binding protein by mixed-mode chromatography.

    Science.gov (United States)

    Cabanne, Charlotte; Pezzini, Jérôme; Joucla, Gilles; Hocquellet, Agnès; Barbot, Caroline; Garbay, Bertrand; Santarelli, Xavier

    2009-05-15

    Two mixed-mode resins were evaluated as an alternative to conventional affinity resins for the purification of recombinant proteins fused to maltose-binding protein (MPB). We purified recombinant MBP, MBP-LacZ and MBP-Leap2 from crude Escherichia coli extracts. Mixed-mode resins allowed the efficient purification of MBP-fused proteins. Indeed, the quantity of purified proteins was significantly higher with mixed-mode resins, and their purity was equivalent to that obtained with affinity resins. By using purified MBP, MBP-LacZ and MBP-Leap2, the dynamic binding capacity of mixed-mode resins was 5-fold higher than that of affinity resins. Moreover, the recovery for the three proteins studied was in the 50-60% range for affinity resins, and in the 80-85% range for mixed-mode resins. Mixed-mode resins thus represent a powerful alternative to the classical amylose or dextrin resins for the purification of recombinant proteins fused to maltose-binding protein.

  9. Light-activated DNA binding in a designed allosteric protein

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Devin; Moffat, Keith; Sosnick, Tobin R. (UC)

    2008-09-03

    An understanding of how allostery, the conformational coupling of distant functional sites, arises in highly evolvable systems is of considerable interest in areas ranging from cell biology to protein design and signaling networks. We reasoned that the rigidity and defined geometry of an {alpha}-helical domain linker would make it effective as a conduit for allosteric signals. To test this idea, we rationally designed 12 fusions between the naturally photoactive LOV2 domain from Avena sativa phototropin 1 and the Escherichia coli trp repressor. When illuminated, one of the fusions selectively binds operator DNA and protects it from nuclease digestion. The ready success of our rational design strategy suggests that the helical 'allosteric lever arm' is a general scheme for coupling the function of two proteins.

  10. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    centrosomal MT array and abnormally long centriole-associated rootlet filaments. Cells lacking EB1 also had stumpy cilia and a disorganized centrosomal MT array, but rootlet filaments appeared normal. Further, live imaging revealed increased release frequency of MTs from the centrosome upon EB1 or EB3......EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends. EB1 plays a role in regulating MT dynamics, localizing other MT-associated proteins to the plus end, and in regulating interactions of MTs with the cell cortex, mitotic kinetochores and different......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...

  11. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Immobilized sialyloligo-macroligand and its protein binding specificity.

    Science.gov (United States)

    Narla, Satya Nandana; Sun, Xue-Long

    2012-05-14

    We report a chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications. Specifically, O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were synthesized by enzymatic α2,3- and α2,6-sialylation of a lactose-containing glycopolymer that was synthesized by cyanoxyl-mediated free radical polymerization. (1)H NMR showed almost quantitative α2,3- and α2,6-sialylation. The O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were printed onto amine-functionalized glass slides via isourea bond formation for glycoarray formation. Specific protein binding activity of the arrays was confirmed with α2,3- and α2,6-sialyl specific binding lectins together with inhibition assays. Further, immobilizing O-cyanate chain-end functionalized sialyllactose-containing glycopolymers onto amine-modified SPR chip via isourea bond formation afforded SPR-based glyco-biosensor, which showed specific binding activity for lectins and influenza viral hemagglutinins (HA). These sialyloligo-macroligand derived glycoarray and SPR-based glyco-biosensor are closely to mimic 3D nature presentation of sialyloligosaccharides and will provide important high-throughput tools for virus diagnosis and potential antiviral drug candidates screening applications.

  13. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains.

    Science.gov (United States)

    Zhang, Jian; Ma, Zhiqiang; Kurgan, Lukasz

    2017-12-15

    Proteins interact with a variety of molecules including proteins and nucleic acids. We review a comprehensive collection of over 50 studies that analyze and/or predict these interactions. While majority of these studies address either solely protein-DNA or protein-RNA binding, only a few have a wider scope that covers both protein-protein and protein-nucleic acid binding. Our analysis reveals that binding residues are typically characterized with three hallmarks: relative solvent accessibility (RSA), evolutionary conservation and propensity of amino acids (AAs) for binding. Motivated by drawbacks of the prior studies, we perform a large-scale analysis to quantify and contrast the three hallmarks for residues that bind DNA-, RNA-, protein- and (for the first time) multi-ligand-binding residues that interact with DNA and proteins, and with RNA and proteins. Results generated on a well-annotated data set of over 23 000 proteins show that conservation of binding residues is higher for nucleic acid- than protein-binding residues. Multi-ligand-binding residues are more conserved and have higher RSA than single-ligand-binding residues. We empirically show that each hallmark discriminates between binding and nonbinding residues, even predicted RSA, and that combining them improves discriminatory power for each of the five types of interactions. Linear scoring functions that combine these hallmarks offer good predictive performance of residue-level propensity for binding and provide intuitive interpretation of predictions. Better understanding of these residue-level interactions will facilitate development of methods that accurately predict binding in the exponentially growing databases of protein sequences. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  15. Immunochemical characterization of the brain glutamate binding protein

    International Nuclear Information System (INIS)

    Roy, S.

    1986-01-01

    A glutamate binding protein (GBP) was purified from bovine and rat brain to near homogeneity. Polyclonal antibodies were raised against this protein. An enzyme-linked-immunosorbent-assay was used to quantify and determine the specificity of the antibody response. The antibodies were shown to strongly react with bovine brain GBP and the analogous protein from rat brain. The antibodies did not show any crossreactivity with the glutamate metabolizing enzymes, glutamate dehydrogenase, glutamine synthetase and glutamyl transpeptidase, however it crossreacted moderately with glutamate decarboxylase. The antibodies were also used to define the possible physiologic activity of GBP in synaptic membranes. The antibodies were shown: (i) to inhibit the excitatory amino-acid stimulation of thiocyanate (SCN)flux, (ii) had no effect on transport of L-Glutamic acid across the synaptic membrane, and (iii) had no effect on the depolarization-induced release of L-glutamate. When the anti-GBP antibodies were used to localize and quantify the GBP distribution in various subcellular fractions and in brain tissue samples, it was found that the hippocampus had the highest immunoreactivity followed by the cerebral cortex, cerebellar cortex and caudate-putamen. The distribution of immunoreactivity in the subcellular fraction were as follows: synaptic membranes > crude mitochondrial fraction > homogenate > myelin. In conclusion these studies suggest that: (a) the rat brain GBP and the bovine brain GBP are immunologically homologous protein, (b) there are no structural similarities between the GBP and the glutamate metabolizing enzymes with the exception of glutamate decarboxylase and (c) the subcellular and regional distribution of the GBP immunoreactivity followed a similar pattern as observed for L-[ 3 H]-binding

  16. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  17. Prediction of protein-protein binding site by using core interface residue and support vector machine

    Directory of Open Access Journals (Sweden)

    Sun Zhonghua

    2008-12-01

    Full Text Available Abstract Background The prediction of protein-protein binding site can provide structural annotation to the protein interaction data from proteomics studies. This is very important for the biological application of the protein interaction data that is increasing rapidly. Moreover, methods for predicting protein interaction sites can also provide crucial information for improving the speed and accuracy of protein docking methods. Results In this work, we describe a binding site prediction method by designing a new residue neighbour profile and by selecting only the core-interface residues for SVM training. The residue neighbour profile includes both the sequential and the spatial neighbour residues of an interface residue, which is a more complete description of the physical and chemical characteristics surrounding the interface residue. The concept of core interface is applied in selecting the interface residues for training the SVM models, which is shown to result in better discrimination between the core interface and other residues. The best SVM model trained was tested on a test set of 50 randomly selected proteins. The sensitivity, specificity, and MCC for the prediction of the core interface residues were 60.6%, 53.4%, and 0.243, respectively. Our prediction results on this test set were compared with other three binding site prediction methods and found to perform better. Furthermore, our method was tested on the 101 unbound proteins from the protein-protein interaction benchmark v2.0. The sensitivity, specificity, and MCC of this test were 57.5%, 32.5%, and 0.168, respectively. Conclusion By improving both the descriptions of the interface residues and their surrounding environment and the training strategy, better SVM models were obtained and shown to outperform previous methods. Our tests on the unbound protein structures suggest further improvement is possible.

  18. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  19. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  20. Salicylate clearance, the resultant of protein binding and metabolism.

    Science.gov (United States)

    Furst, D E; Tozer, T N; Melmon, K L

    1979-09-01

    Steady-state plasma salicylate concentrations and protein binding were examined in 9 normal subjects to determine relationships among daily dose, total and unbound salicylate concentrations, and total and unbound clearances. Aspirin doses ranging from 0.66 to 4.0 mg/kg/hr were given to steady state. Free and total salicylate concentrations were measured with spectrophotometric, fluorimetric, and equilibrium dialysis techniques. Although unbound clearance decreased over the therapeutic range, total clearance was unchanged. The former is a consequence of saturable metabolism; the latter, of saturable plasma protein binding as well as saturable metabolism. The fraction unbound increased linearly with unbound concentration. Clearance determined at 1.8 mg/kg/hr was used to predict levels obtained at higher aspirin doses. Analysis of residuals was used to ascertain the accuracy of the prediction. The coefficient of variation from prediction among subjects was found to be +/- 14%. It is concluded that, in normal subjects, salicylate clearance changes relatively little over the therapeutic range because the increasing fraction unbound compensates for decreasing clearance of unbound drug.

  1. Tannin-binding salivary proteins in three captive rhinoceros species.

    Science.gov (United States)

    Clauss, Marcus; Gehrke, Janin; Hatt, Jean-Michel; Dierenfeld, Ellen S; Flach, Edmund J; Hermes, Robert; Castell, Johanna; Streich, W Juergen; Fickel, Joerns

    2005-01-01

    Tannin-binding salivary proteins (TBSP) are considered to be counter-defences acquired in the course of evolution by animals whose natural forage contains such tannins. As tannins mostly occur in browse material but not in grasses, it is assumed that grazers do not have a need for TBSP. Whereas it has been shown in several non-ungulate species that TBSP can be induced by dietary tannins, their presence or absence in ungulates has, so far, been shown to be a species-specific characteristic independent of dietary manipulations. We investigated saliva from three rhinoceros species from zoological gardens fed comparable, conventional zoo diets. As expected, saliva from white rhinoceroses (Ceratotherum simum, grazer) had lower tannin-binding capacities than that from black rhinoceroses (Diceros bicornis, browser). Surprisingly, however, Indian rhinoceroses (Rhinoceros unicornis), commonly regarded as grazers as well, displayed the highest tannin-binding capacities of the three species investigated. It is speculated that this discrepancy might be a result of an evolutionarily recent switch to a grass-dominated diet in Indian rhinoceroses, and that the black rhinoceros, which is closer related to the white rhinoceros than the Indian species, has evolved an inducible mechanism of TBSP production. In separate trials during which the tannin content of the diets of black rhinoceroses was increased by the addition of either tannic acid or quebracho, the tannin-binding capacity of black rhinoceros saliva was increased to levels within the same range as that of Indian rhinoceroses on the conventional diets. While induction trials in white and Indian rhinoceroses remain to be performed for a full understanding of salivary anti-tannin defence in rhinoceroses, these results are the first report of an induced salivary response to increased dietary tannin levels in an ungulate species.

  2. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    2011-04-01

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  3. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  4. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  5. Electrophilicities and Protein Covalent Binding of Demethylation Metabolites of Colchicine.

    Science.gov (United States)

    Guo, Xiucai; Lin, Dongju; Li, Weiwei; Wang, Kai; Peng, Ying; Zheng, Jiang

    2016-03-21

    Colchicine, an alkaloid existing in plants of Liliaceous colchicum, has been widely used in the treatment of gout and familial Mediterranean fever. The administration of colchicine was found to cause liver injury in humans. The mechanisms of colchicine-induced liver toxicity remain unknown. The objectives of this study were to determine the electrophilicities of demethylation metabolites of colchicine and investigate the protein adductions derived from the reactive metabolites of colchicine. Four demethylated colchicine (1-, 2-, 3-, and 10-DMCs), namely, M1-M4, were detected in colchicine-fortified microsomal incubations. Four N-acetyl cysteine (NAC) conjugates (M5-M8) derived from colchicine were detected in the microsomes in the presence of NAC. M5 and M6 were derived from 10-DMC. M7 resulted from the reaction of 2-DMC or 3-DMC with NAC, and M8 originated from 10-DMC. Microsomal protein covalent binding was observed after exposure to colchicine. Two cysteine adducts (CA-1 and CA-2) derived from 10-DMC were found in proteolytically digested microsomal protein samples after incubation with colchicine. The findings allow us to define the chemical property of demethylation metabolites of colchicine and the interaction between protein and the reactive metabolites of colchicine generated in situ.

  6. Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease

    Science.gov (United States)

    2016-01-01

    Alzheimer's disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid-β and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanistic details of this process remain unknown, but a well-established consequence of protein aggregation is synapse dysfunction and neuronal loss in the AD brain. Different pathways including mitochondrial dysfunction, oxidative stress, inflammation, and metal metabolism have been suggested to be implicated in this process. In particular, a body of evidence suggests that neuronal metal ions such as copper, zinc, and iron play important roles in brain function in health and disease states and altered homeostasis and distribution as a common feature across different neurodegenerative diseases and aging. In this focused review, we overview neuronal proteins that are involved in AD and whose metal binding properties may underlie important biochemical and regulatory processes occurring in the brain during the AD pathophysiological process. PMID:26881049

  7. Isolation and Purification of Thiamine Binding Protein from Mung Bean

    Directory of Open Access Journals (Sweden)

    DWIRINI RETNO GUNARTI

    2013-03-01

    Full Text Available Thiamine has fundamental role in energy metabolism. The organs mostly sensitive to the lack of thiamine levels in the body are the nervous system and the heart. Thiamine deficiency causes symptoms of polyneuritis and cardiovascular diseases. Because of its importance in the metabolism of carbohydrates, we need to measure the levels of thiamine in the body fluids by using an easy and inexpensive way without compromising the sensitivity and selectivity. An option to it is thiamine measurement based on the principle of which is analogous to ELISA, in which a thiamine binding protein (TBP act by replacing antibodies. The presence of TBP in several seeds have been reported by previous researchers, but the presence of TBP in mung beans has not been studied. This study was aimed to isolate and purify TBP from mung bean. The protein was isolated from mung bean through salting out by ammonium sulphate of 40, 70, and 90% (w/v. TBP has a negative charge as shown by cellulose acetate electrophoresis. The result obtained after salting out by ammonium sulphate was further purified bymeans of DEAE-cellulose chromatography and affinity chromatography. In precipitation of 90% of salting out method, one peak protein was obtained by using affinity chromatography. The protein was analyzed by SDS PAGE electrophoresis. The result of SDS PAGE electrophoresis showed that TBP has a molecular weight of 72.63 kDa.

  8. Differential effects of ninaC proteins (p132 and p174) on light-activated currents and pupil mechanism in Drosophila photoreceptors

    NARCIS (Netherlands)

    Hofstee, CA; Henderson, S; Hardie, RC; Stavenga, DG

    1996-01-01

    The Drosophila ninaC locus encodes two retinal specific proteins (p132 and p174) both consisting of a protein kinase joined to a myosin head domain and a C terminal with a calmodulin-binding domain. The role of p132 and p174 was studied via whole-cell recording and through measurements of the pupil

  9. Growth hormone-binding proteins in high-speed cytosols of multiple tissues of the rabbit.

    Science.gov (United States)

    Herington, A C; Ymer, S; Roupas, P; Stevenson, J

    1986-04-11

    Soluble, specific binding protein(s) for growth hormone (GH) have been identified and partially characterized in high-speed cytosolic preparations from a number of rabbit tissues. The binding of 125I-labelled human GH to proteins in liver, heart, adipose tissue, skeletal muscle and kidney cytosols was dependent on time and cytosolic protein concentration. By Scatchard analysis, the binding affinities (KA: (2-7) X 10(9) M-1) were somewhat higher than those generally reported for membrane GH receptors. The binding proteins had a greater specificity for somatotrophic hormones than lactogenic hormones, although the kidney appeared to have, in addition, a lactogen-binding protein. By gel filtration, the Mr of the cytosolic GH-binding protein was approximately 100 000 in all tissues. None of the binding proteins was detectable by the poly(ethylene glycol) precipitation method used widely for soluble hormone receptors. The cytosolic GH-binding proteins also cross-reacted with a monoclonal antibody to the rabbit liver membrane GH receptor. These results indicate the ubiquitous presence of apparently naturally soluble GH-binding proteins in the cytosolic fractions of several tissues in the rabbit. Of great interest is their presence in muscle, where GH receptors or binding proteins have not previously been detected, despite muscle being recognized as a classical GH target tissue.

  10. Calmodulin Gates Aquaporin 0 Permeability through a Positively Charged Cytoplasmic Loop.

    Science.gov (United States)

    Fields, James B; Németh-Cahalan, Karin L; Freites, J Alfredo; Vorontsova, Irene; Hall, James E; Tobias, Douglas J

    2017-01-06

    Aquaporin 0 (AQP0), the major intrinsic protein of the eye lens, plays a vital role in maintaining lens clarity by facilitating the transport of water across lens fiber cell membranes. AQP0 reduces its osmotic water permeability constant (P f ) in response to increases in the external calcium concentration, an effect that is mediated by an interaction with the calcium-binding messenger protein, calmodulin (CaM), and phosphorylation of the CaM-binding site abolishes calcium sensitivity. Despite recent structural characterization of the AQP0-CaM complex, the mechanism by which CaM modulates AQP0 remains poorly understood. By combining atomistic molecular dynamics simulations and oocyte permeability assays, we conclude that serine phosphorylation of AQP0 does not inhibit CaM binding to the whole AQP0 protein. Instead, AQP0 phosphorylation alters calcium sensitivity by modifying the AQP0-CaM interaction interface, particularly at an arginine-rich loop that connects the fourth and fifth transmembrane helices. This previously unexplored loop, which sits outside of the canonical CaM-binding site on the AQP0 cytosolic face, mechanically couples CaM to the pore-gating residues of the second constriction site. We show that this allosteric loop is vital for CaM regulation of the channels, facilitating cooperativity between adjacent subunits and regulating factors such as serine phosphorylation. Similar allosteric interactions may also mediate CaM modulation of the properties of other CaM-regulated proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    International Nuclear Information System (INIS)

    Bojadzsieva, Milka; Kocsar, Laszlo; Kremmer, Tibor

    1985-01-01

    A micromethod was developed to determine the binding of anabolic streoids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline. (L.E.)

  12. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bojadzsieva, M.; Kocsar, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary)); Kremmer, T. (Orszagos Onkologiai Intezet, Budapest (Hungary))

    1985-01-01

    A micromethod was developed to determine the binding of anabolic steroids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline.

  13. Identification of novel DNA binding proteins using DNA affinity chromatography-pulldown

    OpenAIRE

    Jutras, Brandon L; Verma, Ashutosh; Stevenson, Brian

    2012-01-01

    Methods are presented through which one may isolate and identify novel bacterial DNA-binding proteins. Briefly, the DNA sequence of interest is affixed to beads, then incubated with bacterial cytoplasmic extract. Washes with buffers containing non-specific DNA and low salt concentrations will remove non-adhering and low-specificity DNA-binding proteins, while subsequent washes with higher salt concentrations will elute more specific DNA-binding proteins. Eluted proteins may then be identified...

  14. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  15. Growth hormone receptor/binding protein: physiology and function.

    Science.gov (United States)

    Herington, A C; Ymer, S I; Stevenson, J L; Roupas, P

    1994-07-01

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular form(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR.

  16. Growth hormone receptor/binding protein: Physiology and function

    Energy Technology Data Exchange (ETDEWEB)

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P. [Royal Children`s Hospital, Melbourne (Australia)

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  17. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  18. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  19. A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein

    KAUST Repository

    Smirnova, Ekaterina

    2016-08-22

    Background: CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions.

  20. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex

    Science.gov (United States)

    Wang, Haoyong; Chong, Shaorong

    2003-01-01

    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors and , and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein-protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins.

  1. Inhibitory effects of calmodulin antagonists on urinary enzyme excretion in rats after nephrotoxic doses of mercuric chloride

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S.D. Jr.; Cox, J.L.; Giles, R.C. Jr.

    1985-03-01

    Prochlorperazine, a phenothiazine antiemetic, has been reported to protect rats against mercuric chloride (HgCl/sub 2/)-induced nephrotoxicity. Mercuric ion and 12 other divalent metal ions of toxicologic importance inhibit the activity of calmodulin, a ubiquitous intracellular calcium receptor and regulatory protein, at physiologically relevant concentrations. Phenothiazines, including prochlorperazine, are reversible calmodulin antagonists, and as such they interact with divalent calcium at the level of calmodulin. It was of interest therefore to evaluate the comparative effects of several phenothiazines on HgCl/sub 2/-induced nephrotoxicity in rats.

  2. N-Acetylgalactosaminyltransferase 14, a novel insulin-like growth factor binding protein-3 binding partner

    International Nuclear Information System (INIS)

    Wu, Chen; Yao, Guangyin; Zou, Minji; Chen, Guangyu; Wang, Min; Liu, Jingqian; Wang, Jiaxi; Xu, Donggang

    2007-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is known to inhibit cell proliferation and induce apoptosis in IGF-dependent and IGF-independent manners, but the mechanism underlying IGF-independent effects is not yet clear. In a yeast two-hybrid assay, IGFBP-3 was used as the bait to screen a human fetal liver cDNA library for it interactors that may potentially mediate IGFBP-3-regulated functions. N-Acetylgalactosaminyltransferase 14 (GalNAc-T14), a member of the GalNAc-Tases family, was identified as a novel IGFBP-3 binding partner. This interaction involved the ricin-type beta-trefoil domain of GalNAc-T14. The interaction between IGFBP-3 and GalNAc-T14 was reconfirmed in vitro and in vivo, using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assays. Our findings may provide new clues for further study on the mechanism behind the IGF-independent effects of IGFBP-3 promoting apoptosis. The role of GalNAc-T14 as an intracellular mediator of the effects of IGFBP-3 need to be verified in future studies

  3. STRUCTURAL CHARACTERIZATION OF THE RNA BINDING DOMAIN OF HUMAN STEM LOOP BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Maruthi Kashyap

    2013-12-01

    Full Text Available A gene encoding the RNA binding domain (RBD of human stem loop binding protein (SLBP was cloned in pET 28a vector and over-expressed in E. coli codon plus cells. The over-expressed SLBP-RBD carried no tag and aggregated as inclusion bodies in the cell lysate. Inclusion bodies were semi-purified to >85% purity by establishing a method involving detergent washing and subsequently denatured in 8 M urea. Refolding of the denatured RBD was carried out by step dialysis in decreasing concentrations of urea and L-arginine. Refolded SLBP-RBD was analyzed using size exclusion chromatography that revealed its monomeric nature and folded state. Uniformly 15N and 15N,13C labeled SLBP-RBD was prepared at concentrations for solution NMR studies. Approximately, 60% of the sequence specific backbone resonance assignments have been achieved through standard triple resonance NMR experiments. Analyses of secondary chemical shifts reveal presence of a small helical secondary structural elements and large intrinsically disordered regions.

  4. Crystal structure of Methanococcus jannaschii TATA box-binding protein.

    Science.gov (United States)

    Adachi, Naruhiko; Senda, Miki; Natsume, Ryo; Senda, Toshiya; Horikoshi, Masami

    2008-11-01

    As the archaeal transcription system consists of a eukaryotic-type transcription apparatus and bacterial-type regulatory transcription factors, analyses of the molecular interface between the transcription apparatus and regulatory transcription factors are critical to reveal the evolutionary change of the transcription system. TATA box-binding protein (TBP), the central components of the transcription apparatus are classified into three groups: eukaryotic, archaeal-I and archaeal-II TBPs. Thus, comparative functional analysis of these three groups of TBP is important for the study of the evolution of the transcription system. Here, we present the first crystal structure of an archaeal-II TBP from Methanococcus jannaschii. The highly conserved and group-specific conserved surfaces of TBP bind to DNA and TFIIB/TFB, respectively. The phylogenetic trees of TBP and TFIIB/TFB revealed that they evolved in a coupled manner. The diversified surface of TBP is negatively charged in the archaeal-II TBP, which is completely different from the case of eukaryotic and archaeal-I TBPs, which are positively charged and biphasic, respectively. This difference is responsible for the diversification of the regulatory functions of TBP during evolution.

  5. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  6. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, Hiroki; Bourgonje, Vincent J A; Fontes, Magda S C; Raaijmakers, Antonia J A; Driessen, Helen; Jansen, John A.; Van Der Nagel, Roel; Kok, Bart; Van Stuijvenberg, Leonie; Boulaksil, Mohamed; Takemoto, Yoshio; Yamazaki, Masatoshi; Tsuji, Yukiomi; Honjo, Haruo; Kamiya, Kaichiro; Kodama, Itsuo; Anderson, Mark E.; Van Der Heyden, Marcel A G; Van Rijen, Harold V M; van Veen, AAB; Vos, Marc A.

    2016-01-01

    Aim In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  7. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, H.; Bourgonje, V.J.; Fontes, M.S.; Raaijmakers, A.J.; Driessen, H.; Jansen, JA; Nagel, R. van der; Kok, B; Stuijvenberg, L. van; Boulaksil, M.; Takemoto, Y.; Yamazaki, M.; Tsuji, Y.; Honjo, H.; Kamiya, K.; Kodama, I.; Anderson, M.E.; Heyden, M.A. van der; Rijen, H.V. van; Veen, T.A. van; Vos, M.A.

    2016-01-01

    AIM: In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  8. SFS, a Novel Fibronectin-Binding Protein from Streptococcus equi, Inhibits the Binding between Fibronectin and Collagen

    Science.gov (United States)

    Lindmark, Hans; Guss, Bengt

    1999-01-01

    The obligate parasitic bacterium Streptococcus equi subsp. equi is the causative agent of strangles, a serious disease of the upper respiratory tract in horses. In this study we have, using shotgun phage display, cloned from S. equi subsp. equi and characterized a gene, called sfs, encoding a protein termed SFS, representing a new type of fibronectin (Fn)-binding protein. The sfs gene was found to be present in all 50 isolates of S. equi subsp. equi tested and in 41 of 48 S. equi subsp. zooepidemicus isolates tested. The sfs gene is down-regulated during growth in vitro compared to fnz, a previously characterized gene encoding an Fn-binding protein from S. equi subsp. zooepidemicus. Sequence comparisons revealed no similarities to previously characterized Fn-binding proteins, but high scores were obtained against collagen. Besides similarity due to the high content of glycine, serine, and proline residues present in both proteins, there was a nine-residue motif present both in collagen and in the Fn-binding domain of SFS. By searching the Oklahoma S. pyogenes database, we found that this motif is also present in a potential cell surface protein from S. pyogenes. Protein SFS was found to inhibit the binding between Fn and collagen in a concentration-dependent way. PMID:10225899

  9. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions.

    Science.gov (United States)

    Yang, Q; Radebaugh, C A; Kubaska, W; Geiss, G K; Paule, M R

    1995-01-01

    The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF. Images PMID:7501455

  10. Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein

    Directory of Open Access Journals (Sweden)

    Reiber Hansotto

    2012-08-01

    Full Text Available Abstract Background Mannan-binding lectin (MBL, a protein of the innate immune response is attracting increasing clinical interest, in particularly in relation to its deficiency. Due to its involvement in brain diseases, identifying the source of MBL in CSF is important. Analysis of cerebrospinal fluid (CSF can provide data that discriminates between blood-, brain-, and leptomeninges-derived proteins. To detect the source of MBL in CSF we need to consider three variables: the molecular size-dependent concentration gradient between CSF and blood, the variation in transfer between blood and CSF, and the CSF MBL concentration correlation with the albumin CSF/serum quotient (QAlb, i.e., with CSF flow rate. Methods MBL was assayed in samples of CSF and serum with an ELISA, coated with anti MBL antibodies. Routine parameters such as albumin-, immunoglobulin- CSF/serum quotients, oligoclonal IgG and cell count were used to characterize the patient groups. Groups comprised firstly, control patients without organic brain disease with normal CSF and normal barrier function and secondly, patients without inflammatory diseases but with increased QAlb, i.e. with a blood CSF barrier dysfunction. Results MBL concentration in CSF was at least five-fold higher than expected for a molecular-size-dependent passage from blood. Secondly, in a QIgM/QAlb quotient diagram (Reibergram 9/13 cases showed an intrathecal fraction in some cases over 80% of total CSF MBL concentration 3 The smaller inter-individual variation of MBL concentrations in CSF of the control group (CV = 66% compared to the MBL concentrations in serum (CV = 146% indicate an independent source of MBL in CSF. 4 The absolute MBL concentration in CSF increases with increasing QAlb. Among brain-derived proteins in CSF only the leptomeningeal proteins showed a (linear increase with decreasing CSF flow rate, neuronal and glial proteins are invariant to changes of QAlb. Conclusions MBL in CSF is

  11. Peptide microarrays to probe for competition for binding sites in a protein interaction network

    NARCIS (Netherlands)

    Sinzinger, M.D.S.; Ruttekolk, I.R.R.; Gloerich, J.; Wessels, H.; Chung, Y.D.; Adjobo-Hermans, M.J.W.; Brock, R.E.

    2013-01-01

    Cellular protein interaction networks are a result of the binding preferences of a particular protein and the entirety of interactors that mutually compete for binding sites. Therefore, the reconstruction of interaction networks by the accumulation of interaction networks for individual proteins

  12. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S

    1993-01-01

    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one...

  13. Liposome-binding assays to assess specificity and affinity of phospholipid-protein interactions

    NARCIS (Netherlands)

    Julkowska, M.M.; Rankenberg, J.M.; Testerink, C.

    2013-01-01

    Protein-lipid interactions play an important role in cellular protein relocation, activation and signal transduction. The liposome-binding assay is a simple and inexpensive method to examine protein-lipid binding in vitro. The phospholipids used for liposome production are dried and hydrated.

  14. Structural Insights into Membrane Targeting by the Flagellar Calcium-binding Protein (FCaBP) a Myristoylated and Palmitoylated Calcium Sensor in Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    J Wingard; J Ladner; M Vanarotti; A Fisher; H Robinson; K Buchanan; D Engman; J Ames

    2011-12-31

    The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca{sup 2+}-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca{sup 2+}-free state determined at 2.2{angstrom} resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a 'closed conformation' similar to that seen in Ca{sup 2+}-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca{sup 2+}-free and Ca{sup 2+}-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca{sup 2+}-induced conformational changes may control its binding to membrane-bound protein targets..

  15. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    Science.gov (United States)

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  16. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  17. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  18. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  19. Neuronal survival induced by neurotrophins requires calmodulin

    Science.gov (United States)

    Egea, Joaquim; Espinet, Carme; Soler, Rosa M.; Dolcet, Xavier; Yuste, Víctor J.; Encinas, Mario; Iglesias, Montserrat; Rocamora, Nativitat; Comella, Joan X.

    2001-01-01

    It has been reported that phosphoinositide 3-kinase (PI 3-kinase) and its downstream target, protein kinase B (PKB), play a central role in the signaling of cell survival triggered by neurotrophins (NTs). In this report, we have analyzed the involvement of Ca2+ and calmodulin (CaM) in the activation of the PKB induced by NTs. We have found that reduction of intracellular Ca2+ concentration or functional blockade of CaM abolished NGF-induced activation of PKB in PC12 cells. Similar results were obtained in cultures of chicken spinal cord motoneurons treated with brain-derived neurotrophic factor (BDNF). Moreover, CaM inhibition prevented the cell survival triggered by NGF or BDNF. This effect was counteracted by the transient expression of constitutive active forms of the PKB, indicating that CaM regulates NT-induced cell survival through the activation of the PKB. We have investigated the mechanisms whereby CaM regulates the activation of the PKB, and we have found that CaM was necessary for the proper generation and/or accumulation of the products of the PI 3-kinase in intact cells. PMID:11489918

  20. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins.

    Science.gov (United States)

    Arai, Munehito

    2018-01-06

    Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation-condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation-condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.

  1. Molecular cloning of the apoptosis-related calcium-binding protein AsALG-2 in Avena sativa.

    Science.gov (United States)

    Hoat, Trinh Xuan; Nakayashiki, Hitoshi; Yang, Qian; Tosa, Yukio; Mayama, Shigeyuki

    2013-04-01

    Victorin, the host-selective toxin produced by the fungus Cochliobolus victoriae, induces programmed cell death (PCD) in victorin-sensitive oat lines with characteristic features of animal apoptosis, such as mitochondrial permeability transition, chromatin condensation, nuclear DNA laddering and rRNA/mRNA degradation. In this study, we characterized a calcium-binding protein, namely AsALG-2, which might have a role in the victorin-induced PCD. AsALG-2 is homologous to the Apoptosis-Linked Gene ALG-2 identified in mammalian cells. Northern blot analysis revealed that the accumulation of AsALG-2 transcripts increased during victorin-induced PCD, but not during necrotic cell death. Salicylic acid, chitosan and chitin strongly activated the expression of general defence response genes, such as PR-10; however, neither induced cell death nor the accumulation of AsALG-2 mRNA. Pharmacological studies indicated that victorin-induced DNA laddering and AsALG-2 expression were regulated through similar pathways. The calcium channel blocker, nifedipine, moderately inhibited the accumulation of AsALG-2 mRNA during cell death. Trifluoperazine (calmodulin antagonist) and K252a (serine-threonine kinase inhibitor) reduced the victorin-induced phytoalexin accumulation, but did not prevent the victorin-induced DNA laddering or accumulation of AsALG-2 mRNA. Taken together, our investigations suggest that there is a calcium-mediated signalling pathway in animal and plant PCD in common. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  2. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  3. Translation initiation mediated by nuclear cap-binding protein complex.

    Science.gov (United States)

    Ryu, Incheol; Kim, Yoon Ki

    2017-04-01

    In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation. [BMB Reports 2017; 50(4): 186-193].

  4. Is vitamin D binding protein a novel predictor of labour?

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Vitamin D binding protein (VDBP has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4-7, 8-14 and 15-28 days before labour (P<0.05. VDBP concentration was 4.3-fold significantly higher at 0-3 days compared to 15-28 days pre-labour (P<0.05. The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve  = 0.974. This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour.

  5. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  6. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

    Czech Academy of Sciences Publication Activity Database

    Siciliano, P.; He, X. L.; Woodcock, C.; Pickett, J. A.; Field, L. M.; Birkett, M. A.; Kalinová, Blanka; Gomulski, L. M.; Scolari, F.; Gasperi, G.; Malacrida, A. R.; Zhou, J. J.

    2014-01-01

    Roč. 48, May (2014), s. 51-62 ISSN 0965-1748 Institutional support: RVO:61388963 Keywords : medfly * Ceratitis capitata * olfaction * odorant binding protein * pheromone binding protein * pheromone * binding studies * protein expression * electroantennography * GC-EAG * fluorescence displacement Subject RIV: CE - Biochemistry Impact factor: 3.450, year: 2014

  7. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  8. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping.

    Science.gov (United States)

    Ishibashi, Yu; Oura, Shusuke; Umemura, Kazuo

    2017-09-01

    We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH 2 groups (CONH 2 -SWNT) exhibited very strong interactions between the CONH 2 -SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.

  9. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  10. Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae.

    Directory of Open Access Journals (Sweden)

    Preethi Ragunathan

    Full Text Available Lmb is a 34 kDa laminin binding surface adhesin of Streptococcus agalactiae. The structure of Lmb reported by us recently has shown that it consists of a metal binding crevice, in which a zinc ion is coordinated to three highly conserved histidines. To elucidate the structural and functional significance of the metal ion in Lmb, these histidines have been mutated to alanine and single, double and triple mutants were generated. These mutations resulted in insolubility of the protein and revealed altered secondary and tertiary structures, as evidenced by circular dichroism and fluorescence spectroscopy studies. The mutations also significantly decreased the binding affinity of Lmb to laminin, implicating the role played by the metal binding residues in maintaining the correct conformation of the protein for its binding to laminin. A highly disordered loop, proposed to be crucial for metal acquisition in homologous structures, was deleted in Lmb by mutation (ΔLmb and its crystal structure was solved at 2.6 Å. The ΔLmb structure was identical to the native Lmb structure with a bound zinc ion and exhibited laminin binding activity similar to wild type protein, suggesting that the loop might not have an important role in metal acquisition or adhesion in Lmb. Targeted mutations of histidine residues confirmed the importance of the zinc binding crevice for the structure and function of the Lmb adhesin.

  11. A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions

    DEFF Research Database (Denmark)

    Rose, Adam John; Alsted, Thomas Junker; Jensen, Thomas Elbenhardt

    2009-01-01

    Skeletal muscle protein synthesis rate decreases during contractions but the underlying regulatory mechanisms are poorly understood. It was hypothesised that there would be a coordinated regulation of eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1......) phosphorylation by signalling cascades downstream of rises in intracellular [Ca(2+)] and decreased energy charge via AMP activated protein kinase (AMPK) in contracting skeletal muscle. When fast-twitch skeletal muscles were contracted ex vivo using different protocols, the suppression of protein synthesis...... correlated more closely with changes in eEF2 rather than 4EBP1 phosphorylation. Using a combination of Ca(2+) release agents and ATPase inhibitors it was shown that the 60-70% suppression of fast-twitch skeletal muscle protein synthesis during contraction was equally distributed between Ca(2+) and energy...

  12. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  14. A robust assay to measure DNA topology-dependent protein binding affinity.

    Science.gov (United States)

    Litwin, Tamara R; Solà, Maria; Holt, Ian J; Neuman, Keir C

    2015-04-20

    DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.

  15. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  16. CXCL4 is a novel nickel-binding protein and augments nickel allergy.

    Science.gov (United States)

    Kuroishi, T; Bando, K; Tanaka, Y; Shishido, K; Kinbara, M; Ogawa, T; Muramoto, K; Endo, Y; Sugawara, S

    2017-08-01

    Nickel (Ni) is the most frequent metal allergen and induces a TH 1 -dependent type-IV allergy. Although Ni 2+ is considered to bind to endogenous proteins, it currently remains unclear whether these Ni-binding proteins are involved in Ni allergy in vivo. We previously reported the adjuvant effects of lipopolysaccharide (LPS) in a Ni allergy mouse model. As LPS induces a number of inflammatory mediators, we hypothesized that Ni-binding protein(s) are also induced by LPS. The objective of this study was to purify and identify Ni-binding protein(s) from serum taken from LPS-injected mice (referred as LPS serum) and examined the augmenting effects of these Ni-binding protein(s) on Ni allergy in an in vivo model. BALB/cA mice were sensitized with an i.p. injection of NiCl 2 and LPS. Ten days after sensitization, mice were challenged with NiCl 2 by an i.d. injection into ear pinnae. Ni-binding protein(s) were purified by Ni-affinity column chromatography and gel filtration. Lipopolysaccharide serum, but not serum taken from saline-injected mice, augmented ear swelling induced by Ni-allergic inflammation. Ni-binding, but not non-binding fraction, purified from LPS serum augmented Ni-allergic inflammation. Mass spectrometry and Western blotting detected CXCL4 in the active fraction. A batch analysis with Ni-sepharose and a surface plasmon resonance analysis revealed direct binding between CXCL4 and Ni 2+ . Recombinant CXCL4 augmented Ni-allergic inflammation and exerted adjuvant effects at the sensitization phase. These results indicate that CXCL4 is a novel Ni-binding protein that augments Ni allergy at the elicitation and sensitization phases. This is the first study to demonstrate that the Ni-binding protein augments Ni allergy in vivo. © 2017 John Wiley & Sons Ltd.

  17. Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation.

    Science.gov (United States)

    Arvanitis, Demetrios A; Vafiadaki, Elizabeth; Papalouka, Vasiliki; Sanoudou, Despina

    2017-12-01

    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca 2+ concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Assessing protein-ligand docking for the binding of organometallic compounds to proteins.

    Science.gov (United States)

    Ortega-Carrasco, Elisabeth; Lledós, Agusti; Maréchal, Jean-Didier

    2014-01-30

    Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein. Copyright © 2013 Wiley Periodicals, Inc.

  19. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  20. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    Science.gov (United States)

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  1. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  2. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    Science.gov (United States)

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The interaction between anticoagulant protein S and complement regulatory C4b-binding protein (C4BP)

    NARCIS (Netherlands)

    van de Poel, R. H.; Meijers, J. C.; Bouma, B. N.

    2000-01-01

    An important mechanism of regulation of blood coagulation is the anticoagulant protein C pathway. In this pathway, the anticoagulant activity of activated protein C is increased by its cofactor protein S. The cofactor activity of protein S can be regulated by binding to complement regulatory

  4. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires

  5. Standardization for cortisol determination in human blood by competitive protein-binding

    International Nuclear Information System (INIS)

    Okada, H.

    1978-01-01

    Standardization for determination of cortisol from human plasma (17-hydroxycorticosteroids) using competitive protein-binding method is presented. Activated carbon coated with dextrans is used for separation of the hormone-protein complexe and hormone labelled free [pt

  6. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  7. (1)H, (13)C and (15)N resonance assignments of human FK506 binding protein 25.

    Science.gov (United States)

    Prakash, Ajit; Shin, Joon; Yoon, Ho Sup

    2015-04-01

    Human FKBP25, a nuclear protein, is a member of FK506 binding protein family (FKBP) and binds to immunosuppressive drugs such as FK506 and rapamycin. Human FKBP25 interacts with several nuclear proteins and regulates nuclear events. To understand the molecular basis of such interactions, we have performed NMR studies. Here, we report (1)H, (15)N and (13)C resonance assignments of the full-length human FKBP25 protein.

  8. Protein kinase A regulates AKAP250 (gravin) scaffold binding to the β2-adrenergic receptor

    OpenAIRE

    Tao, Jiangchuan; Wang, Hsien-yu; Malbon, Craig C.

    2003-01-01

    A-kinase-anchoring protein 250 (AKAP250; gravin) acts as a scaffold that binds protein kinase A (PKA), protein kinase C and protein phosphatases, associating reversibly with the β2-adrenergic receptor. The receptor-binding domain of the scaffold and the regulation of the receptor–scaffold association was revealed through mutagenesis and biochemical analyses. The AKAP domain found in other members of this superfamily is essential for the scaffold–receptor interactions. Gravin constructs lackin...

  9. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism.

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-04-30

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h ≈ 0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in a significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding.

  10. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  11. Competitive protein binding analysis for thyroxine using Sephadex column (Tetralute)

    International Nuclear Information System (INIS)

    Miyai, Kiyoshi; Katayama, Yoshiaki; Sawazaki, Norio; Ishibashi, Kaichiro; Kawashima, Minoru.

    1975-01-01

    The method of competitive protein binding analysis of thyroxine (T 4 ) using Tetralute kit was evaluated. The net retention was decreased when the procedure of competition and separation was performed at a higher temperature but the final T 4 -I values were constant when the standard and test sera were treated identically. Coefficient of variation (C.V.) was 4% (within-assay) and 6% (between-assay) respectively. However, the T 4 -I values of pooled serum for quality control were slightly lower in earlier experiments in which correction factors (1.03--1.62 in 18 out of 21 assays) were necessary. T 4 -I values were determined by the Tetralute in 155 cases. They were as follows: 4.9+-0.8 μg/dl (euthyroid subjects), 6.4+-1.2 μg/dl (cord serum), 7.1+-1.1 μg/dl (pregnant women). 9.0+-3.6 μg/dl (trophoblastic disease), 13.3+-4.8 μg/dl (Graves' disease), 6.3+-1.6 μg/dl (Plummer's disease), 4 -I values determined by Tetralute and Res-O-Mat T 4 (r=0.96). Following oral administration of Telepaque the serum protein-bound iodine was markedly elevated, while the T 4 -I determined by Tetralute did not change. In vitro addition of diphenylhydantoin (500 μg/ml), salicylate (4 mg/ml) and phenobarbital (1 mg/ml) had no or little effect on T 4 determination by Tetralute. A high concentration of benzbromarone (0.1 mg/ml) caused a higher value of T 4 -I determined by Tetralute when added to a TBG solution but there was only a slight increase when it was added to serum. (auth.)

  12. Characterization of vanadium-binding sites of the vanadium-binding protein Vanabin2 by site-directed mutagenesis.

    Science.gov (United States)

    Ueki, Tatsuya; Kawakami, Norifumi; Toshishige, Masaaki; Matsuo, Koichi; Gekko, Kunihiko; Michibata, Hitoshi

    2009-10-01

    Vanabins are a unique protein family of vanadium-binding proteins with nine disulfide bonds. Possible binding sites for VO2+ in Vanabin2 from a vanadium-rich ascidian Ascidia sydneiensis samea have been detected by nuclear magnetic resonance study, but the metal selectivity and metal-binding ability of each site was not examined. In order to reveal functional contribution of each binding site, we prepared several mutants of Vanabin2 by in vitro site-directed mutagenesis and analyzed their metal selectivity and affinity by immobilized metal-ion affinity chromatography and Hummel Dreyer method. Mutation at K10/R60 (site 1) markedly reduced the affinity for VO2+. Mutation at K24/K38/R41/R42 (site 2) decreased the maximum binding number, but only slightly increased the overall affinity for VO2+. Secondary structure of both mutants was the same as that of the wild type as assessed by circular dichroism spectroscopy. Mutation in disulfide bonds near the site 1 did not affect its high affinity binding capacity, while those near the site 2 decreased the overall affinity for VO2+. These results suggested that the site 1 is a high affinity binding site for VO2+, while the site 2 composes a moderate affinity site for multiple VO2+.

  13. Crystal Structures and Binding Dynamics of Odorant-Binding Protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri.

    Science.gov (United States)

    Northey, Tom; Venthur, Herbert; De Biasio, Filomena; Chauviac, Francois-Xavier; Cole, Ambrose; Ribeiro, Karlos Antonio Lisboa; Grossi, Gerarda; Falabella, Patrizia; Field, Linda M; Keep, Nicholas H; Zhou, Jing-Jiang

    2016-04-22

    Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (-)-α-pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.

  14. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  15. Effects of single-stranded DNA binding proteins on primer extension by telomerase.

    Science.gov (United States)

    Cohen, Shlomit; Jacob, Eyal; Manor, Haim

    2004-08-12

    We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations. Copyright 2004 Elsevier B.V.

  16. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Guangwei Li

    Full Text Available The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications.Two antennae-specific general OBPs (GOBPs of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2 for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1 exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition.Two rGmolGOBPs exhibit different binding characteristics for tested ligands. r

  17. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Li, Guangwei; Chen, Xiulin; Li, Boliao; Zhang, Guohui; Li, Yiping; Wu, Junxiang

    2016-01-01

    The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has

  18. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)

    Science.gov (United States)

    Li, Guangwei; Chen, Xiulin; Li, Boliao; Zhang, Guohui; Li, Yiping; Wu, Junxiang

    2016-01-01

    Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different

  19. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  20. Metal ion coupled protein folding and allosteric motions

    Science.gov (United States)

    Wang, Wei

    2014-03-01

    Many proteins need the help of cofactors for their successful folding and functioning. Metal ions, i.e., Zn2+, Ca2+, and Mg2+ etc., are typical biological cofactors. Binding of metal ions can reshape the energy landscapes of proteins, thereby modifying the folding and allosteric motions. For example, such binding may make the intrinsically disordered proteins have funneled energy landscapes, consequently, ensures their spontaneous folding. In addition, the binding may activate certain biological processes by inducing related conformational changes of regulation proteins. However, how the local interactions involving the metal ion binding can induce the global conformational motions of proteins remains elusive. Investigating such question requires multiple models with different details, including quantum mechanics, atomistic models, and coarse grained models. In our recent work, we have been developing such multiscale methods which can reasonably model the metal ion binding induced charge transfer, protonation/deprotonation, and large conformational motions of proteins. With such multiscale model, we elucidated the zinc-binding induced folding mechanism of classical zinc finger and the calcium-binding induced dynamic symmetry breaking in the allosteric motions of calmodulin. In addition, we studied the coupling of folding, calcium binding and allosteric motions of calmodulin domains. In this talk, I will introduce the above progresses on the metal ion coupled protein folding and allosteric motions. We thank the finacial support from NSFC and the 973 project.

  1. Human papillomavirus type 16 E7 protein inhibits DNA binding by the retinoblastoma gene product.

    OpenAIRE

    Stirdivant, S M; Huber, H E; Patrick, D R; Defeo-Jones, D; McAvoy, E M; Garsky, V M; Oliff, A; Heimbrook, D C

    1992-01-01

    The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growt...

  2. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  3. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    Science.gov (United States)

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  4. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  5. Vitamin D, vitamin D binding protein, lung function and structure in COPD

    DEFF Research Database (Denmark)

    Berg, Isaac; Hanson, Corrine; Sayles, Harlan

    2013-01-01

    Vitamin D and vitamin D binding protein (DBP) have been associated with COPD and FEV1. There are limited data regarding emphysema and vitamin D and DBP.......Vitamin D and vitamin D binding protein (DBP) have been associated with COPD and FEV1. There are limited data regarding emphysema and vitamin D and DBP....

  6. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each...

  7. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  8. A small cellulose binding domain protein (CBD1) is highly variable in the nonbinding amino terminus

    Science.gov (United States)

    The small cellulose binding domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenophile Phytophthora infestans. Transgene expression of the protein in plants has also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. ...

  9. Viral Proteins That Bind Double-Stranded RNA: Countermeasures Against Host Antiviral Responses

    OpenAIRE

    Krug, Robert M.

    2014-01-01

    Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins of influenza A virus and Ebola viruses (EBOVs).

  10. Effects of protein binding on the biodistribution of PEGylated PLGA nanoparticles post oral administration

    CSIR Research Space (South Africa)

    Semete, B

    2012-03-01

    Full Text Available of surface coating with various concentrations of polymeric surfactants (PEG and Pluronics F127) on the in vitro protein binding as well as the tissue biodistribution, post oral administration, of PLGA nanoparticles. The in vitro protein binding varied...

  11. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F. (NIH)

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  12. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  13. Human papillomavirus type 16 E7 protein inhibits DNA binding by the retinoblastoma gene product.

    Science.gov (United States)

    Stirdivant, S M; Huber, H E; Patrick, D R; Defeo-Jones, D; McAvoy, E M; Garsky, V M; Oliff, A; Heimbrook, D C

    1992-05-01

    The human papillomavirus E7 gene can transform murine fibroblasts and cooperate with other viral oncogenes in transforming primary cell cultures. One biochemical property associated with the E7 protein is binding to the retinoblastoma tumor suppressor gene product (pRB). Biochemical properties associated with pRB include binding to viral transforming proteins (E1A, large T, and E7), binding to cellular proteins (E2F and Myc), and binding to DNA. The mechanism by which E7 stimulates cell growth is uncertain. However, E7 binding to pRB inhibits binding of cellular proteins to pRB and appears to block the growth-suppressive activity of pRB. We have found that E7 also inhibits binding of pRB to DNA. A 60-kDa version of pRB (pRB60) produced in reticulocyte translation reactions or in bacteria bound quantitatively to DNA-cellulose. Recombinant E7 protein used at a 1:1 or 10:1 molar ratio with pRB60 blocked 50 or greater than 95% of pRB60 DNA-binding activity, respectively. A mutant E7 protein (E7-Ala-24) with reduced pRB60-binding activity exhibited a parallel reduction in its blocking of pRB60 binding to DNA. An E7(20-29) peptide that blocks binding of E7 protein to pRB60 restored the DNA-binding activity of pRB60 in the presence of E7. Pepti