WorldWideScience

Sample records for binding protein beta

  1. Penicillin-binding proteins and induction of AmpC beta-lactamase.

    OpenAIRE

    Sanders, C C; Bradford, P A; Ehrhardt, A F; Bush, K; Young, K D; Henderson, T A; Sanders, W E

    1997-01-01

    In competition assays for radiolabeled penicillin, penicillin-binding proteins (PBPs) 4, 7a, and 7b showed very high affinities for strong inducers of AmpC beta-lactamase. Loss of PBP 4 resulted in diminished inducibility. This suggests that if PBPs are involved in induction of AmpC beta-lactamase, there is probably a redundancy in function among the different PBPs.

  2. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Science.gov (United States)

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  3. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway. PMID:15556067

  4. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS.

    Directory of Open Access Journals (Sweden)

    Diana Hooi Ping Low

    Full Text Available BACKGROUND: Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP. Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5, is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several

  5. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yue; Meng, Jinyi; Huang, Yuhong; Wu, Jun; Wang, Bo; Ibrahim, Mohammed M.; Tang, Jianwu, E-mail: jianwutdlmedu@163.com

    2014-02-28

    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro.

  6. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    International Nuclear Information System (INIS)

    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro

  7. Molecular cloning and characterisation of a pattern recognition protein, lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis.

    Science.gov (United States)

    Liu, Fengsong; Li, Fuhua; Dong, Bo; Wang, Xiaomei; Xiang, Jianhai

    2009-03-01

    A pattern recognition protein (PRP), lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) cDNA was cloned from the haemocyte of Chinese shrimp Fenneropenaeus chinensis by the techniques of homology cloning and RACE. Analysis of nucleotide sequence revealed that the full-length cDNA of 1,275 bp has an open reading frame of 1,098 bp encoding a protein of 366 amino acids including a 17 amino acid signal peptide. Sequence comparison of the deduced amino acid sequence of F. chinensis LGBP showed a high identity of 94%, 90%, 87%, 72% and 63% with Penaeus monodon BGBP, Litopenaeus stylirostris LGBP, Marsupenaeu japonicus BGBP, Homarus gammarus BGBP and Pacifastacus leniusculus LGBP, respectively. The calculated molecular mass of the mature protein is 39,857 Da with a deduced pI of 4.39. Two putative integrin binding motifs, RGD (Arg-Gly-Asp) and a potential recognition motif for beta-1,3-linkage of polysaccharides were observed in LGBP sequence. RT-PCR analysis showed that LGBP gene expresses in haemocyte and hepatopancreas only, but not in other tissues. Capillary electrophoresis RT-PCR method was used to quantify the variation of mRNA transcription level during artificial infection with heat-killed Vibrio anguillarum and Staphylococcus aureusin. A significant enhancement of LGBP transcription was appeared at 6 h post-injection in response to bacterial infection. These results have provided useful information to understand the function of LGBP in shrimp. PMID:18163220

  8. Expression of CCAAT/Enhancer Binding Protein Beta in Muscle Satellite Cells Inhibits Myogenesis in Cancer Cachexia.

    Directory of Open Access Journals (Sweden)

    François Marchildon

    Full Text Available Cancer cachexia is a paraneoplastic syndrome that causes profound weight loss and muscle mass atrophy and is estimated to be the cause of up to 30% of cancer deaths. Though the exact cause is unknown, patients with cancer cachexia have increased muscle protein catabolism. In healthy muscle, injury activates skeletal muscle stem cells, called satellite cells, to differentiate and promote regeneration. Here, we provide evidence that this mechanism is inhibited in cancer cachexia due to persistent expression of CCAAT/Enhancer Binding Protein beta (C/EBPβ in muscle myoblasts. C/EBPβ is a bzip transcription factor that is expressed in muscle satellite cells and is normally downregulated upon differentiation. However, in myoblasts exposed to a cachectic milieu, C/EBPβ expression remains elevated, despite activation to differentiate, resulting in the inhibition of myogenin expression and myogenesis. In vivo, cancer cachexia results in increased number of Pax7+ cells that also express C/EBPβ and the inhibition of normal repair mechanisms. Loss of C/EBPβ expression in primary myoblasts rescues differentiation under cachectic conditions without restoring myotube size, indicating that C/EBPβ is an important inhibitor of myogenesis in cancer cachexia.

  9. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jin, Aishun [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Immunology, College of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081 (China); Kishi, Hiroyuki, E-mail: immkishi@med.u-toyama.ac.jp [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Muraguchi, Atsushi [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V{alpha}/V{beta

  10. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    International Nuclear Information System (INIS)

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with [3H]inositol. Ca2+ has opposite effects on the formation of [3H]inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of [3H]inositol phosphates is inhibited by Ca2+, action of thrombin is stimulated by Ca2+. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma S on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca2+ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca2+ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein

  11. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma S on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.

  12. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia

    Science.gov (United States)

    Marchildon, F; Fu, D; Lala-Tabbert, N; Wiper-Bergeron, N

    2016-01-01

    CCAAT/enhancer binding protein beta (C/EBPβ), a transcription factor expressed in muscle satellite cells (SCs), inhibits the myogenic program and is downregulated early in differentiation. In a conditional null model in which C/EBPβ expression is knocked down in paired box protein 7+ (Pax7+) SCs, cardiotoxin (CTX) injury is poorly repaired, although muscle regeneration is efficient in control littermates. While myoblasts lacking C/EBPβ can differentiate efficiently in culture, after CTX injury poor regeneration was attributed to a smaller than normal Pax7+ population, which was not due to a failure of SCs to proliferate. Rather, the percentage of apoptotic SCs was increased in muscle lacking C/EBPβ. Given that an injury induced by BaCl2 is repaired with greater efficiency than controls in the absence of C/EBPβ, we investigated the inflammatory response following BaCl2 and CTX injury and found that the levels of interleukin-1β (IL-1β), a proinflammatory cytokine, were robustly elevated following CTX injury and could induce C/EBPβ expression in myoblasts. High levels of C/EBPβ expression in myoblasts correlated with resistance to apoptotic stimuli, while its loss increased sensitivity to thapsigargin-induced cell death. Using cancer cachexia as a model for chronic inflammation, we found that C/EBPβ expression was increased in SCs and myoblasts of tumor-bearing cachectic animals. Further, in cachectic conditional knockout animals lacking C/EBPβ in Pax7+ cells, the SC compartment was reduced because of increased apoptosis, and regeneration was impaired. Our findings indicate that the stimulation of C/EBPβ expression by IL-1β following muscle injury and in cancer cachexia acts to promote SC survival, and is therefore a protective mechanism for SCs and myoblasts in the face of inflammation. PMID:26913600

  13. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein.

    Science.gov (United States)

    Li, Jing; Francisco, Perigio; Zhou, Wenxu; Edner, Christoph; Steup, Martin; Ritte, Gerhard; Bond, Charles S; Smith, Steven M

    2009-09-01

    Of the four chloroplast beta-amylase (BAM) proteins identified in Arabidopsis, BAM3 and BAM4 were previously shown to play the major roles in leaf starch breakdown, although BAM4 apparently lacks key active site residues and beta-amylase activity. Here we tested multiple BAM4 proteins with different N-terminal sequences with a range of glucan substrates and assay methods, but detected no alpha-1,4-glucan hydrolase activity. BAM4 did not affect BAM1, BAM2 or BAM3 activity even when added in 10-fold excess, nor the BAM3-catalysed release of maltose from isolated starch granules in the presence of glucan water dikinase. However, BAM4 binds to amylopectin and to amylose-Sepharose whereas BAM2 has very low beta-amylase activity and poor glucan binding. The low activity of BAM2 may be explained by poor glucan binding but absence of BAM4 activity is not. These results suggest that BAM4 facilitates starch breakdown by a mechanism involving direct interaction with starch or other alpha-1,4-glucan. PMID:19664588

  14. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells.

    Science.gov (United States)

    Dong, Feng; Wu, Hai-Bin; Hong, Jiang; Rechler, Matthew M

    2002-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane. PMID:11807812

  15. CCAAT/Enhancer-Binding Protein \\(\\gamma\\) Is a Critical Regulator of IL-1\\(\\beta\\)-Induced IL-6 Production in Alveolar Epithelial Cells

    OpenAIRE

    Chunguang Yan; Ximo Wang; Jay Cao; Min Wu; Hongwei Gao

    2012-01-01

    CCAAT/enhancer binding protein \\(\\gamma\\) (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBP\\(\\gamma\\) was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBP\\(\\gamma\\) augments the C/EBP\\(\\beta\\) stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBP\\(\\gamma\\) in...

  16. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cheng, Winton; Liu, Chun-Hung; Tsai, Chiung-Hui; Chen, Jiann-Chu

    2005-04-01

    A lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) cDNA was cloned from the haemocyte and hepatopancreas of white shrimp Litopenaeus vannamei using oligonucleotide primers and RT-PCR. Both 3'- and 5'-regions were isolated by rapid amplification of cDNA end RACE method. Analysis of nucleotide sequence revealed that the cDNA clone has an open reading frame of 1101 bp encoding a protein of 367 amino acids including a 17 amino acid signal peptide. The calculated molecular mass of the mature proteins (350 amino acids) is 39.92 kDa with an estimated pI of 4.37. Two putative integrin binding motifs (cell adhesion site), RGD (Arg-Gly-Asp) and a potential recognition motif for beta- (1-->3) linkage of polysaccharides were observed in the LGBP. Sequence comparison showed that LGBP deduced amino acid of L. vannamei has an overall similarity of 95%, 92% and 61% to that of blue shrimp Litopenaeus stylirostris LGBP, tiger shrimp Penaeus monodon BGBP and crayfish Pacifastacus leniusculus LGBP, respectively. Quantitative real-time RT-PCR analysis showed that LGBP transcript in haemocyte of L. vannamei increased in 3- and 6-h post Vibrio alginolyticus injection. PMID:15561560

  17. Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) stimulates prophenoloxidase activating system in Chinese mitten crab (Eriocheir sinensis).

    Science.gov (United States)

    Zhang, Xing; Zhu, You-Ting; Li, Xue-Jie; Wang, Shi-Chuang; Li, Dan; Li, Wei-Wei; Wang, Qun

    2016-08-01

    Melanization mediated by prophenoloxidase (proPO) activating system play an essential role in killing invading microorganisms in invertebrates. Lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) as a pattern recognition protein have been demonstrated to active the proPO cascade in insect and shrimp. In this study, we investigated the role of LGBP in prophenoloxidase cascade-induced melanization in Chinese mitten crab (Eriocheir sinensis). By RT-PCR analysis, EsLGBP was detected in all tested tissues, and showed highest expression in hemocytes, gill, intestine and brain. The expression of EsLGBP was up-regulated in the hemocytes following injections of LPS and β-1, 3-glucan. The recombinant EsLGBP protein (rEsLGBP) was produced via prokaryotic expression system and affinity chromatography. By western blotting, rEsLGBP was discovered to exhibit the ability to bind to all tested microorganisms, including Gram-negative bacteria, Gram-positive bacteria and yeast (Pichia pastoris). Meanwhile we found rEsLGBP has a high binding activity towards microbial immune elicitors such as LPS and β-1, 3-glucan whereas no binding activity is detected with peptidoglycan. Moreover, the effects of RNAi-mediated blockade of EsLGBP were investigated on bacterial counts in the hemolymph and cumulative mortality rate of crabs infected with Vibrio parahaemolyticus in vivo. Further experiments demonstrate that rEsLGBP can trigger the whole hemolymph dependent melanization and stimulate to proPO cascade in vitro. Taken together, these results provide experimental evidence for role of LGBP in innate immunity, especially in the activation of prophenoloxidase activating system. PMID:26995767

  18. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta

    Science.gov (United States)

    Huckert, Mathilde; Stoetzel, Corinne; Morkmued, Supawich; Laugel-Haushalter, Virginie; Geoffroy, Véronique; Muller, Jean; Clauss, François; Prasad, Megana K.; Obry, Frédéric; Raymond, Jean Louis; Switala, Marzena; Alembik, Yves; Soskin, Sylvie; Mathieu, Eric; Hemmerlé, Joseph; Weickert, Jean-Luc; Dabovic, Branka Brukner; Rifkin, Daniel B.; Dheedene, Annelies; Boudin, Eveline; Caluseriu, Oana; Cholette, Marie-Claude; Mcleod, Ross; Antequera, Reynaldo; Gellé, Marie-Paule; Coeuriot, Jean-Louis; Jacquelin, Louis-Frédéric; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Van Hul, Wim; Bertola, Debora; Dollé, Pascal; Verloes, Alain; Mortier, Geert; Dollfus, Hélène; Bloch-Zupan, Agnès

    2015-01-01

    Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder. PMID:25669657

  19. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. I. Importance of hydrophobic interactions in stabilization of beta-hairpin structure.

    Science.gov (United States)

    Skwierawska, Agnieszka; Makowska, Joanna; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A

    2009-06-01

    We previously studied a 16-amino acid-residue fragment of the C-terminal beta-hairpin of the B3 domain (residues 46-61), [IG(46-61)] of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG (46-61) by systematically shortening the peptide by one residue at a time from both the C- and the N-terminus. To determine the structure and stability of two resulting 12- and 14-amino acid-residue peptides, IG(48-59) and IG(47-60), respectively, we carried out circular dichroism, NMR, and calorimetric studies of these peptides in pure water. Our results show that IG(48-59) possesses organized three-dimensional structure stabilized by hydrophobic interactions (Tyr50-Phe57 and Trp48-Val59) at T = 283 and 305 K. At T = 313 K, the structure breaks down because of increased chain entropy, but the turn region is preserved in the same position observed for the structure of the whole protein. The breakdown of structure occurs near the melting temperature of this peptide (T(m) = 310 K) measured by differential scanning calorimetry (DSC). The melting temperature of IG(47-60) determined by DSC is T(m) = 330 K and its structure is similar to that of the native beta-hairpin at all (lower) temperatures examined (283-313 K). Both of these truncated sequences are conserved in all known amino acid sequences of the B domains of the immunoglobulin binding protein G from bacteria. Thus, this study contributes to an understanding of the mechanism of folding of this whole family of proteins, and provides information about the mechanism of formation and stabilization of a beta-hairpin structural element. PMID:19089955

  20. Transforming growth factor-beta1 stimulates the production of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in human bone marrow stromal osteoblast progenitors

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F;

    2001-01-01

    While transforming growth factor-beta1 (TGF-beta1) regulates proliferation and differentiation of human osteoblast precursor cells, the mechanisms underlying these effects are not known. Several hormones and locally acting growth factors regulate osteoblast functions through changes in the insulin......-like growth factors (IGFs) and IGF-binding proteins (IGFBPs). Thus, we studied the effects of TGF-beta1 on IGFs and IGFBPs in human marrow stromal (hMS) osteoblast precursor cells. TGF-beta1 increased the steady-state mRNA level of IGF-I up to 8.5+/-0.6-fold (P...

  1. Phytoestrogens regulate mRNA and protein levels of guanine nucleotide-binding protein, beta-1 subunit (GNB1) in MCF-7 cells.

    Science.gov (United States)

    Naragoni, Srivatcha; Sankella, Shireesha; Harris, Kinesha; Gray, Wesley G

    2009-06-01

    Phytoestrogens (PEs) are non-steroidal ligands, which regulate the expression of number of estrogen receptor-dependent genes responsible for a variety of biological processes. Deciphering the molecular mechanism of action of these compounds is of great importance because it would increase our understanding of the role(s) these bioactive chemicals play in prevention and treatment of estrogen-based diseases. In this study, we applied suppression subtractive hybridization (SSH) to identify genes that are regulated by PEs through either the classic nuclear-based estrogen receptor or membrane-based estrogen receptor pathways. SSH, using mRNA from genistein (GE) treated MCF-7 cells as testers, resulted in a significant increase in GNB1 mRNA expression levels as compared with 10 nM 17beta estradiol or the no treatment control. GNB1 mRNA expression was up regulated two- to fivefold following exposure to 100.0 nM GE. Similarly, GNB1 protein expression was up regulated 12- to 14-fold. GE regulation of GNB1 was estrogen receptor-dependent, in the presence of the anti-estrogen ICI-182,780, both GNB1 mRNA and protein expression were inhibited. Analysis of the GNB1 promoter using ChIP assay showed a PE-dependent association of estrogen receptor alpha (ERalpha) and beta (ERbeta) to the GNB1 promoter. This association was specific for ERalpha since association was not observed when the cells were co-incubated with GE and the ERalpha antagonist, ICI. Our data demonstrate that the levels of G-protein, beta-1 subunit are regulated by PEs through an estrogen receptor pathway and further suggest that PEs may control the ratio of alpha-subunit to beta/gamma-subunits of the G-protein complex in cells. J. Cell. Physiol. 219: 584-594, 2009. (c) 2009 Wiley-Liss, Inc. PMID:19170076

  2. beta-Casein mRNA sequesters a single-stranded nucleic acid-binding protein which negatively regulates the beta-casein gene promoter.

    OpenAIRE

    Altiok, S; Groner, B

    1994-01-01

    beta-Casein gene expression in mammary epithelial cells is under the control of the lactogenic hormones, glucocorticoids, insulin, and prolactin. The hormonal control affects gene transcription, and several regulatory elements in the beta-casein gene promoter between positions -80 and -221 have previously been identified. A region located in the promoter between positions -170 and -221 contains overlapping sequences for negative and positive regulatory elements. A sequence-specific single-str...

  3. Oligomerization and toxicity of A{beta} fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caine, Joanne M., E-mail: Jo.Caine@csiro.au [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Bharadwaj, Prashant R. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Centre for Excellence for Alzheimer' s Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Western Australia (Australia); Sankovich, Sonia E. [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia); Ciccotosto, Giuseppe D. [The Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010 (Australia); Streltsov, Victor A.; Varghese, Jose [CSIRO Materials Science and Engineering and the Preventive Health Flagship, Parkville, Victoria (Australia)

    2011-06-10

    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  4. The CK2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The Ser/Thr kinase CK2 (previously called casein kinase 2) is composed of two catalytic chains (CK2 alpha) attached to a dimer of noncatalytic subunits (CK2 beta). CK2 is involved in suppression of apoptosis, cell survival, and tumorigenesis. To investigate these activities and possibly affect them......, selective CK2 inhibitors are required. An often-used CK2 inhibitor is 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). In a complex structure with human CK2 alpha, DRB binds to the canonical ATP cleft, but additionally it occupies an allosteric site that can be alternatively filled by glycerol....... Inhibition kinetic studies corroborate the dual binding mode of the inhibitor. Structural comparisons reveal a surprising conformational plasticity of human CK2 alpha around both DRB binding sites. After local rearrangement, the allosteric site serves as a CK2 beta interface. This opens the potential to...

  5. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli.

    OpenAIRE

    Lund, B; Lindberg, F; Marklund, B I; Normark, S

    1987-01-01

    Uropathogenic Escherichia coli adhere to uroepithelial cells by their digalactoside alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose [alpha-D-Galp-(1----4)-beta-D-Galp or Gal alpha (1----4)Gal]-binding pili, which are composed of repeating identical subunits. The major subunit (PapA) of these pili is not required for binding, but the papF and papG gene products are essential for adhesion. Transcomplementation analysis between the pap gene cluster and a related gene cluster encoding a ...

  6. Beta-adrenergic stimulation of cFOS via protein kinase A is mediated by cAMP regulatory element binding protein (CREB)-dependent and tissue-specific CREB-independent mechanisms in corticotrope cells.

    Science.gov (United States)

    Boutillier, A L; Barthel, F; Roberts, J L; Loeffler, J P

    1992-11-25

    Catecholamines stimulate proopiomelanocortin (POMC) gene expression in corticotrope cells, but the molecular mechanisms of these effects are not known. While beta-adrenergic receptors stimulate the protein kinase A (PKA) system, the POMC promoter does not have classical cAMP-response elements (CREs). Therefore, we investigated the induction of the c-fos protooncogen, previously shown to increase POMC transcription in AtT20 cells. In this corticotrope-derived cell line, we show that activation of beta-receptors with isoprenaline (Iso) induces a transient rise in c-fos mRNA levels. Gel mobility shift assays with a labeled AP1 consensus sequence (TGACTCA) showed induction of specific binding activity after Iso treatment. Cotransfection experiments with dominant inhibitory PKA mutants and reporter genes containing c-fos promoter sequences showed that c-fos induction by Iso is entirely dependent on a functional PKA activity. Furthermore, we show that beta-receptor induction of c-fos in corticotrophs is mediated by at least two distinct cAMP-responsive sequences. cAMP regulatory element binding (CREB)-dependent induction is observed on the CRE located at -60 bp on the c-fos promoter. A region located in the vicinity of the dyad symetry element (-290) is also found to mediate tissue-specific cAMP induction. Transcriptional activation by this site, although sensitive to PKA antagonism, is not blocked by CREB mutants. PMID:1331087

  7. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin-binding protein G from Streptococcus. IV. Implication for the mechanism of folding of the parent protein.

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanislaw; Liwo, Adam; Scheraga, Harold A

    2010-05-01

    A 34-residue alpha/beta peptide [IG(28-61)], derived from the C-terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C-terminal part (a 16-residue-long fragment) of this peptide, which corresponds to the sequence of the beta-hairpin in the native structure, forms structure similar to the beta-hairpin only at T = 313 K, and the structure is stabilized by non-native long-range hydrophobic interactions (Val47-Val59). On the other hand, the N-terminal part of IG(28-61), which corresponds to the middle alpha-helix in the native structure, is unstructured at low temperature (283 K) and forms an alpha-helix-like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long-range connectivities which would have supported packing between the C-terminal (beta-hairpin) and the N-terminal (alpha-helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726-736), based on Monte-Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. PMID:20049918

  8. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-beta- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures.

    Science.gov (United States)

    Kamanga-Sollo, E; Pampusch, M S; White, M E; Hathaway, M R; Dayton, W R

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-beta superfamily members myostatin and TGF-beta1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-beta1 or myostatin significantly (P Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-beta1 or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-beta1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-beta and myostatin to suppress proliferation of PEMC. PMID:16214131

  9. The shark bile salt 5 beta-scymnol abates acetaminophen toxicity, but not covalent binding.

    Science.gov (United States)

    Slitt, Angela Lucas; Naylor, Lee; Hoivik, J; Manautou, Jose E; Macrides, Theo; Cohen, Steven D

    2004-10-15

    Acetaminophen (APAP) toxicity involves both arylative and oxidative mechanisms. The shark bile salt, 5 beta-scymnol (5beta-S), has been demonstrated to act as an antioxidant and free radical scavenger in vitro. To determine if 5beta-S protects against either APAP-induced hepatic or renal toxicity, 3-4-month-old male Swiss Laca mice were given APAP (500 mg/kg), and 5beta-S (100 mg/kg) was given at 0 and 2 h after APAP. Plasma SDH at 12 h after APAP alone was 1630 U/l and BUN was 19 mg/dl versus 20 U/l and 10 mg/dl, respectively, in controls. Either simultaneous or 2 h delayed treatment with 5beta-S significantly decreased the APAP-induced SDH increase while only the simultaneous pretreatment prevented the BUN elevation. 5beta-S alone did not increase liver glutathione content. Western analysis of APAP covalent binding using anti-APAP antibodies indicated the 5beta-S did not alter protein arylation either qualitatively or quantitatively. These results suggest that 5beta-S treatment did not impair APAP activation and are consistent with 5beta-S protection that likely results from its antioxidant activity. PMID:15363587

  10. Localization and Structure of the Ankyrin-binding Site on [beta] [subscript 2]-Spectrin

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lydia; Abdi, Khadar; Machius, Mischa; Brautigam, Chad; Tomchick, Diana R.; Bennett, Vann; Michaely, Peter; (HHMI); (UTSMC)

    2009-06-08

    Spectrins are tetrameric actin-cross-linking proteins that form an elastic network, termed the membrane skeleton, on the cytoplasmic surface of cellular membranes. At the plasma membrane, the membrane skeleton provides essential support, preventing loss of membrane material to environmental shear stresses. The skeleton also controls the location, abundance, and activity of membrane proteins that are critical to cell and tissue function. The ability of the skeleton to modulate membrane stability and function requires adaptor proteins that bind the skeleton to membranes. The principal adaptors are the ankyrin proteins, which bind to the {beta}-subunit of spectrin and to the cytoplasmic domains of numerous integral membrane proteins. Here, we present the crystal structure of the ankyrin-binding domain of human {beta}{sub 2}-spectrin at 1.95 {angstrom} resolution together with mutagenesis data identifying the binding surface for ankyrins on {beta}{sub 2}-spectrin.

  11. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-beta-glucuronidase fused protein.

    Science.gov (United States)

    Degani, Ofir; Gepstein, Shimon; Dosoretz, Carlos G

    2004-02-01

    Cellulose-binding domains (CBDs) are characterized by their ability to strongly bind to different forms of cellulose. This study examined the use of a recombinant CBD fused to the reporter enzyme beta-glucuronidase (CBD-GUS) to determine the extent of removal of the water-repellent waxy component of cotton fiber cuticles following hydrolytic treatment, i.e., scouring. The CBD-GUS test displayed higher sensitivity and repeatability than conventional water absorb techniques applied in the textile industry. Increases in the levels of CBD-GUS bound to the exposed cellulose correlated to increases in the fabric's hydrophilicity as a function of the severity of the scouring treatment applied, clearly indicating that the amount of bound enzyme increases proportionally with the amount of available binding sites. The binding of CBD-GUS also gave measurable and repeatable results when used on untreated or raw fabrics in comparison with conventional water drop techniques. The quantitative response of the reaction as bound enzyme activity was optimized for fully wettable fabrics. A minimal free enzyme concentration-to-swatch weight ratio of 75:1 was found to be necessary to ensure enzyme saturation (i.e., a linear response), corresponding to a free enzyme-to-bound enzyme ratio of at least 3:5. PMID:14736462

  12. The casein kinase II beta subunit binds to Mos and inhibits Mos activity.

    OpenAIRE

    Chen, M.; D. Li; Krebs, E G; Cooper, J. A.

    1997-01-01

    Mos is a germ cell-specific serine/threonine kinase and is required for Xenopus oocyte maturation. Active Mos stimulates a mitogen-activated protein kinase (MAPK) by directly phosphorylating and activating MAPK kinase (MKK). We report here that the Xenopus homolog of the beta subunit of casein kinase II (CKII beta) binds to and regulates Mos. The Mos-interacting region of CKII beta was mapped to the C terminus. Mos bound to CKII beta in somatic cells ectopically expressing Mos and CKII beta a...

  13. Structural analysis of human complement protein H: homology with C4b binding protein, beta 2-glycoprotein I, and the Ba fragment of B2

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Wetsel, R A; Tack, B F

    1986-01-01

    sequence data, and were used to screen a human liver cDNA library. The largest recombinant plasmid (pH1050), which hybridized with two probes, was further characterized. The cDNA insert of this plasmid contained coding sequence (672 bp) for 224 amino acids of H. The 3' end of this clone had...... a polyadenylated tail preceded by a polyadenylation recognition site (ATTAAA) and a 3'-untranslated region (229 bp). Four regions of internal homology, each about 60 amino acids in length, were observed in the derived protein sequence from this cDNA clone, and a further seven from the tryptic peptide sequences......We report here a partial primary structure for human complement protein H. Tryptic peptides comprising 27% of the H molecule were isolated by conventional techniques and were sequenced (333 amino acid residues). Several mixed-sequence oligonucleotide probes were constructed, based on the peptide...

  14. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  15. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  16. Photoaffinity labeling of the rat plasma vitamin D binding protein with [26,27-3H]-25-hydroxyvitamin D3 3 beta-[N-(4-azido-2-nitrophenyl)glycinate

    International Nuclear Information System (INIS)

    It is well recognized that the vitamin D binding protein (DBP) is important for the transport of vitamin D, 25-hydroxyvitamin D (25-OH-D), and its metabolites. In an attempt to better understand the molecular-binding properties of this ubiquitous protein, we designed and synthesized a photoaffinity analogue of 25-OH-D3 and its radiolabeled counterpart. This analogue, 25-hydroxyvitamin D3 3 beta-[N-(4-azido-2-nitrophenyl)glycinate] (25-OH-D3-ANG), was recognized by the rat DBP and was about 10 times less active than 25-OH-D3 in terms of binding. Incubation of [3H]25-OH-D3 or [3H]25-OH-D3-ANG with rat DBP revealed that both compounds were specifically bound to a protein with a sedimentation coefficient of 4.1 S. Each was displaced with a 500-fold excess of 25-OH-D3. When [3H]25-OH-D3-ANG was exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3, there was no displacement of tritium from the 4.1S peak. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographic analysis of [3H]25-OH-D3-ANG exposed to UV radiation in the presence of rat DBP followed by the addition of a 500-fold excess of 25-OH-D3 revealed one major band with a molecular weight of 52 000. These data provide strong evidence that [3H]25-OH-D3-ANG was covalently linked to the rat DBP. This photoaffinity probe should provide a valuable tool for the analysis of the binding site on this transport protein

  17. Protein Dynamics in an RNA Binding Protein

    Science.gov (United States)

    Hall, Kathleen

    2006-03-01

    Using ^15N NMR relaxation measurements, analyzed with the Lipari-Szabo formalism, we have found that the human U1A RNA binding protein has ps-ns motions in those loops that make contact with RNA. Specific mutations can alter the extent and pattern of motions, and those proteins inevitably lose RNA binding affinity. Proteins with enhanced mobility of loops and termini presumably lose affinity due to increased conformational sampling by those parts of the protein that interact directly with RNA. There is an entropic penalty associated with locking down those elements upon RNA binding, in addition to a loss of binding efficiency caused by the increased number of conformations adopted by the protein. However, in addition to local conformational heterogeneity, analysis of molecular dynamics trajectories by Reorientational Eigenmode Dynamics reveals that loops of the wild type protein undergo correlated motions that link distal sites across the binding surface. Mutations that disrupt correlated motions result in weaker RNA binding, implying that there is a network of interactions across the surface of the protein. (KBH was a Postdoctoral Fellow with Al Redfield from 1985-1990). This work was supported by the NIH (to KBH) and NSF (SAS).

  18. Mechanism of formation of the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions.

    Science.gov (United States)

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A

    2010-02-15

    A 20-residue peptide, IG(42-61), derived from the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using circular dichroism, nuclear magnetic resonance (NMR) spectroscopy at various temperatures and by differential scanning calorimetry (DSC). Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07 mM), which suggests a three-state folding/unfolding process. The results from DSC and NMR measurements suggest the formation of a dynamic network of hydrophobic interactions stabilizing the structure, which resembles a beta-hairpin shape over a wide range of temperatures (283-313 K). Our results show that IG (42-61) possesses a well-organized three-dimensional structure stabilized by long-range hydrophobic interactions (Tyr50 ... Phe57 and Trp48 ... Val59) at T = 283 K and (Trp48 ... Val59) at 305 and 313 K. The mechanism of beta-hairpin folding and unfolding, as well as the influence of peptide length on its conformational properties, are also discussed. PMID:19847914

  19. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  20. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam).

    OpenAIRE

    Gutmann, L; Vincent, S; Billot-Klein, D; Acar, J F; Mrèna, E; Williamson, R.

    1986-01-01

    Compared with cefotaxime, ceftazidime, moxalactam, and aztreonam, ceftriaxone produced the best lytic and bactericidal effects when each was added at about 10 times the MIC to Escherichia coli W7. When each of these antibiotics was added at its MIC, only bacteriostasis occurred, but the simultaneous addition of amdinocillin (mecillinam) was synergistic in causing rapid lysis and bactericidal effects. Induction of lysis of two E. coli mutants containing either a thermosensitive penicillin-bind...

  1. Folding dynamics of a family of beta-sheet proteins

    Science.gov (United States)

    Rousseau, Denis

    2008-03-01

    Fatty acid binding proteins (FABP) consist of ten anti-parallel beta strands and two small alpha helices. The beta strands are arranged into two nearly orthogonal five-strand beta sheets that surround the interior cavity, which binds unsaturated long-chain fatty acids. In the brain isoform (BFABP), these are very important for the development of the central nervous system and neuron differentiation. Furthermore, BFABP is implicated in the pathogenesis of a variety of human diseases including cancer and neuronal degenerative disorders. In this work, site-directed spin labeling combined with EPR techniques have been used to study the folding mechanism of BFABP. In the first series of studies, we labeled the two Cys residues at position 5 and 80 in the wild type protein with an EPR spin marker; in addition, two singly labeled mutants at positions 5 and 80 in the C80A and C5A mutants, respectively, were also produced and used as controls. The changes in the distances between the two residues were examined by a pulsed EPR method, DEER (Double Electron Electron Resonance), as a function of guanidinium hydrochloride concentration. The results were compared with those from CW EPR, circular dichroism and fluorescence measurements, which provide the information regarding sidechain mobility, secondary structure and tertiary structure, respectively. The results will be discussed in the context of the folding mechanism of the family of fatty acid binding proteins.

  2. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K;

    1994-01-01

    , were much lower than expected. ACBP was able to extract hexadecanoyl-CoA from phosphatidylcholine membranes immobilized on a nitrocellulose membrane. The acyl-CoA/ACBP complex formed was able to transport acyl-CoA to mitochondria or microsomes in suspension, or to microsomes immobilized on a...... nitrocellulose membrane, and to donate them to beta-oxidation or glycerolipid synthesis in mitochondria or microsomes, respectively....

  3. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen; Gammeltoft, Steen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  4. Regulation of the myeloperoxidase enhancer binding proteins Pu1, C-EBP alpha, -beta, and -delta during granulocyte-lineage specification.

    OpenAIRE

    Ford, A M; Bennett, C.A; Healy, L E; TOWATARI, M.; Greaves, M F; Enver, T

    1996-01-01

    We have compared the molecular architecture and function of the myeloperoxidase upstream enhancer in multipotential versus granulocyte-committed hematopoietic progenitor cells. We show that the enhancer is accessible in multipotential cell chromatin but functionally incompetent before granulocyte commitment. Multipotential cells contain both Pu1 and C-EBP alpha as enhancer-binding activities. Pu1 is unphosphorylated in both multipotential and granulocyte-committed cells but is phosphorylated ...

  5. Purification and characterization of a cellulose-binding {beta}-glucosidase from cellulose-degrading cultures of phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Lymar, E.S.; Li, B.; Renganathan, V. [Oregon Graduate Institute of Science & Technology, Portland, OR (United States)

    1995-08-01

    Extracellular {beta}-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium was purified by DEAE-Sephadex chromatography, by Sephacryl S-200 chromatography, and by fast protein liquid chromatography (FPLC) using a Mono Q anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of FPLC-purified {beta}-glucosidase indicated the presence of three enzyme forms with molecular weights of 96,000, 98,000, and 114,000. On further fractionation with a microcrystalline cellulose column, the 114,000-molecular-weight {beta}-glucosidase, which had 82% of the {beta}-glucosidase activity, was bound to cellulose. The {beta}-glucosidases with molecular weights of 96,000 and 98,000 did not bind to cellulose. The cellulose-bound {beta}-glucosidase was eluted completely from the cellulose matrix with water. Cellulose-bound {beta}-glucosidase catalyzed p-nitrophenylglucoside hydrolysis, suggesting that the catalytic site is not involved in cellulose binding. When the cellulose-binding form was incubated with papain for 20 h, no decrease in the enzyme activity was observed; however, approximately 74% of the papain-treated glucosidase did not bind to microcrystalline cellulose. SDS-PAGE analysis of the nonbinding glucosidase produced by papain indicated the presence of three bands with molecular weights in the range of 95,000 to 97,000. On the basis of these results, we propose that the low-molecular-weight (96,000 and 98,000) non-cellulose-binding {beta}-glucosidase forms are most probably formed from the higher-molecular-weight (114,000) cellulose-binding {beta}-glucosidase via extracellular proteolytic hydrolysis. Also, it appears that the extracellular {beta}-glucosidase from P. chrysosporium might be organized into two domains, a cellulose-binding domain and a catalytic domain. Kinetic characterization of the cellulose-binding form is also presented. 31 refs., 6 figs., 1 tab.

  6. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  7. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, Gisela K. (Berkeley, CA)

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  8. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling

    DEFF Research Database (Denmark)

    Gherzi, Roberto; Trabucchi, Michele; Ponassi, Marco;

    2006-01-01

    phosphorylates the mRNA decay-promoting factor KSRP at a unique serine residue, induces its association with the multifunctional protein 14-3-3, and prevents KSRP interaction with the exoribonucleolytic complex exosome. This impairs KSRP's ability to promote rapid mRNA decay. Our results uncover an unanticipated...

  9. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yuka; Hagiwara, Natsumi [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan); Radisky, Derek C. [Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32225 (United States); Hirai, Yohei, E-mail: y-hirai@kwansei.ac.jp [Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, 2-1 Gakuen, Sanda 669-1337 Japan (Japan)

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.

  10. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  11. Induction of anti-beta(2)-glycoprotein I autoantibodies in mice by protein H of Streptococcus pyogenes

    NARCIS (Netherlands)

    Van Os, G. M. A.; Meijers, J. C. M.; Agar, C.; Seron, M. V.; Marquart, J. A.; Akesson, P.; Urbanus, R. T.; Derksen, R. H. W. M.; Herwald, H.; Morgelin, M.; De Groot, P. G.

    2011-01-01

    Background: The antiphospholipid syndrome (APS) is characterized by the persistent presence of anti-beta 2-glycoprotein I (beta 2-GPI) autoantibodies. beta 2-GPI can exist in two conformations. In plasma it is a circular protein, whereas it adopts a fish-hook conformation after binding to phospholip

  12. Identification of a region of beta 2-glycoprotein I critical for lipid binding and anti-cardiolipin antibody cofactor activity.

    OpenAIRE

    Hunt, J E; Simpson, R J; Krilis, S A

    1993-01-01

    beta 2-Glycoprotein I (beta 2-GPI), a phospholipid-binding plasma protein, is an absolute requirement (cofactor) for the binding of autoimmune-type anti-cardiolipin (aCL) antibodies to cardiolipin (CL). The nature of this cofactor activity and the specific regions of the molecule involved have not yet been determined. We have identified a preparation of beta 2-GPI that lacks aCL antibody cofactor activity. Analysis of the structural differences between the active and inactive forms enabled id...

  13. Human myometrial adrenergic receptors: identification of the beta-adrenergic receptor by [3H]dihydroalprenolol binding

    International Nuclear Information System (INIS)

    The radioactive beta-adrenergic antagonist [3H] dihydroalprenolol (DHA) binds to particulate preparations of human myometrium in a manner compatible with binding to the beta-adrenergic receptor. The binding of DHA is rapid (attaining equilibrium in 12 minutes), readily reversible (half time = 16 minutes), high affinity (K/sub D/ = 0.50 nM), low capacity (Bmax = 70 fmoles/mg of protein), and stereoselective ([-]-propranolol is 100 times as potent as [+] -propranolol in inhibiting DHA binding). Adrenergic agonists competed for DHA binding sites in a manner compatible with beta-adrenergic interactions and mirrored β2 pharmacologic potencies: isoproterenol > epinephrine >> norepinephrine. Studies in which zinterol, a β2-adrenergic agonist, competed for DHA binding sites in human myometrial particulate indicated that at least 87% of the beta-adrenergic receptors present are β2-adrenergic receptors. Binding of DHA to human myometrial beta-adrenergic receptors provides a tool which may be used in the examination of gonadal hormonal modification of adrenergic response in human uterus as well as in the analysis of beta-adrenergic agents as potentially useful tocolytic agents

  14. Binding capacity of a barley beta-D-glucan to the beta-glucan recognition molecule dectin-1.

    Science.gov (United States)

    Tada, Rui; Adachi, Yoshiyuki; Ishibashi, Ken-ichi; Tsubaki, Kazufumi; Ohno, Naohito

    2008-02-27

    To clarify whether barley beta-glucans exhibit their biological effects via binding to dectin-1, a pivotal receptor for beta-1,3-glucan, the structure of barley beta-glucan E70-S (BBG-70) was unambiguously investigated by NMR spectroscopy and studied for its binding capacity and specificity to dectin-1 by ELISA. NMR spectroscopy confirmed that BBG-70 contains two different linkage glucans, namely, alpha-glucan and beta-glucan, which are not covalently attached to one another. Beta-glucan within BBG-70 is a linear mixed-linkage beta-glucan composed of 1,3- and 1,4-beta-D-glucopyranose residues but does not contain the continuous 1,3-linkage. Competitive ELISA revealed that highly purified barley beta-glucan E70-S (pBBG-70) inhibits the binding of soluble dectin-1 to sonifilan (SPG), a beta-1,3-glucan, although at a concentration higher than that of SPG and laminarin. It was found that barley beta-glucan can be recognized by dectin-1, implying that barley beta-glucan might, at least in part, exhibit its biological effects via the recognition by dectin-1 of the ligand sugar structure, which may be formed by 1,3-beta- and 1,4-beta-glucosyl linkage. PMID:18205312

  15. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads; Nielsen, E H; Kaplan, B; Svehag, S E

    1997-01-01

    beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  16. The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements.

    OpenAIRE

    Marine, J; Winoto, A

    1991-01-01

    The tissue-specific developmental regulation of the alpha, beta, gamma and delta T-cell antigen receptor (TCR) genes is controlled by the corresponding distinct enhancers and their enhancer-binding proteins. To find a common TCR regulatory element, we have studied the ability of the newly described enhancer-binding protein Gata3 to bind to the sequence motif (A/T)GATA(G/A) shared between enhancer elements of all four TCR genes. Gata3 was shown in the chicken to be an enhancer-binding protein ...

  17. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  18. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  19. Synthesis of 25-hydroxyvitamin D sub 3 3. beta. -3 prime -(N-(4-azido-2-nitrophenyl)amino)propyl ether, a second-generation photoaffinity analogue of 25-hydroxyvitamin D sub 3 : Photoaffinity labeling of rat serum vitamin D binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.; Holick, M.F. (Boston Univ. School of Medicine, MA (USA)); Bouillon, R.; Van Baelen, H. (Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Gasthuisberg, Leuven (Belgium))

    1991-05-14

    Vulnerability of 25-hydroxy-(26,27-{sup 3}H)vitamin D{sub 3} 3{beta}-N-(4-azido-2-nitrophenyl)glycinate, a photoaffinity analogue of 25-hydroxyvitamin D{sub 3} (25-OH-D{sub 3}) toward standard conditions of carboxymethylationin promoted the authors to synthesize 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE), a hydrolytically stable photoaffinity analogue of 25-OH-D{sub 3}, and 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE), the radiolabeled counterpart of 25-ANE competes for the 25-OH-D{sub 3} binding site in rat serum vitamin D binding protein (rDBP). On the other hand, UV exposure of a sample of purified rat DBP (rDBP), preincubated in the dark with {sup 3}H-25-ANE, covalently labeled the protein. However, very little covalent labeling was observed in the absence of UV light or in the presence of a large excess of 25-OH-D{sub 3}. These results provide strong evidence for the covalent labeling of the 25-OH-D{sub 3} binding site in rDPB by {sup 3}H-25-ANE.

  20. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    Science.gov (United States)

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  1. Penicillin-Binding Protein Imaging Probes

    OpenAIRE

    Kocaoglu, Ozden; Carlson, Erin E.

    2013-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, the apparent functional redundancy of the ~5–15 proteins that most bacteria possess makes determination of their individual roles difficult. Existing techniques to st...

  2. Calmodulin Binding Proteins and Alzheimer's Disease.

    Science.gov (United States)

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  3. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...... in the EMBL database under the accession numbers R08806 and Z17360, for the ribosomal protein L5 and for A-Raf kinase. All isolated clones except the one for CK2 beta showed no interaction with the catalytic alpha subunit of CK2. A-Raf kinase is a new interesting partner of CK2 beta. The isolated A...

  4. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  5. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  6. The liver fatty acid binding protein--comparison of cavity properties of intracellular lipid-binding proteins.

    Science.gov (United States)

    Thompson, J; Ory, J; Reese-Wagoner, A; Banaszak, L

    1999-02-01

    The crystal and solution structures of all of the intracellular lipid binding proteins (iLBPs) reveal a common beta-barrel framework with only small local perturbations. All existing evidence points to the binding cavity and a poorly delimited 'portal' region as defining the function of each family member. The importance of local structure within the cavity appears to be its influence on binding affinity and specificity for the lipid. The portal region appears to be involved in the regulation of ligand exchange. Within the iLBP family, liver fatty acid binding protein or LFABP, has the unique property of binding two fatty acids within its internalized binding cavity rather than the commonly observed stoichiometry of one. Furthermore, LFABP will bind hydrophobic molecules larger than the ligands which will associate with other iLBPs. The crystal structure of LFABP contains two bound oleate molecules and provides the explanation for its unusual stoichiometry. One of the bound fatty acids is completely internalized and has its carboxylate interacting with an arginine and two serines. The second oleate represents an entirely new binding mode with the carboxylate on the surface of LFABP. The two oleates also interact with each other. Because of this interaction and its inner location, it appears the first oleate must be present before the second more external molecule is bound. PMID:10331654

  7. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  8. beta-1,3-Glucan recognition by an insect pathogen recognition domain causes self-association of protein: carbohydrate complex

    Science.gov (United States)

    In response to invading microorganisms, insect beta-1,3-glucan recognition protein (beta-GRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades associated with the prophenoloxidase (proPO) and Toll pathways; it also agglutinates ...

  9. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  10. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...... very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family....

  11. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  12. Multiple GTP-binding proteins participate in clathrin-coated vesicle- mediated endocytosis

    OpenAIRE

    1993-01-01

    We have examined the effects of various agonists and antagonists of GTP- binding proteins on receptor-mediated endocytosis in vitro. Stage- specific assays which distinguish coated pit assembly, invagination, and coat vesicle budding have been used to demonstrate requirements for GTP-binding protein(s) in each of these events. Coated pit invagination and coated vesicle budding are both stimulated by addition of GTP and inhibited by GDP beta S. Although coated pit invagination is resistant to ...

  13. Structures of Neuroligin-1 And the Neuroligin-1/Neurexin-1beta Complex Reveal Specific Protein-Protein And Protein-Ca**2+ Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Arac, D.; Boucard, A.A.; Ozkan, E.A; Strop, P.; Newell, E.; Sudhof, T.C.; Brunger, A.T.

    2009-05-28

    Neurexins and neuroligins provide trans-synaptic connectivity by the Ca{sup 2+}-dependent interaction of their alternatively spliced extracellular domains. Neuroligins specify synapses in an activity-dependent manner, presumably by binding to neurexins. Here, we present the crystal structures of neuroligin-1 in isolation and in complex with neurexin-1{beta}. Neuroligin-1 forms a constitutive dimer, and two neurexin-1{beta} monomers bind to two identical surfaces on the opposite faces of the neuroligin-1 dimer to form a heterotetramer. The neuroligin-1/neurexin-1{beta} complex exhibits a nanomolar affinity and includes a large binding interface that contains bound Ca{sup 2+}. Alternatively spliced sites in neurexin-1{beta} and in neuroligin-1 are positioned nearby the binding interface, explaining how they regulate the interaction. Structure-based mutations of neuroligin-1 at the interface disrupt binding to neurexin-1{beta}, but not the folding of neuroligin-1 and confirm the validity of the binding interface of the neuroligin-1/neurexin-1{beta} complex. Our results provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.

  14. Structures of Neuroligin-1 And the Neuroligin-1/Neurexin-1 Beta Complex Reveal Specific Protein-Protein And Protein-Ca2+ Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Demet, Arac; Boucard, A.A.; Ozkan, E.A; Strop, P.; Newell, E.; Sudhof, T.C.; Brunger, A.T.

    2009-06-01

    Neurexins and neuroligins provide trans-synaptic connectivity by the Ca{sup 2+}-dependent interaction of their alternatively spliced extracellular domains. Neuroligins specify synapses in an activity-dependent manner, presumably by binding to neurexins. Here, we present the crystal structures of neuroligin-1 in isolation and in complex with neurexin-1{beta}. Neuroligin-1 forms a constitutive dimer, and two neurexin-1{beta} monomers bind to two identical surfaces on the opposite faces of the neuroligin-1 dimer to form a heterotetramer. The neuroligin-1/neurexin-1{beta} complex exhibits a nanomolar affinity and includes a large binding interface that contains bound Ca{sup 2+}. Alternatively spliced sites in neurexin-1{beta} and in neuroligin-1 are positioned nearby the binding interface, explaining how they regulate the interaction. Structure-based mutations of neuroligin-1 at the interface disrupt binding to neurexin-1{beta}, but not the folding of neuroligin-1 and confirm the validity of the binding interface of the neuroligin-1/neurexin-1{beta} complex. Our results provide molecular insights for understanding the role of cell-adhesion proteins in synapse function.

  15. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    OpenAIRE

    Di Sole, Francesca; Vadnagara, Komal; MOE, ORSON W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, a...

  16. Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III.

    Science.gov (United States)

    Raynal, Nicolas; Hamaia, Samir W; Siljander, Pia R-M; Maddox, Ben; Peachey, Anthony R; Fernandez, Rafael; Foley, Loraine J; Slatter, David A; Jarvis, Gavin E; Farndale, Richard W

    2006-02-17

    A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides. PMID:16326707

  17. UV cross-linking of distinct proteins to the PRDII domain of the interferon-beta promoter

    Energy Technology Data Exchange (ETDEWEB)

    Xanthoudakis, S.; Hiscott, J. (Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec (Canada))

    1990-03-30

    The human interferon-beta gene (IFN-beta) is transcriptionally activated in a variety of cell types, mediated in part by a decameric element, designated the PRDII domain (-55 to -64) which is the target for the transcription factor NF-kappa B. In the present study, we have examined factor binding to the PRDII domain in three cell lines (HeLa, U937, Jurkat) following treatment with known inducers of IFN-beta transcription and NF-kappa B binding activity. UV cross-linking analysis has revealed that in all 3 cell types two inducible proteins of 58 kD and 69 kD and one constitutive protein of 48 kD bind to the PRDII domain. These experiments suggest that multiple proteins may interact with this element to regulate IFN-beta gene transcription.

  18. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is...

  19. Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins

    DEFF Research Database (Denmark)

    Kusk, M; Ahmed, R; Thomsen, B;

    1999-01-01

    Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric alpha2beta2 structure. For the formation of this tetrameric complex a beta-alpha dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2beta deletion mutants, we mapped domains involved...... in alpha-beta and beta-beta interactions. We also detected an intramolecular beta interaction within the amino acid stretch 132-165. Using CK2beta as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative...... tumor suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase beta subunit....

  20. Colloidal gold immunolabeling of immunoglobulin-binding sites and beta antigen in group B streptococci.

    OpenAIRE

    Coleman, S E; Brady, L. J.; Boyle, M D

    1990-01-01

    We have characterized the immunoglobulin A (IgA)-Fc-binding properties and beta-antigen expression of several strains of group B streptococci by using ultrastructural immunocytochemistry. Colloidal gold-labeled tracers were used with intact and sectioned bacteria in order to gain information regarding the location and distribution of cell surface and cytoplasmic IgA-Fc-binding molecules and beta antigen. Colloidal gold (5- or 15-nm particles) was conjugated to IgA to characterize IgA-binding ...

  1. Affinity purification of proteins binding to GST fusion proteins.

    Science.gov (United States)

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  2. Treponema pallidum Fibronectin-Binding Proteins

    OpenAIRE

    Cameron, Caroline E.; Brown, Elizabeth L.; Kuroiwa, Janelle M. Y.; Schnapp, Lynn M.; Brouwer, Nathan L.

    2004-01-01

    Putative adhesins were predicted by computer analysis of the Treponema pallidum genome. Two treponemal proteins, Tp0155 and Tp0483, demonstrated specific attachment to fibronectin, blocked bacterial adherence to fibronectin-coated slides, and supported attachment of fibronectin-producing mammalian cells. These results suggest Tp0155 and Tp0483 are fibronectin-binding proteins mediating T. pallidum-host interactions.

  3. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    OpenAIRE

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G; Card, Joseph

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers 1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ protein...

  4. A homeodomain protein binds to. gamma. -globin gene regulatory sequences

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, D.; Ducksworth, J.; Eves, E.; Gomes, G.; Keller, M.; Heller, P.; DeSimone, J. (Univ. of Illinois, Chicago (United States) Veterans Administration Westside Medical Center, Chicago, IL (United States))

    1991-08-15

    Developmental regulation of {gamma}-globin gene expression probably occurs through developmental-stage-specific trans-acting factors able to promote the interaction of enhancer elements located in the far upstream locus control region with regulatory elements in the {gamma} gene promoters and 3{prime}{sup A}{gamma} enhancer located in close proximity to the genes. The authors have detected a nuclear protein in K562 and baboon fetal bone marrow nuclear extracts capable of binding to A+T-rich sequences in the locus control region, {gamma} gene promoter, and 3{prime} {sup A}{gamma} enhancer. SDS/polyacrylamide gel analysis of the purified K562 binding activity revealed a single protein of 87 kDa. A K562 cDNA clone was isolated encoding a {beta}-galactosidase fusion protein with a DNA binding specificity identical to that of the K562/fetal bone marrow nuclear protein. The cDNA clone encodes a homeodomain homologous to the Drosophila antennapedia protein.

  5. Coexistence of beta 1- and beta 2-adrenoceptors in the rabbit heart: quantitative analysis of the regional distribution by (-)-3H-dihydroalprenolol binding

    International Nuclear Information System (INIS)

    We determined the amount of beta 1- and beta 2-adrenoceptors in right and left atria and ventricles of rabbits. For this purpose inhibition of specific (-)-3H-dihydroalprenolol [(-)-3H-DHA] binding (5 nM) by beta 1-selective (practolol, metoprolol) and beta 2-selective (zinterol, IPS 339) adrenergic drugs was determined and analyzed by pseudo-Scatchard (Hofstee) plots. For both atria, inhibition of binding by the four selective beta-adrenergic drugs resulted in non-linear Hofstee plots, suggesting the coexistence of both beta-adrenoceptor subtypes. From these plots we calculated a beta 1:beta 2-adrenoceptor ratio of 72:28 for the right atrium and of 82:18 for the left. In contrast, only a very small amount of beta 2-adrenoceptors (approximately 5-7% of the total beta-adrenoceptor population) could be detected in the ventricles. For comparison we analyzed the inhibition of specific (-)-3H-DHA binding in tissues with homogeneous population of beta-adrenoceptors (beta 1:guinea pig left ventricle; beta 2: cerebellum of mature rats). For both tissues the four selective beta-adrenergic drugs showed linear Hofstee plots, demonstrating that in tissues with homogeneous beta-receptor population interaction of each drug with the receptor followed simple mass-action kinetics. We conclude that beta 1- and beta 2-adrenoceptors coexist in rabbit atria while the ventricles are predominantly endowed the beta 1-adrenoceptors

  6. Coexistence of beta 1- and beta 2-adrenoceptors in the rabbit heart: quantitative analysis of the regional distribution by (-)-/sup 3/H-dihydroalprenolol binding

    Energy Technology Data Exchange (ETDEWEB)

    Brodde, O.E.; Leifert, F.J.; Krehl, H.J.

    1982-01-01

    We determined the amount of beta 1- and beta 2-adrenoceptors in right and left atria and ventricles of rabbits. For this purpose inhibition of specific (-)-/sup 3/H-dihydroalprenolol ((-)-/sup 3/H-DHA) binding (5 nM) by beta 1-selective (practolol, metoprolol) and beta 2-selective (zinterol, IPS 339) adrenergic drugs was determined and analyzed by pseudo-Scatchard (Hofstee) plots. For both atria, inhibition of binding by the four selective beta-adrenergic drugs resulted in non-linear Hofstee plots, suggesting the coexistence of both beta-adrenoceptor subtypes. From these plots we calculated a beta 1:beta 2-adrenoceptor ratio of 72:28 for the right atrium and of 82:18 for the left. In contrast, only a very small amount of beta 2-adrenoceptors (approximately 5-7% of the total beta-adrenoceptor population) could be detected in the ventricles. For comparison we analyzed the inhibition of specific (-)-/sup 3/H-DHA binding in tissues with homogeneous population of beta-adrenoceptors (beta 1:guinea pig left ventricle; beta 2: cerebellum of mature rats). For both tissues the four selective beta-adrenergic drugs showed linear Hofstee plots, demonstrating that in tissues with homogeneous beta-receptor population interaction of each drug with the receptor followed simple mass-action kinetics. We conclude that beta 1- and beta 2-adrenoceptors coexist in rabbit atria while the ventricles are predominantly endowed the beta 1-adrenoceptors.

  7. Evidence for serotonin binding in vitro by platelet factor 4 and beta-thromboglobulin

    International Nuclear Information System (INIS)

    Evidence is presented for in vitro high affinity binding of serotonin (5-HT) by beta-thromboglobulin (beta TG) and platelet factor 4 (PF4) from human blood. Results include: 1) identification by radioimmunoassay of PF4 in specifically bound material obtained by 5-HT affinity chromatography of human platelet extracts; 2) binding of 72% and 6% of radiolabelled PF4 on 5-HT and control affinity columns, respectively; and 3) binding of approximately 8 moles of 5-HT per mole of purified beta TG in the presence of ferrous ion and heparin in ultrafiltration studies, with Scatchard analysis indicating a dissociation constant of about 4 X 10(-8) M

  8. Evidence for serotonin binding in vitro by platelet factor 4 and beta-thromboglobulin.

    Science.gov (United States)

    Heemstra, V L

    1983-02-01

    Evidence is presented for in vitro high affinity binding of serotonin (5-HT) by beta-thromboglobulin (beta TG) and platelet factor 4 (PF4) from human blood. Results include: 1) identification by radioimmunoassay of PF4 in specifically bound material obtained by 5-HT affinity chromatography of human platelet extracts; 2) binding of 72% and 6% of radiolabelled PF4 on 5-HT and control affinity columns, respectively; and 3) binding of approximately 8 moles of 5-HT per mole of purified beta TG in the presence of ferrous ion and heparin in ultrafiltration studies, with Scatchard analysis indicating a dissociation constant of about 4 X 10(-8) M. PMID:6189240

  9. Evidence for serotonin binding in vitro by platelet factor 4 and beta-thromboglobulin

    Energy Technology Data Exchange (ETDEWEB)

    Heemstra, V.L.

    1983-02-01

    Evidence is presented for in vitro high affinity binding of serotonin (5-HT) by beta-thromboglobulin (beta TG) and platelet factor 4 (PF4) from human blood. Results include: 1) identification by radioimmunoassay of PF4 in specifically bound material obtained by 5-HT affinity chromatography of human platelet extracts; 2) binding of 72% and 6% of radiolabelled PF4 on 5-HT and control affinity columns, respectively; and 3) binding of approximately 8 moles of 5-HT per mole of purified beta TG in the presence of ferrous ion and heparin in ultrafiltration studies, with Scatchard analysis indicating a dissociation constant of about 4 X 10(-8) M.

  10. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  11. Liver Fatty Acid Binding Protein and Obesity

    OpenAIRE

    Atshaves, B.P.; Martin, G G; Hostetler, H.A.; McIntosh, A.L.; Kier, A B; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them f...

  12. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M

    2002-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1 ...

  13. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.

    OpenAIRE

    Kubota, Y; Nash, R. A.; Klungland, A; Schär, P; Barnes, D E.; Lindahl, T

    1996-01-01

    Repair of a uracil-guanine base pair in DNA has been reconstituted with the recombinant human proteins uracil-DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase beta and DNA ligase III. The XRCC1 protein, which is known to bind DNA ligase III, is not absolutely required for the reaction but suppresses strand displacement by DNA polymerase beta, allowing for more efficient ligation after filling of a single nucleotide patch. We show that XRCC1 interacts directly with DNA polym...

  14. Nickel binding sites in histone proteins

    OpenAIRE

    Zoroddu, Maria Antonietta; Peana, Massimiliano Francesco; Solinas, Costantino; Medici, Serenella

    2012-01-01

    Nickel compounds are well known as human carcinogens, though the molecular events that are responsible for this are not well understood. It has been proposed that a crucial element in the mechanism of carcinogenesis is the binding of Ni(II) ions within the cell nucleus. It is known that DNA polymer binds Ni(II) only weakly, leaving the proteins of the cell nucleus as the likely Ni(II) targets. Being histone proteins the most abundant among them, they can be considered the primary sites fo...

  15. Ice-Binding Proteins and Their Function.

    Science.gov (United States)

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  16. Antibodies against the calcium-binding protein

    International Nuclear Information System (INIS)

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca2+ within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind 45Ca2+ and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein

  17. Signal transduction by guanine nucleotide binding proteins.

    Science.gov (United States)

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  18. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  19. Protein-protein binding before and after photo-modification of albumin

    Science.gov (United States)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  20. The structure of the ankyrin-binding site of [beta]-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Stabach, Paul R.; Simonovic, Ivana; Ranieri, Miranda A.; Aboodi, Michael S.; Steitz, Thomas A.; Simonovic, Miljan; Morrow, Jon S.; (Yale); (HHMI)

    2009-09-02

    Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of {beta}I-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the {beta}I-spectrin 14,15 di-repeat unit to 2.1 {angstrom} resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64{sup o}) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.

  1. Odorant-binding proteins in insects.

    Science.gov (United States)

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  2. Quantifying drug-protein binding in vivo

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS

  3. GTP binding to the. beta. -subunit of tubulin is greatly reduced in Alzheimers disease

    Energy Technology Data Exchange (ETDEWEB)

    Khatoon, S.; Slevin, J.T.; Haley, B.E.

    1987-05-01

    A decrease occurs (80-100%) in the (/sup 32/P)8N/sub 3/GTP photoinsertion into a cytosolic protein (55K M/sub r/) of Alzheimer's (AD) brain, tentatively identified as the ..beta..-subunit of tubulin (co-migration with purified tubulin, concentration dependence of interaction with GTP, ATP and their 8-azido photoprobes, and similar effects of Ca/sup 2 +/ and EDTA on photoinsertion). This agrees with prior observations of (/sup 32/P)8N/sub 3/GTP interactions with brain tubulin and a recent report on faulty microtubular assembly in AD brain. The decrease in (/sup 32/P)8N/sub 3/GTP photoinsertion into the 55K M/sub r/ protein of AD brain was in contrast with other photolabeled proteins, which remained at equal levels in AD and age-matched normal brain tissues. The 55K and 45K M/sub r/ were the two major (/sup 32/P)8N/sub 3/GTP photoinsertion species in non-AD brain. Of 5 AD brains, the photoinsertion of (/sup 32/P)8N/sub 3/GTP into the 55K M/sub r/ region was low or absent in 4 (55K/45K=0.1); one was 75% below normals (55K/45K=0.24). Total protein migrating at 55K M/sub r/ was similar in AD and controls. AD brain tubulin, while present, has its exchangeable GTP binding site on ..beta..-tubulin blocked/modified such that (/sup 32/P)8N/sub 3/GTP cannot interact normally with this site.

  4. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  5. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert; Rydström, Jan

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  6. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    NARCIS (Netherlands)

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, G; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell. Microbiol

  7. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  8. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  9. Intramitochondrial localization of universal minicircle sequence-binding protein, a trypanosomatid protein that binds kinetoplast minicircle replication origins.

    Science.gov (United States)

    Abu-Elneel, K; Robinson, D R; Drew, M E; Englund, P T; Shlomai, J

    2001-05-14

    Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding protein (UMSBP), a sequence-specific DNA-binding protein. This protein, encoded by a nuclear gene, localizes within the cell's single mitochondrion. Using immunofluorescence, we found that UMSBP localizes exclusively to two neighboring sites adjacent to the face of the kDNA disk nearest the cell's flagellum. This site is distinct from the two antipodal positions at the perimeter of the disk that is occupied by DNA polymerase beta, topoisomerase II, and a structure-specific endonuclease. Although we found constant steady-state levels of UMSBP mRNA and protein and a constant rate of UMSBP synthesis throughout the cell cycle, immunofluorescence indicated that UMSBP localization within the kinetoplast is not static. The intramitochondrial localization of UMSBP and other kDNA replication enzymes significantly clarifies our understanding of the process of kDNA replication. PMID:11352934

  10. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    OpenAIRE

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  11. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  12. Protein kinase Cbeta mediates hepatic induction of sterol-regulatory element binding protein-1c by insulin

    OpenAIRE

    Yamamoto, Takashi; Watanabe, Kazuhisa; Inoue, Noriyuki; Nakagawa, Yoshimi; Ishigaki, Naomi; Matsuzaka, Takashi; Takeuchi, Yoshinori; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Suzuki, Hiroaki; Yahagi, Naoya; Gotoda, Takanari; Yamada, Nobuhiro; Shimano, Hitoshi

    2010-01-01

    Sterol-regulatory element binding protein-1c (SREBP-1c) is a transcription factor that controls lipogenesis in the liver. Hepatic SREBP-1c is nutritionally regulated, and its sustained activation causes hepatic steatosis and insulin resistance. Although regulation of SREBP-1c is known to occur at the transcriptional level, the precise mechanism by which insulin signaling activates SREBP-1c promoter remains to be elucidated. Here we show that protein kinase C beta (PKCbeta) is a key mediator o...

  13. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  14. Protein and ligand adaptation in a retinoic acid binding protein.

    OpenAIRE

    Pattanayek, R.; Newcomer, M E

    1999-01-01

    A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any ...

  15. Dissection of the Critical Binding Determinants of Cellular Retinoic Acid Binding Protein II by Mutagenesis and Fluorescence Binding Assay

    OpenAIRE

    Vasileiou, Chrysoula; Lee, Kin Sing Stephen; Crist, Rachael M.; Vaezeslami, Soheila; Goins, Sarah M.; Geiger, James H.; Borhan, Babak

    2009-01-01

    The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by ...

  16. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  17. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  18. Prolyl hydroxylation of collagen type I is required for efficient binding to integrin alpha 1 beta 1 and platelet glycoprotein VI but not to alpha 2 beta 1.

    Science.gov (United States)

    Perret, Stéephanie; Eble, Johannes A; Siljander, Pia R-M; Merle, Christine; Farndale, Richard W; Theisen, Manfred; Ruggiero, Florence

    2003-08-01

    Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I. PMID:12771137

  19. Beta.-glucosidase coding sequences and protein from orpinomyces PC-2

    Science.gov (United States)

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong; Ximenes, Eduardo A.

    2001-02-06

    Provided is a novel .beta.-glucosidase from Orpinomyces sp. PC2, nucleotide sequences encoding the mature protein and the precursor protein, and methods for recombinant production of this .beta.-glucosidase.

  20. Alternative polyadenylation and RNA-binding proteins.

    Science.gov (United States)

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  1. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.; (Duke)

    2010-05-25

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.

  2. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    Science.gov (United States)

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  3. Effects of stress and. beta. -funal trexamine pretreatment on morphine analgesia and opioid binding in rats

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.U.; Andrews, J.S.; Hiller, J.M.; Simon, E.J.; Holtzman, S.G.

    1987-12-28

    This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opiods which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 yr or unstressed were injected ICV with either saline or 2.5 ..mu..g of ..beta..-funaltrexamine (..beta..-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia or were sacrificed and opioid binding in brain was determined. (/sup 3/H)D-Ala/sup 2/NMePhe/sup 4/-Gly/sup 5/(ol)enkephalin (DAGO) served as a specific ligand for mu-opioid receptors, and (/sup 3/H)-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. ..beta..-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with ..beta..-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received ..beta..-FNA while unstressed. ..beta..-FNA caused small and similar decreases in (/sup 3/H)-DAGO binding in brain of both stressed and unstressed animals. 35 references, 2 figures, 2 tables.

  4. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    Science.gov (United States)

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane

    2016-01-01

    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.

  5. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores.

    Science.gov (United States)

    Arbor, Sage C; LaFontaine, Mike; Cumbay, Medhane

    2016-03-01

    Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  6. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.; Rodrigues de Miranda, J.F.; Beld, A.J.; Lammers, J.W.J.; van Ginneken, C.A.M.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/- and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.

  7. Isolation of a Thiamine-binding Protein from Rice Germ and Distribution of Similar Proteins.

    Science.gov (United States)

    Shimizu, M; Yoshida, T; Toda, T; Iwashima, A; Mitsunaga, T

    1996-01-01

    A thiamine-binding protein was purified from rice germ (Oryza sativa L.) by extraction, salting-out with ammonium sulfate, and column chromatography. From the results of molecular mass, Kd and Bmax values for thiamine-binding, binding specificity for thiamine phosphates and analog, the protein was suggested to be identical to the thiamine-binding protein in rice bran. The thiamine-binding protein w as more efficiently purified from rice germ than from rice bran. The protein was rich in glutamic acid (and/or glutamine) and glycine. The protein did not show immunological similarity to thiamine-binding proteins in buckwheat and sesame seeds. However proteins similar to the thiamine-binding protein from rice germ existed in gramineous seeds. They were suggested to have thiamine-binding activity and to be of the same molecular mass as the thiamine-binding protein. PMID:27299548

  8. Identification of Treponema pallidum penicillin-binding proteins.

    OpenAIRE

    Cunningham, T M; Miller, J N; Lovett, M A

    1987-01-01

    Penicillin-binding proteins of 180, 89, 80, 68, 61, 41, and 38 kilodaltons were identified in Treponema pallidum (Nichols) by their covalent binding of [35S]benzylpenicillin. Penicillin-binding proteins are localized in the plasma membranes of many bacterial species and may serve as useful markers for determining plasma membrane intactness in T. pallidum fractionation studies.

  9. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    OpenAIRE

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    In humans, three soluble extracellular cobalamin-binding proteins; transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are involved in the uptake and transport of cobalamin. In this study, we investigate a cobalamin-binding protein from zebrafish (Danio rerio) and summarize current knowledge concerning the phylogenetic evolution of kindred proteins. We identified a cobalamin binding capacity in zebrafish protein extracts (8.2 pmol/fish) and ambient water (13.5 pmol/fish) associa...

  10. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Science.gov (United States)

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  11. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  12. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  13. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander; Wei, Anzhi; Emanuel, Stuart L.; Gupta, Ruchira Das; Janjua, Ahsen; Cheng, Lin; Murdock, Melissa; Abramczyk, Bozena; Cohen, Daniel; Lin, Zheng; Morin, Paul; Davis, Jonathan H.; Dabritz, Michael; McLaughlin, Douglas C.; Russo, Katie A.; Chao, Ginger; Wright, Martin C.; Jenny, Victoria A.; Engle, Linda J.; Furfine, Eric; Sheriff, Steven (BMS)

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.

  14. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras.

    OpenAIRE

    Bennett, A.M.; Tang, T. L.; SUGIMOTO, S; Walsh, C T; Neel, B G

    1994-01-01

    Protein-tyrosine-phosphatase SHPTP2 (Syp/PTP-1D/PTP2C) is the homologue of the Drosophila corkscrew (csw) gene product, which transmits positive signals from receptor tyrosine kinases. Likewise, SHPTP2 has been implicated in positive signaling from platelet-derived growth factor receptor beta (PDGFR). Upon PDGF stimulation, SHPTP2 binds to the PDGFR and becomes tyrosine-phosphorylated. We have identified tyrosine-542 (pY542TNI) as the major in vivo site of SHPTP2 tyrosine phosphorylation. The...

  15. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase.

    Science.gov (United States)

    Yu, Zhong; Genest, Paul-André; ter Riet, Bas; Sweeney, Kate; DiPaolo, Courtney; Kieft, Rudo; Christodoulou, Evangelos; Perrakis, Anastassis; Simmons, Jana M; Hausinger, Robert P; van Luenen, Henri G A M; Rigden, Daniel J; Sabatini, Robert; Borst, Piet

    2007-01-01

    Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase. PMID:17389644

  16. Cobalamin and folate binding proteins in human tumour tissue.

    OpenAIRE

    Sheppard, K; Bradbury, D A; Davies, J. M.; Ryrie, D. R.

    1984-01-01

    The serum of an 84 year old man with disseminated carcinoma was found to contain extremely high concentrations of cobalamin and of a cobalamin binding protein with trans-cobalamin I characteristics. Tumour tissue samples obtained at necropsy contained considerably higher concentrations of cobalamin binding protein (R-binder) than normal tissues. Tumour tissues also contained increased concentrations of specific folate binding protein. In all tissues studied a close correlation existed between...

  17. Minimalistic predictor of protein binding energy: contribution of solvation factor to protein binding.

    Science.gov (United States)

    Choi, Jeong-Mo; Serohijos, Adrian W R; Murphy, Sean; Lucarelli, Dennis; Lofranco, Leo L; Feldman, Andrew; Shakhnovich, Eugene I

    2015-02-17

    It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software. PMID:25692584

  18. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  19. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  20. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  1. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta.

    Directory of Open Access Journals (Sweden)

    Wenjie Sun

    Full Text Available BACKGROUND: Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA, NGF-beta could target to nerve cells and improve nerve regeneration. METHODS: Laminin-binding assay and sustained release assay of NGF-beta fused with NtA (LBD-NGF from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. FINDINGS: LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. CONCLUSION: Fused with NtA, NGF-beta could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.

  2. Inhibition of tristetraprolin deadenylation by poly(A) binding protein

    OpenAIRE

    Rowlett, Robert M.; Chrestensen, Carol A.; Schroeder, Melanie J.; Harp, Mary G.; Pelo, Jared W.; Shabanowitz, Jeffery; DeRose, Robert; Hunt, Donald F.; Sturgill, Thomas W.; Worthington, Mark T.

    2008-01-01

    Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevente...

  3. Circulating 25-Hydroxyvitamin D, Vitamin D Binding Protein, and Risk of Prostate Cancer

    OpenAIRE

    Weinstein, Stephanie J.; Mondul, Alison M.; Kopp, William; Rager, Helen; Virtamo, Jarmo; Albanes, Demetrius

    2012-01-01

    We recently reported a significant positive association between 25-hydroxyvitamin D [25(OH)D], the accepted biomarker of vitamin D status, and prostate cancer risk. To further elucidate this association, we examined the influence of vitamin D binding protein (DBP), the primary transporter of vitamin D compounds in the circulation. Prediagnostic serum concentrations of DBP were assayed for 950 cases and 964 matched controls with existing 25(OH)D measurements within the Alpha-Tocopherol, Beta-C...

  4. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  5. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  6. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  7. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  8. Multiple individual and cross-specific indiotypes on 13 levan-binding myeloma proteins of BALB/c mice

    Science.gov (United States)

    1975-01-01

    13 leven-binding myeloma proteins (LBMP) of BALB/c origin were classified into two groups with different binding specificities; one group of 11 proteins bound beta2 leads to 1 fructosans, a second group of two proteins bound fructosans probably of beta2 leads to 6 linkage. Anti-idiotypic sera prepared to 10 of the proteins in the appropriate strains of mice identified numerous idiotypic determinants. Each protein used for immunization had its own unique individual idiotypic specificities (IdI) and in addition most of the proteins carried two- nine cross-specific or shared idiotypes (IdX) that were found only among LBMP, and not found in 106 non-LBMP. Most of the IdX determinants and only four of the IdI determinants of the beta2 leads to 1 fructosan binding group were located in the antigen-binding site. The multiplicity of antigenic differences in this functionally related group of immunoglobulins reveals an unexpected degree of heterogeneity in V-regions that appears to be unrelated to binding. PMID:1151286

  9. Rapid determination of thyroxine binding proteins of human serum

    Directory of Open Access Journals (Sweden)

    Arima,Terukatsu

    1976-02-01

    Full Text Available A simple method is described for determing thyroxine binding proteins in human serum by electrophoresis at pH 8.6, using cellulose acetate membrane as the supporting medium. The procedure had high reliability in sera of normal subjects, pregnant women and patients with decreased thyroxine binding capacity of thyroxine binding globulin.

  10. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E; Novobrantseva, Tatiana I; Sprague, Andrew G; de Fougerolles, Antonin R; Christensen, Jan P

    2003-01-01

    Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of...... alpha(1)beta(1) parallels that of viral-specific effector CD8(+) T cells (defined by tetramer and IFN-gamma staining). In an adoptive transfer model, mAb-mediated blockade of these integrins on activated effector and memory T cells inhibited Ag-specific delayed-type hypersensitivity responses; similar...

  11. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  12. Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays.

    Science.gov (United States)

    Baillie, George S; Adams, David R; Bhari, Narinder; Houslay, Thomas M; Vadrevu, Suryakiran; Meng, Dong; Li, Xiang; Dunlop, Allan; Milligan, Graeme; Bolger, Graeme B; Klussmann, Enno; Houslay, Miles D

    2007-05-15

    Beta2-ARs (beta2-adrenoceptors) become desensitized rapidly upon recruitment of cytosolic beta-arrestin. PDE4D5 (family 4 cAMP-specific phosphodiesterase, subfamily D, isoform 5) can be recruited in complex with beta-arrestin, whereupon it regulates PKA (cAMP-dependent protein kinase) phosphorylation of the beta2-AR. In the present study, we have used novel technology, employing a library of overlapping peptides (25-mers) immobilized on cellulose membranes that scan the entire sequence of beta-arrestin 2, to define the interaction sites on beta-arrestin 2 for binding of PDE4D5 and the cognate long isoform, PDE4D3. We have identified a binding site in the beta-arrestin 2 N-domain for the common PDE4D catalytic unit and two regions in the beta-arrestin 2 C-domain that confer specificity for PDE4D5 binding. Alanine-scanning peptide array analysis of the N-domain binding region identified severely reduced interaction with PDE4D5 upon R26A substitution, and reduced interaction upon either K18A or T20A substitution. Similar analysis of the beta-arrestin 2 C-domain identified Arg286 and Asp291, together with the Leu215-His220 region, as being important for binding PDE4D5, but not PDE4D3. Transfection with wild-type beta-arrestin 2 profoundly decreased isoprenaline-stimulated PKA phosphorylation of the beta2-AR in MEFs (mouse embryo fibroblasts) lacking both beta-arrestin 1 and beta-arrestin 2. This effect was negated using either the R26A or the R286A mutant form of beta-arrestin 2 or a mutant with substitution of an alanine cassette for Leu215-His220, which showed little or no PDE4D5 binding, but was still recruited to the beta2-AR upon isoprenaline challenge. These data show that the interaction of PDE4D5 with both the N- and C-domains of beta-arrestin 2 are essential for beta2-AR regulation. PMID:17288540

  13. Calmodulin Binding Proteins and Alzheimer’s Disease

    Science.gov (United States)

    O’Day, Danton H.; Eshak, Kristeen; Myre, Michael A.

    2015-01-01

    Abstract The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  14. Differential stimulation by CCAAT/enhancer-binding protein alpha isoforms of the estrogen-activated promoter of the very-low-density apolipoprotein II gene

    NARCIS (Netherlands)

    Calkhoven, CF; Snippe, L; Ab, G

    1997-01-01

    The transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBP alpha and C/EBP beta) are highly expressed in liver and are believed to function in maintaining the differentiated state of the hepatocytes, C/EBP alpha appears to be a critical regulator of genes involved in metabolic p

  15. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS. PMID:18820259

  16. Purification and characterization of the IM-2-binding protein from Streptomyces sp. strain FRI-5.

    OpenAIRE

    Ruengjitchatchawalya, M; Nihira, T; Yamada, Y

    1995-01-01

    IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-(hydroxymethyl)butanolide] of Streptomyces sp. strain FRI-5 is one of the butyrolactone autoregulators of Streptomyces species and triggers production of blue pigment as well as the nucleoside antibiotics showdomycin and minimycin. A tritium-labeled IM-2 analogue, 2,3-trans-2(1'-beta-hydroxy-[4',5'-3H]pentyl)-3-(hydroxymethyl)butano lide ([3H]IM-2-C5; 40 Ci/mmol), was synthesized for a competitive binding assay, and an IM-2-specific binding protein was ...

  17. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  18. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  19. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain.

    OpenAIRE

    Stålbrand, H; Saloheimo, A; Vehmaanperä, J; HENRISSAT, B.; Penttilä, M

    1995-01-01

    beta-Mannanase (endo-1,4-beta-mannanase; mannan endo-1,4-beta-mannosidase; EC 3.2.1.78) catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannans, including hemicellulose polysaccharides, which are among the major components of plant cell walls. The gene man1, which encodes beta-mannanase, of the filamentous fungus Trichoderma reesei was isolated from an expression library by using antiserum raised towards the earlier-purified beta-mannanase protein. The deduced beta-mannanas...

  20. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    OpenAIRE

    Selvaraj S; Jayaram B; Saranya N; Gromiha M; Fukui Kazuhiko

    2011-01-01

    Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such...

  1. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  2. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    Science.gov (United States)

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  3. Characterization of recombinant RI beta and evaluation of the presence of RI beta protein in rat brain and testicular extracts.

    Science.gov (United States)

    DeManno, D A; Jackiw, V; Brooks, E; Hunzicker-Dunn, M

    1994-07-21

    Based upon recent reports that the mRNA from the regulatory (R) RI beta subunit of cAMP-dependent protein kinase (PKA) was expressed in testicular extracts, we determined whether testicular extracts exhibited RI beta protein. To accomplish this goal, we initially determined the fundamental labeling and ionic characteristics of recombinant RI beta. Recombinant RI beta eluted from DEAE-cellulose with a salt concentration (of 0.075 M) equivalent to its elution position from soluble mouse brain extracts with catalytic subunit-free RI alpha. As predicted by its amino acid sequence homology to RI alpha, recombinant RI beta was not phosphorylated by PKA but was labeled specifically with 8-azido-adenosine 3':5'-[32P]monophosphate (8-N3[32P]cAMP). Additionally, RI antisera reacted equally with RI alpha (47 kDa) and recombinant RI beta (53 kDa). However, recombinant RI beta exhibited an unexpectedly basic pI of 6.65-6.85. By using a pH gradient for isoelectric focussing that allowed for clear focussing of 8-N3[32P]cAMP-labeled recombinant RI beta, 8-N3[32P]cAMP-labeled RI beta was readily detected by two-dimensional gel electrophoresis in rat brain particulate extracts and exhibited a pI equivalent to that of recombinant RI beta. The 53-kDa RI beta was undetectable either by its immunoreactivity or upon photoaffinity labeling with 8-N3[32P]cAMP by one or two-dimensional gel electrophoresis in soluble or particulate extracts of testes of 14-day-old, 45-day-old, or adult rats or in epididymal sperm. However, 8-N3[32P]cAMP-labeled RI beta was detected, albeit in very small levels, by two-dimensional electrophoresis upon separation of PKAs in testes of 14-day-old rats by DEAE-cellulose chromatography but was absent in equivalent extracts from adult rat testes. These results demonstrate that the unexpectedly basic pI of RI beta allows for its clear separation by two-dimensional electrophoresis from the RII proteins and therefore allows for its unambiguous identification. Further

  4. The actin binding protein adseverin regulates osteoclastogenesis.

    Science.gov (United States)

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  5. The actin binding protein adseverin regulates osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Siavash Hassanpour

    Full Text Available Adseverin (Ads, a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG. Ads is induced during OCG downstream of RANK-ligand (RANKL stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.

  6. The modified base J is the target for a novel DNA-binding protein in kinetoplastid protozoans.

    OpenAIRE

    Cross, M.; Kieft, R.; Sabatini, R.; Wilm, M; Kort, M. de; van der Marel, G A; Boom, J.H. van; Leeuwen, F. van; Borst, P

    1999-01-01

    DNA from Kinetoplastida contains the unusual modified base beta-D-glucosyl(hydroxymethyl)uracil, called J. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes in Trypanosoma brucei. We have now identified a protein in nuclear extracts of bloodstream stage T.brucei that binds specifically to J-containing duplex DNA. J-specific DNA binding was also observed with extracts from the kinetoplastids Crithidia fascic...

  7. Concentration-dependent Cu(II) binding to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  8. Pumilio Puf domain RNA-binding proteins in Arabidopsis

    OpenAIRE

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-01-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35–39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such...

  9. Grafting odorant binding proteins on diamond bio-MEMS

    OpenAIRE

    Manai, Raafa; Scorsone, E.; Rousseau, L.; Ghassemi, F.; Possas Abreu, M.; Lissorgues, G.; Tremillon, N.; Ginisty, H; Arnault, J.-C.; Tuccori, E.; Bernabei, M.; Cali, K.; Persaud, K C; Bergonzo, P.

    2014-01-01

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approac...

  10. The clinical significance of fatty acid binding proteins

    OpenAIRE

    Barbara Choromańska; Piotr Myśliwiec; Jacek Dadan; Hady Razak Hady; Adrian Chabowski

    2011-01-01

    Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs) that bind long-chain fatty acids (LCFA), and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum). So far, nine types of these proteins have been described, and their name refers to the place in which they were first ...

  11. Cooperative binding modes of Cu(II) in prion protein

    Science.gov (United States)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  12. Thermodynamic parameters of the binding of retinol to binding proteins and to membranes

    International Nuclear Information System (INIS)

    Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy and no change in enthalpy. Binding to albumin is driven by enthalpy and is accompanied by a decrease in entropy. Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic and by entropic components. The implications of these finding are discussed

  13. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Daniil M Prigozhin

    Full Text Available Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.

  14. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  15. Stereoselective binding of chiral drugs to plasma proteins

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Lu WANG; Hui ZHOU; Hui-di JIANG; Lu-shan YU; Su ZENG

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body.The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity,which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles.In this review,the stereoselective binding of chiral drugs to human serum albumin (HSA),α1-acid glycoprotein (AGP)and lipoprotein,three most important proteins in human plasma,are detailed.Furthermore,the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed.Apart from the stereoselectivity of enantiomer-protein binding,enantiomer-enantiomer interactions that may induce allosteric effects are also described.Additionally,the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  16. Serum Vitamin D, Vitamin D Binding Protein, and Risk of Colorectal Cancer

    OpenAIRE

    Anic, Gabriella M.; Weinstein, Stephanie J.; Mondul, Alison M.; Satu Männistö; Demetrius Albanes

    2014-01-01

    Background We previously reported a positive association between serum 25-hydroxyvitamin D (25(OH)D) and colorectal cancer risk. To further elucidate this association, we examined the molar ratio of 25(OH)D to vitamin D binding protein (DBP), the primary 25(OH)D transport protein, and whether DBP modified the association between 25(OH)D and colorectal cancer risk. Methods In a nested case-control study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, controls were 1∶1 match...

  17. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins.

    Science.gov (United States)

    Zamore, P D; Williamson, J R; Lehmann, R

    1997-01-01

    Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Binding of PUM to the NRE is thought to target hb(mat) mRNA for repression. Here, we show the RNA-binding domain of PUM to be an evolutionarily conserved, 334-amino acid region at the carboxy-terminus of the approximately 158-kDa PUM protein. This contiguous region of PUM retains the RNA-binding specificity of full-length PUM protein. Proteins with sequences homologous to the PUM RNA-binding domain are found in animals, plants, and fungi. The high degree of sequence conservation of the PUM RNA-binding domain in other far-flung species suggests that the domain is an ancient protein motif, and we show that conservation of sequence reflects conservation of function: that is, the homologous region from a human protein binds RNA with sequence specificity related to but distinct from Drosophila PUM. PMID:9404893

  18. Structural modification of serum vitamin D3-binding protein and immunosuppression in AIDS patients.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R; Srinivasula, S M

    1995-11-01

    A serum glycoprotein, vitamin D3-binding protein (Gc protein), can be converted by beta-galactosidase of stimulated B lymphocytes and sialidase of T lymphocytes to a potent macrophage-activating factor (MAF), a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is a precursor for MAF. Treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high-titered MAF (GcMAF). When peripheral blood monocytes/macrophages of 46 HIV-infected patients were treated with GcMAF (100 pg/ml), the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of plasma Gc protein was low in 16 (35%) of of these patients. Loss of the MAF precursor activity appeared to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase found in the patient blood stream. Levels of plasma alpha-N-acetylgalactosaminidase activity in individual patients had an inverse correlation with the MAF precursor activity of their plasma Gc protein. Thus, precursor activity of Gc protein and alpha-N-acetylgalactosaminidase activity in patient blood can serve as diagnostic and prognostic indices. PMID:8573395

  19. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  20. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  1. Characterization of a cocaine binding protein in human placenta

    International Nuclear Information System (INIS)

    [3H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [3H]-cocaine with a high affinity site of 170 fmole/mg protein. The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [3H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear

  2. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  3. Electrochemistry of heparin binding to tau protein on Au surfaces

    International Nuclear Information System (INIS)

    Highlights: • Anionic heparin binds tau protein film on Au • N-terminal of tau protein is critical for heparin binding • Negatively charged heparin binds positively charged tau domains • Heparin binding to tau increases charge transfer resistance - ABSTRACT: The tau protein is a neurodegenerative disease biomarker. The in vitro aggregation of tau is triggered by electrostatic charge imbalance induced by an anionic inducing agent, such as heparin. The binding of the tau-heparin complex is based on electrostatic interactions, but the exact binding mode of heparin to the tau protein has not been fully identified. In this work, the effects of the tau protein orientation on gold (Au) electrode to heparin were explored by the cyclic voltammetry and electrochemical impedance spectroscopy. To modulate the accessibility of N-terminal of the tau to heparin, the tau films on Au surfaces were fabricated in two ways: immobilization of tau via the N-terminal of tau protein (N-tau-Au) or by the Cys291/Cys322 residues, located in the R-repeat domains of the tau protein (Cys-tau-Au). The sulfur-Au bonding was characterized by X-ray photoelectron spectroscopy. The charge transfer resistance was measured for N-tau-Au and Cys-tau-Au as a function of heparin concentration. The heparin concentration range was varied from 0.2 pM to 216 μM with the optimal binding concentration at 21 nM (the highest charge transfer resistance value). The heparin binding to tau films was investigated in the presence of [Fe(CN)6]3−/4− or benzoquinone redox probes. The tau-heparin binding was greater for the Cys-tau-Au surface over N-tau-Au, indicating specific tau domains may be required for optimal heparin binding

  4. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S;

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous...... remarkable correspondence between the structural modules of ACBP/DBI as determined by 1H nuclear magnetic resonance spectroscopy and the exon-intron architecture of the ACBP/DBI gene. Detailed analyses of transcription of the ACBP/DBI gene in brain and liver were performed to map transcription initiation...

  5. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments.

    Science.gov (United States)

    Calvaresi, Matteo; Eckhart, Leopold; Alibardi, Lorenzo

    2016-06-01

    The hard corneous material of avian and reptilian scales, claws, beak and feathers is mainly derived from the presence of proteins formerly known as beta-keratins but now termed Corneous beta-proteins of sauropsids to distinguish them from keratins, which are members of the intermediate filament protein family. The modeling of the conserved 34 amino acid residues long central beta-sheet region of Corneous beta-proteins using an ab initio protein folding and structure prediction algorithm indicates that this region is formed by four antiparallel beta-sheets. Molecular dynamic simulations and Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) analysis showed that the disposition of polar and apolar amino acids within the beta-region gives rise to an amphipathic core whose stability is further increased, especially in an aqueous environment, by the association into a dimer due to apolar interactions and specific amino-acid interactions. The dimers in turn polymerize into a 3nm thick linear beta-filament due to van der Waals and hydrogen-bond interactions. It is suggested that once this nuclear core of anti-parallel sheets evolved in the genome of a reptilian ancestor of the extant reptiles and birds about 300 millions years ago, new properties emerged in the corneous material forming scales, claws, beaks and feathers in these amniotes based on the tendency of these unique corneous proteins to form stable filaments different from keratin intermediate filaments or sterical structures formed by other corneous proteins so far known. PMID:26965557

  6. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg;

    2001-01-01

    farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF......-beta1 showed that all cells produced perinuclear latent TGF-beta1. The epithelial cell basal latent protein resulted in only low levels of subepithelial active protein, which co-localized with collagen IV and laminin in diseased and control tissue. Infiltrating cells expressed very low levels of active...

  7. A Specific Cholesterol Binding Site Is Established by the 2.8 Å Structure of the Human [beta][subscript 2]-Adrenergic Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A.; Cherezov, Vadim; Griffith, Mark T.; Roth, Christopher B.; Jaakola, Veli-Pekka; Chien, Ellen Y.T.; Velasquez, Jeffrey; Kuhn, Peter; Stevens, Raymond C. (Scripps)

    2008-07-08

    The role of cholesterol in eukaryotic membrane protein function has been attributed primarily to an influence on membrane fluidity and curvature. We present the 2.8 {angstrom} resolution crystal structure of a thermally stabilized human {beta}{sub 2}-adrenergic receptor bound to cholesterol and the partial inverse agonist timolol. The receptors pack as monomers in an antiparallel association with two distinct cholesterol molecules bound per receptor, but not in the packing interface, thereby indicating a structurally relevant cholesterol-binding site between helices I, II, III, and IV. Thermal stability analysis using isothermal denaturation confirms that a cholesterol analog significantly enhances the stability of the receptor. A consensus motif is defined that predicts cholesterol binding for 44% of human class A receptors, suggesting that specific sterol binding is important to the structure and stability of other G protein-coupled receptors, and that this site may provide a target for therapeutic discovery.

  8. Autoradiographic quantitation of. beta. -adrenergic receptors on neural cells in primary cultures. 1. Pharmacological studies of (/sup 125/I)pindolol binding of individual astroglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, S.K.; McCarthy, K.D. (North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1985-05-27

    The current investigation was undertaken to determine whether the binding of (/sup 125/I)pindolol (*IPIN) to immunocytochemically stained cultured cells, as measured by quantitative autoradiography, would fulfill the usual pharmacological criteria for specific ..beta..-adrenergic receptor binding. *IPIN binding experiments were carried out on individual astroglia obtained from neonatal rat cerebral cortex and grown as primary cultures on polylysine-coated glass slides. Autoradiographic silver grains on cells which stained for the intracellular astroglial marker, glial fibrillary acidic protein (GFAP), were quantified by a microcomputer-based video digitizing system. This study is a demonstration of receptor binding parameters derived from single cells in a known population, and represents a novel approach to the problem of assessing cell-type specific receptors on neural cells in mixed primary cultures.

  9. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  10. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    Science.gov (United States)

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  11. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga; Fastbom, J; Benedikz, Eirikur

    2004-01-01

    (beta-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular beta-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. beta-sAPP was found to be localized in astrocytes and in axons. We found...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques and......beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...

  12. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin.

    OpenAIRE

    M. Kitagawa; Hatakeyama, S.; Shirane, M; Matsumoto, M; ISHIDA, N.; K. Hattori; Nakamichi, I; Kikuchi, A; Nakayama, K.

    1999-01-01

    beta-catenin plays an essential role in the Wingless/Wnt signaling cascade and is a component of the cadherin cell adhesion complex. Deregulation of beta-catenin accumulation as a result of mutations in adenomatous polyposis coli (APC) tumor suppressor protein is believed to initiate colorectal neoplasia. beta-catenin levels are regulated by the ubiquitin-dependent proteolysis system and beta-catenin ubiquitination is preceded by phosphorylation of its N-terminal region by the glycogen syntha...

  13. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R; Asbell, S O

    1996-06-15

    Serum vitamin D3-binding protein (Gc protein) can be converted by beta-galactosidase of B cells and sialidase of T cells to a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar moiety. Thus, Gc protein is the precursor of the macrophage activating factor (MAF). Treatment of Gc protein with immobilized beta-galactosidase and sialidase generates an extremely high titered MAF, Gc-MAF. When peripheral blood monocytes/macrophages of 52 patients bearing various types of cancer were incubated with 100 pg/ml of GcMAF, the monocytes/macrophages of all patients were efficiently activated. However, the MAF precursor activity of patient plasma Gc protein was found to be severely reduced in about 25% of this patient population. About 45% of the patients had moderately reduced MAF precursor activities. Loss of the precursor activity was found to be due to deglycosylation of plasma Gc protein by alpha-N-acetylgalactosaminidase detected in the patient's bloodstream. The source of the enzyme appeared to be cancerous cells. Radiation therapy decreased plasma alpha-N-acetylgalactosaminidase activity with concomitant increase of precursor activity. This implies that radiation therapy decreases the number of cancerous cells capable of secreting alpha-N-acetylgalactosaminidase. Both alpha-N-acetylgalactosaminidase activity and MAF precursor activity of Gc protein in patient bloodstream can serve as diagnostic and prognostic indices. PMID:8665521

  14. Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells.

    Science.gov (United States)

    Piluso, G; Mirabella, M; Ricci, E; Belsito, A; Abbondanza, C; Servidei, S; Puca, A A; Tonali, P; Puca, G A; Nigro, V

    2000-05-26

    Dystrophin is the scaffold of a protein complex, disrupted in inherited muscular dystrophies. At the last 3' terminus of the gene, a protein domain is encoded, where syntrophins are tightly bound. These are a family of cytoplasmic peripheral membrane proteins. Three genes have been described encoding one acidic (alpha1) and two basic (beta1 and beta2) proteins of approximately 57-60 kDa. Here, we describe the characterization of two novel putative members of the syntrophin family, named gamma1- and gamma2-syntrophins. The human gamma1-syntrophin gene is composed of 19 exons and encodes a brain-specific protein of 517 amino acids. The human gamma2-syntrophin gene is composed of at least 17 exons, and its transcript is expressed in brain and, to a lesser degree, in other tissues. We mapped the gamma1-syntrophin gene to human chromosome 8q11 and the gamma2-syntrophin gene to chromosome 2p25. Yeast two-hybrid experiments and pull-down studies showed that both proteins can bind the C-terminal region of dystrophin and related proteins. We raised antibodies against these proteins and recognized expression in both rat and human central neurons, coincident with RNA in situ hybridization of adjacent sections. Our present findings suggest a differentiated role of a modified dystrophin-associated complex in the central nervous system. PMID:10747910

  15. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  16. Expected and unexpected features of protein-binding RNA aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils; Andreasen, Peter A; Dupont, Daniel M

    2016-01-01

    RNA molecules with high affinity to specific proteins can be isolated from libraries of up to 10(16) different RNA sequences by systematic evolution of ligands by exponential enrichment (SELEX). These so-called protein-binding RNA aptamers are often interesting, e.g., as modulators of protein...... function for therapeutic use, for probing the conformations of proteins, for studies of basic aspects of nucleic acid-protein interactions, etc. Studies on the interactions between RNA aptamers and proteins display a number of expected and unexpected features, including the chemical nature of the...... interacting RNA-protein surfaces, the conformation of protein-bound aptamer versus free aptamer, the conformation of aptamer-bound protein versus free protein, and the effects of aptamers on protein function. Here, we review current insights into the details of RNA aptamer-protein interactions. For further...

  17. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.;

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of...

  18. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    Science.gov (United States)

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  19. Autoinhibition of Mint1 adaptor protein regulates amyloid precursor protein binding and processing

    OpenAIRE

    Matos, Maria F.; Xu, Yibin; Dulubova, Irina; Otwinowski, Zbyszek; Richardson, John M.; Tomchick, Diana R.; Rizo, Josep; Ho, Angela

    2012-01-01

    Mint adaptor proteins bind to the amyloid precursor protein (APP) and regulate APP processing associated with Alzheimer’s disease; however, the molecular mechanisms underlying Mint regulation in APP binding and processing remain unclear. Biochemical, biophysical, and cellular experiments now show that the Mint1 phosphotyrosine binding (PTB) domain that binds to APP is intramolecularly inhibited by the adjacent C-terminal linker region. The crystal structure of a C-terminally extended Mint1 PT...

  20. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    Science.gov (United States)

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  1. Identification of lectin-binding proteins in Chlamydia species.

    OpenAIRE

    Swanson, A F; Kuo, C. C.

    1990-01-01

    Lectin-binding proteins of chlamydiae were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. All three Chlamydia species tested expressed two proteins when whole-elementary-body lysates were reacted with the biotinylated lectin Dolichos biflorus agglutinin. The protein with a molecular mass of 18 kilodaltons (kDa) responded strongly compared with a higher-molecular-mass protein that varied from 27 to 32 kDa with each chlamydia strain tested. Among six l...

  2. Optimizing a coarse-grained model for the recognition of protein-protein binding

    OpenAIRE

    Emperador, Agustí; Orozco, Modesto

    2015-01-01

    We are optimizing a force-field to be used with our coarsegrained protein model for the recognition of protein -protein binding. We have found that, apart from ranking correctly the ligand-receptor conformations generated in a protein-protein docking algorithm, our model is able to distinguish binding (experimental structure) from nonbinding (false positive) conformations for many complexes. This suggests us that the model could have a good performance in complete cross-d...

  3. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  4. Binding of CCAAT displacement protein CDP to adenovirus packaging sequences.

    Science.gov (United States)

    Erturk, Ece; Ostapchuk, Philomena; Wells, Susanne I; Yang, Jihong; Gregg, Keqin; Nepveu, Alain; Dudley, Jaquelin P; Hearing, Patrick

    2003-06-01

    Adenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Two cellular activities that bind to minimal packaging domains in vitro have been previously identified. These binding activities are P complex, an uncharacterized protein(s), and chicken ovalbumin upstream promoter transcription factor (COUP-TF). In this work, we report that a third cellular protein, octamer-1 protein (Oct-1), binds to minimal packaging domains. In vitro binding analyses and in vivo packaging assays were used to examine the relevance of these DNA binding activities to Ad DNA packaging. The results of these experiments reveal that COUP-TF and Oct-1 binding does not play a functional role in Ad packaging, whereas P-complex binding directly correlates with packaging function. We demonstrate that P complex contains the cellular protein CCAAT displacement protein (CDP) and that full-length CDP is found in purified virus particles. In addition to cellular factors, previous evidence indicates that viral factors play a role in the initiation of viral DNA packaging. We propose that CDP, in conjunction with one or more viral proteins, binds to the packaging sequences of Ad to initiate the encapsidation process. PMID:12743282

  5. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-(32P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m7GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m7GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m7GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  6. High-throughput analysis of protein-DNA binding affinity.

    Science.gov (United States)

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  7. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103

    2010-01-01

    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  8. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. (Weizmann Institute, Rehovoth (Israel))

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  9. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Science.gov (United States)

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  10. Ubiquitin-binding proteins: similar, but different

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Hofmann, Kay; Hartmann-Petersen, Rasmus

    2005-01-01

    ubiquitin conjugation to endoplasmic reticulum degradation), UEV [ubiquitin E2 (ubiquitin-conjugating enzyme) variant] and NZF (nuclear protein localization gene 4 zinc finger) domain-containing proteins appear to have more specialized functions. Here we discuss functional and structural properties of...

  11. CDNA CLONING, PURIFICATION, PROPERTIES, AND FUNCTION OF A BETA-1, E-GLUCAN RECOGNITION PROTEIN FROM A PYRALID MOTH, PLODIA INTERPUNCTELLA

    Science.gov (United States)

    Microorganisms possess distinctive biochemical or molecular patterns on their cell surfaces, such as those formed by the lipopolysaccharides, lipoteichoic acids, and/or peptidoglycans of bacteria and the beta-1,3-glucans of fungi. Pattern recognition proteins that bind to these surface moieties have...

  12. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine

    International Nuclear Information System (INIS)

    Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed

  13. Lipid A binding proteins in macrophages detected by ligand blotting

    International Nuclear Information System (INIS)

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with 32P/sub i/ (109 dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with [32P]-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS

  14. Symmetric Key Structural Residues in Symmetric Proteins with Beta-Trefoil Fold

    OpenAIRE

    Feng, Jianhui; Li, Mingfeng; Huang, Yanzhao; Xiao, Yi

    2010-01-01

    To understand how symmetric structures of many proteins are formed from asymmetric sequences, the proteins with two repeated beta-trefoil domains in Plant Cytotoxin B-chain family and all presently known beta-trefoil proteins are analyzed by structure-based multi-sequence alignments. The results show that all these proteins have similar key structural residues that are distributed symmetrically in their structures. These symmetric key structural residues are further analyzed in terms of inter...

  15. Isolation and characterization of a novel calmodulin-binding protein from potato

    Science.gov (United States)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  16. Mining the characteristic interaction patterns on protein-protein binding interfaces.

    Science.gov (United States)

    Li, Yan; Liu, Zhihai; Han, Li; Li, Chengke; Wang, Renxiao

    2013-09-23

    Protein-protein interactions are observed in various biological processes. They are important for understanding the underlying molecular mechanisms and can be potential targets for developing small-molecule regulators of such processes. Previous studies suggest that certain residues on protein-protein binding interfaces are "hot spots". As an extension to this concept, we have developed a residue-based method to identify the characteristic interaction patterns (CIPs) on protein-protein binding interfaces, in which each pattern is a cluster of four contacting residues. Systematic analysis was conducted on a nonredundant set of 1,222 protein-protein binding interfaces selected out of the entire Protein Data Bank. Favored interaction patterns across different protein-protein binding interfaces were retrieved by considering both geometrical and chemical conservations. As demonstrated on two test tests, our method was able to predict hot spot residues on protein-protein binding interfaces with good recall scores and acceptable precision scores. By analyzing the function annotations and the evolutionary tree of the protein-protein complexes in our data set, we also observed that protein-protein interfaces sharing common characteristic interaction patterns are normally associated with identical or similar biological functions. PMID:23930922

  17. Expression of Beta-Catenin and APC Protein in Ovarian Epithelial Tumor and Its Implication

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao; LI Yu; MI Can

    2007-01-01

    Objective: To investigate the expression of beta-catenin, APC protein and its implication in ovarian epithelial tumor. Methods: Immunohistochemical staining with SP method was conducted to determine the expression of beta-catenin and APC protein in 48 cases of ovarian epithelial tumor. Results: The abnormal expression rates of beta-catenin in ovarian malignant and borderline epithelial tumors were higher than that in benign epithelial tumors. The expression of APC protein in benign epithelial tumors was significantly greater than that in malignant epithelial tumors. A significant negative correlation was found between beta-catenin and APC protein in ovarian epithelial tumors. Conclusion: Beta-catenin and APC protein have important effect on pathogenesis and development of ovarian epithelial tumors.

  18. Investigations into the binding of 125-iodine cyanopindolol to beta-adrenoceptors of human lymphocytes and changes resulting from the influence of dithiothreitol and other thiol compounds

    International Nuclear Information System (INIS)

    The radioligand 125-ICYD could for the first time be shown to bind to two different classes of beta-adrenoceptor sites on human lymphocytes, which were identified as binding site populations of either low or high affinity. It may be assumed that the high affinity population is made up of preformed receptors linked to the G3 protein and would therefore also be of great functional importance. The theory that 125-ICYP receptors of high affinity have a role in the function of lymphocytes was supported by findings from further studies into the influences of dithiothreitol (DTT) and other thiols. Treatment of intact lymphocytes with DTT was followed by rises in their intracellular cAMP levels. Studies on the saturation behaviour and dissociation kinetics in the presence of DTT showed that almost the only binding sites affected were those showing a high affinity to 125-ICYP. This appeared to suggest that they possess one or several sulfide bridges essential to the function of the receptor. Reductive cleavage of the latter may be brought about by DTT and its agonists and could thus be regarded as one of the likely mechanisms of receptor activation. Lymphocytic binding sites showing a high affinity to 125-ICYP may therefore be expected to be a useful parameter in clinical function studies. By contrast, detached beta-adrenoceptors or receptors showing reduced disulfide bridges should rather be classified with binding sites of low affinity to 125-ICYP. (orig./MG)

  19. The cobalamin-binding protein in zebrafish is an intermediate between the three cobalamin-binding proteins in human.

    Directory of Open Access Journals (Sweden)

    Eva Greibe

    Full Text Available In humans, three soluble extracellular cobalamin-binding proteins; transcobalamin (TC, intrinsic factor (IF, and haptocorrin (HC, are involved in the uptake and transport of cobalamin. In this study, we investigate a cobalamin-binding protein from zebrafish (Danio rerio and summarize current knowledge concerning the phylogenetic evolution of kindred proteins. We identified a cobalamin binding capacity in zebrafish protein extracts (8.2 pmol/fish and ambient water (13.5 pmol/fish associated with a single protein. The protein showed resistance toward degradation by trypsin and chymotrypsin (like human IF, but unlike human HC and TC. The cobalamin analogue, cobinamide, bound weaker to the zebrafish cobalamin binder than to human HC, but stronger than to human TC and IF. Affinity for another analogue, adenosyl-pseudo-cobalamin was low compared with human HC and TC, but high compared with human IF. The absorbance spectrum of the purified protein in complex with hydroxo-cobalamin resembled those of human HC and IF, but not TC. We searched available databases to further explore the phylogenies of the three cobalamin-binding proteins in higher vertebrates. Apparently, TC-like proteins are the oldest evolutionary derivatives followed by IF and HC (the latter being present only in reptiles and most but not all mammals. Our findings suggest that the only cobalamin-binding protein in zebrafish is an intermediate between the three human cobalamin binders. These findings support the hypothesis about a common ancestral gene for all cobalamin-binding proteins in higher vertebrates.

  20. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T;

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...... by a simple two step protocol combining ion exchange chromatography and gel filtration. Dissociation constants for binding of oleic acid, arachidonic acid, oleoyl-CoA, lysophosphatidic acid and the peroxisomal proliferator bezafibrate to L-FABP have been determined by titration calorimetry. All ligands were...... bound in a 2:1 stoichiometry, the dissociation constants for the first ligand bound were all in the micro molar range. Oleic acid was bound with the highest affinity and a Kd of 0.26 microM. Furthermore, binding of cholesterol to L-FABP was investigated with the Lipidex assay, a liposome binding assay...

  1. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  2. Solid-binding Proteins for Modification of Inorganic Substrates

    Science.gov (United States)

    Coyle, Brandon Laurence

    Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically driven manufacturing, biosensing and bioimaging. In this work, we identify a new set of carbon binding peptides that vary in overall hydrophobicity and charge, and engineer two of these sequences (Car9 and Car15) within the framework of various proteins to exploit their binding ability. In addition, we conducted a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbon and silicon surfaces. Through these insights, we were able to develop proteins suitable for dispersing graphene flakes and carbon nanotubes in aqueous solutions, while retaining protein activity. Additionally, our investigation into the mechanisms of adhesion for our carbon binding peptides inspired a cheap, disposable protein purification system that is more than 10x cheaper than commonly used His-tag protein purification. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.

  3. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database

    DEFF Research Database (Denmark)

    Andersen, H U; Fey, S J; Larsen, Peter Mose;

    1997-01-01

    Insulin-dependent diabetes mellitus is caused by an autoimmune destruction of the beta-cells in the islets of Langerhans. The cytokine interleukin 1 inhibits insulin release and is selectively cytotoxic to beta-cells in isolated pancreatic rat islets. The antigen(s) triggering the immune response...... as well as the intracellular mechanisms of action of interleukin 1-mediated beta-cell cytotoxicity are unknown. However, previous studies have found an association of beta-cell destruction with alterations in protein synthesis. Thus, two-dimensional (2-D) gel electrophoresis of pancreatic islet......% of %IOD was 45.7% in the NEPHGE gels. Addition of interleukin-1beta (IL-1beta) to the cultures resulted in statistically significant modulation or de novo synthesis of 105 proteins in the 10% gels. In conclusion, we present the first 10% and 15% acrylamide 2-D gel protein databases of neonatal rat...

  4. Zeatin-binding proteins in barley leaves

    International Nuclear Information System (INIS)

    Highly labelled tritium-zeatin was used in the work to clarify for the first time a protein factor that is present in cytokinin-sensitive vegetative organs of plants (barley leaves) and which possesses the properties of a cytokinin receptor. Aliquots of tritium-zeatin were mixed with a solution of protein and incubated for several hours in buffer. Following incubation, protein was precipitated by ammonium sulfate at 90% of saturation, and radioactivity of the precipitate was checked in a dioxane scintillator with an efficiency of about 35%. It is shown that the characteristics of interaction of the clarified specific protein sites with cytokinins in regard to a number of criteria correspond to the characteristics expected of receptors of these phytohormones

  5. Zeatin-binding proteins in barley leaves

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, G.A.; Kulaeva, O.N.; Taryan, V.Y.

    1986-01-01

    Highly labelled tritium-zeatin was used in the work to clarify for the first time a protein factor that is present in cytokinin-sensitive vegetative organs of plants (barley leaves) and which possesses the properties of a cytokinin receptor. Aliquots of tritium-zeatin were mixed with a solution of protein and incubated for several hours in buffer. Following incubation, protein was precipitated by ammonium sulfate at 90% of saturation, and radioactivity of the precipitate was checked in a dioxane scintillator with an efficiency of about 35%. It is shown that the characteristics of interaction of the clarified specific protein sites with cytokinins in regard to a number of criteria correspond to the characteristics expected of receptors of these phytohormones.

  6. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  7. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  8. Cholesterol-binding viral proteins in virus entry and morphogenesis.

    Science.gov (United States)

    Schroeder, Cornelia

    2010-01-01

    Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies. PMID:20213541

  9. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  10. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  11. Tertiary structure-dependence of misfolding substitutions in loops of the maltose-binding protein.

    OpenAIRE

    Raffy, S; Sassoon, N.; Hofnung, M; Betton, J M

    1998-01-01

    We previously identified and characterized amino acid substitutions in a loop connecting helix I to strand B, the alphaI/betaB loop, of the N-domain that are critical for in vivo folding of the maltose-binding protein (MalE31). The tertiary context-dependence of this mutation in MalE folding was assessed by probing the tolerance of an equivalent alphabeta loop of the C-domain to the same amino acid substitutions (MalE219). Moving the loop mutation from the N- to the C-domain eliminated the in...

  12. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search.

    OpenAIRE

    Bork, P.; Gellerich, J.; Groth, H.; Hooft, R.; Martin, F.

    1995-01-01

    Study of the most conserved region in many beta/alpha-barrels, the phosphate-binding site, revealed a sequence motif in a few beta/alpha-barrels with known tertiary structure, namely glycolate oxidase (GOX), cytochrome b2 (Cyb2), tryptophan synthase alpha subunit (TrpA), and the indoleglycerolphosphate synthase (TrpC). Database searches identified this motif in numerous other enzyme families: (1) IMP dehydrogenase (IMPDH) and GMP reductase (GuaC); (2) phosphoribosylformimino-5-aminoimidazol c...

  13. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Directory of Open Access Journals (Sweden)

    V Joachim Haupt

    Full Text Available Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand

  14. Protein-protein binding affinities calculated using the LIE method

    OpenAIRE

    Andberg, Tor Arne Heim

    2011-01-01

    Absolute binding free energies for the third domain of the turkey ovomucoid inhibitor in complex with Streptomyces griseus proteinase B and porcine pancreatic elastase has been calculated using the linear interaction energy method.

  15. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan.

    Science.gov (United States)

    Kim, Hyun Jung; White, Pamela J

    2010-01-13

    The impact of beta-glucan molecular weight (MW) on in vitro bile-acid binding and in vitro fermentation with human fecal flora was evaluated. beta-Glucan extracted from oat line 'N979-5-4' was treated with lichenase (1,3-1,4-beta-D-glucanase) to yield high (6.87x10(5) g/mol), medium (3.71x10(5) g/mol), and low (1.56x10(5) g/mol) MW fractions. The low MW beta-glucan bound more bile acid than did the high MW beta-glucan (pbeta-glucan with high, medium, and low MW was 15, 27, 24, and 21%, respectively. Significant effects of high, medium, and low MW beta-glucans on total SCFA were observed compared to the blank without substrate (pbeta-glucans, and lactulose. The low MW beta-glucan produced greater amounts of SCFA than the high MW after 24 h of fermentation. Among the major SCFA, more propionate was produced from all MW fractions of extracted beta-glucans than from lactulose. In vitro fermentation of extracted beta-glucan fractions with different MW lowered pH and produced SCFA, providing potential biological function. PMID:20020684

  16. The Role Stress Granules and RNA Binding Proteins in Neurodegeneration

    OpenAIRE

    Vanderweyde, Tara; Youmans, Katie; Liu-Yesucevitz, Liqun; Wolozin, Benjamin

    2013-01-01

    The eukaryotic stress response involves translational suppression of non-housekeeping proteins and the sequestration of unnecessary mRNA transcripts into stress granules (SGs). This process is dependent on mRNA binding proteins (RBPs) that interact with capped mRNA transcripts through RNA recognition motifs, and exhibit reversible aggregation through hydrophobic poly-glycine domains, some of which are homologous to yeast prion proteins. The activity and aggregation of RBPs appears to be impor...

  17. Pentatricopeptide repeats: Modular blocks for building RNA-binding proteins

    OpenAIRE

    Filipovska, Aleksandra; Rackham, Oliver

    2013-01-01

    Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism across the eukaryotic domain. Recent computational and structural studies have provided new insights into how they recognize RNA, and show that the recognition is sequence-specific and modular. The modular code for RNA-binding by PPR proteins holds great promise for the engineering of new tools to target RNA and identifying RNAs bound by natural PPR proteins.

  18. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    OpenAIRE

    Villamor, J. G.; Kaschani, F.; Colby, T; Oeljeklaus, J.; Zhao, D; Kaiser, M.; Patricelli, M. P.; R. A. L. van der Hoorn

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding prot...

  19. Natural history of S-adenosylmethionine-binding proteins

    Directory of Open Access Journals (Sweden)

    Mushegian Arcady R

    2005-10-01

    Full Text Available Abstract Background S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins. Results Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins. Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor. Conclusion We have observed several novel relationships between families that were not known to be

  20. Demonstration of beta1-adrenergic receptors in human placenta by (-)I125 Iodocyanopindolol binding

    International Nuclear Information System (INIS)

    The highly specific β-adrenergic radioligand (-)125I Iodocyanopindolol (ICYP) was used to characterize the β-adrenergic receptor subtype present in human placenta. Binding of ICYP to membranes from human placenta was saturable with time and ligand concentration, of high affinity, and demonstrated appropriate stereoselectivity and agonist rank order of potency for binding to a β-adrenergic receptor. From saturation binding curves, the KD and Bmax values for ICYP binding were 233±51 pM and 690±139 fmol/mg of proteins, respectively.Analysis of inhibition of ICYP binding by β1- and β2-selective adrenergic antagonists via Hofstee analysis resulted in linear plots, indicating the existence of a homogeneous population of β-adrenergic receptors. From the resulting KI-values for the β1-selective drugs practolol (4.0±0.9 μM) and metoprolol (0.19±0.07 μM) and for the β2-selective drug ICI 118,551 (0.30)±0.06 μM) it is concluded that the β-adrenergic receptor in human placenta is of the β1-subtype. This is further supported by the fact that (-)-noradrenaline and (-)-adrenaline were equipotent in inhibiting ICYP binding

  1. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  2. A Genetic Screen Identifies Putative Targets and Binding Partners of CREB-Binding Protein in the Developing Drosophila Eye

    OpenAIRE

    Anderson, Jason; Bhandari, Rohan; Kumar, Justin P.

    2005-01-01

    Drosophila CREB-binding protein (dCBP) is a very large multidomain protein, which belongs to the CBP/p300 family of proteins that were first identified by their ability to bind the CREB transcription factor and the adenoviral protein E1. Since then CBP has been shown to bind to >100 additional proteins and functions in a multitude of different developmental contexts. Among other activities, CBP is known to influence development by remodeling chromatin, by serving as a transcriptional coactiva...

  3. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein.

    OpenAIRE

    Ubukata, K; Nonoguchi, R; Matsuhashi, M; Konno, M

    1989-01-01

    A beta-lactam-sensitive strain of Staphylococcus aureus could be converted to methicillin resistance by the introduction of a plasmid carrying the 4.3-kilobase HindIII chromosomal DNA fragment which encoded the mecA gene from a methicillin-resistant S. aureus. Transformant cells produced methicillin-resistant S. aureus-specific penicillin-binding protein constitutively, and additional insertion of an inducible penicillinase plasmid caused production of the pencillin-binding protein to become ...

  4. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    Science.gov (United States)

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  5. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  6. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available BACKGROUND: Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners. METHODOLOGY: Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques. CONCLUSIONS: Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions. AVAILABILITY: We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  7. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (. cap alpha. and. beta. ) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne

    1978-01-01

    A DEAE-cellulose filter assay, measuring (/sup 3/H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (/sup 3/H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  8. Dopamine transporter binding in rat striatum: a comparison of [O-methyl-{sup 11}C]{beta}-CFT and [N-methyl-{sup 11}C]{beta}-CFT

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Karmen K.; Hutchins, Gary D.; Mock, Bruce H.; Fei, Xiangshu; Winkle, Wendy L. [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States); Gitter, Bruce D.; Territo, Paul R. [Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2009-01-15

    Introduction: Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [{sup 11}C]{beta}-CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [{sup 11}C]{beta}-CFT is commonly labeled at the N-methyl position. However, labeling of [{sup 11}C]{beta}-CFT at the O-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the O-methylated form of [{sup 11}C]{beta}-CFT provides equivalent quantitative results to that of the more commonly reported N-methyl form. Methods: Four female Sprague-Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl-{sup 11}C]{beta}-CFT and once with [O-methyl-{sup 11}C]{beta}-CFT. DAT binding potentials (BP{identical_to}B'{sub avail}/K{sub d}) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function. Results: [N-Methyl-{sup 11}C]{beta}-CFT and [O-methyl-{sup 11}C]{beta}-CFT were synthesized with 40-50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258{+-}30 GBq/{mu}mol. Average BP values for right and left striata with [N-methyl-{sup 11}C]{beta}-CFT were 1.16{+-}0.08 and 1.23{+-}0.14, respectively. BP values for [O-methyl-{sup 11}C]{beta}-CFT were 1.18{+-}0.08 (right) and 1.22{+-}0.16 (left). Paired t tests demonstrated that labeling position did not affect striatal DAT BP. Conclusions: These results suggest that [O-methyl-{sup 11}C]{beta}-CFT is quantitatively equivalent to [N-methyl-{sup 11}C]{beta}-CFT in the rat striatum.

  9. Characterization of adenosine binding proteins in human placental membranes

    International Nuclear Information System (INIS)

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with [3H] -N-ethylcarboxamidoadenosine ([3H]NECA). This site is similar to the adenosine A2 receptor. We call this site the adenosine A2-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A1 receptor. The soluble adenosine A2-like binding site cannot be detected without a rapid assay. Binding to the adenosine A1 receptor with [3H]-2-chloroadenosine and [3H]NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A1 specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5'-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands [3H]-cyclohexyladenosine [3H] cylopentylxanthine revealed adenosine A1 agonist and antagonist potency orders. We have purified the adenosine A2-like binding site. The adenosine A2-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 Angstrom. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A2-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine

  10. Characterization of adenosine binding proteins in human placental membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, K.A.

    1989-01-01

    We have characterized two adenosine binding proteins in human placenta. In membranes, one site is detected with ({sup 3}H) -N-ethylcarboxamidoadenosine (({sup 3}H)NECA). This site is similar to the adenosine A{sub 2} receptor. We call this site the adenosine A{sub 2}-like binding site. In detergent extracts, the second site is detected and has the characteristics of an adenosine A{sub 1} receptor. The soluble adenosine A{sub 2}-like binding site cannot be detected without a rapid assay. Binding to the adenosine A{sub 1} receptor with ({sup 3}H)-2-chloroadenosine and ({sup 3}H)NECA is time dependent, saturable, and reversible. Equilibrium displacement analysis with adenosine agonists reveals an A{sub 1} specificity: 2-chloroadenosine > R-phenylisopropyladenosine > 5{prime}-N-ethylcarboxamidoadenosine. The antagonist potency order is 1,3-diethyl-8-phenylxanthine > isobutylmethylxanthine > theophylline. Competition analysis of membranes with the A,-selective ligands ({sup 3}H)-cyclohexyladenosine ({sup 3}H) cylopentylxanthine revealed adenosine A{sub 1} agonist and antagonist potency orders. We have purified the adenosine A{sub 2}-like binding site. The adenosine A{sub 2}-like binding site is an ubiquitous major cellular protein. It is glycosylated, highly asymmetric, and acidic. The native protein is an homodimer with a subunit molecular mass of 98 kDa. The sedimentation coefficient and partial specific volume of the binding complex are 6.9 s and 0.698 ml/g, respectively. The Stokes' radius is 70 {Angstrom}. The native molecular mass of the detergent-protein complex is 230 kDa. The adenosine A{sub 2}-like binding site has an agonist potency order of 5'-N-ethylcarboxamidoadenosine > 2-chloroadenosine >> R-phenylisopropyladenosine and an antagonist potency order of isobutylmethylxanthine > theophylline >> 1,3-diethyl-8-phenylxanthine.

  11. Identification of albumin-binding proteins in capillary endothelial cells

    OpenAIRE

    1988-01-01

    Isolated fat tissue microvessels and lung, whose capillary endothelia express in situ specific binding sites for albumin, were homogenized and subjected to SDS-gel electrophoresis and electroblotting. The nitrocellulose strips were incubated with either albumin-gold (Alb-Au) and directly visualized, or with [125I]albumin (monomeric or polymeric) and autoradiographed. The extracts of both microvascular endothelium and the lung express albumin-binding proteins (ABPs) represented by two pairs of...

  12. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences.

    OpenAIRE

    S. Hahn; Buratowski, S.; Sharp, P A; Guarente, L

    1989-01-01

    The DNA binding properties of the yeast TATA element-binding protein TFIID were investigated. The affinity (apparent equilibrium dissociation constant) of TFIID for the adenovirus major late promoter consensus TATA element is 2 x 10(-9) M, a value similar to the affinity of gene-specific regulatory proteins for their binding sites. TFIID binding is highly specific and recognizes nonspecific sites with approximately 10(5)-fold lower affinity. Despite this specificity, TFIID also binds with hig...

  13. Expressions of Beta-Catenin, SUFU and VEGFR-2 Proteins in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiong; ZHANG Hong-mei; LI Yu; MI Can

    2007-01-01

    Objective: to investigate the expressions of beta-catenin, SUFU and VEGFR-2 proteins in medulloblastoma. Methods: Immunohistochemical staining with SP method was conducted to determine the expressions of beta-catenin, SUFU and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results: the abnormal expression rates of beta-catenin and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue. While the positive expression of SUFU gene in medulloblastoma was significantly lower than that in 10 normal cerebellar tissues. A significant negative correlation was found between beta-catenin and SUFU proteins and a positive correlation between beta-catenin and VEGFR-2 was found in medulloblastoma. Conclusion: Beta-catenin, VEGFR-2 and SUFU have important effects on the pathogenesis and development of medulloblastoma.

  14. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna;

    2013-01-01

    forms capable of specifically triggering beta cell destruction. In other immune-mediated diseases, autoantigens targeted by the immune system have undergone post-translational modification (PTM), thereby creating tissue-specific neo-epitopes. In a similar manner, PTM of beta cell proteins might create......Type 1 diabetes is considered an autoimmune disease characterised by specific T cell-mediated destruction of the insulin-producing beta cells. Yet, except for insulin, no beta cell-specific antigens have been discovered. This may imply that the autoantigens in type 1 diabetes exist in modified...... beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...

  15. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO2, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  16. Binding dynamics of single-stranded DNA binding proteins to fluctuating bubbles in breathing DNA

    International Nuclear Information System (INIS)

    We investigate the dynamics of a single local denaturation zone in a DNA molecule, a so-called DNA bubble, in the presence of single-stranded DNA binding proteins (SSBs). In particular, we develop a dynamical description of the process in terms of a two-dimensional master equation for the time evolution of the probability distribution of having a bubble of size m with n bound SSBs, for the case when m and n are the slowest variables in the system. We derive explicit expressions for the equilibrium statistical weights for a given m and n, which depend on the statistical weight u associated with breaking a base-pair interaction, the loop closure exponent c, the cooperativity parameter σ0, the SSB size λ, and binding strength κ. These statistical weights determine, through the detailed balance condition, the transfer coefficient in the master equation. For the case of slow and fast binding dynamics the problem can be reduced to one-dimensional master equations. In the latter case, we perform explicitly the adiabatic elimination of the fast variable n. Furthermore, we find that for the case that the loop closure is neglected and the binding dynamics is vanishing (but with arbitrary σ0) the eigenvalues and the eigenvectors of the master equation can be obtained analytically, using an orthogonal polynomial approach. We solve the general case numerically (i.e., including SSB binding and the loop closure) as a function of statistical weight u, binding protein size λ, and binding strength κ, and compare to the fast and slow binding limits. In particular, we find that the presence of SSBs in general increases the relaxation time, compared to the case when no binding proteins are present. By tuning the parameters, we can drive the system from regular bubble fluctuation in the absence of SSBs to full denaturation, reflecting experimental and in vivo situations

  17. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  18. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    International Nuclear Information System (INIS)

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited [3H]flunitrazepam binding to benzodiazepine receptor, but not [3H]muscimol binding to GABAA receptor as well as t-[3H]butylbicycloorthobenzoate [( 3H] TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively [3H] flunitrazepam binding. On the other hand, the binding of beta-[3H]CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated [3H]muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-[3H]CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for [3H]flunitrazepam, [3H]muscimol and [3H]TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested

  19. The Effects of Combined Antioxidant Supplementation on Antioxidant Capacity, DNA Single-Strand Breaks and Regulation of Insulin Growth Factor-1/IGF-Binding Protein 3 in the Ferret Model of Lung Cancer

    Science.gov (United States)

    Purpose: Insulin-like growth factor 1 (IGF-1) and its major binding protein, IGF binding protein 3 (IGFBP-3) are implicated in lung cancer and other malignancies. We have previously shown that the combination of three major antioxidants [beta-carotene (BC), alpha-tocopherol (AT) and ascorbic acid (...

  20. C-TERMINAL FRAGMENT OF TRANSFORMING GROWTH FACTOR BETA-INDUCED PROTEIN (TGFBIp) IS REQUIRED FOR APOPTOSIS IN HUMAN OSTEOSARCOMA CELLS

    OpenAIRE

    Zamilpa, Rogelio; Rupaimoole, Rajesha; Phelix, Clyde F.; Somaraki-Cormier, Maria; Haskins, William; Asmis, Reto; LeBaron, Richard G.

    2009-01-01

    Transforming growth factor beta induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp i...

  1. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  2. Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers

    OpenAIRE

    Rempinski Donald R; Saifo Maher S; Rustum Youcef M; Azrak Rami G

    2010-01-01

    Abstract Background Beta-catenin is a multifunctional oncogenic protein that contributes fundamentally to cell development and biology. Elevation in expression and activity of β-catenin has been implicated in many cancers and associated with poor prognosis. Beta-catenin is degraded in the cytoplasm by glycogen synthase kinase 3 beta (GSK-3β) through phosphorylation. Cell growth and proliferation is associated with β-catenin translocation from the cytoplasm into the nucleus. This laboratory wa...

  3. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Larsen, Martin Røssel; Højrup, Peter; Issinger, Olaf-Georg; Guerra, Barbara

    The regulatory beta-subunit of protein kinase CK2 mediates the formation of the CK2 tetrameric form and it has functions independent of CK2 catalytic subunit through interaction with several intracellular proteins. Recently, we have shown that CK2beta associates with the human checkpoint kinase Chk......1. In this study, we show that Chk1 specifically phosphorylates in vitro the regulatory beta-subunit of CK2. Chymotryptic peptides and mutational analyses have revealed that CK2beta is phosphorylated at Thr213. Formation of a stable complex between CK2beta and Chk1 is not affected by the...

  4. The plasma protein binding of HIDA

    International Nuclear Information System (INIS)

    By using Sephadex gel column chromatography to separate substances into their various components according to molecular weight, we have investigated the effect of incubating several brands of HIDA in plasma, in vitro. The results show that such incubation has no effect on either dimethyl HIDA, or diethyl HIDA, but that in the case of para-butyl HIDA, incubation in plasma increases the Rf value to that of HSA (human serum albumin). This indicates that para-butyl HIDA becomes bound to plasma proteins, in contrast to both dimethyl HIDA and diethyl HIDA. (orig.)

  5. Characterization of a calmodulin binding protein kinase from Arabidopsis thalian

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A full-length calmodulin binding protein kinase cDNA, AtCBK1, from Arabidopsis has been isolated by screening of an Arabidopsis cDNA library and by 5′-RACE. Northern blot and in situ hybridization indicated that the expression of AtCBK1 was more abundant in the vascular bundles and the meristems than in other tissues. The phylogenetic analyses reveal that AtCBK1 is different from animal CaMKs and it falls into CRK subgroup, indicating that they may come from different ancestors. The result suggests that AtCBK1 encodes a CaM-binding serine/threonine protein kinase.

  6. Detection of Fibronectin-Binding Proteins in Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Yokoyama,Masako

    2006-12-01

    Full Text Available Clostridium perfringens is an anaerobic spore-forming pathogen of humans and animals. C. perfringens type A strains, 13, CPN50, and NCTC8237, isolated from human gas gangrene, bound specifically to human fi bronectin (Fn. The trypsin-treatment of the bacterial cells significantly reduced the Fn-binding. A ligand blotting analysis of all three C. perfringens strains revealed that 5 protein bands of 34 kDa, 29 kDa, 26 kDa, 17 kDa, and 12 kDa specifically bound to biotinylated Fn. These results suggest that C. perfringens possesses certain Fn-binding proteins on the cell surface.

  7. Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh; Grembecka, Jolanta; Cierpicki, Tomasz (Michigan); (UV)

    2014-10-02

    Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.

  8. Placental expression of estrogen receptor beta and its hormone binding variant – comparison with estrogen receptor alpha and a role for estrogen receptors in asymmetric division and differentiation of estrogen-dependent cells

    Directory of Open Access Journals (Sweden)

    Henley Donald C

    2003-04-01

    Full Text Available Abstract During human pregnancy, the production of 17-beta-estradiol (E2 rises steadily to eighty fold at term, and placenta has been found to specifically bind estrogens. We have recently demonstrated the expression of estrogen receptor alpha (ER-alpha protein in human placenta and its localization in villous cytotrophoblast (CT, vascular pericytes, and amniotic fibroblasts. In vitro, E2 stimulated development of large syncytiotrophoblast (ST aggregates. In the present study we utilized ER-beta affinity purified polyclonal (N19:sc6820 and ER-alpha monoclonal (clone h-151 antibodies. Western blot analysis revealed a single ~52 kDa ER-beta band in chorionic villi (CV protein extracts. In CV, strong cytoplasmic ER-beta immunoreactivity was confined to ST. Dual color immunohistochemistry revealed asymmetric segregation of ER-alpha in dividing villous CT cells. Prior to separation, the cell nuclei more distant from ST exhibited high ER-alpha, while cell nuclei associated with ST showed diminution of ER-alpha and appearance of ER-beta. In trophoblast cultures, development of ST aggregates was associated with diminution of ER-alpha and appearance of ER-beta immunoreactivity. ER-beta was also detected in endothelial cells, amniotic epithelial cells and fibroblasts, extravillous trophoblast (nuclear and cytoplasmic and decidual cells (cytoplasmic only. In addition, CFK-E12 (E12 and CWK-F12 (F12 monoclonal antibodies, which recognize ~64 kDa ER-beta with hormone binding domain, showed nuclear-specific reactivity with villous ST, extravillous trophoblast, and amniotic epithelium and fibroblasts. Western blot analysis indicated abundant expression of a ~64 kDa ER-beta variant in trophoblast cultures, significantly higher when compared to the chorionic villi and freshly isolated trophoblast cell protein extracts. This is the first report on ER-beta expression in human placenta and cultured trophoblast. Our data indicate that during trophoblast

  9. Binding-regulated click ligation for selective detection of proteins.

    Science.gov (United States)

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins. PMID:26599478

  10. Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

    Science.gov (United States)

    Bruno, S; Bettati, S; Manfredini, M; Mozzarelli, A; Bolognesi, M; Deriu, D; Rosano, C; Tsuneshige, A; Yonetani, T; Henry, E R

    2000-04-01

    Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model. PMID

  11. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  12. All-Purpose Containers? Lipid-Binding Protein - Drug Interactions.

    Directory of Open Access Journals (Sweden)

    Tiziana Beringhelli

    Full Text Available The combined use of in vitro (19F-NMR and in silico (molecular docking procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine for different drugs (mainly steroids and vastatins. Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding. Dissociation constants (Ki for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions, vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues.

  13. Drug-drug plasma protein binding interactions of ivacaftor.

    Science.gov (United States)

    Schneider, Elena K; Huang, Johnny X; Carbone, Vincenzo; Baker, Mark; Azad, Mohammad A K; Cooper, Matthew A; Li, Jian; Velkov, Tony

    2015-06-01

    Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1 -acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site-selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug-drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug-drug interactions of ivacaftor with co-administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. PMID:25707701

  14. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal alpha 1-3Gal beta 1-4GlcNAc sequences

    International Nuclear Information System (INIS)

    The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using 125I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3[Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. 125I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc

  15. Toxin A from Clostridium difficile binds to rabbit erythrocyte glycolipids with terminal Gal alpha 1-3Gal beta 1-4GlcNAc sequences

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.F.; Krivan, H.C.; Wilkins, T.D.; Smith, D.F.

    1987-08-15

    The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using /sup 125/I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3(Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. /sup 125/I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc.

  16. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials

    Directory of Open Access Journals (Sweden)

    Katiuscia Pagano

    2013-03-01

    Full Text Available During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.

  17. Fatty Acid- and Retinoid-binding Proteins Have Distinct Binding Pockets for the Two Types of Cargo*

    OpenAIRE

    Jordanova, Rositsa; Groves, Matthew R.; Kostova, Elena; Woltersdorf, Christian; Liebau, Eva; Tucker, Paul A.

    2009-01-01

    Parasitic nematodes cause serious diseases in humans, animals, and plants. They have limited lipid metabolism and are reliant on lipid-binding proteins to acquire these metabolites from their hosts. Several structurally novel families of lipid-binding proteins in nematodes have been described, including the fatty acid- and retinoid-binding protein family (FAR). In Caenorhabditis elegans, used as a model for studying parasitic nematodes, eight C. elegans FAR proteins have been described. The c...

  18. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein

    Institute of Scientific and Technical Information of China (English)

    Runzhong Liu; Haibo Hou; Xuelian Yi; Shanwen Wu; Huan Zeng

    2013-01-01

    The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.

  19. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    International Nuclear Information System (INIS)

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with [14C]penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed that the serine residue in the middle of the sequence was covalently bonded to the [14C]penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented

  20. Binding Interactions Between alpha-glucans from Lactobacillus reuteri and Milk Proteins Characterised by Surface Plasmon Resonance

    OpenAIRE

    Diemer, Silja K.; Svensson, Birte; Babol, Linnea N.; Cockburn, Darrell; Grijpstra, Pieter; Dijkhuizen, Lubbert; Folkenberg, Ditte M.; Garrigues, Christel; Ipsen, Richard H.

    2012-01-01

    Interactions between milk proteins and alpha-glucans at pH 4.0-5.5 were investigated by use of surface plasmon resonance. The alpha-glucans were synthesised with glucansucrase enzymes from Lactobacillus reuteri strains ATCC-55730, 180, ML1 and 121. Variations in the molecular characteristics of the alpha-glucans, such as molecular weight, linkage type and degree of branching, influenced the interactions with native and denatured beta-lactoglobulin and kappa-casein. The highest overall binding...

  1. Drug bioactivation, covalent binding to target proteins and toxicity relevance.

    Science.gov (United States)

    Zhou, Shufeng; Chan, Eli; Duan, Wei; Huang, Min; Chen, Yu-Zong

    2005-01-01

    A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients

  2. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  3. Free enthalpies of replacing water molecules in protein binding pockets.

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design. PMID:23247390

  4. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation

    OpenAIRE

    Gao, Mu; Skolnick, Jeffrey

    2012-01-01

    Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å dis...

  5. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-03-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example. PMID:21350339

  6. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics.

    Science.gov (United States)

    Vegarud, G E; Langsrud, T; Svenning, C

    2000-11-01

    Minerals and trace elements in cow's milk occur as inorganic ions and salts or form complexes with proteins and peptides, carbohydrates, fats and small molecules. The main mineral binder or chelators of calcium are the caseins, alphas1-casein, alphas2-casein, beta-casein and kappa-casein, but also whey proteins and lactoferrin bind specific minerals like calcium, magnesium, zinc, iron, sodium and potassium. Less documented is the binding of trace elements. Peptides obtained by in vitro or in vivo hydrolysis act as mineral trappers through specific and non-specific binding sites. They may then function as carriers, chelators, of various minerals and thus enhance or inhibit bioavailability. Peptides from milk proteins have found interesting new applications in the food industry as products with improved functionality or as ingredients of dietary products, or used in pharmaceutical industry. Fortification of foods with minerals in a low concentration has for a long time been used in some countries to overcome mineral deficiency, which is an increasing problem in humans. These types of foods are being used to create a new generation of super foods in the industry today. PMID:11242452

  7. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase {beta}-subunit gene family

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B. [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997 (Russian Federation); Zhao, Hao [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Basrur, Venkatesha [Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2011-09-09

    Highlights: {yields} Structural properties of BetaM and Na,K-ATPase {beta}-subunits are sharply different. {yields} BetaM protein is concentrated in nuclear membrane of skeletal myocytes. {yields} BetaM does not associate with a Na,K-ATPase {alpha}-subunit in skeletal muscle. {yields} Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. {yields} BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a {beta}-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase {beta}-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was

  8. Calcium-binding ability of soy protein hydrolysates

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Bao; Mei Song; Jing Zhang; Yang Chen; Shun Tang Guo

    2007-01-01

    This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase,flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.

  9. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Thornton David J

    2009-08-01

    Full Text Available Abstract Background The salivary mucin MUC7 (previously known as MG2 can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions. Results We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface. Conclusion Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

  10. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    Science.gov (United States)

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  11. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Nelson Laura D

    2012-06-01

    Full Text Available Abstract Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024. EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated

  12. Identification of Enhancer Binding Proteins Important for Myxococcus xanthus Development▿

    OpenAIRE

    Giglio, Krista M.; Eisenstatt, Jessica; Garza, Anthony G.

    2009-01-01

    Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.

  13. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    biflagellate green alga Chlamydomonas (Pedersen et al., 2003), and is required for ciliogenesis in mouse fibroblasts (Schroder et al., 2007). However, the exact mechanism(s) involved and roles of the two additional mammalian members of the end binding (EB) protein family, EB2 and EB3, in ciliogenesis are...

  14. Monomeric Yeast Frataxin is an Iron-Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Cook,J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  15. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  16. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation

    OpenAIRE

    Weidmann, Chase A.; Raynard, Nathan A.; Blewett, Nathan H.; Van Etten, Jamie; Goldstrohm, Aaron C.

    2014-01-01

    This article analyzes the mechanism by which Pumilio represses the translation of its targets. The results show, rather surprisingly, that promotion of deadenylation is not required for expression. Instead, Pumilio interacts with poly(A) binding protein and somehow interferes with its activity.

  17. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spec...

  18. Genomic organization of the murine G protein beta subunit genes and related processed pseudogenes.

    Science.gov (United States)

    Kitanaka, J; Wang, X B; Kitanaka, N; Hembree, C M; Uhl, G R

    2001-12-01

    The functional significance of heterotrimeric guanine nucleotide binding protein (G protein) for the many physiological processes including the molecular mechanisms of drug addiction have been described. In investigating the changes of mRNA expression after acute psychostimulant administration, we previously identified a cDNA encoding a G protein beta1 subunit (Gbeta1) that was increased up to four-fold in certain brain regions after administration of psychostimulants. The mouse Gbeta1 gene (the mouse genetic symbol, GNB1) was mapped to chromosome 4, but little was known of its genetic features. To characterize the GNB1 gene further, we have cloned and analyzed the genomic structures of the mouse GNBI gene and its homologous sequences. The GNBI gene spans at least 50 kb, and consists of 12 exons and 11 introns. The exon/intron boundaries were determined and found to follow the GT/AG rule. Exons 3-11 encode the Gbeta1 protein, and the exon 2 is an alternative, resulting in putative two splicing variants. Although intron 11 is additional for GNBI compared with GNB2 and GNB3, the intron positions within the protein coding region of GNB1, GNB2 and GNB3 are identical, suggesting that GNB1 should have diverged from the ancestral gene family earlier than the genes for GNB2 and GNB3. We also found the 5'-truncated processed pseudogenes with 71-89% similarities to GNBI mRNA sequence, suggesting that the truncated cDNA copies, which have been reverse-transcribed from a processed mRNA for GNB1, might have been integrated into several new locations in the mouse genome. PMID:11913780

  19. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    Science.gov (United States)

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  20. In vivo threonine phosphorylation of immunoglobulin binding protein (BiP) maps to its protein binding domain

    OpenAIRE

    Gaut, James R.

    1997-01-01

    lmmunoglobin binding protein (BiP) molecules exist as both monomers and oligomers and phosphorylated BiP is restricted to the oligomeric pool. Modified BiP is not bound to proteins such as immunoglobulin heavy chain and consequently, may constitute an inactive form. Unlike earlier analysis of mammalian BiP isolated by two-dimensional gel electrophoresis, results here demonstrated that immunoprecipitated BiP displayed predominantly threonine phosphorylation with only a trace of detectable phos...

  1. A synthetic peptide corresponding to human FSH. beta. -subunit 33-53 binds to FSH receptor, stimulates basal estradiol biosynthesis, and is a partial antagonist of FSH

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, T.A.; Dattatreyamurty, B.; Reichert, L.E. Jr. (Albany Medical College, NY (USA))

    1990-02-06

    The authors have previously shown that hFSH-{beta} 34-37 (KTCT) and 49-52 (TRDL) inhibit binding of {sup 125}I-hFSH to FSH receptor in calf testis membranes and that hFSH-{beta} 33-53, which encompasses these tetrapeptides, inhibits binding with increased potency. hFSH-{beta} 33-53 rapidly dimerizes under conditions utilized in the receptor binding assay (pH 7.5) so that the binding inhibition reported earlier was due to the hFSH-{beta} 33-53 dimer rather than the monomer. At pH 6.5, conversion to dimer does not occur, and binding inhibition could be unequivocally attributed to the monomer. Radioiodinated and alkylated hFSH-{beta} 33-53 binds to the FSH receptor. The biological activity of hFSH-{beta} 33-53 was assessed by its ability to affect the conversion of androstenedione to estradiol in rat Sertoli cells cultures. This result demonstrates that the free R-SH group at Cys51 is not responsible for the inhibition. FSH-{beta} 33-53 also significantly stimulated basal levels of estradiol synthesis, but not to maximal levels observed with FSH (partial agonist). Neither the carbohydrate content of hFSH-{beta} nor the {alpha} subunit of FSH appears to be essential for signal transduction and expression of the hormone effect of FSH-{beta} 33-53.

  2. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  3. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  4. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  5. Treponema pallidum receptor binding proteins interact with fibronectin

    International Nuclear Information System (INIS)

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or 35S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition

  6. Effects of beta-adrenergic blocking agents on specific binding of [3H]D-Ala2-Met5-enkephalinamide and [3H]naloxone.

    OpenAIRE

    Takayama, Haruhiko; Ogawa,Norio; Asanuma, Masato; Hirata, Hiroshi; Ogura,Toshio; Ota,Zensuke

    1991-01-01

    To gain further insight into the central nervous system (CNS)-action of beta-adrenergic blocking agents (beta-blockers), we examined the effects of various kinds of beta-blockers on opioid receptors (Op-Rs) using radiolabeled receptor assay (RRA). We demonstrated that beta-blockers are competitively bound to Op-Rs in the CNS. Sodium index of beta-blockers in [3H]naloxone binding study indicated that beta-blockers had the mixed agonist-antagonist activity of opiates. The relative potency of be...

  7. Purification and Characterization of a Cellulose-Binding (beta)-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium

    OpenAIRE

    Lymar, E. S.; Li, B.; Renganathan, V.

    1995-01-01

    Extracellular (beta)-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium was purified by DEAE-Sephadex chromatography, by Sephacryl S-200 chromatography, and by fast protein liquid chromatography (FPLC) using a Mono Q anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of FPLC-purified (beta)-glucosidase indicated the presence of three enzyme forms with molecular weights of 96,000, 98,000, and 114,000. On further fracti...

  8. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. PMID:27451201

  9. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    the oldest evolutionary derivatives followed by IF and HC (the latter being present only in reptiles and most but not all mammals). Our findings suggest that the only cobalamin-binding protein in zebrafish is an intermediate between the three human cobalamin binders. These findings support the...

  10. Comparative study of methyl-CpG-binding domain proteins

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2003-01-01

    Full Text Available Abstract Background Methylation at CpG dinucleotides in genomic DNA is a fundamental epigenetic mechanism of gene expression control in vertebrates. Proteins with a methyl-CpG-binding domain (MBD can bind to single methylated CpGs and most of them are involved in transcription control. So far, five vertebrate MBD proteins have been described as MBD family members: MBD1, MBD2, MBD3, MBD4 and MECP2. Results We performed database searches for new proteins containing an MBD and identified six amino acid sequences which are different from the previously described ones. Here we present a comparison of their MBD sequences, additional protein motifs and the expression of the encoding genes. A calculated unrooted dendrogram indicates the existence of at least four different groups of MBDs within these proteins. Two of these polypeptides, KIAA1461 and KIAA1887, were only present as predicted amino acid sequences based on a partial human cDNA. We investigated their expression by Northern blot analysis and found transcripts of ~8 kb and ~5 kb respectively, in all eight normal tissues studied. Conclusions Eleven polypeptides with a MBD could be identified in mouse and man. The analysis of protein domains suggests a role in transcriptional regulation for most of them. The knowledge of additional existing MBD proteins and their expression pattern is important in the context of Rett syndrome.

  11. Polyamine binding to proteins in oat and Petunia protoplasts

    Science.gov (United States)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  12. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  13. Insulin-like growth factor binding proteins: a structural perspective

    Directory of Open Access Journals (Sweden)

    Briony eForbes

    2012-03-01

    Full Text Available Insulin-like growth factor binding proteins (IGFBP-1 to -6 bind insulin-like growth factors-I and -II (IGF-I and IGF-II with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation and survival via the type 1 IGF receptor (IGF-1R. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that influence processes such as cell migration and apoptosis by influencing gene transcription.IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, Linker and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP to date, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarises structural studies reported so far and highlights features important for binding not only IGF but also other partners. It also highlights future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease.

  14. Stable Isotope Labeling Strategy for Protein-Ligand Binding Analysis in Multi-Component Protein Mixtures

    Science.gov (United States)

    DeArmond, Patrick D.; West, Graham M.; Huang, Hai-Tsang; Fitzgerald, Michael C.

    2011-03-01

    Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H{2/16}O2 and H{2/18}O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).

  15. [Penicillin-binding proteins of various strains of Lactobacillus].

    Science.gov (United States)

    Griaznova, N S; Subbotina, N A; Beliavskaia, I V; Taisova, A S; Afonin, V I; Tiurin, M V; Shenderov, B A; Sazykina, Iu O; Navashin, S M

    1990-02-01

    Sensitivity of different species of Lactobacillus i.e. L. casei, L. plantarum, L. acidophillus, L. buchneri, L. jugurti and others to penicillins and cephalosporins of various generations was studied. Penicillin binding proteins (PBPs) of the Lactobacillus species were specified. It was shown that the number of PBPs depended on the Lactobacillus species. L. casei had the least number of PBPs (4) and L. brevis had the highest number of PBPs (11). Competition of 14C-benzylpenicillin with ampicillin, cefotaxime, ceftizoxime and cefoperazone for binding to separate PBPs in three strains of different Lactobacillus species was investigated. PMID:2110806

  16. Photoaffinity labelling of high affinity dopamine binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-03-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-)N'-4-azidobenzamidol)-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using (/sup 3/H)-SCH 23390 (a D/sub 1/ specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked (/sup 3/H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of (/sup 3/H)-SCH 23390 binding. Compounds which compete for D/sub 1/ receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D/sub 1/ (adenylate cyclase linked) dopamine receptor.

  17. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from the...... isolated and used to elicit a rabbit antiserum. In immunostaining, both antisera reacted with the nuclei of cultured tumor cells. In tissue sections of human carcinoma, nuclear immunoreactivity was observed in the tumor cells in 40 of 42 cases examined. Adjacent normal epithelial tissue obtained from the...... presence of the homeobox transcript in human carcinoma was documented by in situ hybridization and RNase protection mapping. These results demonstrate that human cancer is associated with the expression of homeobox proteins. Such homeobox proteins, as well as other regulatory proteins, could be involved in...

  18. Poisson-Boltzmann Calculations of Nonspecific Salt Effects on Protein-Protein Binding Free Energies

    OpenAIRE

    Bertonati, Claudia; Honig, Barry; Alexov, Emil

    2007-01-01

    The salt dependence of the binding free energy of five protein-protein hetero-dimers and two homo-dimers/tetramers was calculated from numerical solutions to the Poisson-Boltzmann equation. Overall, the agreement with experimental values is very good. In all cases except one involving the highly charged lactoglobulin homo-dimer, increasing the salt concentration is found both experimentally and theoretically to decrease the binding affinity. To clarify the source of salt effects, the salt-dep...

  19. Binding of Streptococcus mutans SR protein to human monocytes: production of tumor necrosis factor, interleukin 1, and interleukin 6.

    Science.gov (United States)

    Soell, M; Holveck, F; Schöller, M; Wachsmann, R D; Klein, J P

    1994-05-01

    To examine the possible implication of protein SR, an I/II-related antigen from Streptococcus mutans OMZ 175 (serotype f), in inflammatory reactions, we tested the immunomodulatory effects of protein SR on human monocytes. Using biotinylated protein, we provide evidence that protein SR binds to human monocytes in dose-, time-, and calcium-dependent manners through specific interactions. These results were confirmed by competition experiments using either soluble human monocyte extract or anti-SR immunoglobulin G. Binding occurred through lectin-like interactions between SR and carbohydrate portions of monocyte membrane glycoproteins, since binding could be inhibited by several sugars, especially fucose and N-acetylneuraminic acid (NANA), which were confirmed by ligand blotting to be the primer ligands recognized by SR on human monocyte extracts. The ability of protein SR to stimulate the production of cytokines by human circulating monocytes was then examined. The release of tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta, and interleukin 6 is time and dose dependent and not affected by the addition of polymyxin B. Activation of monocytes resulted from specific binding of SR to NANA and fucose present on cell surface glycoproteins since TNF-alpha release could be inhibited by sialidase and pronase treatment of monocytes and by NANA and fucose. These results confirm that sialic acid and fucose present on cell surface macromolecules and especially glycoproteins are needed for the binding of SR to monocytes and for the release of TNF-alpha. PMID:8168943

  20. Solubilisation and binding characteristics of a recombinant beta2-adrenergic receptor expressed in the membrane of Escherichia coli for the multianalyte detection of beta-agonists and antagonists residues in food-producing animals.

    Science.gov (United States)

    Danyi, Sophie; Degand, Guy; Duez, Colette; Granier, Benoît; Maghuin-Rogister, Guy; Scippo, Marie-Louise

    2007-04-25

    The number of substances with beta-agonistic activity, illegally introduced in meat production or in sports doping as anabolic or beta-blocking agents is increasing. Analytical methods suited for their multianalyte detection are thus necessary. In this perspective, receptor assays were developed. The research activities undertaken in this study describe the solubilisation of a recombinant human beta(2)-adrenergic receptor produced in the inner membrane of genetically modified Escherichia coli, using the detergent n-dodecyl-beta-d-maltoside. Its potential to detect the presence of beta-agonists or beta-blockers in biological samples was evaluated. The solubilised beta(2)-adrenergic receptor retained its binding affinity in a radio-receptor assay based on the competition for the binding to receptors between a ligand (beta-agonist or antagonist) and the radioligand [(125)I]iodocyanopindolol. The IC(50) values ranged from 5+/-1 x 10(-8) M (clenbuterol) to 8+/-2 x 10(-6) M (isoxsuprine) for the beta-agonists tested and from 1.5+/-0.2 x 10(-10) M (carazolol) to 1.2+/-0.2 x 10(-5) M (metoprolol) for the beta-blockers tested. It was shown to have a lower limit of detection than a radio-receptor assay using the solubilised beta(2)-adrenoceptor expressed in a mammalian cell line. The solubilised recombinant human beta(2)-adrenoreceptor expressed in E. coli would be a useful tool to develop non radioactive multianalyte screening methods. PMID:17418176

  1. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins.

    OpenAIRE

    Zamore, P. D.; Williamson, J R; Lehmann, R.

    1997-01-01

    Translation of hunchback(mat) (hb[mat]) mRNA must be repressed in the posterior of the pre-blastoderm Drosophila embryo to permit formation of abdominal segments. This translational repression requires two copies of the Nanos Response Element (NRE), a 16-nt sequence in the hb[mat] 3' untranslated region. Translational repression also requires the action of two proteins: Pumilio (PUM), a sequence-specific RNA-binding protein; and Nanos, a protein that determines the location of repression. Bin...

  2. Detection of an endothelin-1-binding protein complex by low temperature SDS-PAGE

    International Nuclear Information System (INIS)

    We found that the complex of ET-1 and its binding protein was stable enough to be separated by SDS-PAGE when electrophoresis was run at a low temperature. Cross-linking was not necessary for the detection of 125I-ET-1 and its binding protein complex by autoradiography. This simple method could be used in qualitative (estimation of apparent molecular weight of ET-1 binding protein) and quantitative (determination of relative content of ET-binding protein) analysis of the ET-binding protein complex. ET-binding protein complexes of various animal species and organs were investigated by this method

  3. Glucose enhances collectrin protein expression in insulin-producing MIN6 {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Saisho, Kenji; Fukuhara, Atsunori [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Yasuda, Tomoko [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Sato, Yoshifumi; Fukui, Kenji; Iwahashi, Hiromi; Imagawa, Akihisa [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Hatta, Mitsutoki [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Shimomura, Iichiro [Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka (Japan); Yamagata, Kazuya, E-mail: k-yamaga@kumamoto-u.ac.jp [Department of Medical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan)

    2009-11-06

    Collectrin is a novel target gene of hepatocyte nuclear factor-1{alpha} in pancreatic {beta}-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 {beta}-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca{sup 2+} channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in {beta}-cells.

  4. Evolution of the acyl-CoA binding protein (ACBP)

    DEFF Research Database (Denmark)

    Burton, Mark; Rose, Timothy M; Faergeman, Nils J;

    2005-01-01

    -CoA pool size, donation of acyl-CoA esters for beta-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified...... duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage...

  5. Transforming growth factor beta stimulation of biglycan gene expression is potentially mediated by sp1 binding factors

    DEFF Research Database (Denmark)

    Heegaard, Anne-Marie; Xie, Zhongjian; Young, Marian Frances;

    2004-01-01

    construct was co-transfected with Sp1 and Sp3 expression vectors in Sp1-deficient Drosophila Schneider-2 cells, Sp1 induced the transcriptional activity of biglycan. Addition of Sp3 augmented the effect of Sp1 on biglycan gene expression. Induction of biglycan mRNA expression in response to TGF-beta in MG......-63 cells was abrogated by mithramycin, an inhibitor of Sp1 binding to GC-rich DNA sequences. A mutation in the Sp1 site at -216 to -208 within the -218 biglycan promoter construct substantially diminished the transcriptional up-regulation by TGF-beta(1). Taken together this data shows for the first...

  6. Phosphorylation of bovine interphotoreceptor retinoid-binding protein (IRBP)

    International Nuclear Information System (INIS)

    IRBP is the major soluble (glycolipo) protein of the interphotoreceptor matrix (IPM) and a putative intercellular retinoid-transport vehicle. The authors have now examined phosphorylation of proteins in a crude bovine IPM wash using γ-32P-ATP. SDS-polyacrylamide gel electrophoresis (PAGE) of IPM proteins showed several phosphorylated protein bands, one of them migrating in the same position as purified IRBP. When an aliquot of phosphorylated IPM proteins was incubated overnight with 3H-retinol and subjected to either size-exclusion or ion-exchange HPLC, a peak of 32P was observed in both cases which coincided with 3H-retinol binding and had a retention time identical to that of purified IRBP. When phosphorylated IPM was subjected to Con A Sepharose affinity chromatography and the 50mM methyl α-D-mannoside eluate chromatographed on ion-exchange HPLC, the 32P-peak was not present although a substantial amount of non-phosphorylated IRBP was recovered as assessed by SDS-PAGE and Western blotting. However, when the Con A Sepharose beads were dissolved in SDS and subjected to SDS-PAGE and Western blotting, a band of phosphorylated IRBP was observed, indicating that the phosphorylated IRBP was more tightly bound to the Con A Sepharose. The authors conclude that a fraction of IRBP can be phosphorylated by a yet to be characterized protein kinase and that the binding characteristics of IRBP are markedly altered by phosphorylation

  7. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  8. Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity.

    Science.gov (United States)

    Li, Minghui; Petukh, Marharyta; Alexov, Emil; Panchenko, Anna R

    2014-04-01

    The crucial prerequisite for proper biological function is the protein's ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein-protein binding is critical for a wide range of biomedical applications. Here, we report an efficient computational approach for predicting the effect of single and multiple missense mutations on protein-protein binding affinity. It is based on a well-tested simulation protocol for structure minimization, modified MM-PBSA and statistical scoring energy functions with parameters optimized on experimental sets of several thousands of mutations. Our simulation protocol yields very good agreement between predicted and experimental values with Pearson correlation coefficients of 0.69 and 0.63 and root-mean-square errors of 1.20 and 1.90 kcal mol(-1) for single and multiple mutations, respectively. Compared with other available methods, our approach achieves high speed and prediction accuracy and can be applied to large datasets generated by modern genomics initiatives. In addition, we report a crucial role of water model and the polar solvation energy in estimating the changes in binding affinity. Our analysis also reveals that prediction accuracy and effect of mutations on binding strongly depends on the type of mutation and its location in a protein complex. PMID:24803870

  9. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    Science.gov (United States)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  10. Binding of N-acetyl-N '-beta-D-glucopyranosyl urea and N-benzoyl-N '-beta-D-glucopyranosyl urea to glycogen phosphorylase b: kinetic and crystallographic studies.

    Science.gov (United States)

    Oikonomakos, Nikos G; Kosmopoulou, Magda; Zographos, Spyros E; Leonidas, Demetres D; Chrysina, Evangelia D; Somsák, László; Nagy, Veronika; Praly, Jean-Pierre; Docsa, Tibor; Tóth, Béla; Gergely, Pál

    2002-03-01

    Two substituted ureas of beta-D-glucose, N-acetyl-N'-beta-D-glucopyranosyl urea (Acurea) and N-benzoyl-N'-beta-D-glucopyranosyl urea (Bzurea), have been identified as inhibitors of glycogen phosphorylase, a potential target for therapeutic intervention in type 2 diabetes. To elucidate the structural basis of inhibition, we determined the structure of muscle glycogen phosphorylase b (GPb) complexed with the two compounds at 2.0 A and 1.8 A resolution, respectively. The structure of the GPb-Acurea complex reveals that the inhibitor can be accommodated in the catalytic site of T-state GPb with very little change in the tertiary structure. The glucopyranose moiety makes the standard hydrogen bonds and van der Waals contacts as observed in the GPb-glucose complex, while the acetyl urea moiety is in a favourable electrostatic environment and makes additional polar contacts with the protein. The structure of the GPb-Bzurea complex shows that Bzurea binds tightly at the catalytic site and induces substantial conformational changes in the vicinity of the catalytic site. In particular, the loop of the polypeptide chain containing residues 282-287 shifts 1.3-3.7 A (Calpha atoms) to accommodate Bzurea. Bzurea can also occupy the new allosteric site, some 33 A from the catalytic site, which is currently the target for the design of antidiabetic drugs. PMID:11895439

  11. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    OpenAIRE

    Lei Benfang; Liu Mengyao; Zhu Hui

    2008-01-01

    Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, ...

  12. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.

    Science.gov (United States)

    Gorlin, J B; Yamin, R; Egan, S; Stewart, M; Stossel, T P; Kwiatkowski, D J; Hartwig, J H

    1990-09-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even-numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy-terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high-angle branching of actin

  13. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    International Nuclear Information System (INIS)

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca2+. One mechanism by which Ca2+ may trigger neutrophil activation is through Ca2+/calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca2+/CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and 125I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound 125I-CaM in a Ca2+-dependent manner. One predominant region of 125I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca2+-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 μg/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca2+-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca2+/calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase

  14. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  15. Human platelet calmodulin-binding proteins: identification and Ca/sup 2 +/-dependent proteolysis upon platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.W.; Tallant, E.A.; McManus, M.C.

    1987-05-19

    Calmodulin-binding proteins have been identified in human platelets by using Western blotting techniques and /sup 125/I-calmodulin. Ten distinct proteins of 245, 225, 175, 150, 90, 82 (2), 60, and 41 (2) kilodaltons (kDa) bound /sup 125/I-calmodulin in a Ca/sup 2 +/-dependent manner; the binding was blocked by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), trifluoperazine, and nonradiolabeled calmodulin. Proteins of 225 and 90 kDa were labeled by antisera against myosin light chain kinase; 60- and 82-kDa proteins were labeled by antisera against the calmodulin-dependent phosphatase and caldesmon, respectively. The remaining calmodulin-binding proteins have not been identified. Calmodulin-binding proteins were degraded upon addition of Ca/sup 2 +/ to a platelet homogenate; the degradation could be blocked by either EGTA, leupeptin, or N-ethylmaleimide which suggests that the degradation was due to a Ca/sup 2 +/-dependent protease. Activation of intact platelets by thrombin, adenosine 5'-diphosphate, and collagen under conditions which promote platelet aggregation also resulted in limited proteolysis of calmodulin-binding proteins including those labeled with antisera against myosin light chain kinase and the calmodulin-dependent phosphatase. Activation by the Ca/sup 2 +/ ionophores A23187 and ionomycin also promoted degradation of the calmodulin-binding proteins in the presence of extracellular Ca/sup 2 +/. The data indicate that limited proteolysis of Ca/sup 2 +//calmodulin-regulated enzymes also occurs in the intact platelet and suggest that the proteolysis is triggered by an influx of extracellular Ca/sup 2 +/ associated with platelet aggregation.

  16. Glycosylation status of vitamin D binding protein in cancer patients

    OpenAIRE

    Rehder, Douglas S.; Nelson, Randall W.; Borges, Chad R.

    2009-01-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, co...

  17. Interactions of human mannose-binding protein with lipoteichoic acids.

    OpenAIRE

    Polotsky, V Y; Fischer, W; Ezekowitz, R A; Joiner, K A

    1996-01-01

    We explored the interaction of human recombinant mannose-binding protein and lipoteichoic acids (LTAs) by enzyme-linked immunosorbent assay. The best ligand was Micrococcus luteus lipomannan, followed by Enterococcus spp. LTA containing mono-, di-, and oligoglucosyl substituents. LTAs lacking terminal sugars (those of Streptococcus pyogenes and Staphylococcus aureus) or containing galactosyl substituents (those of Listeria spp. and Lactococcus spp.) were poor ligands. These results are consis...

  18. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  19. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    International Nuclear Information System (INIS)

    Incubation of rat liver microsomes with [3H]methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalen (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B)

  20. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M;

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them to...... molecular snapshot of the orchestrated changes in expression of proteins involved in key processes which could be correlated with the altered phenotype of human beta-cells. Collectively our observations prompt research towards the establishment of bioengineered human beta-cells providing a new and needed...... source of cultured human beta-cells for beta-cell research, along with the development of new therapeutic strategies for detection, characterization and treatment of insulinomas....

  1. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    Science.gov (United States)

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project. PMID:27043011

  2. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  3. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  4. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.

    Science.gov (United States)

    Rao, V S; Lam, K; Qasba, P K

    1998-11-01

    Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity. PMID:9849627

  5. Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells

    Science.gov (United States)

    Beta-carotene (BC) was encapsulated by sodium caseinate (SC), whey protein isolate (WPI), and soybean protein isolate (SPI) by the homogenization-evaporation method forming nanoparticles of 78, 90 and 370 nm diameter. Indices of the chemical antioxidant assays, the reducing power, DPPH radical scave...

  6. Preferential reduction of binding of 125I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments

    International Nuclear Information System (INIS)

    This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, 125I-iodopindolol (125I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of rats with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of 125I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce 125I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of 125I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of 125I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of 125I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus

  7. Purification and characterization of oligonucleotide binding (OB)-fold protein from medicinal plant Tinospora cordifolia.

    Science.gov (United States)

    Amir, Mohd; Haque, Md Anzarul; Wahiduzzaman; Dar, Mohammad Aasif; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The oligonucleotide binding fold (OB-fold) is a small structural motif present in many proteins. It is originally named for its oligonucleotide or oligosaccharide binding properties. These proteins have been identified as essential for replication, recombination and repair of DNA. We have successfully purified a protein contains OB-fold from the stem of Tinospora cordifolia, a medicinal plants of north India. Stems were crushed and centrifuged, and fraction obtained at 60% ammonium sulphate was extensively dialyzed and applied to the weak anion exchange chromatography on Hi-Trap DEAE-FF in 50mM Tris-HCl buffer at pH 8.0. Eluted fractions were concentrated and applied to gel filtration column to get pure protein. We observed a single band of 20-kDa on SDS-PAGE. Finally, the protein was identified as OB-fold by MALDI-TOF. The purified OB-fold protein was characterized for its secondary structural elements using circular dichroism (CD) in the far-UV region. Generally the OB-fold has a characteristic feature as five-stranded beta-sheet coiled to form a closed beta- barrel. To estimate its chemical stability, guanidinium chloride-induced denaturation curve was followed by observing changes in the far-UV CD as a function of the denaturant concentration. Analysis of this denaturation curve gave values of 8.90±0.25kcalmol(-1) and 3.78±0.18M for ΔGD° (Gibbs free energy change at 25°C) and Cm (midpoint of denaturation), respectively. To determine heat stability parameters of OB-fold protein, differential scanning calorimetry was performed. Calorimetric values of ΔGD°, Tm (midpoint of denaturation), ΔHm (enthalpy change at Tm), and ΔCp (constant-pressure heat capacity change) are 9.05±0.27kcalmol(-1), 85.2±0,3°C, 105±4kcalmol(-1) and 1.6±0.08kcalmol(-1)K(-1). This is the first report on the isolation, purification and characterization of OB-fold protein from a medicinal plant T. cordifolia. PMID:26613539

  8. Development of computational methods for the prediction of protein structure, protein binding, and mutational effects using free energy calculations.

    OpenAIRE

    Becker, Caroline

    2014-01-01

    A molecular understanding of protein-protein or protein-ligand binding is of crucial importance for the design of proteins or ligands with defined binding characteristics. The comprehensive analysis of biomolecular binding and the coupled rational in silico design of protein-ligand interfaces requires both, accurate and computationally fast methods for the prediction of free energies. Accurate free energy methods usually involve atomistic molecular dynamics simulations that are computationall...

  9. SiteComp: a server for ligand binding site analysis in protein structures

    OpenAIRE

    Lin, Yingjie; Yoo, Seungyeul; Sanchez, Roberto

    2012-01-01

    Motivation: Computational characterization of ligand-binding sites in proteins provides preliminary information for functional annotation, protein design and ligand optimization. SiteComp implements binding site analysis for comparison of binding sites, evaluation of residue contribution to binding sites and identification of sub-sites with distinct molecular interaction properties.

  10. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  11. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  12. Beta adrenergic receptors in pigmented ciliary processes.

    OpenAIRE

    Trope, G. E.; Clark, B.

    1982-01-01

    Beta adrenergic receptors from membrane fragments of pigmented sheep eyes were studied and characterised by ligand binding techniques after the removal of melanin. In a representative experiment the beta max (total number of beta receptors) was 394.9 fmol/mg protein. The receptor affinity (Ka) was 440 pM. The potency series of drugs to displace 125I-HYP from the receptors was timolol = (-) propranolol greater than (+) propranolol greater than salbutamol greater than practolol. beta 1 Recepto...

  13. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  14. Prediction of beta-turns in proteins using neural networks.

    Science.gov (United States)

    McGregor, M J; Flores, T P; Sternberg, M J

    1989-05-01

    The use of neural networks to improve empirical secondary structure prediction is explored with regard to the identification of the position and conformational class of beta-turns, a four-residue chain reversal. Recently an algorithm was developed for beta-turn predictions based on the empirical approach of Chou and Fasman using different parameters for three classes (I, II and non-specific) of beta-turns. In this paper, using the same data, an alternative approach to derive an empirical prediction method is used based on neural networks which is a general learning algorithm extensively used in artificial intelligence. Thus the results of the two approaches can be compared. The most severe test of prediction accuracy is the percentage of turn predictions that are correct and the neural network gives an overall improvement from 20.6% to 26.0%. The proportion of correctly predicted residues is 71%, compared to a chance level of about 58%. Thus neural networks provide a method of obtaining more accurate predictions from empirical data than a simpler method of deriving propensities. PMID:2748568

  15. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  16. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome. PMID:23934110

  17. Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue.

    Science.gov (United States)

    Chen, Wentao; Dong, Jiajia; Plate, Lars; Mortenson, David E; Brighty, Gabriel J; Li, Suhua; Liu, Yu; Galmozzi, Andrea; Lee, Peter S; Hulce, Jonathan J; Cravatt, Benjamin F; Saez, Enrique; Powers, Evan T; Wilson, Ian A; Sharpless, K Barry; Kelly, Jeffery W

    2016-06-15

    Arylfluorosulfates have appeared only rarely in the literature and have not been explored as probes for covalent conjugation to proteins, possibly because they were assumed to possess high reactivity, as with other sulfur(VI) halides. However, we find that arylfluorosulfates become reactive only under certain circumstances, e.g., when fluoride displacement by a nucleophile is facilitated. Herein, we explore the reactivity of structurally simple arylfluorosulfates toward the proteome of human cells. We demonstrate that the protein reactivity of arylfluorosulfates is lower than that of the corresponding aryl sulfonyl fluorides, which are better characterized with regard to proteome reactivity. We discovered that simple hydrophobic arylfluorosulfates selectively react with a few members of the intracellular lipid binding protein (iLBP) family. A central function of iLBPs is to deliver small-molecule ligands to nuclear hormone receptors. Arylfluorosulfate probe 1 reacts with a conserved tyrosine residue in the ligand-binding site of a subset of iLBPs. Arylfluorosulfate probes 3 and 4, featuring a biphenyl core, very selectively and efficiently modify cellular retinoic acid binding protein 2 (CRABP2), both in vitro and in living cells. The X-ray crystal structure of the CRABP2-4 conjugate, when considered together with binding site mutagenesis experiments, provides insight into how CRABP2 might activate arylfluorosulfates toward site-specific reaction. Treatment of breast cancer cells with probe 4 attenuates nuclear hormone receptor activity mediated by retinoic acid, an endogenous client lipid of CRABP2. Our findings demonstrate that arylfluorosulfates can selectively target single iLBPs, making them useful for understanding iLBP function. PMID:27191344

  18. Buffer Interference with Protein Dynamics: A Case Study on Human Liver Fatty Acid Binding Protein

    OpenAIRE

    Long, Dong; Yang, Daiwen

    2009-01-01

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding prote...

  19. The human IgA-Fc alpha receptor interaction and its blockade by streptococcal IgA-binding proteins.

    Science.gov (United States)

    Woof, J M

    2002-08-01

    IgA plays a key role in immune defence of the mucosal surfaces. IgA can trigger elimination mechanisms against pathogens through the interaction of its Fc region with Fc alpha Rs (receptors specific for the Fc region of IgA) present on neutrophils, macrophages, monocytes and eosinophils. The human Fc alpha R (CD89) shares homology with receptors specific for the Fc region of IgG (Fc gamma Rs) and IgE (Fc epsilon RIs), but is a more distantly related member of the receptor family. CD89 interacts with residues lying at the interface of the two domains of IgA Fc, a site quite distinct from the homologous regions at the top of IgG and IgE Fc recognized by Fc gamma R and Fc epsilon RI respectively. Certain pathogenic bacteria express surface proteins that bind to human IgA Fc. Experiments with domain-swap antibodies and mutant IgAs indicate that binding of three such proteins (Sir22 and Arp4 of Streptococcus pyogenes and beta protein of group B streptococci) depend on sites in the Fc interdomain region of IgA, the binding region also used by CD89. Further, we have found that the streptococcal proteins can inhibit interaction of IgA with CD89, and have thereby identified a mechanism by which a bacterial IgA-binding protein may modulate IgA effector function. PMID:12196121

  20. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins

    International Nuclear Information System (INIS)

    We have previously discovered and characterized the nuclear import pathways for the E7 oncoproteins of mucosal alpha genus HPVs, type 16 and 11. Here we investigated the nuclear import of cutaneous beta genus HPV8 E7 protein using confocal microscopy after transfections of HeLa cells with EGFP-8E7 and mutant plasmids and nuclear import assays in digitonin-permeabilized HeLa cells. We determined that HPV8 E7 contains a nuclear localization signal (NLS) within its zinc-binding domain that mediates its nuclear import. Furthermore, we discovered that a mostly hydrophobic patch 65LRLFV69 within the zinc-binding domain is essential for the nuclear import and localization of HPV8 E7 via hydrophobic interactions with the FG nucleoporins Nup62 and Nup153. Substitution of the hydrophobic residues within the 65LRLFV69 patch to alanines, and not R66A mutation, disrupt the interactions between the 8E7 zinc-binding domain and Nup62 and Nup153 and consequently inhibit nuclear import of HPV8 E7. - Highlights: • HPV8 E7 has a cNLS within its zinc-binding domain that mediates its nuclear import. • Discovery of a hydrophobic patch that is critical for the nuclear import of HPV8 E7. • HPV8 E7 nuclear import is mediated by hydrophobic interactions with FG-Nups, Nup62 and Nup153

  1. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding.

    Science.gov (United States)

    Xiao, Tianshu; Fan, Jing-Song; Zhou, Hu; Lin, Qingsong; Yang, Daiwen

    2016-06-01

    Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate. PMID:27105780

  2. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. PMID:27018856

  3. Computational analysis of HIV-1 protease protein binding pockets.

    Science.gov (United States)

    Ko, Gene M; Reddy, A Srinivas; Kumar, Sunil; Bailey, Barbara A; Garg, Rajni

    2010-10-25

    Mutations that arise in HIV-1 protease after exposure to various HIV-1 protease inhibitors have proved to be a difficult aspect in the treatment of HIV. Mutations in the binding pocket of the protease can prevent the protease inhibitor from binding to the protein effectively. In the present study, the crystal structures of 68 HIV-1 proteases complexed with one of the nine FDA approved protease inhibitors from the Protein Data Bank (PDB) were analyzed by (a) identifying the mutational changes with the aid of a developed mutation map and (b) correlating the structure of the binding pockets with the complexed inhibitors. The mutations of each crystal structure were identified by comparing the amino acid sequence of each structure against the HIV-1 wild-type strain HXB2. These mutations were visually presented in the form of a mutation map to analyze mutation patterns corresponding to each protease inhibitor. The crystal structure mutation patterns of each inhibitor (in vitro) were compared against the mutation patterns observed in in vivo data. The in vitro mutation patterns were found to be representative of most of the major in vivo mutations. We then performed a data mining analysis of the binding pockets from each crystal structure in terms of their chemical descriptors to identify important structural features of the HIV-1 protease protein with respect to the binding conformation of the HIV-1 protease inhibitors. Data mining analysis is performed using several classification techniques: Random Forest (RF), linear discriminant analysis (LDA), and logistic regression (LR). We developed two hybrid models, RF-LDA and RF-LR. Random Forest is used as a feature selection proxy, reducing the descriptor space to a few of the most relevant descriptors determined by the classifier. These descriptors are then used to develop the subsequent LDA, LR, and hierarchical classification models. Clustering analysis of the binding pockets using the selected descriptors used to

  4. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  5. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    Science.gov (United States)

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  6. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    Science.gov (United States)

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  7. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.;

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...... be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds...... strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification....

  8. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  9. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  10. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I;

    2000-01-01

    and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins......Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2...... domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi...

  11. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  12. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  13. In vitro binding of selenium by rat liver mitochondrial selenium-binding protein

    International Nuclear Information System (INIS)

    Last year the authors reported that upon freezing and thawing mitochondria from rats injected with [75Se]Na2SeO3 (75Se-selenite), a 75Se-binding protein (SeBP) was released. They have studied further in vitro labelling of SeBP. This matrix protein was labelled in vitro when lysed mitochondria (containing non-matrix material) were incubated with 75Se-selenite but not when matrix material alone was incubated with 75Se-selenite. Thus, there are one or more promoters of in vitro SeBP labelling in the non-matrix fraction. SeBP was also labelled in vitro when 75Se-selenite was added to matrix alone and dialyzed. Dialysis tubing, and not the dialysis process, promoted labelling by affecting SeBP and not by affecting 75Se-selenite. Labelling did not occur when matrix alone and 75Se-selenite were incubated (not dialyzed) in a glass test tube but did occur in a polystyrene test tube. They hypothesize that non-covalent interactions occur between SeBP and dialysis tubing or polystyrene that expose Se binding sites on the protein. A similar mechanism involving mitochondrial non-matrix material may function in vivo. Non-denaturing disc gel electrophoresis of partially purified SeBP labelled in vivo or in vitro suggested that the same protein was labelled in both conditions. Using in vitro binding techniques, SeBP was also found in sheep liver mitochondrial matrix. This supports the theory that SeBP is important in Se metabolism

  14. Functional zinc-binding motifs in enzymes and DNA-binding proteins.

    Science.gov (United States)

    Vallee, B L; Auld, D S

    1992-01-01

    Zinc is now known to be an integral component of a large number and variety of enzymes and proteins involved in virtually all aspects of metabolism, thus accounting for the fact that this element is essential for growth and development. The chemistry of zinc, superficially bland, in reality has turned out to be ideally appropriate and versatile for the unexpected development of multiple and unique chemical structures which biology has used for specific life processes. The present discussion will centre on those distinctive zinc-binding motifs that are critical both to enzyme function and the expression of the genetic message. X-Ray diffraction structure determination of 15 zinc enzymes belonging to IUB classes I-IV provide absolute standards of reference for the identity and nature of zinc ligands in their families. Three types of zinc enzyme binding motifs emerge through analysis of these: catalytic, coactive or cocatalytic, and structural. In contrast to zinc enzymes virtually all DNA-binding proteins contain multiple zinc atoms. With the availability of NMR and X-ray structure analyses three distinct motifs now emerge for those: zinc fingers, twists and clusters. PMID:1290939

  15. Identification of group specific motifs in Beta-lactamase family of proteins

    Directory of Open Access Journals (Sweden)

    Saxena Akansha

    2009-12-01

    Full Text Available Abstract Background Beta-lactamases are one of the most serious threats to public health. In order to combat this threat we need to study the molecular and functional diversity of these enzymes and identify signatures specific to these enzymes. These signatures will enable us to develop inhibitors and diagnostic probes specific to lactamases. The existing classification of beta-lactamases was developed nearly 30 years ago when few lactamases were available. DLact database contain more than 2000 beta-lactamase, which can be used to study the molecular diversity and to identify signatures specific to this family. Methods A set of 2020 beta-lactamase proteins available in the DLact database http://59.160.102.202/DLact were classified using graph-based clustering of Best Bi-Directional Hits. Non-redundant (> 90 percent identical protein sequences from each group were aligned using T-Coffee and annotated using information available in literature. Motifs specific to each group were predicted using PRATT program. Results The graph-based classification of beta-lactamase proteins resulted in the formation of six groups (Four major groups containing 191, 726, 774 and 73 proteins while two minor groups containing 50 and 8 proteins. Based on the information available in literature, we found that each of the four major groups correspond to the four classes proposed by Ambler. The two minor groups were novel and do not contain molecular signatures of beta-lactamase proteins reported in literature. The group-specific motifs showed high sensitivity (> 70% and very high specificity (> 90%. The motifs from three groups (corresponding to class A, C and D had a high level of conservation at DNA as well as protein level whereas the motifs from the fourth group (corresponding to class B showed conservation at only protein level. Conclusion The graph-based classification of beta-lactamase proteins corresponds with the classification proposed by Ambler, thus there is

  16. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    DEFF Research Database (Denmark)

    Danen, Erik H J; Sonneveld, Petra; Brakebusch, Cord; Fassler, Reinhard; Sonnenberg, Arnoud

    2002-01-01

    We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of...... RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated...... fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3...

  17. The Movable Type Method Applied to Protein-Ligand Binding

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  18. A method to predict edge strands in beta-sheets from protein sequences

    Directory of Open Access Journals (Sweden)

    Antonin Guilloux

    2013-05-01

    Full Text Available There is a need for rules allowing three-dimensional structure information to be derived from protein sequences. In this work, consideration of an elementary protein folding step allows protein sub-sequences which optimize folding to be derived for any given protein sequence. Classical mechanics applied to this system and the energy conservation law during the elementary folding step yields an equation whose solutions are taken over the field of rational numbers. This formalism is applied to beta-sheets containing two edge strands and at least two central strands. The number of protein sub-sequences optimized for folding per amino acid in beta-strands is shown in particular to predict edge strands from protein sequences. Topological information on beta-strands and loops connecting them is derived for protein sequences with a prediction accuracy of 75%. The statistical significance of the finding is given. Applications in protein structure prediction are envisioned such as for the quality assessment of protein structure models.

  19. Atualizações sobre beta-hidroxi-beta-metilbutirato: suplementação e efeitos sobre o catabolismo de proteínas New findings on beta-hydroxy-beta-methylbutyirate: supplementation and effects on the protein catabolism

    Directory of Open Access Journals (Sweden)

    Everson Araújo Nunes

    2008-04-01

    Full Text Available O beta-hidroxi-beta-metilbutirato, metabólito do aminoácido leucina, vem sendo utilizado como suplemento alimentar, em situações específicas, com o intuito de aumentar ou manter a massa isenta de gordura. Os relatos dos efeitos do beta-hidroxi-beta-metilbutirato em estudos recentes fizeram crescer as expectativas sobre sua utilização em casos patológicos. Também foram demonstrados melhores resultados, quando da sua ingestão, no treinamento de força em indivíduos iniciantes e em idosos. Em humanos o beta-hidroxi-beta-metilbutirato tem sido usado como agente anti-catabólico, e em modelos animais foi demonstrado ser eficaz em inibir a atividade de vias proteolíticas em células musculares de indivíduos caquéticos in vitro e in vivo. Os mecanismos participantes desses processos envolvem: a inibição da atividade do sistema ubiquitina proteossoma ATP-dependente, a inibição de vias de sinalização com participação da proteína quinase C-alfa e a diminuição da concentração citoplasmática do fator nuclear - kappa B livre, eventos relacionados ao decréscimo da proteólise em células musculares.The leucine metabolite beta-hydroxy-beta-methylbutyrate has been used as a nutritional supplement in specific situations to prevent losing or to increase lean mass. Recent studies showed interesting results of beta-hydroxy-beta-methylbutyrate supplementation in certain disease states. Better results have also been demonstrated when it is taken by starters or old individuals doing strength training. In humans, beta-hydroxy-beta-methylbutyrate has been used as an anticatabolic agent and in animal models it has been demonstrated to be effective in inhibiting the activity of the proteolytic pathways in muscle cells of extremely weak individuals in vivo and in vitro. The mechanisms that participate in this process involve: inhibition of the ATP-ubiquitin-proteasome pathway, inhibition of the signalization pathways involving protein kinase C

  20. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle;

    2010-01-01

    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was...... seven fold decreased whereas K M was unaffected in the presence of 10 microM Zn2+. The inhibitory effect of Zn2+ on APC activity was also observed when factor Va was used as a substrate in an assay coupled to a prothrombinase assay. The interaction of Zn2+ with APC was accompanied by a reversible...... fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  1. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  2. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  3. The MTA family proteins as novel histone H3 binding proteins

    Directory of Open Access Journals (Sweden)

    Wu Meng

    2013-01-01

    Full Text Available Abstract Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  4. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, Brian; Meng, Xiangzhi; Li, Yongchao; Xiang, Yan; Deng, Junpeng (Texas-HSC); (OKLU)

    2009-07-10

    Human interleukin-18 (hIL-18) is a cytokine that plays an important role in inflammation and host defense against microbes. Its activity is regulated in vivo by a naturally occurring antagonist, the human IL-18-binding protein (IL-18BP). Functional homologs of human IL-18BP are encoded by all orthopoxviruses, including variola virus, the causative agent of smallpox. They contribute to virulence by suppressing IL-18-mediated immune responses. Here, we describe the 2.0-{angstrom} resolution crystal structure of an orthopoxvirus IL-18BP, ectromelia virus IL-18BP (ectvIL-18BP), in complex with hIL-18. The hIL-18 structure in the complex shows significant conformational change at the binding interface compared with the structure of ligand-free hIL-18, indicating that the binding is mediated by an induced-fit mechanism. EctvIL-18BP adopts a canonical Ig fold and interacts via one edge of its {beta}-sandwich with 3 cavities on the hIL-18 surface through extensive hydrophobic and hydrogen bonding interactions. Most of the ectvIL-18BP residues that participate in these interactions are conserved in both human and viral homologs, explaining their functional equivalence despite limited sequence homology. EctvIL-18BP blocks a putative receptor-binding site on IL-18, thus preventing IL-18 from engaging its receptor. Our structure provides insights into how IL-18BPs modulate hIL-18 activity. The revealed binding interface provides the basis for rational design of inhibitors against orthopoxvirus IL-18BP (for treating orthopoxvirus infection) or hIL-18 (for treating certain inflammatory and autoimmune diseases).

  5. Using persistent homology and dynamical distances to analyze protein binding.

    Science.gov (United States)

    Kovacev-Nikolic, Violeta; Bubenik, Peter; Nikolić, Dragan; Heo, Giseon

    2016-03-01

    Persistent homology captures the evolution of topological features of a model as a parameter changes. The most commonly used summary statistics of persistent homology are the barcode and the persistence diagram. Another summary statistic, the persistence landscape, was recently introduced by Bubenik. It is a functional summary, so it is easy to calculate sample means and variances, and it is straightforward to construct various test statistics. Implementing a permutation test we detect conformational changes between closed and open forms of the maltose-binding protein, a large biomolecule consisting of 370 amino acid residues. Furthermore, persistence landscapes can be applied to machine learning methods. A hyperplane from a support vector machine shows the clear separation between the closed and open proteins conformations. Moreover, because our approach captures dynamical properties of the protein our results may help in identifying residues susceptible to ligand binding; we show that the majority of active site residues and allosteric pathway residues are located in the vicinity of the most persistent loop in the corresponding filtered Vietoris-Rips complex. This finding was not observed in the classical anisotropic network model. PMID:26812805

  6. Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel.

    Science.gov (United States)

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-06-01

    The interaction of tricyclic antidepressants with the human (h) alpha4beta2 nicotinic acetylcholine receptor in different conformational states was compared with that for the noncompetitive antagonist mecamylamine by using functional and structural approaches. The results established that: (a) [(3)H]imipramine binds to halpha4beta2 receptors with relatively high affinity (K(d)=0.83+/-0.08 microM), but imipramine does not differentiate between the desensitized and resting states, (b) although tricyclic antidepressants inhibit (+/-)-epibatidine-induced Ca(2+) influx in HEK293-halpha4beta2 cells with potencies that are in the same concentration range as that for (+/-)-mecamylamine, tricyclic antidepressants inhibit [(3)H]imipramine binding to halpha4beta2 receptors with affinities >100-fold higher than that for (+/-)-mecamylamine. This can be explained by our docking results where imipramine interacts with the leucine (position 9') and valine (position 13') rings by van der Waals contacts, whereas mecamylamine interacts electrostatically with the outer ring (position 20'), (c) van der Waals interactions are in agreement with the thermodynamic results, indicating that imipramine interacts with the desensitized and resting receptors by a combination of enthalpic and entropic components. However, the entropic component is more important in the desensitized state, suggesting local conformational changes. In conclusion, our data indicate that tricyclic antidepressants and mecamylamine efficiently inhibit the ion channel by interacting at different luminal sites. The high proportion of protonated mecamylamine calculated at physiological pH suggests that this drug can be attracted to the channel mouth before binding deeper within the receptor ion channel finally blocking ion flux. PMID:20223294

  7. Interleukin 2 receptor beta chain expressed in an oligodendroglioma line binds interleukin 2 and delivers growth signal.

    OpenAIRE

    Okamoto, Y; Minamoto, S; Shimizu, K.; Mogami, H; Taniguchi, T.

    1990-01-01

    Interleukin 2 (IL-2) is a potent growth factor for T lymphocytes, playing a crucial role in the immune response. In view of the considerable evidence that the immunoregulatory cytokines (or lymphokines) also play a role in the growth and differentiation of cells in the central nervous system (CNS), we examined the operation of the IL-2 system in a cell line of CNS origin by expressing a cDNA encoding the beta chain of the human IL-2 receptor (IL-2R beta, a 75-kDa protein). When the cDNA was e...

  8. MHC class II proteins contain a potential binding site for the verotoxin receptor glycolipid CD77.

    Science.gov (United States)

    George, T; Boyd, B; Price, M; Lingwood, C; Maloney, M

    2001-11-01

    Globotriaosyl ceramide or CD77 functions as a cell surface receptor for toxins of the Shiga toxin/verotoxin family and as a marker for germinal center stage B-cells. The B-cell protein CD19 and the interferon-alpha receptor possess verotoxin-like amino acid sequences in their extracellular domains, and CD77 has been shown to function in CD19-mediated adhesion and interferon-induced growth inhibition. The Burkitt's lymphoma cell line, Daudi, is similar to germinal center B-cells in their expression of CD77, CD19 and MHC class II molecules. Using the multiple sequence alignment program, ClustalW, we have identified a verotoxin-like amino acid sequence on the beta-chain of human and murine MHC class II molecules. Binding of CD77 at this site could modulate the peptide-binding properties of these MHC class II molecules. Using Western blot analysis of whole cell extracts, we found that CD77-positive Daudi cells have higher levels of HLA-D proteins than VT500 cells, a Daudi-derived CD77-deficient mutant cell line. In contrast, MHC class II-mediated adhesion and surface expression are similar in the two cell lines. Therefore, CD77 could play a functional or regulatory role in MHC class II-mediated functions specifically relating to antigen presentation by B-cells to T helper cells. PMID:11838965

  9. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M; Wallace, Mairi; Samejima, Itaru; Taylor, Martin S; Gordon, Colin

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also foun...

  10. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  11. DnaT is a PriC-binding protein.

    Science.gov (United States)

    Huang, Chien-Chih; Huang, Cheng-Yang

    2016-09-01

    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart. PMID:27387236

  12. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    Directory of Open Access Journals (Sweden)

    Ilse Jongerius

    Full Text Available Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH, a negative regulator of the complement system, to its surface via fH binding protein (fHbp, providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups.

  13. Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein.

    Science.gov (United States)

    Jongerius, Ilse; Lavender, Hayley; Tan, Lionel; Ruivo, Nicola; Exley, Rachel M; Caesar, Joseph J E; Lea, Susan M; Johnson, Steven; Tang, Christoph M

    2013-01-01

    Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. PMID:23935503

  14. Structure of the gene encoding the murine protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1995-01-01

    The mouse protein kinase CK2 beta subunit gene (Csnk2b) is composed of seven exons contained within 7874 bp. The exon and intron lengths extend from 76 to 321 and 111 to 1272 bp, respectively. The lengths of the murine coding exons correspond exactly to the lengths of the exons in the human CK2...... beta gene. Both genes contain a first untranslated exon. Also, the promoter regions from the human and murine CK2 beta gene share some common features, e.g., they contain neither a TATA nor a CAAT box, exon 1 is flanked by a cluster of CpG dinucleotides and recognition sequences for the Hpa...... has no counterpart in the murine gene. Hence, regulation of transcription of the CK2 beta gene by the catalytic CK2 alpha subunit as was described by Robitzki et al. (J. Biol. Chem. 268: 5694-5703, 1993) for the human gene cannot be considered a general regulatory mechanism....

  15. The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins.

    OpenAIRE

    C. Du; Nickerson, K W

    1996-01-01

    Brush border membrane vesicles from larvae of the tobacco hornworm, Manduca sexta, contain protein bands of 85 and 120 kDa which react directly with streptavidin conjugated to alkaline phosphatase. The binding could be prevented either by including 10 microM biotin in the reaction mixture or by prior incubation of the brush border membrane vesicles with an activated 60- to 65-kDa toxin from Bacillus thuringiensis HD-73. The ability of B. thuringiensis toxins to recognize biotin-containing pro...

  16. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  17. Hepatitis B virus X protein binding to hepsin promotes C3 production by inducing IL-6 secretion from hepatocytes.

    Science.gov (United States)

    Zhang, Mingming; Gu, Jianxin; Zhang, Chunyi

    2016-02-16

    Hepatitis B virus (HBV) X protein (HBx) is an important effector for HBV-associated pathogenesis. In this study, we identified hepsin as an HBx-interacting protein and investigated the effects of hepsin on HBx-mediated complement component 3 (C3) secretion in hepatocytes. In vivo and in vitro binding between HBx and hepsin was confirmed by co-immunoprecipitation and Glutathione S-transferase pull-down assays. HBx synergized with hepsin to promote C3 production by potentiating interleukin-6 (IL-6) secretion. Knockdown of endogenous hepsin attenuated C3 and IL-6 secretion induced by HBx in hepatic cells. In addition, levels of hepsin protein correlated positively with C3 expression in human non-tumor liver tissues. Further exploration revealed that HBx and hepsin increased C3 promoter activity by up-regulating the expression and phosphorylation of the transcription factor CAAT/enhancer binding protein beta (C/EBP-β), which binds to the IL-6/IL-1 response element in the C3 promoter. HBx and hepsin synergistically enhanced IL-6 mRNA levels and promoter activity by increasing the nuclear translocation of nuclear factor kappaB (NF-κB). Our findings show for the first time that binding between HBx and hepsin promotes C3 production by inducing IL-6 secretion in hepatocytes. PMID:26760961

  18. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  19. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  20. Roles of RNA-Binding Proteins in DNA Damage Response.

    Science.gov (United States)

    Kai, Mihoko

    2016-01-01

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  1. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. (University Hospital, Leiden (Netherlands))

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  2. Studies on the mode of action of sterol carrier protein in the dehydrogenation of 5-cholest-7-en-3 beta-ol

    International Nuclear Information System (INIS)

    Sterol carrier protein (SCP) promotes the microsomal dehydrogenation of 5-cholest-7-en-3 beta-ol (lathosterol) to 7-dehydrocholesterol. This promotion occurs whether the substrate is exogenous or preincorporated into microsomes. Similarly, SCP promotes an intermembrane transfer of lathosterol from one microsomal population to another. Here the authors present evidence for an SCP-mediated collisional interaction which results in the intermembrane transfer of sterol substrate and excludes a conventional substrate-carrier mechanism for SCP. Radioactive carboxymethyl SCP is shown to bind to microsomes and to anionic phospholipids but not to phosphatidylcholine. Treatment of microsomes with trypsin, but not with phospholipase A2, reduces SCP binding. Binding studies with small molecules substantiate the identity of SCP with Z-protein

  3. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  4. beta-Scission of C-3 (beta-carbon) alkoxyl radicals on peptides and proteins

    DEFF Research Database (Denmark)

    Headlam, H A; Mortimer, A; Easton, C J; Davies, Michael Jonathan

    2000-01-01

    Exposure of proteins to radicals in the presence of O(2) brings about multiple changes in the target molecules. These alterations include oxidation of side chains, fragmentation, cross-linking, changes in hydrophobicity and conformation, altered susceptibility to proteolytic enzymes, and formation...

  5. Ranking Beta Sheet Topologies with Applications to Protein Structure Prediction

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2011-01-01

    One reason why ab initio protein structure predictors do not perform very well is their inability to reliably identify long-range interactions between amino acids. To achieve reliable long-range interactions, all potential pairings of ß-strands (ß-topologies) of a given protein are enumerated...... of this paper is a method to deal with the inaccuracies of secondary structure predictors when enumerating potential ß-topologies. The results reported in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. They indicate that decoy generation......, consistently top-ranks native ß-topologies. Since the number of potential ß-topologies grows exponentially with the number of ß-strands, it is unrealistic to expect that all potential ß-topologies can be enumerated for large proteins. The second result of this paper is an enumeration scheme of a subset of ß...

  6. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  7. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  8. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  9. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  10. Cloning and mutational analysis of the gamma gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization.

    Science.gov (United States)

    Rubio, Luis M; Rangaraj, Priya; Homer, Mary J; Roberts, Gary P; Ludden, Paul W

    2002-04-19

    Dinitrogenase is a heterotetrameric (alpha(2)beta(2)) enzyme that catalyzes the reduction of dinitrogen to ammonium and contains the iron-molybdenum cofactor (FeMo-co) at its active site. Certain Azotobacter vinelandii mutant strains unable to synthesize FeMo-co accumulate an apo form of dinitrogenase (lacking FeMo-co), with a subunit composition alpha(2)beta(2)gamma(2), which can be activated in vitro by the addition of FeMo-co. The gamma protein is able to bind FeMo-co or apodinitrogenase independently, leading to the suggestion that it facilitates FeMo-co insertion into the apoenzyme. In this work, the non-nif gene encoding the gamma subunit (nafY) has been cloned, sequenced, and found to encode a NifY-like protein. This finding, together with a wealth of knowledge on the biochemistry of proteins involved in FeMo-co and FeV-co biosyntheses, allows us to define a new family of iron and molybdenum (or vanadium) cluster-binding proteins that includes NifY, NifX, VnfX, and now gamma. In vitro FeMo-co insertion experiments presented in this work demonstrate that gamma stabilizes apodinitrogenase in the conformation required to be fully activable by the cofactor. Supporting this conclusion, we show that strains containing mutations in both nafY and nifX are severely affected in diazotrophic growth and extractable dinitrogenase activity when cultured under conditions that are likely to occur in natural environments. This finding reveals the physiological importance of the apodinitrogenase-stabilizing role of which both proteins are capable. The relationship between the metal cluster binding capabilities of this new family of proteins and the ability of some of them to stabilize an apoenzyme is still an open matter. PMID:11823455

  11. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

    Directory of Open Access Journals (Sweden)

    Sabato D'Auria

    2013-02-01

    Full Text Available Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

  12. Multiple sequence-specific DNA binding activities are eluted from chicken nuclei at low ionic strengths.

    OpenAIRE

    Plumb, M A; Nicolas, R H; Wright, C. A.; Goodwin, G H

    1985-01-01

    DNA sequence-specific binding proteins eluted from chicken erythrocyte and thymus nuclei, and fractionated as described by Emerson and Felsenfeld (19), have been investigated by filter binding and footprint analyses. The erythrocyte nuclear protein fraction specifically binds to at least two sites within the 5' flanking chromatin hypersensitive site of the chicken beta A-globin gene, and to a site 5' to the human beta-globin gene. The major chicken beta A globin gene binding site [G)18CGGGTGG...

  13. [Use of three-hybrid system to detect RNA-binding activity of alfalfa mosaic virus coat protein].

    Science.gov (United States)

    Spiridonov, V G; Smirnova, S A; Mel'nichuk, M D

    2003-01-01

    We used yeast three-hybrid system, for studying interaction of alfalfa mosaic virus coat protein AMVCP (AMVCP) with RNA4, which codes this protein. We have shown that AMVCP with high affinity is bound to plus-chain of RNA4 in vivo. The mutational analysis has shown, that the N-terminal part of AMVCP (aa 1 to 85) contains RNA-binding domain. C-terminal part of this protein (aa 86 to 221) does not participate in direct interaction with RNA4. However activity of the reporter-gene LacZ, which codes beta-galactosidase, in case of interaction only N-terminal part of AMVCP is five times lower, in comparison with full-length hybrid protein, that confirms that the tertiary structure of full-length AMVCP is more favourable for interaction with RNA4. PMID:14681978

  14. Key residues for the oligomerization of A{beta}42 protein in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Sam [Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095 (United States); Guo, Zhefeng, E-mail: zhefeng@ucla.edu [Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095 (United States)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer A{beta} oligomers are neurotoxins and likely the causing agents for Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}42 fusion protein form globular oligomers. Black-Right-Pointing-Pointer A{beta}42 fusion protein oligomers contain SDS-resistant tetramers and hexamers. Black-Right-Pointing-Pointer Cysteine substitutions at residues 31, 32, 34, 39-41 disrupt A{beta}42 oligomerization. -- Abstract: Deposition of amyloid fibrils consisting of amyloid {beta} (A{beta}) protein as senile plaques in the brain is a pathological hallmark of Alzheimer's disease. However, a growing body of evidence shows that soluble A{beta} oligomers correlate better with dementia than fibrils, suggesting that A{beta} oligomers may be the primary toxic species. The structure and oligomerization mechanism of these A{beta} oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of A{beta}42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of A{beta} sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for A{beta}42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that A{beta}42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS-PAGE shows that A{beta}42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, A{beta}40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of A{beta}42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions

  15. Protein interactions and ligand binding: From protein subfamilies to functional specificity

    OpenAIRE

    Rausell, A.; de Juan, D.; Pazos, F; Valencia, A.

    2010-01-01

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as “specificity determining positions” (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating sign...

  16. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil, E-mail: hyunil74@hotmail.com; Lee, Zang Hee, E-mail: zang1959@snu.ac.kr

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  17. IL-6 stimulation of insulin-like growth factor binding protein (IGFBP)-1 production.

    Science.gov (United States)

    Samstein, B; Hoimes, M L; Fan, J; Frost, R A; Gelato, M C; Lang, C H

    1996-11-12

    TNF alpha and IL-1 beta have previously been shown to increase the IGFBP-1 concentration in plasma and liver under in vivo conditions. The present study demonstrates that another inflammatory cytokine, IL-6, also elevates a 30- to 32-kDa IGF binding protein in the plasma of mice. Moreover, IL-6 produced dose- and time-dependent increases in IGFBP-1 production by HepG2 cells. The maximal IL-6-induced increase in IGFBP-1 was comparable to that observed with dexamethasone, and this increase was attenuated by diltiazem or dantrolene, both of which are known to reduce the cytosolic Ca2+ concentration. Finally, incubation of HepG2 cells with TNF alpha or IL-1 beta also increased IGFBP-1 in a dose-dependent manner. These results demonstrate that IGFBP-1 production is mediated directly by proinflammatory cytokines and suggest that this mechanism may be important for the upregulation of IGFBP-1 seen in catabolic conditions associated with overexpression of these cytokines. PMID:8920958

  18. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    Science.gov (United States)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  19. Cobalamin binding proteins in patients with HIV infection

    International Nuclear Information System (INIS)

    P-Cobalamins have been reported to be decreased in patients with HIV infection. Because of this, we found it of interest to examine both cobalamin-saturated binding proteins (holo-transcobalamin, holo-TC and holo-haptocorrin, holo-HC) and cobalamin unsaturated binding proteins (apo-transcobalamin, apo-TC and apo-haptocorrin, apo-HC). The results are given as range and (median). Eighteen male HIV-infected patients with plasma cobalamins below 200 pmol/l were studied. We found low concentrations of holo-TC (37-88(47.5)pmol/l) and holo-HC (64-184(135.3)pmol/l). The concentration of apo-TC and apo-HC was increased (480-1730(1025)pmol/l; 70-800(235)pmol/l). It is concluded that, in HIV-infected patients, low plasma cobalamin does not reflect a low concentration of transcobalamin or haptocorrin. In 20 HIV-infected patients and 31 patients with malignant haematological diseases, the TC isopeptide patterns were determined. In the HIV group, an increased frequency of TC isopeptide X was found and the overall distribution of TC isopeptides was significantly different from the reference population (p<0.05). There was no difference between the group of patients with malignant haematological diseases and the reference group. (au)

  20. Localization of Cellular Retinol-Binding Protein and Retinol-Binding Protein in Cells Comprising the Blood-Brain Barrier of Rat and Human

    Science.gov (United States)

    MacDonald, Paul N.; Bok, Dean; Ong, David E.

    1990-06-01

    Brain is not generally recognized as an organ that requiries vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the endothelial cells of the brain microvasculature and within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  1. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.N.; Ong, D.E. (Vanderbilt Univ., Nashville, TN (USA)); Bok, D. (Univ. of California, Los Angeles (USA))

    1990-06-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur.

  2. Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein.

    Science.gov (United States)

    He, Yan; Yang, Xiaomin; Wang, Hsin; Estephan, Rima; Francis, Fouad; Kodukula, Sarala; Storch, Judith; Stark, Ruth E

    2007-11-01

    Rat liver fatty acid-binding protein (LFABP) is distinctive among intracellular lipid-binding proteins (iLBPs): more than one molecule of long-chain fatty acid and a variety of diverse ligands can be bound within its large cavity, and in vitro lipid transfer to model membranes follows a mechanism that is diffusion-controlled rather than mediated by protein-membrane collisions. Because the apoprotein has proven resistant to crystallization, nuclear magnetic resonance spectroscopy offers a unique route to functionally informative comparisons of molecular structure and dynamics for LFABP in free (apo) and liganded (holo) forms. We report herein the solution-state structures determined for apo-LFABP at pH 6.0 and for holoprotein liganded to two oleates at pH 7.0, as well as the structure of the complex including locations of the ligands. 1H, 13C, and 15N resonance assignments revealed very similar types and locations of secondary structural elements for apo- and holo-LFABP as judged from chemical shift indices. The solution-state tertiary structures of the proteins were derived with the CNS/ARIA computational protocol, using distance and angular restraints based on 1H-1H nuclear Overhauser effects (NOEs), hydrogen-bonding networks, 3J(HNHA) coupling constants, intermolecular NOEs, and residual dipolar (NH) couplings. The holo-LFABP solution-state conformation is in substantial agreement with a previously reported X-ray structure [Thompson, J., Winter, N., Terwey, D., Bratt, J., and Banaszak, L. (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates, J. Biol. Chem. 272, 7140-7150], including the typical beta-barrel capped by a helix-turn-helix portal. In the solution state, the internally bound oleate has the expected U-shaped conformation and is tethered electrostatically, but the extended portal ligand can adopt a range of conformations based on the computationally refined structures, in contrast to the single

  3. Protein kinase A binds and activates heat shock factor 1.

    Directory of Open Access Journals (Sweden)

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  4. Plant Cytosolic Acyl-CoA-Binding Proteins.

    Science.gov (United States)

    Ye, Zi-Wei; Chye, Mee-Len

    2016-01-01

    A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters. PMID:26662549

  5. Electrophilicities and Protein Covalent Binding of Demethylation Metabolites of Colchicine.

    Science.gov (United States)

    Guo, Xiucai; Lin, Dongju; Li, Weiwei; Wang, Kai; Peng, Ying; Zheng, Jiang

    2016-03-21

    Colchicine, an alkaloid existing in plants of Liliaceous colchicum, has been widely used in the treatment of gout and familial Mediterranean fever. The administration of colchicine was found to cause liver injury in humans. The mechanisms of colchicine-induced liver toxicity remain unknown. The objectives of this study were to determine the electrophilicities of demethylation metabolites of colchicine and investigate the protein adductions derived from the reactive metabolites of colchicine. Four demethylated colchicine (1-, 2-, 3-, and 10-DMCs), namely, M1-M4, were detected in colchicine-fortified microsomal incubations. Four N-acetyl cysteine (NAC) conjugates (M5-M8) derived from colchicine were detected in the microsomes in the presence of NAC. M5 and M6 were derived from 10-DMC. M7 resulted from the reaction of 2-DMC or 3-DMC with NAC, and M8 originated from 10-DMC. Microsomal protein covalent binding was observed after exposure to colchicine. Two cysteine adducts (CA-1 and CA-2) derived from 10-DMC were found in proteolytically digested microsomal protein samples after incubation with colchicine. The findings allow us to define the chemical property of demethylation metabolites of colchicine and the interaction between protein and the reactive metabolites of colchicine generated in situ. PMID:26845511

  6. Tannin-binding salivary proteins in three captive rhinoceros species.

    Science.gov (United States)

    Clauss, Marcus; Gehrke, Janin; Hatt, Jean-Michel; Dierenfeld, Ellen S; Flach, Edmund J; Hermes, Robert; Castell, Johanna; Streich, W Juergen; Fickel, Joerns

    2005-01-01

    Tannin-binding salivary proteins (TBSP) are considered to be counter-defences acquired in the course of evolution by animals whose natural forage contains such tannins. As tannins mostly occur in browse material but not in grasses, it is assumed that grazers do not have a need for TBSP. Whereas it has been shown in several non-ungulate species that TBSP can be induced by dietary tannins, their presence or absence in ungulates has, so far, been shown to be a species-specific characteristic independent of dietary manipulations. We investigated saliva from three rhinoceros species from zoological gardens fed comparable, conventional zoo diets. As expected, saliva from white rhinoceroses (Ceratotherum simum, grazer) had lower tannin-binding capacities than that from black rhinoceroses (Diceros bicornis, browser). Surprisingly, however, Indian rhinoceroses (Rhinoceros unicornis), commonly regarded as grazers as well, displayed the highest tannin-binding capacities of the three species investigated. It is speculated that this discrepancy might be a result of an evolutionarily recent switch to a grass-dominated diet in Indian rhinoceroses, and that the black rhinoceros, which is closer related to the white rhinoceros than the Indian species, has evolved an inducible mechanism of TBSP production. In separate trials during which the tannin content of the diets of black rhinoceroses was increased by the addition of either tannic acid or quebracho, the tannin-binding capacity of black rhinoceros saliva was increased to levels within the same range as that of Indian rhinoceroses on the conventional diets. While induction trials in white and Indian rhinoceroses remain to be performed for a full understanding of salivary anti-tannin defence in rhinoceroses, these results are the first report of an induced salivary response to increased dietary tannin levels in an ungulate species. PMID:15664314

  7. XAS and Pulsed EPR Studies of the Copper Binding Site in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith,S.; Bencze, K.; Wasiukanis, K.; Benore-Parsons, T.; Stemmler, T.

    2008-01-01

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 Angstroms, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a CuO3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  8. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  9. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    OpenAIRE

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences ...

  10. Effect of Protein Binding on the Pharmacological Activity of Highly Bound Antibiotics▿

    OpenAIRE

    Schmidt, Stephan; Röck, Katharina; Sahre, Martina; Burkhardt, Olaf; Brunner, Martin; Lobmeyer, Maximilian T.; Derendorf, Hartmut

    2008-01-01

    During antibiotic drug development, media are frequently spiked with either serum/plasma or protein supplements to evaluate the effect of protein binding. Usually, previously reported serum or plasma protein binding values are applied in the analysis. The aim of this study was to evaluate this approach by experimentally measuring free, unbound concentrations for antibiotics with reportedly high protein binding and their corresponding antimicrobial activities in media containing commonly used ...

  11. Acquisition of heme iron by Neisseria meningitidis does not involve meningococcal transferrin-binding proteins.

    Science.gov (United States)

    Martel, N; Lee, B C

    1994-02-01

    Similarities in size between hemin-binding protein 1 (HmBP1) and transferrin-binding protein 1 (TBP1) of Neisseria meningitidis suggest that these proteins are functionally homologous. However, a meningococcal mutant lacking the transferrin-binding proteins retained the capacity to acquire iron from heme and hemoglobin. In immunoblots, hyperimmune polyclonal antiserum against TBP1 did not react with HmBP1. PMID:8300227

  12. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G

    1996-01-01

    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta...

  13. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi; Benedikz, Eirikur; Cowburn, Richard; Marcusson, Jan; Terman, Alexei

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads to int...

  14. Fractionation of barley into value-added ingredients enriched with protein, beta-glucan or starch

    Science.gov (United States)

    Barley contains several valuable nutrients, including protein, beta-glucan (BG) and starch. Each has additional value when concentrated. Among reported studies on barley fractionation (dry or wet), most focused enriching one or two components in term of concentrations in resulting fractions but negl...

  15. A single rainbow trout cobalamin-binding protein stands in for three human binders

    DEFF Research Database (Denmark)

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S; Højrup, Peter; Poulsen, Steen Seier; Nexo, Ebba

    2012-01-01

    Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding pr...

  16. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein.

    OpenAIRE

    Frattini, M G; Laimins, L A

    1994-01-01

    The papillomavirus E1 and E2 proteins form heteromeric complexes and individually bind specific sequences within the viral origin of replication. The mechanism by which these proteins are recruited to the origin and the role of the E1/E2 complex in replication remain undefined. To examine the interplay of these replication proteins, we have analyzed the binding of human papillomavirus (HPV) type 31b E1 and E2 proteins to the origin of replication. Binding of E1 to the origin was increased by ...

  17. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    OpenAIRE

    Sviatenko, О.; Gorbatiuk, O.; Vasylchenko, О.

    2014-01-01

    Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding speci...

  18. Myristylation alters DNA-binding activity and transactivation of FBR (gag-fos) protein.

    OpenAIRE

    Kamata, N; Jotte, R M; Holt, J. T.

    1991-01-01

    FBR murine sarcoma virus (gag-fos) protein, a virally transduced Fos protein, exhibits decreased gene transactivation in comparison with the cellular Fos protein. Biochemical analysis suggests that myristylation of the virally encoded N-terminal gag region results in decreased DNA binding and transcriptional activation without affecting heterodimerization with Jun protein. These findings demonstrate that protein myristylation can modulate gene regulation by a DNA-binding protein.

  19. Differential dissociation micromethod for the investigation of binding of metandrostenolone (Nerobol) to plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bojadzsieva, M.; Kocsar, L. (Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary)); Kremmer, T. (Orszagos Onkologiai Intezet, Budapest (Hungary))

    1985-01-01

    A micromethod was developed to determine the binding of anabolic steroids to plasma proteins. The new procedure combines precipitation with ammonium sulphate and differential dissociation. The binding parameters (association constant, specific binding capacity) are calculated on the basis of dissociation curves of sup(3)H-metandrostenolone from the precipitated sexual binding globuline.

  20. Influence of vitamin D binding protein on the association between circulating vitamin D and risk of bladder cancer

    OpenAIRE

    Mondul, A M; Weinstein, S J; Virtamo, J; Albanes, D

    2012-01-01

    Background: There is little research investigating the role of vitamin D binding protein (DBP) in the association between 25-hydroxyvitamin D (25(OH)D) and disease risk. Methods: Within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, 250 bladder cancer cases were randomly sampled and matched 1:1 to controls on age and date of blood collection. Odds ratios (OR) and 95% confidence intervals (CI) of bladder cancer were estimated by quartiles of DBP (measured by ELISA), 25(OH)...

  1. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles

    DEFF Research Database (Denmark)

    Guerra, B; Siemer, S; Boldyreff, B;

    1999-01-01

    The highest CK2 activity was found in mouse testicles and brain, followed by spleen, liver, lung, kidney and heart. The activity values were directly correlated with the protein expression level of the CK2 subunits alpha (catalytic) and beta (regulatory). The alpha' subunit was only detected in...... found for testicles and brain. The amount of CK2beta protein in brain in comparison to the other organs (except testicles) was estimated to be ca. 2-3-fold higher whereas the ratio of CK2beta between testicles and brain was estimated to be 3-4-fold. Results from the immunoprecipitation experiments...... support the notion for the existence of free CK2beta population and/or CK2beta in complex with other protein(s) present in brain and testicles. In all other mouse organs investigated, i.e. heart, lung, liver, kidney and spleen, no comparable amount of free CK2beta was observed. This is the first...

  2. Computational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of protein-lipid complexes

    OpenAIRE

    Fernandez Pacios, Luis; Gomez Casado, Cristina; Tordesillas Villuendas, Leticia; Palacín Gómez, Aranzazu; Sanchez-Monge Laguna De Rins, Maria Rosa; Díaz Perales, Araceli

    2012-01-01

    Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a co...

  3. The effect of irradiation treatment on Beta-Glucan and protein quality of barley

    International Nuclear Information System (INIS)

    Samples of barley (hordeum vulgare L) grains were tested for nutritional value after being irradiated at dose levels of 10, 20, and 30 KGy. The gross composition of raw and irradiated beans was similar. Soluble protein was reduced by 16.76%, 28.84% and 44.76% when barley grains were irradiated at 10, 20, and 30 KGy, respectively, The amount of water-soluble beta-glucan in raw barley was increased linearly from 1.76 to 2.40 g/100 g of sample as a function of dose. Meanwhile, the effect of irradiation treatment on total beta-glucan (3.90 g/100 g) was insignificant while the level of insoluble beta-glucan was decreased with increasing the dose levels of irradiation. The protein efficiency ratio (PER) of processed barley grains at the doses applied was increased by 6.38%, 12.77%, and 1135%, respectively as compared with the value for raw grains. The data showed that the radiation processing of raw barley grains increased the solubility of beta-glucan, the most anti nutritional factor in the grains and improved the PER in rats. Therefore it could be concluded thal the irradiation treatment (up tp 30 KGy) up-grade the biological value of barley through increase the solubility of Beta-glucan that affect the performance of animals

  4. Reduced CGP12177 binding to cardiac {beta}-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, James T.; Parsa-Nezhad, Maryam; Kenk, Miran; Thorn, Stephanie L. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); Kolajova, Maria [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Beanlands, Rob S.B. [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada); DaSilva, Jean N., E-mail: jdasilva@ottawaheart.ca [Molecular Function and Imaging Program, National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, K1Y4W7 (Canada); Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, Ottawa, Ontario, K1H8M5 (Canada)

    2011-10-15

    Introduction: Abnormal sympathetic nervous system and {beta}-adrenoceptor ({beta}-AR) signaling is associated with diabetes. [{sup 3}H]CGP12177 is a nonselective {beta}-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of this tracer for evaluation of altered {beta}-AR expression in diabetic rat hearts. Methods: Ex vivo biodistribution with [{sup 3}H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous {beta}-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [{sup 3}H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure {beta}-AR binding in heart, 30 min following tracer injection. Western blotting of {beta}-AR subtypes was completed in parallel. Results: Infusion of isoproterenol over 14 days did not affect cardiac binding of [{sup 3}H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [{sup 3}H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in {beta}{sub 1}-AR in hyperglycemic rats. Conclusions: Reduced cardiac [{sup 3}H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative {beta}{sub 1}-AR expression. These data indirectly support the use of [{sup 11}C]CGP12177 for assessment of cardiac dysfunction in diabetes.

  5. IRBP-like proteins in the eyes of six cephalopod species--immunochemical relationship to vertebrate interstitial retinol-binding protein (IRBP) and cephalopod retinal-binding protein.

    Science.gov (United States)

    Fong, S L; Lee, P G; Ozaki, K; Hara, R; Hara, T; Bridges, C D

    1988-01-01

    SDS polyacrylamide gel electrophoresis and immunoblotting were used to examine soluble proteins from the eyes of six species of cephalopods i.e. Lolliguncula brevis, Sepia officinalis, Octopus maya, Octopus bimaculoides, Rossia pacifica and Loligo opalescens. All species had a protein ("IRBP") with molecular weight virtually identical with vertebrate interstitial retinol-binding protein (IRBP) averaging 132,400 +/- 700 (n = 6). "IRBP" reacted on nitrocellulose blot transfers with rabbit antibovine IRBP and rabbit antifrog IRBP antibodies. Unlike vertebrate IRBP, cephalopod "IRBP" (from L. brevis) did not bind exogenous retinol or concanavalin A. The N-terminal amino acid appeared to be blocked in samples electroeluted from SDS gels. The antifrog IRBP antibodies also reacted with a series of proteins with molecular weights between 46,000 and 47,000, identified as retinal-binding protein (RALBP) with anti-RALBP antibodies. Anti-IRBP also reacted with pure RALBP prepared from Todarodes pacificus. Occasionally, anti-RALBP antibodies were seen to react weakly with "IRBP" in some cephalopods. We conclude that RALBP, cephalopod "IRBP" and vertebrate IRBP share a common but distant ancestry, and that a protein resembling IRBP appeared before the vertebrates diverged from the invertebrates. Both RALBP and IRBP appear to have analogous functions in shuttling retinoids between rhodopsin and the corresponding isomerizing system, retinochrome in the cephalopods and retinol isomerase in the vertebrates. The function of cephalopod "IRBP" is unknown. PMID:3195063

  6. Easy mammalian expression and crystallography of maltose-binding protein-fused human proteins.

    Science.gov (United States)

    Bokhove, Marcel; Sadat Al Hosseini, Hamed; Saito, Takako; Dioguardi, Elisa; Gegenschatz-Schmid, Katharina; Nishimura, Kaoru; Raj, Isha; de Sanctis, Daniele; Han, Ling; Jovine, Luca

    2016-04-01

    We present a strategy to obtain milligrams of highly post-translationally modified eukaryotic proteins, transiently expressed in mammalian cells as rigid or cleavable fusions with a mammalianized version of bacterial maltose-binding protein (mMBP). This variant was engineered to combine mutations that enhance MBP solubility and affinity purification, as well as provide crystal-packing interactions for increased crystallizability. Using this cell type-independent approach, we could increase the expression of secreted and intracellular human proteins up to 200-fold. By molecular replacement with MBP, we readily determined five novel high-resolution structures of rigid fusions of targets that otherwise defied crystallization. PMID:26850170

  7. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein.

    OpenAIRE

    Mukherjee, A; Dai, K; Lutkenhaus, J

    1993-01-01

    FtsZ is an essential cell division protein in Escherichia coli that forms a ring structure at the division site under cell cycle control. The dynamic nature of the FtsZ ring suggests possible similarities to eukaryotic filament forming proteins such as tubulin. In this study we have determined that FtsZ is a GTP/GDP binding protein with GTPase activity. A short segment of FtsZ is homologous to a segment in tubulin believed to be involved in the interaction between tubulin and guanine nucleoti...

  8. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  9. RNA binding specificity of hnRNP proteins: a subset bind to the 3' end of introns.

    OpenAIRE

    Swanson, M S; Dreyfuss, G

    1988-01-01

    The binding of hnRNP proteins to pre-mRNAs in nuclear extracts, and as isolated proteins, was studied by using monoclonal antibody immunopurification of hnRNP proteins bound to RNase T1-generated fragments. Several major hnRNP proteins, A1, C and D, bind specifically to the 3' end of introns within a region containing the conserved polypyrimidine stretch between the branch site and the 3' splice site. Mutations which alter the conserved 3' splice site dinucleotide AG strongly impair or abolis...

  10. Toxin a from Clostridium difficile binds to rabbit erythrocyte glycolipids with therminal Gal. cap alpha. 1-3Gal. beta. 1-4GlcNaC sequences

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.F.; Krivan, H.; Wilkins, T.; Smith, D.F.

    1987-05-01

    Toxin A is one of two clostridial toxins implicated as the causative agent of pseudomembranous colitis in patients undergoing postoperative antibiotic therapy. Evidence that the carbohydrate binding determinant for this toxin is a glycoconjugate(s) with non-reducing Gal..cap alpha..1-3Gal..beta..1-4GlcNAc has recently been reported. Specific agglutination of rabbit erythrocytes by Toxin A is inhibited by bovine thyroglobulin and prevented by pretreatment of cells with ..cap alpha..-galactosidase. Total lipid extracts from rabbit erythrocytes were subjected to thin layer chromatography and the chromatogram overlaid with purified /sup 125/I-labeled Toxin A. Two major and several minor toxin-binding glycolipids were detected following autoradiography. The major toxin-binding glycolipids were identified as pentasaccharide- and decasaccharide-ceramides expressing terminal Gal..cap alpha..1-3Gal..beta..1-4GlcNAc sequences. Treatment of the toxin-binding glycolipids with ..cap alpha..-galactosidase abolished binding. Forsmann glycolipid, globoside, Gal..cap alpha..1-4 Gal..beta..1-4Glc-cer, and Gal..cap alpha..1-3Gal..beta..1-4Glc-cer did not bind the toxin. These observations are consistent with the proposed carbohydrate specificity of the toxin for the non-reducing terminal sequence, Gal..cap alpha..1-3Gal..beta..1-4GlcNAc.

  11. Isolation and characterizations of oxalate-binding proteins in the kidney

    International Nuclear Information System (INIS)

    Highlights: ► The first large-scale characterizations of oxalate-binding kidney proteins. ► The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. ► 38 forms of 26 unique oxalate-binding kidney proteins were identified. ► 25/26 (96%) of identified proteins had “L-x(3,5)-R-x(2)-[AGILPV]” domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) to resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed “L-x(3,5)-R-x(2)-[AGILPV]” as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone modulators.

  12. Tyrosine dephosphorylation of nuclear proteins mimics transforming growth factor beta 1 stimulation of alpha 2(I) collagen gene expression.

    OpenAIRE

    Greenwel, P; Hu, W.; Kohanski, R A; Ramirez, F.

    1995-01-01

    Transforming growth factor beta 1 (TGF-beta 1) exerts a positive effect on the transcription of genes coding for several extracellular matrix-related products, including collagen I. We have previously identified a strong TGF-beta 1-responsive element (TbRE) in the upstream promoter sequence of the alpha 2(I) collagen (COL1A2) gene. Our experiments have shown that TGF-beta 1 stimulates COL1A2 transcription by increasing binding of an Sp1-containing complex (TbRC) to the TbRE. They have also su...

  13. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    Science.gov (United States)

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  14. [small beta]-Turn mimetic-based stabilizers of protein-protein interactions for the study of the non-canonical roles of leucyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Kim, Chanwoo; Jung, Jinjoo; Thanh Tung, Truong;

    2016-01-01

    For the systematic perturbation of protein-protein interactions, we designed and synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as [small beta]-turn mimetics. We then devised a new synthetic route to obtain [small beta]-turn mimetic scaffolds via tandem N...

  15. Calciomics:prediction and analysis of EF-hand calcium binding proteins by protein engineering

    Institute of Scientific and Technical Information of China (English)

    YANG; Jenny; Jie

    2010-01-01

    Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms.Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host,and to propagate.In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif,then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus,and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor(Shr) of Streptococcus pyrogenes and the nonstructural protein 1(nsP1) of Sindbis virus.When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

  16. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  17. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  18. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  19. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin.

    Science.gov (United States)

    Zhu, Yu; Ye, Xin-Hai; Liu, Yang; Yan, Zhi-Chao; Stanley, David; Ye, Gong-Yin; Fang, Qi

    2015-12-01

    Chitin-binding proteins (CBPs) are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP) from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs) of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton. PMID:26633500

  20. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-01

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites. PMID:27015007

  1. Binding of cationic surfactants to DNA, protein and DNA-protein mixtures.

    Science.gov (United States)

    Gani, S A; Chattoraj, D K; Mukherjee, D C

    1999-06-01

    Extent of binding (gamma 2(1)) of cationic surfactants cetyltrimethyl ammonium bromide (CTAB), myristyltrimethyl ammonium bromide (MTAB) and dodecyl trimethyl ammonium bromide (DTAB) to calf-thymus DNA, bovine serum albumin (BSA) and to their binary mixture respectively have been measured as function of bulk concentration of the surfactant by using equilibrium dialysis technique. Binding of CTAB has been studied at different pH, ionic strength (mu), temperature and biopolymer composition and with native and denatured states of the biopolymers. The chain-length of different long chain amines plays a significant role in the extent of binding under identical solution condition. The binding ratios for CTAB to collagen, gelatin, DNA-collagen and DNA-gelatin mixtures respectively have also been determined. The conformational structures of different biopolymers are observed to play significant role in macromolecular interactions between protein and DNA in the presence of CTAB. From the experimental values of the maximum binding ratio (gamma 2m) at the saturation level for each individual biopolymer, ideal values (gamma 2m)id have been theoretically calculated for binary mixtures of biopolymers using additivity rule. The protein-DNA-CTAB interaction in mixture has been explained in terms of the deviation (delta) of (gamma 2m) from (gamma 2m)id in the presence of a surfactant in bulk. The binding of surfactants to biopolymers and to their binary mixtures are compared more precisely in terms of the Gibbs' free energy decrease (-delta G degree) for the saturation of the binding sites in the biopolymers or biopolymer mixtures with the change of the bulk surfactant activity from zero to unity in the rational mole fraction scale. PMID:10650715

  2. The Crystal Structure of CD8alpha,Beta in Complex With YTS156.7.7 Fab And Interaction With Other CD8 Antibodies Define the Binding Mode of CD8alpha,Beta to MHC Class I

    Energy Technology Data Exchange (ETDEWEB)

    Shore, D.A.; Issafras, H.; Landais, E.; Teyton, L.; Wilson, I.A.

    2009-05-27

    The CD8{alpha}{beta} heterodimer interacts with class I pMHC on antigen-presenting cells as a co-receptor for TCR-mediated activation of cytotoxic T cells. To characterize this immunologically important interaction, we used monoclonal antibodies (mAbs) specific to either CD8{alpha} or CD8{beta} to probe the mechanism of CD8{alpha}{beta} binding to pMHCI. The YTS156.7 mAb inhibits this interaction and blocks T cell activation. To elucidate the molecular basis for this inhibition, the crystal structure of the CD8{alpha}{beta} immunoglobulin-like ectodomains were determined in complex with mAb YTS156.7 Fab at 2.7 {angstrom} resolution. The YTS156.7 epitope on CD8{beta} was identified and implies that residues in the CDR1 and CDR2-equivalent loops of CD8{beta} are occluded upon binding to class I pMHC. To further characterize the pMHCI/CD8{alpha}{beta} interaction, binding of class I tetramers to CD8{alpha}{beta} on the surface of T cells was assessed in the presence of anti-CD8 mAbs. In contrast to YTS156.7, mAb YTS105.18, which is specific for CD8{alpha}, does not inhibit binding of CD8{alpha}{beta} to class I tetramers, indicating the YTS105.18 epitope is not occluded in the pMHCI/CD8{alpha}{beta} complex. Together, these data indicate a model for the pMHCI/CD8{alpha}{beta} interaction similar to that observed for CD8{alpha}{alpha} in the CD8{alpha}{alpha}/pMHCI complex, but in which CD8{alpha} occupies the lower orientation (membrane proximal to the antigen presenting cell), and CD8{beta} occupies the upper position (membrane distal). The implication of this molecular assembly for the function of CD8{alpha}{beta} in T cell activation is discussed.

  3. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11. 5-kDa peptide containing the putative 25-hydroxyvitamin D sub 3 binding site

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.; Holick, M.F. (Boston Univ., MA (United States)); Bouillon, R.; Baelen, H.V. (Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Leuven (Belgium))

    1991-07-30

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitrophenyl)amino)propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D{sub 3} 3{beta}-3{prime}-(N-(4-azido-2-nitro-(3,5-{sup 3}H)phenyl)amino)propyl ether ({sup 3}H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D{sub 3} for the binding site of the latter in hDBP and (2) {sup 3}H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with {sup 3}H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D{sub 3}.

  4. Novel RNA-binding properties of the MTG chromatin regulatory proteins

    Directory of Open Access Journals (Sweden)

    Sacchi Nicoletta

    2008-10-01

    Full Text Available Abstract Background The myeloid translocation gene (MTG proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4 related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding. Results By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties. Conclusion Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.

  5. Protein-ligand binding affinities from large-scale quantum mechanical simulations

    OpenAIRE

    Fox, Stephen J.

    2012-01-01

    The accurate prediction of protein-drug binding affinities is a major aim of computational drug optimisation and development. A quantitative measure of binding affinity is provided by the free energy of binding, and such calculations typically require extensive configurational sampling of entities such as proteins with thousands of atoms. Current binding free energy methods use force fields to perform the configurational sampling and to compute interaction energies. Due to the empirical natur...

  6. Protein and solvent dynamics of the water-soluble chlorophyll-binding protein (WSCP)

    International Nuclear Information System (INIS)

    This study presents quasielastic neutron scattering data of the water-soluble chlorophyll-binding protein (WSCP) and the corresponding buffer solution at room temperature. The contributions of protein and buffer solution to the overall scattering are carefully separated. Otherwise, the fast water dynamics dominating the buffer contribution is likely to mask the slow protein dynamics. In the case of WSCP, the protein scattering can be described by two contributions: first, internal protein dynamics represented by a diffusion in a sphere with an average radius of 2.7 Angstroms and secondly global (Brownian) diffusion of the WSCP macromolecule with an upper limit for the translational diffusion coefficient of 9.4*10-7 cm2/s. (authors)

  7. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S;

    1993-01-01

    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one of...

  8. Inhibition of the vitamin B12 binding capacity of proteins by the hydrolysis product of cyclophosphamide

    International Nuclear Information System (INIS)

    The inhibitory effect of cyclophosphamide hydrolysis product (CPHP) on vitamin B12 binding ability to proteins has been established. The ester N-(2-chloroethyl)-N'-(3-phosphopropyl)-etheylenediamine hydrochloride is probably responsible, in vitro, for blocking the protein binding sites. Preincubation of proteins with vitamin B12 prevents the inhibitory effect of CPHP. (au)

  9. Preferential reduction of binding of sup 125 I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ordway, G.A.; Gambarana, C.; Tejani-Butt, S.M.; Areso, P.; Hauptmann, M.; Frazer, A. (Veterans Affairs Medical Center, Philadelphia, PA (USA))

    1991-05-01

    This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, {sup 125}I-iodopindolol ({sup 125}I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of rats with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of {sup 125}I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce {sup 125}I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of {sup 125}I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of {sup 125}I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of {sup 125}I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus.

  10. Glycosylation status of vitamin D binding protein in cancer patients.

    Science.gov (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages. PMID:19642159

  11. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  12. Heterogeneity of binding subunits of the human 150K insulin-like growth factor binding protein.

    Science.gov (United States)

    Gelato, M C; Gaynes, L A; Greenstein, L A; Nissley, S P

    1990-04-01

    Models for the structure of the GH-dependent 150K insulin-like growth factor-binding protein (IGF-BP) complex include 1) a binding subunit of 40-60K mol wt associated with a larger nonbinding component, and 2) an oligomeric structure simply made up of six 25-28K monomeric IGF-BP complexes. To evaluate these alternative models we examined the IGF-binding characteristics and behavior on an SP-Sephadex ion exchange column of BP species identified by chemically cross-linking [125I]IGF-I and [125I]IGF-II. In addition, human serum was gel filtered on Sephadex G-200 in 0.05 M NH4HCO3, pH 8.0, and the 150K BP identified by binding of [125I]IGF-II to column fractions. When [125I]IGF-I or [125I]IGF-II was cross-linked to the 150K BP with disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%) and autoradiography, four specifically labeled complexes of 20K, 24K, 33K, and 47K mol wt were identified. We examined the IGF-binding characteristics of these species by cross-linking [125I]IGF-I and [125I]IGF-II after incubation in the presence of increasing concentrations of unlabeled IGF-I or IGF-II. Formation of the 24K complex was inhibited more potently by IGF-II than IGF-I, whereas the relative potency of IGF-I vs. IGF-II for inhibition of the formation of the other complexes depended upon whether [125I]IGF-II or [125I]IGF-I was used. When the 150K BP complex generated from gel filtration on Sephadex G-200 was acid stripped, the only species seen with chemical cross-linking of either [125I]IGF-I or [125I]IGF-II was the 47K complex. By both conventional competitive binding studies and cross-linking [125I]IGF-I and [125I]IGF-II after incubation with increasing concentrations of unlabeled IGF-I or IGF-II, the formation of the 47K complex was usually more potently inhibited by IGF-I than IGF-II. When Cohn fraction IV extract was chromatographed on a SP-Sephadex column (pH 3) and cross-linking performed on the flow-through, the 47K

  13. Ability of CK2beta to selectively regulate cellular protein kinases

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Guerra, Barbara

    2008-01-01

    The Wee1 protein kinase plays a prominent role in keeping cyclin dependent kinase 1 (CDK1) inactive during the G2 phase of the cell cycle. At the onset of mitosis, Wee1 is ubiquitinated by the E3 ubiquitin ligase SCF(beta-TrCP) and subsequently degraded by the proteasome machinery. Previously, it...... additional phosphodegrons recognised by beta-TrCP. These events contribute to destabilise Wee1 at the onset of mitosis (Watanabe et al. Proc Natl Acad Sci USA 101:4419-4424, 2004). We show here that in addition to the ability of CK2 to phosphorylate Wee1 as reported earlier, the regulatory beta-subunit of...

  14. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?

    Science.gov (United States)

    Neale, Chris; Herce, Henry D; Pomès, Régis; García, Angel E

    2015-10-20

    G-protein-coupled receptors are eukaryotic membrane proteins with broad biological and pharmacological relevance. Like all membrane-embedded proteins, their location and orientation are influenced by lipids, which can also impact protein function via specific interactions. Extensive simulations totaling 0.25 ms reveal a process in which phospholipids from the membrane's cytosolic leaflet enter the empty G-protein binding site of an activated β2 adrenergic receptor and form salt-bridge interactions that inhibit ionic lock formation and prolong active-state residency. Simulations of the receptor embedded in an anionic membrane show increased lipid binding, providing a molecular mechanism for the experimental observation that anionic lipids can enhance receptor activity. Conservation of the arginine component of the ionic lock among Rhodopsin-like G-protein-coupled receptors suggests that intracellular lipid ingression between receptor helices H6 and H7 may be a general mechanism for active-state stabilization. PMID:26488656

  15. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins.

    Science.gov (United States)

    Wang, Jilite; Shimada, Masaya; Kato, Yukina; Kusada, Mio; Nagaoka, Satoshi

    2015-01-01

    Dietary plant protein is well known to reduce serum cholesterol levels. Rice bran is a by-product of rice milling and is a good source of protein. The present study examined whether feeding rats a high-cholesterol diet containing 10% rice bran protein (RBP) for 10 d affected cholesterol metabolism. Rats fed dietary RBP had lower serum total cholesterol levels and increased excretion of fecal steroids, such as cholesterol and bile acids, than those fed dietary casein. In vitro assays showed that RBP strongly bound to taurocholate, and inhibited the micellar solubility of cholesterol, compared with casein. Moreover, the bile acid-binding proteins of the RBP were eluted by a chromatographic column conjugated with cholic acid, and one of them was identified as hypothetical protein OsJ_13801 (NCBI accession No. EAZ29742) using MALDI-TOF mass spectrometry analysis. These results suggest that the hypocholesterolemic action of the RBP may be caused by the bile acid-binding proteins. PMID:25374002

  16. A Phytophthora infestans G-protein beta subunit is involved in sporangium formation

    OpenAIRE

    Latijnhouwers, M.; Govers, F.

    2003-01-01

    The heterotrimeric G-protein pathway regulates cellular responses to a wide range of extracellular signals in virtually all eukaryotes. It also controls various developmental processes in the oomycete plant pathogen Phytophthora infestans, as was concluded from previous studies on the role of the G-protein alpha-subunit PiGPA1 in this organism. The expression of the P. infestans G-protein beta-subunit gene Pigpb1 was induced in nutrient-starved mycelium before the onset of sporangium formatio...

  17. A Column Free Protein Purification Procedure using E. coli Single ‐ Stranded DNA Binding Protein (SSB) as an Affinity Tag

    OpenAIRE

    Soffe, Mark

    2014-01-01

    SSBs are DNA binding proteins that are essential components of cells and play key roles in DNA replication, repair, and recombination. Here we utilize two biochemical properties associated with the E. coli SSB protein to develop a novel procedure to purify proteins using a resin-free strategy to combat the largest bottleneck in biochemical research— obtaining uncontaminated, single proteins from the total cellular contents. 1. E. coli SSB binds to single stranded DNA (ssDNA) with extremely...

  18. The influence of DNA binding on the backbone dynamics of the yeast cell-cycle protein Mbp1

    International Nuclear Information System (INIS)

    Mbp1 is a transcription factor involved in the regulation of the cell cycle in yeast. The N-terminus of this protein contains a DNA binding domain that includes a winged helix-turn-helix motif. The C-terminal 24 residues of this domain (the 'tail') are disordered in the crystal state, but are important for DNA binding. We have measured 15N NMR relaxation rates at 11.75 and 14.1 T to determine the dynamics of the free protein and in its complex with a specific DNA duplex. The dynamics data were quantitatively analysed using both spectral density mapping and the Lipari-Szabo formalism including the effects of chemical exchange and rotational anisotropy. A detailed analysis has been made of the effect of anisotropy, exchange and experimental precision on the recovered motional parameters. The backbone NH relaxation is affected by motions on a variety of time scales from millisecond to tens of picoseconds. The relaxation data show a structured core of 100 residues corresponding to that observed in the crystal state. Within the core of the protein, two regions on either side of the putative recognition helix (helix B) show slow (ca. 0.2 ms) conformational exchange dynamics that are quenched upon DNA binding. The C-terminal 24 residues are generally more dynamic than in the core. However, in the free protein, a stretch of ∼8 residues in the middle of the tail show relaxation behaviour similar to that in the core, indicating a structured region. NOEs between Ala 114 in this structured part of the tail and residues in the N-terminal beta strand of the core of the protein demonstrate that the tail folds back onto the core of the protein. In the complex with DNA, the structured part of the tail extends by ca. 3 residues. These data provide a framework for understanding the biochemical data on the mechanism and specificity of DNA binding

  19. Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein

    OpenAIRE

    Shen, Wen-Jun; Sridhar, Kunju; Bernlohr, David A.; Fredric B Kraemer

    1999-01-01

    Hormone-sensitive lipase (HSL) is a cytosolic neutral lipase that functions as the rate-limiting enzyme for the mobilization of free fatty acids in adipose tissue. By using the yeast two-hybrid system to examine the potential interaction of HSL with other cellular proteins, evidence is provided to demonstrate a direct interaction of HSL with adipocyte lipid-binding protein (ALBP), a member of the family of intracellular lipid-binding proteins that binds fatty acids, retinoids, and other hydro...

  20. A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins

    OpenAIRE

    Ramakrishnan, C; Dani, VS; Ramasarma, T

    2002-01-01

    The sequence GXXXXGKT/S, popularly known as Walker motif A, is widely believed to be the site for binding nucleotides in many proteins. Examination of the crystal structures in the Protein Data Bank showed that about half of the examples having these sequences do not bind or use nucleotides. Data analyses showed 92 different Walker sequences of the variable quartet (XXXX). Ramachandran angles in this segment revealed conformational similarity in the group of 45 proteins, known to bind or util...

  1. Isothermal Chemical Denaturation to Determine Binding Affinity of Small Molecules to G-Protein Coupled Receptors

    OpenAIRE

    Ross, Patrick; Weihofen, Wilhelm; Siu, Fai; Xie, Amy; Katakia, Hetal; Wright, S. Kirk; Hunt, Ian; Brown, Richard K; Freire, Ernesto

    2014-01-01

    The determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins. Isothermal chemical denaturation (ICD) has been shown to be a valuable biophysical method to determine in a direct and label-free fashion the binding of ligands to soluble proteins. In this communication, the application of isothermal che...

  2. Isotope-coded ATP Probe for Quantitative Affinity Profiling of ATP-binding Proteins

    OpenAIRE

    Xiao, Yongsheng; Guo, Lei; Wang, Yinsheng

    2013-01-01

    ATP-binding proteins play significant roles in numerous cellular processes. Here, we introduced a novel isotope-coded ATP-affinity probe (ICAP) as acylating agent to simultaneously enrich and incorporate isotope label to ATP-binding proteins. By taking advantage of the quantitative capability of this isotope-coded probe, we devised an affinity profiling strategy to comprehensively characterize ATP-protein interactions at the entire proteome scale. False-positive identification of ATP-binding ...

  3. Electrochemical control of a non-covalent binding between ferrocene and beta-cyclodextrin

    Czech Academy of Sciences Publication Activity Database

    Kolivoška, Viliam; Mohos, M.; Pobelov, I. V.; Rohrbach, S.; Yoshida, K.; Hong, W.; Fu, Y. C.; Moreno-Garcia, P.; Mészáros, G.; Broekmann, P.; Hromadová, Magdaléna; Sokolová, Romana; Valášek, M.; Wandlowski, T.

    2014-01-01

    Roč. 50, č. 79 (2014), s. 11757-11759. ISSN 1359-7345 R&D Projects: GA ČR(CZ) GA14-05180S Institutional support: RVO:61388955 Keywords : electrochemistry * spectroscopy * beta- cyclodextrin Subject RIV: CG - Electrochemistry Impact factor: 6.834, year: 2014

  4. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the...

  5. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis;

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1: a...

  6. Split green fluorescent protein as a modular binding partner for protein crystallization

    International Nuclear Information System (INIS)

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization

  7. Effects of monopropanediamino-beta-cyclodextrin on the denaturation process of the hybrid protein BlaPChBD.

    OpenAIRE

    Vandevenne, Marylène; GASPARD, Genevieve; Belgsir, E. M.; Ramnath, M.; Cenatiempo, Y; Delneuville, Delphine; Dumoulin, Mireille; Frère, Jean-Marie; Matagne, André; Galleni, Moreno; Filee, P.

    2011-01-01

    Irreversible accumulation of protein aggregates represents an important problem both in vivo and in vitro. The aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from diseases (such as Alzheimer's and Parkinson's diseases) to the production (e.g. inclusion bodies), stability, storage and delivery of protein drugs. beta-Cyclodextrin (beta-CD) is a circular heptasaccharide characterized by a hydrophilic exterior and a hydrophobic interior ring ...

  8. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

    Czech Academy of Sciences Publication Activity Database

    Siciliano, P.; He, X. L.; Woodcock, C.; Pickett, J. A.; Field, L. M.; Birkett, M. A.; Kalinová, Blanka; Gomulski, L. M.; Scolari, F.; Gasperi, G.; Malacrida, A. R.; Zhou, J. J.

    2014-01-01

    Roč. 48, May (2014), s. 51-62. ISSN 0965-1748 Institutional support: RVO:61388963 Keywords : medfly * Ceratitis capitata * olfaction * odorant binding protein * pheromone binding protein * pheromone * binding studies * protein expression * electroantennography * GC-EAG * fluorescence displacement Subject RIV: CE - Biochemistry Impact factor: 3.450, year: 2014

  9. Acute hantavirus infection induces galectin-3-binding protein.

    Science.gov (United States)

    Hepojoki, Jussi; Strandin, Tomas; Hetzel, Udo; Sironen, Tarja; Klingström, Jonas; Sane, Jussi; Mäkelä, Satu; Mustonen, Jukka; Meri, Seppo; Lundkvist, Ake; Vapalahti, Olli; Lankinen, Hilkka; Vaheri, Antti

    2014-11-01

    Hantaviruses are zoonotic viruses that cause life-threatening diseases when transmitted to humans. Severe hantavirus infection is manifested by impairment of renal function, pulmonary oedema and capillary leakage. Both innate and adaptive immune responses contribute to the pathogenesis, but the underlying mechanisms are not fully understood. Here, we showed that galectin-3-binding protein (Gal-3BP) was upregulated as a result of hantavirus infection both in vitro and in vivo. Gal-3BP is a secreted glycoprotein found in human serum, and increased Gal-3BP levels have been reported in chronic viral infections and in several types of cancer. Our in vitro experiments showed that, whilst Vero E6 cells (an African green monkey kidney cell line) constitutively expressed and secreted Gal-3BP, this protein was detected in primary human cells only as a result of hantavirus infection. Analysis of Gal-3BP levels in serum samples of cynomolgus macaques infected experimentally with hantavirus indicated that hantavirus infection induced Gal-3BP also in vivo. Finally, analysis of plasma samples collected from patients hospitalized because of acute hantavirus infection showed higher Gal-3BP levels during the acute than the convalescent phase. Furthermore, the Gal-3BP levels in patients with haemorrhagic fever with renal syndrome correlated with increased complement activation and with clinical variables reflecting the severity of acute hantavirus infection. PMID:25013204

  10. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  11. Serum protein inhibition of thyrotropin binding to human thyroid tissue

    International Nuclear Information System (INIS)

    We used a modificaton of the TSH radioreceptor assay to detect TSH-binding inhibition (TBI) activity in serum and serum fractions from normal subjects and patients with Graves' disease. TBI activity is present in normal IgG prepared by DEAE-Sephadex chromatography and in normal globulins prepared by precipitation at 1.6 M ammonium sulfate. Other normal serum proteins also had TBI activity when large concentrations were tested. Gel filtration chromatography and powder block electrophoresis were used to prepare fractions of normal and Graves' disease sera. In these fractions from normal serum, TBI activity was found in both γ-globulin and α-globulin-albumin fractions electrophoretically and in both 7S and 4S peaks from gel filtration. TBI activity from Graves' disease patients' sera was similarly distributed, but relatively more TBI accompanied the electrophoretic γ-globulins. Sepharose Protein-A and anti-IgG were used as immunoabsorbents to isolate and purify IgG from normal and Graves' disease sera. TBI activity in IgG was proportional to the IgG concentration, indicating that the TBI which migrates as a γ-globulin electrophoretically is an IgG and thus may possibly be an antibody. Inhibitory activity found in normal serum globulins and in the non-IgG fractions of both normal and abnormal sera seriously interferes with attempts to use the TSH radioreceptor assay to study the hypothesized anti-TSH receptor antibody in the serum of patients with Graves' disease

  12. Is vitamin D binding protein a novel predictor of labour?

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Vitamin D binding protein (VDBP has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4-7, 8-14 and 15-28 days before labour (P<0.05. VDBP concentration was 4.3-fold significantly higher at 0-3 days compared to 15-28 days pre-labour (P<0.05. The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve  = 0.974. This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour.

  13. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    Energy Technology Data Exchange (ETDEWEB)

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  14. Evolutionary variation of papillomavirus E2 protein and E2 binding sites

    Directory of Open Access Journals (Sweden)

    Angeletti Peter C

    2011-08-01

    Full Text Available Abstract Background In an effort to identify the evolutionary changes relevant to E2 function, within and between papillomavirus genera, we evaluated the E2 binding sites (E2BSs inside the long-control-region (LCR, and throughout the genomes. We identified E2BSs in the six largest genera of papillomaviruses: Alpha, Beta, Gamma, Delta, Lambda, and Xi-papillomaviruses (128 genomes, by comparing the sequences with a model consensus we created from known functional E2BSs (HPV16, HPV18, BPV1. We analyzed the sequence conservation and nucleotide content of the 4-nucleotide spacer within E2BSs. We determined that there is a statistically significant difference in GC content of the four-nucleotide E2BS spacer, between Alpha and Delta-papillomaviruses, as compared to each of the other groups. Additionally, we performed multiple alignments of E2 protein sequences using members of each genus in order to identify evolutionary changes within the E2 protein. Results When a phylogenetic tree was generated from E2 amino acid sequences, it was discovered that the alpha-papillomavirus genera segregates into two distinct subgroups (α1 and α2. When these subgroups were individually analyzed, it was determined that the subgroup α1 consensus E2BS favored a spacer of AAAA, whereas subgroup α2 favored the opposite orientation of the same spacer; TTTT. This observation suggests that these conserved inverted linkers could have functional importance.

  15. Suppression of cellular transformation by poly (A binding protein interacting protein 2 (Paip2.

    Directory of Open Access Journals (Sweden)

    Amy B Rosenfeld

    Full Text Available Controlling translation is crucial for the homeostasis of a cell. Its deregulation can facilitate the development and progression of many diseases including cancer. Poly (A binding protein interacting protein 2 (Paip2 inhibits efficient initiation of translation by impairing formation of the necessary closed loop of mRNA. The over production of Paip2 in the presence of a constitutively active form of hRas(V12 can reduce colony formation in a semi-solid matrix and focus formation on a cell monolayer. The ability of Paip2 to bind to Pabp is required to suppress the transformed phenotype mediated by hRas(V12. These observations indicate that Paip2 is able to function as a tumor suppressor.

  16. Penicillin binding proteins as danger signals: meningococcal penicillin binding protein 2 activates dendritic cells through Toll-like receptor 4.

    Directory of Open Access Journals (Sweden)

    Marcelo Hill

    Full Text Available Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 µg/ml ± 0.1, CD80 (LOGEC50 = 4.88 µg/ml ± 0.15 and CD86 (LOGEC50 = 5.36 µg/ml ± 0.1. This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7 ± 5.1% cells versus 12 ± 2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed thatPBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.

  17. Membrane binding of prion protein N-terminal peptides characterised by neutron reflectometry

    International Nuclear Information System (INIS)

    The prion protein (PrP) is widely recognised to mis-fold into the causative agent of the transmissible spongiform encephalopathies, known as Creutzfeldt–Jakob disease (CJD) in humans, scrappie in sheep or Bovine spongiform encephalopathy in cows (BSE, “mad cow disease”). PrP has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the mis-folding events associated with prion pathogenesis, PrP can undergo various post-translational modifications, including internal cleavage events. Alpha and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2 respectively, which interact specifically with negatively charged phospholipids at low pH. Previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption [1]. This work aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, neutron reflectometry was used to define the structural details of the interactions in combination with quartz crystal microbalance interrogation and calcein release assays. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with previous studies, interactions were stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. Overall, the data shows that the N1 and N2 peptides interact with the anionic phospholipid headgroups of supported lipid bilayers, inducing lipid ordering in the absence of significant penetration into the acyl tails or permeation of the membrane.

  18. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research. PMID:16302727

  19. Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients

    OpenAIRE

    Prucha, Miroslav; Herold, Ivan; Zazula, Roman; Dubska, Ladislava; Dostal, Miroslav; Hildebrand, Thomas; Hyanek, Josef

    2003-01-01

    Introduction The present study was conducted to assess the value of serum concentration of lipopolysaccharide-binding protein (LBP) in patients with systemic inflammatory response syndrome (SIRS), sepsis and septic shock with respect to its ability to differentiate between infectious and noninfectious etiologies in SIRS and to predict prognosis. Methods This prospective cohort study was conducted in a multidisciplinary intensive care unit. Sixty-eight patients, admitted consecutively to the i...

  20. Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of Streptococcus pneumoniae

    OpenAIRE

    Hammerschmidt, Sven; Bethe, Gesina; H. Remane, Petra; Chhatwal, Gursharan S.

    1999-01-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10−18 M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hL...