WorldWideScience

Sample records for binding pocket similarity

  1. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    Science.gov (United States)

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  2. Identification of distant drug off-targets by direct superposition of binding pocket surfaces.

    Science.gov (United States)

    Schumann, Marcel; Armen, Roger S

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").

  3. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.

  4. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    Science.gov (United States)

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  5. Detecting Local Ligand-Binding Site Similarity in Non-Homologous Proteins by Surface Patch Comparison

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-01-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074

  6. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  7. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.

    Science.gov (United States)

    Bhagavat, Raghu; Sankar, Santhosh; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2018-03-06

    Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain.

    Science.gov (United States)

    Chen, Chih-Hong; Piraner, Dan; Gorenstein, Nina M; Geahlen, Robert L; Beth Post, Carol

    2013-11-01

    The association of spleen tyrosine kinase (Syk), a central tyrosine kinase in B cell signaling, with Vav SH2 domain is controlled by phosphorylation of two closely spaced tyrosines in Syk linker B: Y342 and Y346. Previous studies established both singly phosphorylated and doubly phosphorylated forms play a role in signaling. The structure of the doubly phosphorylated form identified a new recognition of phosphotyrosine whereby two phosphotyrosines bind simultaneously to the Vav SH2 domain, one in the canonical pTyr pocket and one in the specificity pocket on the opposite side of the central β-sheet. It is unknown if the specificity pocket can bind phosphotyrosine independent of phosphotyrosine binding the pTyr pocket. To address this gap in knowledge, we determined the structure of the complex between Vav1 SH2 and a peptide (SykLB-YpY) modeling the singly phosphorylated-Y346 form of Syk with unphosphorylated Y342. The nuclear magnetic resonance (NMR) data conclusively establish that recognition of phosphotyrosine is swapped between the two pockets; phosphorylated pY346 binds the specificity pocket of Vav1 SH2, and unphosphorylated Y342 occupies what is normally the pTyr binding pocket. Nearly identical changes in chemical shifts occurred upon binding all three forms of singly and doubly phosphorylated peptides; however, somewhat smaller shift perturbations for SykLB-YpY from residues in regions of high internal mobility suggest that internal motions are coupled to binding affinity. The differential recognition that includes this swapped binding of phosphotyrosine to the specificity pocket of Vav SH2 increases the repertoire of possible phosphotyrosine binding by SH2 domains in regulating protein-protein interactions in cellular signaling. Copyright © 2013 Wiley Periodicals, Inc.

  9. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    Science.gov (United States)

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  10. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  11. Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.

    Science.gov (United States)

    Caumes, Géraldine; Borrel, Alexandre; Abi Hussein, Hiba; Camproux, Anne-Claude; Regad, Leslie

    2017-09-01

    Small molecules interact with their protein target on surface cavities known as binding pockets. Pocket-based approaches are very useful in all of the phases of drug design. Their first step is estimating the binding pocket based on protein structure. The available pocket-estimation methods produce different pockets for the same target. The aim of this work is to investigate the effects of different pocket-estimation methods on the results of pocket-based approaches. We focused on the effect of three pocket-estimation methods on a pocket-ligand (PL) classification. This pocket-based approach is useful for understanding the correspondence between the pocket and ligand spaces and to develop pharmacological profiling models. We found pocket-estimation methods yield different binding pockets in terms of boundaries and properties. These differences are responsible for the variation in the PL classification results that can have an impact on the detected correspondence between pocket and ligand profiles. Thus, we highlighted the importance of the pocket-estimation method choice in pocket-based approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets

    Directory of Open Access Journals (Sweden)

    Ashford Paul

    2012-03-01

    Full Text Available Abstract Background Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. Results We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i analysis of a kinase superfamily highlights the

  13. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.

    Science.gov (United States)

    Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A

    2012-03-14

    Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active

  14. Characterization of the allosteric binding pocket of human liver fructose-1,6-bisphosphatase by protein crystallography and inhibitor activity studies.

    Science.gov (United States)

    Iversen, L F; Brzozowski, M; Hastrup, S; Hubbard, R; Kastrup, J S; Larsen, I K; Naerum, L; Nørskov-Lauridsen, L; Rasmussen, P B; Thim, L; Wiberg, F C; Lundgren, K

    1997-05-01

    The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand.

  15. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey.

    Science.gov (United States)

    Kratochwil, Nicole A; Gatti-McArthur, Silvia; Hoener, Marius C; Lindemann, Lothar; Christ, Andreas D; Green, Luke G; Guba, Wolfgang; Martin, Rainer E; Malherbe, Pari; Porter, Richard H P; Slack, Jay P; Winnig, Marcel; Dehmlow, Henrietta; Grether, Uwe; Hertel, Cornelia; Narquizian, Robert; Panousis, Constantinos G; Kolczewski, Sabine; Steward, Lucinda

    2011-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor. © 2011 Bentham Science Publishers

  16. PocketMatch: A new algorithm to compare binding sites in protein structures

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma

    2008-12-01

    Full Text Available Abstract Background Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that

  17. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  18. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  19. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  20. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    Science.gov (United States)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  1. Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.

    Science.gov (United States)

    Triki, Dhoha; Billot, Telli; Visseaux, Benoit; Descamps, Diane; Flatters, Delphine; Camproux, Anne-Claude; Regad, Leslie

    2018-04-10

    HIV-2 protease (PR2) is naturally resistant to most FDA (Food and Drug Administration)-approved HIV-1 protease inhibitors (PIs), a major antiretroviral class. In this study, we compared the PR1 and PR2 binding pockets extracted from structures complexed with 12 ligands. The comparison of PR1 and PR2 pocket properties showed that bound PR2 pockets were more hydrophobic with more oxygen atoms and fewer nitrogen atoms than PR1 pockets. The structural comparison of PR1 and PR2 pockets highlighted structural changes induced by their sequence variations and that were consistent with these property changes. Specifically, substitutions at residues 31, 46, and 82 induced structural changes in their main-chain atoms that could affect PI binding in PR2. In addition, the modelling of PR1 mutant structures containing V32I and L76M substitutions revealed a cooperative mechanism leading to structural deformation of flap-residue 45 that could modify PR2 flexibility. Our results suggest that substitutions in the PR1 and PR2 pockets can modify PI binding and flap flexibility, which could underlie PR2 resistance against PIs. These results provide new insights concerning the structural changes induced by PR1 and PR2 pocket variation changes, improving the understanding of the atomic mechanism of PR2 resistance to PIs.

  2. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    Science.gov (United States)

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  3. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    Science.gov (United States)

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  4. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  5. The minor binding pocket: a major player in 7TM receptor activation

    DEFF Research Database (Denmark)

    Rosenkilde, Mette Marie; Benned-Jensen, Tau; Frimurer, Thomas M.

    2010-01-01

    residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric...... targeted in the development of functionally biased drugs....

  6. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  7. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  8. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists.

    Science.gov (United States)

    Hoyer, Inna; Haas, Ann-Karin; Kreuchwig, Annika; Schülein, Ralf; Krause, Gerd

    2013-02-01

    The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.

  9. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  10. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  11. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  12. Exploring the water-binding pocket of the type II dehydroquinase enzyme in the structure-based design of inhibitors.

    Science.gov (United States)

    Blanco, Beatriz; Sedes, Antía; Peón, Antonio; Otero, José M; van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción

    2014-04-24

    Structural and computational studies to explore the WAT1 binding pocket in the structure-based design of inhibitors against the type II dehydroquinase (DHQ2) enzyme are reported. The crystal structures of DHQ2 from M. tuberculosis in complex with four of the reported compounds are described. The electrostatic interaction observed between the guanidinium group of the essential arginine and the carboxylate group of one of the inhibitors in the reported crystal structures supports the recently suggested role of this arginine as the residue that triggers the release of the product from the active site. The results of the structural and molecular dynamics simulation studies revealed that the inhibitory potency is favored by promoting interactions with WAT1 and the residues located within this pocket and, more importantly, by avoiding situations where the ligands occupy the WAT1 binding pocket. The new insights can be used to advantage in the structure-based design of inhibitors.

  13. Glutamate Water Gates in the Ion Binding Pocket of Na(+) Bound Na(+), K(+)-ATPase

    DEFF Research Database (Denmark)

    Han, Minwoo; Kopec, Wojciech; Solov'yov, Ilia A

    2017-01-01

    III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na(+) binding energies, we conclude that three protons in the binding site are needed to effectively bind Na......The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na(+), K(+) -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na(+) or K(+) selectivity. We use molecular dynamics (MD......(+) from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na(+) release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na(+) bound occluded conformation. Our data provides key insights into the role of protons in the Na...

  14. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.

    Science.gov (United States)

    Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R

    2005-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.

  15. Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor.

    Science.gov (United States)

    Holleran, Brian J; Domazet, Ivana; Beaulieu, Marie-Eve; Yan, Li Ping; Guillemette, Gaétan; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard

    2009-04-15

    Urotensin II (U-II), a cyclic undecapeptide, is the natural ligand of the urotensin II (UT) receptor, a G protein-coupled receptor. In the present study, we used the substituted-cysteine accessibility method to identify specific residues in transmembrane domains (TMDs) six and seven of the rat urotensin II receptor (rUT) that contribute to the formation of the binding pocket of the receptor. Each residue in the R256(6.32)-Q283(6.59) fragment of TMD6 and the A295(7.31)-T321(7.57) fragment of TMD7 was mutated, individually, to a cysteine. The resulting mutants were expressed in COS-7 cells, which were subsequently treated with the positively charged methanethiosulfonate-ethylammonium (MTSEA) or the negatively charged methanethiosulfonate-ethylsulfonate (MTSES) sulfhydryl-specific alkylating agents. MTSEA treatment resulted in a significant reduction in the binding of TMD6 mutants F268C(6.44) and W278C(6.54) and TMD7 mutants L298C(7.34), T302C(7.38), and T303C(7.39) to (125)I-U-II. MTSES treatment resulted in a significant reduction in the binding of two additional mutants, namely L282C(6.58) in TMD6 and Y300C(7.36) in TMD7. These results suggest that specific residues orient themselves within the water-accessible binding pocket of the rUT receptor. This approach, which allowed us to identify key determinants in TMD6 and TMD7 that contribute to the UT receptor binding pocket, enabled us to further refine our homology-based model of how U-II interacts with its cognate receptor.

  16. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  17. Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2010-12-01

    Full Text Available Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  18. Binding ligand prediction for proteins using partial matching of local surface patches.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-01-01

    Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  19. Catalytic Efficiency of Basidiomycete Laccases: Redox Potential versus Substrate-Binding Pocket Structure

    Directory of Open Access Journals (Sweden)

    Olga A. Glazunova

    2018-04-01

    Full Text Available Laccases are copper-containing oxidases that catalyze a one-electron abstraction from various phenolic and non-phenolic compounds with concomitant reduction of molecular oxygen to water. It is well-known that laccases from various sources have different substrate specificities, but it is not completely clear what exactly provides these differences. The purpose of this work was to study the features of the substrate specificity of four laccases from basidiomycete fungi Trametes hirsuta, Coriolopsis caperata, Antrodiella faginea, and Steccherinum murashkinskyi, which have different redox potentials of the T1 copper center and a different structure of substrate-binding pockets. Enzyme activity toward 20 monophenolic substances and 4 phenolic dyes was measured spectrophotometrically. The kinetic parameters of oxidation of four lignans and lignan-like substrates were determined by monitoring of the oxygen consumption. For the oxidation of the high redox potential (>700 mV monophenolic substrates and almost all large substrates, such as phenolic dyes and lignans, the redox potential difference between the enzyme and the substrate (ΔE played the defining role. For the low redox potential monophenolic substrates, ΔE did not directly influence the laccase activity. Also, in the special cases, the structure of the large substrates, such as dyes and lignans, as well as some structural features of the laccases (flexibility of the substrate-binding pocket loops and some amino acid residues in the key positions affected the resulting catalytic efficiency.

  20. Structural and mechanistic investigations on Salmonella typhimurium acetate kinase (AckA: identification of a putative ligand binding pocket at the dimeric interface

    Directory of Open Access Journals (Sweden)

    Chittori Sagar

    2012-10-01

    Full Text Available Abstract Background Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA and phosphotransacetylase (Pta, key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results Here we report kinetic characterization of S. typhimurium AckA (StAckA and structures of its unliganded (Form-I, 2.70 Å resolution and citrate-bound (Form-II, 1.90 Å resolution forms. The enzyme showed broad substrate specificity with kcat/Km in the order of acetate > propionate > formate. Further, the Km for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP and divalent cations (Mn2+ and Co2+, respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic βββαβαβα topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA. Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230–300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these

  1. pocketZebra: a web-server for automated selection and classification of subfamily-specific binding sites by bioinformatic analysis of diverse protein families.

    Science.gov (United States)

    Suplatov, Dmitry; Kirilin, Eugeny; Arbatsky, Mikhail; Takhaveev, Vakil; Svedas, Vytas

    2014-07-01

    The new web-server pocketZebra implements the power of bioinformatics and geometry-based structural approaches to identify and rank subfamily-specific binding sites in proteins by functional significance, and select particular positions in the structure that determine selective accommodation of ligands. A new scoring function has been developed to annotate binding sites by the presence of the subfamily-specific positions in diverse protein families. pocketZebra web-server has multiple input modes to meet the needs of users with different experience in bioinformatics. The server provides on-site visualization of the results as well as off-line version of the output in annotated text format and as PyMol sessions ready for structural analysis. pocketZebra can be used to study structure-function relationship and regulation in large protein superfamilies, classify functionally important binding sites and annotate proteins with unknown function. The server can be used to engineer ligand-binding sites and allosteric regulation of enzymes, or implemented in a drug discovery process to search for potential molecular targets and novel selective inhibitors/effectors. The server, documentation and examples are freely available at http://biokinet.belozersky.msu.ru/pocketzebra and there are no login requirements. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  3. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1.

    Science.gov (United States)

    Geithe, Christiane; Protze, Jonas; Kreuchwig, Franziska; Krause, Gerd; Krautwurst, Dietmar

    2017-11-01

    Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.

  4. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Gurung, Buddha; Wan, Bingbing; Matkar, Smita; Veniaminova, Natalia A.; Wan, Ke; Merchant, Juanita L.; Hua, Xianxin; Lei, Ming (Michigan); (Michigan-Med); (UPENN-MED)

    2013-04-08

    Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions as an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.

  5. Apolar Distal Pocket Mutants of Yeast Cytochrome c Peroxidase: Hydrogen Peroxide Reactivity and Cyanide Binding of the TriAla, TriVal, and TriLeu Variants

    Science.gov (United States)

    Bidwai, Anil K.; Meyen, Cassandra; Kilheeney, Heather; Wroblewski, Damian; Vitello, Lidia B.; Erman, James E.

    2012-01-01

    Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions. PMID:23022490

  6. The Second Transmembrane Domain of the Human Type 1 Angiotensin II Receptor Participates in the Formation of the Ligand Binding Pocket and Undergoes Integral Pivoting Movement during the Process of Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J.; Martin, Stéphane S.; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT1 receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT1, L81C-AT1, A85C-AT1, T88C-AT1, and A89C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant D74C-N111G-AT1 became insensitive to MTSEA, whereas mutant L81C-N111G-AT1 lost some sensitivity and mutant V86C-N111G-AT1 became sensitive to MTSEA. Our results suggest that constitutive activation of the AT1 receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket. PMID:19276075

  7. The second transmembrane domain of the human type 1 angiotensin II receptor participates in the formation of the ligand binding pocket and undergoes integral pivoting movement during the process of receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J; Martin, Stéphane S; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan

    2009-05-01

    The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT(1) receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT(1), L81C-AT(1), A85C-AT(1), T88C-AT(1), and A89C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant D74C-N111G-AT(1) became insensitive to MTSEA, whereas mutant L81C-N111G-AT(1) lost some sensitivity and mutant V86C-N111G-AT(1) became sensitive to MTSEA. Our results suggest that constitutive activation of the AT(1) receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket.

  8. Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23.

    Science.gov (United States)

    Sikorra, Stefan; Litschko, Christa; Müller, Carina; Thiel, Nadine; Galli, Thierry; Eichner, Timo; Binz, Thomas

    2016-01-29

    Botulinum neurotoxins (BoNTs) are highly potent bacterial proteins that block neurotransmitter release at the neuromuscular junction by cleaving SNAREs (soluble N-ethyl maleimide sensitive factor attachment protein receptors). However, their serotype A (BoNT/A) that cleaves SNAP-25 (synaptosomal-associated protein of 25 kDa) has also been an established pharmaceutical for treatment of medical conditions that rely on hyperactivity of cholinergic nerve terminals for 25 years. The expansion of its use to a variety of further medical conditions associated with hypersecretion components is prevented partly because the involved SNARE isoforms are not cleaved. Therefore, we examined by mutational analyses the reason for the resistance of human SNAP-23, an isoform of SNAP-25. We show that replacement of 10 SNAP-23 residues with their SNAP-25 counterparts effects SNAP-25-like cleavability. Conversely, transfer of each of the replaced SNAP-23 residues to SNAP-25 drastically decreased the cleavability of SNAP-25. By means of the existing SNAP-25-toxin co-crystal structure, molecular dynamics simulations, and corroborative mutagenesis studies, the appropriate binding pockets for these residues in BoNT/A were characterized. Systematic mutagenesis of two major BoNT/A binding pockets was conducted in order to adapt these pockets to corresponding amino acids of human SNAP-23. Human SNAP-23 cleaving mutants were isolated using a newly established yeast-based screening system. This method may be useful for engineering novel BoNT/A pharmaceuticals for the treatment of diseases that rely on SNAP-23-mediated hypersecretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.

    Science.gov (United States)

    Piechnick, Ronny; Heck, Martin; Sommer, Martha E

    2011-08-23

    Besides Lys-296 in the binding pocket of opsin, all-trans-retinal forms adducts with peripheral lysine residues and phospholipids, thereby mimicking the spectral and chemical properties of metarhodopsin species. These pseudophotoproducts composed of nonspecific retinylidene Schiff bases have long plagued the investigation of rhodopsin deactivation and identification of decay products. We discovered that, while hydroxylamine can enter the retinal binding pocket of light-activated rhodopsin, the modified hydroxylamine compounds o-methylhydroxylamine (mHA), o-ethylhydroxylamine (eHA), o-tert-butylhydroxylamine (t-bHA), and o-(carboxymethyl)hydroxylamine (cmHA) are excluded. However, the alkylated hydroxylamines react quickly and efficiently with exposed retinylidene Schiff bases to form their respective retinal oximes. We further investigated how t-bHA affects light-activated rhodopsin and its interaction with binding partners. We found that both metarhodopsin II (Meta II) and Meta III are resistant to t-bHA, and neither arrestin nor transducin binding is affected by t-bHA. This discovery suggests that the hypothetical solvent channel that opens in light-activated rhodopsin is extremely stringent with regard to size and/or polarity. We believe that alkylated hydroxylamines will prove to be extremely useful reagents for the investigation of rhodopsin activation and decay mechanisms. Furthermore, the use of alkylated hydroxylamines should not be limited to in vitro studies and could help elucidate visual signal transduction mechanisms in the living cells of the retina. © 2011 American Chemical Society

  10. Role of the Ectodomain Serine 275 in Shaping the Binding Pocket of the ATP-Gated P2X3 Receptor

    Czech Academy of Sciences Publication Activity Database

    Petrenko, N.; Khafizov, K.; Tvrdoňová, Vendula; Skorinkin, A.; Giniatullin, R.

    2011-01-01

    Roč. 50, č. 39 (2011), s. 8427-8436 ISSN 0006-2960 Grant - others:Univerzita Karlova(CZ) 3446/2011 Institutional research plan: CEZ:AV0Z50110509 Keywords : P2X3 * purinergic * ATP * ATP-binding pocket * receptor Subject RIV: ED - Physiology Impact factor: 3.422, year: 2011

  11. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Science.gov (United States)

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  12. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  13. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype.

    Science.gov (United States)

    Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald

    2017-11-02

    The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  14. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    Science.gov (United States)

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  15. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    Science.gov (United States)

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  16. Discover binding pathways using the sliding binding-box docking approach: application to binding pathways of oseltamivir to avian influenza H5N1 neuraminidase

    Science.gov (United States)

    Tran, Diem-Trang T.; Le, Ly T.; Truong, Thanh N.

    2013-08-01

    Drug binding and unbinding are transient processes which are hardly observed by experiment and difficult to analyze by computational techniques. In this paper, we employed a cost-effective method called "pathway docking" in which molecular docking was used to screen ligand-receptor binding free energy surface to reveal possible paths of ligand approaching protein binding pocket. A case study was applied on oseltamivir, the key drug against influenza a virus. The equilibrium pathways identified by this method are found to be similar to those identified in prior studies using highly expensive computational approaches.

  17. PatchSurfers: Two methods for local molecular property-based binding ligand prediction.

    Science.gov (United States)

    Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke

    2016-01-15

    Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  19. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  20. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.

    Science.gov (United States)

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-03-01

    Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Probing the diphosphoglycerate binding pocket of HbA and HbPresbyterian (beta 108Asn --> Lys).

    Science.gov (United States)

    Gottfried, D S; Manjula, B N; Malavalli, A; Acharya, A S; Friedman, J M

    1999-08-31

    HbPresbyterian (beta 108Asn --> Lys, HbP) contains an additional positive charge (per alpha beta dimer) in the middle of the central cavity and exhibits a lower oxygen affinity than wild-type HbA in the presence of chloride. However, very little is known about the molecular origins of its altered functional properties. In this study, we have focused on the beta beta cleft of the Hb tetramer. Recently, we developed an approach for quantifying the ligand binding affinity to the beta-end of the Hb central cavity using fluorescent analogues of the natural allosteric effector 2, 3-diphosphoglycerate (DPG) [Gottfried, D. S., et al. (1997) J. Biol. Chem. 272, 1571-1578]. Time-correlated single-photon counting fluorescence lifetime studies were used to assess the binding of pyrenetetrasulfonate to both HbA and HbP in the deoxy and CO ligation states under acidic and neutral pH conditions. Both the native and mutant proteins bind the probe at a weak binding site and a strong binding site; in all cases, the binding to HbP was stronger than to HbA. The most striking finding was that for HbA the binding affinity varies as follows: deoxy (pH 6.35) > deoxy (pH 7.20) > CO (pH 6.35); however, the binding to HbP is independent of ligation or pH. The mutant oxy protein also hydrolyzes p-nitrophenyl acetate, through a reversible acyl-imidazole pathway linked to the His residues of the beta beta cleft, at a considerably higher rate than does HbA. This implies a perturbation of the microenvironment of these residues at the DPG binding pocket. Structural consequences due to the presence of the new positive charge in the middle of the central cavity have been transmitted to the beta beta cleft of the protein, even in its liganded conformation. This is consistent with a newly described quaternary state (B) for liganded HbPresbyterian and an associated change in the allosteric control mechanism.

  2. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

    Science.gov (United States)

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-07-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning.

    Directory of Open Access Journals (Sweden)

    Tiziano Gaiotto

    Full Text Available Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu, 2009 H1N1 pandemic (swine flu and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our

  4. The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S.; Holleran, Brian J.; Morin, Marie-Ève; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT1, N200C-AT1, I201C-AT1, G203C-AT1, and F204C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant I201C-N111G-AT1 became more sensitive to MTSEA, whereas mutant G203C-N111G-AT1 lost some sensitivity. Our results suggest that constitutive activation of AT1 receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side. PMID:19773549

  5. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S; Holleran, Brian J; Morin, Marie-Eve; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-11-13

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

  6. The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket.

    Science.gov (United States)

    Meyners, Christian; Krämer, Andreas; Yildiz, Özkan; Meyer-Almes, Franz-Josef

    2017-07-01

    The analysis of the thermodynamic driving forces of ligand-protein binding has been suggested to be a key component for the selection and optimization of active compounds into drug candidates. The binding enthalpy as deduced from isothermal titration calorimetry (ITC) is usually interpreted assuming single-step binding of a ligand to one conformation of the target protein. Although successful in many cases, these assumptions are oversimplified approximations of the reality with flexible proteins and complicated binding mechanism in many if not most cases. The relationship between protein flexibility and thermodynamic signature of ligand binding is largely understudied. Directed mutagenesis, X-ray crystallography, enzyme kinetics and ITC methods were combined to dissect the influence of loop flexibility on the thermodynamics and mechanism of ligand binding to histone deacetylase (HDAC)-like amidohydrolases. The general ligand-protein binding mechanism comprises an energetically demanding gate opening step followed by physical binding. Increased flexibility of the L2-loop in HDAC-like amidohydrolases facilitates access of ligands to the binding pocket resulting in predominantly enthalpy-driven complex formation. The study provides evidence for the great importance of flexibility adjacent to the active site channel for the mechanism and observed thermodynamic driving forces of molecular recognition in HDAC like enzymes. The flexibility or malleability in regions adjacent to binding pockets should be given more attention when designing better drug candidates. The presented case study also suggests that the observed binding enthalpy of protein-ligand systems should be interpreted with caution, since more complicated binding mechanisms may obscure the significance regarding potential drug likeness. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    algorithm. To model the reduction in flexibility of allosteric pocket on modulator binding, the unperturbed normal modes are first calculated for the protein. The calculation is then repeated, each time perturbing one of the pockets in the protein. These results are combined with output from Fpocket in a support vector machine (SVM to predict allosteric pockets on proteins. The AlloSite server is similar to the AlloPred method in that it uses the Fpocket algorithm to elucidate allosteric pockets, whereas AlloPred uses an approach that combines flexibility with the Fpocket output. Results and discussion. By computational solvent mapping method FTSite, we have explored M.tuberculosis urease nonamer surface to find sites that tend to bind small organic molecular probes representing fragments of drug molecules with diverse hydrophobic and hydrophilic properties. The predicted three top ranked binding sites were situated at the interfaces between chains C and A, and chain G of neighbour trimer (and at equivalent locations in symmetrical trimers as well. A mapping of enzymes generally yields the most probable sites situated in a subsite of the enzyme active site. This was not the case for MTU which active sites were inaccessible for probes due to the closed conformation of the covering flap, and predicted binding sites were located not far from them at the entrance into a deep pocket. To explore their possible structural and functional role, we correlated the locations of predicted MTU binding sites and its ancillary pockets (which remain open and solvent exposed even while the flap is closed and indicated their partial overlapping. This overlapping may suggest that predicted sites are likely the intermediate binding sites responsible for recruiting a ligand to another binding site deeply buried in the protein. To examine the possibility that predicted binding sites are the sites for allostery binding we carried out the search for probable sites of allostery binding on MTU

  9. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  10. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  11. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin.

    Science.gov (United States)

    Tabernero, L; Chang, C Y; Ohringer, S L; Lau, W F; Iwanowicz, E J; Han, W C; Wang, T C; Seiler, S M; Roberts, D G; Sack, J S

    1995-02-10

    The crystallographic structure of the ternary complex between human alpha-thrombin, hirugen and the peptidyl inhibitor Phe-alloThr-Phe-O-CH3, which is acylated at its N terminus with 4-guanidino butanoic acid (BMS-183507), has been determined at 2.6 A resolution. The structure reveals a unique "retro-binding" mode for this tripeptide active site inhibitor. The inhibitor binds with its alkyl-guanidine moiety in the primary specificity pocket and its two phenyl rings occupying the hydrophobic proximal and distal pockets of the thrombin active site. In this arrangement the backbone of the tripeptide forms a parallel beta-strand to the thrombin main-chain at the binding site. This is opposite to the orientation of the natural substrate, fibrinogen, and all the small active site-directed thrombin inhibitors whose bound structures have been previously reported. BMS-183507 is the first synthetic inhibitor proved to bind in a retro-binding fashion to thrombin, in a fashion similar to that of the N-terminal residues of the natural inhibitor hirudin. Furthermore, this new potent thrombin inhibitor (Ki = 17.2 nM) is selective for thrombin over other serine proteases tested and may be a template to be considered in designing hirudin-based thrombin inhibitors with interactions at the specificity pocket.

  12. Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors

    Science.gov (United States)

    Di Pietro, Ornella; Laughton, Charles A.

    2017-01-01

    The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein—that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the binding of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligomethylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications introduced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors

  13. Response of SCP-2L domain of human MFE-2 to ligand removal: binding site closure and burial of peroxisomal targeting signal.

    Science.gov (United States)

    Lensink, M F; Haapalainen, A M; Hiltunen, J K; Glumoff, T; Juffer, A H

    2002-10-11

    In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.

  14. Crystal Structures and Binding Dynamics of Odorant-Binding Protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri.

    Science.gov (United States)

    Northey, Tom; Venthur, Herbert; De Biasio, Filomena; Chauviac, Francois-Xavier; Cole, Ambrose; Ribeiro, Karlos Antonio Lisboa; Grossi, Gerarda; Falabella, Patrizia; Field, Linda M; Keep, Nicholas H; Zhou, Jing-Jiang

    2016-04-22

    Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-β-farnesene but M. viciae uses a mixture of (E)-β-farnesene, (-)-α-pinene, β-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.

  15. GPCR crystal structures: Medicinal chemistry in the pocket.

    Science.gov (United States)

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Löber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.

    Science.gov (United States)

    Sheridan, Robert P; Maiorov, Vladimir N; Holloway, M Katharine; Cornell, Wendy D; Gao, Ying-Duo

    2010-11-22

    One approach to estimating the "chemical tractability" of a candidate protein target where we know the atomic resolution structure is to examine the physical properties of potential binding sites. A number of other workers have addressed this issue. We characterize ~290,000 "pockets" from ~42,000 protein crystal structures in terms of a three parameter "pocket space": volume, buriedness, and hydrophobicity. A metric DLID (drug-like density) measures how likely a pocket is to bind a drug-like molecule. This is calculated from the count of other pockets in its local neighborhood in pocket space that contain drug-like cocrystallized ligands and the count of total pockets in the neighborhood. Surprisingly, despite being defined locally, a global trend in DLID can be predicted by a simple linear regression on log(volume), buriedness, and hydrophobicity. Two levels of simplification are necessary to relate the DLID of individual pockets to "targets": taking the best DLID per Protein Data Bank (PDB) entry (because any given crystal structure can have many pockets), and taking the median DLID over all PDB entries for the same target (because different crystal structures of the same protein can vary because of artifacts and real conformational changes). We can show that median DLIDs for targets that are detectably homologous in sequence are reasonably similar and that median DLIDs correlate with the "druggability" estimate of Cheng et al. (Nature Biotechnology 2007, 25, 71-75).

  17. Modeling of arylamide helix mimetics in the p53 peptide binding site of hDM2 suggests parallel and anti-parallel conformations are both stable.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix.

  18. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  19. Pairwise structure alignment specifically tuned for surface pockets and interaction interfaces

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    To detect and evaluate the similarities between the three-dimensional (3D) structures of two molecules, various kinds of methods have been proposed for the pairwise structure alignment problem [6, 9, 7, 11]. The problem plays important roles when studying the function and the evolution of biological molecules. Recently, pairwise structure alignment methods have been extended and applied on surface pocket structures [10, 3, 5] and interaction interface structures [8, 4]. The results show that, even when there are no global similarities discovered between the global sequences and the global structures, biological molecules or complexes could share similar functions because of well conserved pockets and interfaces. Thus, pairwise pocket and interface structure alignments are promising to unveil such shared functions that cannot be discovered by the well-studied global sequence and global structure alignments. State-of-the-art methods for pairwise pocket and interface structure alignments [4, 5] are direct extensions of the classic pairwise protein structure alignment methods, and thus such methods share a few limitations. First, the goal of the classic protein structure alignment methods is to align single-chain protein structures (i.e., a single fragment of residues connected by peptide bonds). However, we observed that pockets and interfaces tend to consist of tens of extremely short backbone fragments (i.e., three or fewer residues connected by peptide bonds). Thus, existing pocket and interface alignment methods based on the protein structure alignment methods still rely on the existence of long-enough backbone fragments, and the fragmentation issue of pockets and interfaces rises the risk of missing the optimal alignments. Moreover, existing interface structure alignment methods focus on protein-protein interfaces, and require a "blackbox preprocessing" before aligning protein-DNA and protein-RNA interfaces. Therefore, we introduce the PROtein STucture Alignment

  20. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B"c"a expression did not restore adipogenesis.

  1. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  2. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  3. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Zachary A. Bornholdt

    2016-02-01

    Full Text Available The filovirus surface glycoprotein (GP mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics.

  4. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    Science.gov (United States)

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  5. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    Science.gov (United States)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  6. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.

    Science.gov (United States)

    Borrel, Alexandre; Regad, Leslie; Xhaard, Henri; Petitjean, Michel; Camproux, Anne-Claude

    2015-04-27

    Predicting protein druggability is a key interest in the target identification phase of drug discovery. Here, we assess the pocket estimation methods' influence on druggability predictions by comparing statistical models constructed from pockets estimated using different pocket estimation methods: a proximity of either 4 or 5.5 Å to a cocrystallized ligand or DoGSite and fpocket estimation methods. We developed PockDrug, a robust pocket druggability model that copes with uncertainties in pocket boundaries. It is based on a linear discriminant analysis from a pool of 52 descriptors combined with a selection of the most stable and efficient models using different pocket estimation methods. PockDrug retains the best combinations of three pocket properties which impact druggability: geometry, hydrophobicity, and aromaticity. It results in an average accuracy of 87.9% ± 4.7% using a test set and exhibits higher accuracy (∼5-10%) than previous studies that used an identical apo set. In conclusion, this study confirms the influence of pocket estimation on pocket druggability prediction and proposes PockDrug as a new model that overcomes pocket estimation variability.

  7. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket.

    Science.gov (United States)

    Han, Xiaobiao; Shen, Liqiang; Wang, Qijun; Cen, Xufeng; Wang, Jin; Wu, Meng; Li, Peng; Zhao, Wei; Zhang, Yu; Zhao, Guoping

    2017-01-27

    The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Pocket Money

    OpenAIRE

    Larsen, Laura Perregård

    2015-01-01

    Abstract This is a paper studying, the negotiations and expectations, appearin through the exchange of ‘pocket money’, between the Danish state and the asylum seekers in Avnstrup asylum Centre. The paper presents, the practices that surround the ‘pocket money’ in Avnstrup Asylum Centre and how there are perceive. Furthermore it reflects upon the ‘pocket money’ as a tool of identification Finally it explores the reasons and rationalities for the states funding of the asylum seekers. The analys...

  9. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design

    DEFF Research Database (Denmark)

    Gloriam, David Erik Immanuel; Foord, Steven M; Blaney, Frank E

    2009-01-01

    currently available crystal structures. This was used to characterize pharmacological relationships of Family A/Rhodopsin family GPCRs, minimizing evolutionary influence from parts of the receptor that do not generally affect ligand binding. The resultant dendogram tended to group receptors according...

  10. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  11. Exploration of pH-dependent behavior of the anion receptor pocket of subdomain IIA of HSA: determination of effective pocket charge using the Debye-Hückel limiting law.

    Science.gov (United States)

    Bolel, Priyanka; Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu

    2014-01-09

    Protein-ligand electrostatic interaction can be looked upon as ion receptor-ligand interaction, and the binding cavity of protein can be either an anion or cation receptor depending on the charge of the guest. Here we focus on the exploration of pH-modulated binding of a number of anionic ligands, specific to the subdomain IIA cavity of HSA, such as carmoisine, tartrazine, cochineal red, and warfarin. The logarithm of the binding constant is found to vary linearly with the square-root of ionic strength, indicating applicability of the Debye-Hückel limiting law to protein-ligand electrostatic binding equilibrium, and concludes that the subdomain IIA cavity is an anion receptor. The present approach is very unique that one can calculate the effective charge of the protein-based anion receptor pocket, and the calculated charge has been found to vary between +1 and +3 depending on the pH and ligand itself. The study also indicates that in such cases of specific ligand binding the pocket charge rather than the overall or surface charge of the macromolecule seems to have a paramount role in determining the strength of interaction. For the first time, it is demonstrated that the Debye-Hückel interionic interaction model can be successfully applied to understand the protein-based receptor-ligand electrostatic interaction in general.

  12. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    Science.gov (United States)

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  13. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  14. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  15. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  16. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  17. UPF201 Archaeal Specific Family Members Reveals Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.N.; Swaminathan, S.; Burley, S. K.

    2008-12-11

    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel {beta}-sheet and five {alpha}-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  18. Compensated electron and hole pockets in an underdoped high- Tc superconductor

    Science.gov (United States)

    Sebastian, Suchitra E.; Harrison, N.; Goddard, P. A.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Andersen, O. K.; Lonzarich, G. G.

    2010-06-01

    We report quantum oscillations in the underdoped high-temperature superconductor YBa2Cu3O6+x over a wide range in magnetic field 28≤μ0H≤85T corresponding to ≈12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian [Nature (London) 454, 200 (2008)10.1038/nature07095], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at ≈535T to be clearly resolved into three separate peaks at ≈460 , ≈532 , and ≈602T , in reasonable agreement with the reported frequencies of Audouard [Phys. Rev. Lett. 103, 157003 (2009)10.1103/PhysRevLett.103.157003]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted α ) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted γ ). On comparison with band structure, the d -wave symmetry of the interlayer dispersion locates the minimally corrugated α pocket at the “nodal” point knodal=(π/2,π/2) , and the significantly corrugated γ pocket at the “antinodal” point kantinodal=(π,0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking—a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (α) pocket corresponding to holes, with the weaker antinodal (γ) pocket corresponding to electrons—likely responsible

  19. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    Science.gov (United States)

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  20. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    Science.gov (United States)

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  2. Conformational control of the binding of diatomic gases to cytochrome c'.

    Science.gov (United States)

    Manole, Andreea; Kekilli, Demet; Svistunenko, Dimitri A; Wilson, Michael T; Dobbin, Paul S; Hough, Michael A

    2015-06-01

    The cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct.

  3. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  4. Pocket pumped image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V., E-mail: kotov@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2015-07-01

    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  5. Molecular switches for pheromone release from a moth pheromone-binding protein

    International Nuclear Information System (INIS)

    Xu Wei; Leal, Walter S.

    2008-01-01

    Pheromone-binding proteins (PBPs) are involved in the uptake of pheromones from pores on the antennae, transport through an aqueous environment surrounding the olfactory receptor neurons, and fast delivery to pheromone receptors. We tested the hypothesis that a C-terminal segment and a flexible loop are involved in the release of pheromones to membrane-bound receptors. We expressed in Escherichia coli 11 mutants of the PBP from the silkworm moth, BmorPBP, taking into consideration structural differences between the forms with high and low binding affinity. The N-terminus was truncated and His-69, His-70 and His-95 at the base of a flexible loop, and a cluster of acidic residues at the C-terminus were mutated. Binding assays and circular dichroism analyses support a mechanism involving protonation of acidic residues Asp-132 and Glu-141 at the C-terminus and histidines, His-70 and His-95, in the base of a loop covering the binding pocket. The former leads to the formation of a new α-helix, which competes with pheromone for the binding pocket, whereas positive charge repulsion of the histidines opens the opposite side of the binding pocket

  6. Conformational dynamics and role of the acidic pocket in ASIC pH-dependent gating.

    Science.gov (United States)

    Vullo, Sabrina; Bonifacio, Gaetano; Roy, Sophie; Johner, Niklaus; Bernèche, Simon; Kellenberger, Stephan

    2017-04-04

    Acid-sensing ion channels (ASICs) are proton-activated Na + channels expressed in the nervous system, where they are involved in learning, fear behaviors, neurodegeneration, and pain sensation. In this work, we study the role in pH sensing of two regions of the ectodomain enriched in acidic residues: the acidic pocket, which faces the outside of the protein and is the binding site of several animal toxins, and the palm, a central channel domain. Using voltage clamp fluorometry, we find that the acidic pocket undergoes conformational changes during both activation and desensitization. Concurrently, we find that, although proton sensing in the acidic pocket is not required for channel function, it does contribute to both activation and desensitization. Furthermore, protonation-mimicking mutations of acidic residues in the palm induce a dramatic acceleration of desensitization followed by the appearance of a sustained current. In summary, this work describes the roles of potential pH sensors in two extracellular domains, and it proposes a model of acidification-induced conformational changes occurring in the acidic pocket of ASIC1a.

  7. Crystal structure of equine serum albumin in complex with cetirizine reveals a novel drug binding site.

    Science.gov (United States)

    Handing, Katarzyna B; Shabalin, Ivan G; Szlachta, Karol; Majorek, Karolina A; Minor, Wladek

    2016-03-01

    Serum albumin (SA) is the main transporter of drugs in mammalian blood plasma. Here, we report the first crystal structure of equine serum albumin (ESA) in complex with antihistamine drug cetirizine at a resolution of 2.1Å. Cetirizine is bound in two sites--a novel drug binding site (CBS1) and the fatty acid binding site 6 (CBS2). Both sites differ from those that have been proposed in multiple reports based on equilibrium dialysis and fluorescence studies for mammalian albumins as cetirizine binding sites. We show that the residues forming the binding pockets in ESA are highly conserved in human serum albumin (HSA), and suggest that binding of cetirizine to HSA will be similar. In support of that hypothesis, we show that the dissociation constants for cetirizine binding to CBS2 in ESA and HSA are identical using tryptophan fluorescence quenching. Presence of lysine and arginine residues that have been previously reported to undergo nonenzymatic glycosylation in CBS1 and CBS2 suggests that cetirizine transport in patients with diabetes could be altered. A review of all available SA structures from the PDB shows that in addition to the novel drug binding site we present here (CBS1), there are two pockets on SA capable of binding drugs that do not overlap with fatty acid binding sites and have not been discussed in published reviews. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  9. F pocket flexibility influences the tapasin dependence of two differentially disease-associated MHC Class I proteins.

    Science.gov (United States)

    Abualrous, Esam T; Fritzsche, Susanne; Hein, Zeynep; Al-Balushi, Mohammed S; Reinink, Peter; Boyle, Louise H; Wellbrock, Ursula; Antoniou, Antony N; Springer, Sebastian

    2015-04-01

    The human MHC class I protein HLA-B*27:05 is statistically associated with ankylosing spondylitis, unlike HLA-B*27:09, which differs in a single amino acid in the F pocket of the peptide-binding groove. To understand how this unique amino acid difference leads to a different behavior of the proteins in the cell, we have investigated the conformational stability of both proteins using a combination of in silico and experimental approaches. Here, we show that the binding site of B*27:05 is conformationally disordered in the absence of peptide due to a charge repulsion at the bottom of the F pocket. In agreement with this, B*27:05 requires the chaperone protein tapasin to a greater extent than the conformationally stable B*27:09 in order to remain structured and to bind peptide. Taken together, our data demonstrate a method to predict tapasin dependence and physiological behavior from the sequence and crystal structure of a particular class I allotype. Also watch the Video Abstract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  11. Pocket Spending Guide

    OpenAIRE

    Poff, Karen

    2015-01-01

    Provides an example for how to set up a pocket spending guide. By filling out the guide and keeping it with you, you can easily see at any time how much money you have available to spend in each category. A pocket spending guide will help you adjust your spending plan to make your money go where you really want it to go.

  12. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK.

    Directory of Open Access Journals (Sweden)

    Mike Bührmann

    Full Text Available In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography.

  13. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.

    Science.gov (United States)

    Li, Kunhua; Fielding, Elisha N; Condurso, Heather L; Bruner, Steven D

    2017-07-01

    The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.

  14. Structure-Guided Design of a High-Affinity Platelet Integrin αIIbβ3 Receptor Antagonist That Disrupts Mg2+ Binding to the MIDAS | Center for Cancer Research

    Science.gov (United States)

    A Better Fit. An improved anticoagulant drug called RUC-2 (ball and stick structure) fits snugly into its binding pocket on integrin (blue), a protein found on the surface of platelets. RUC-2 binds both subunits of integrin, inhibiting the excessive blood coagulation that can lead to strokes and heart attacks. Unlike similar drugs that alter integrin's structure when they bind and trigger unwanted immune responses, RUC-2 does not disturb the configuration of its larger partner.

  15. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water.

    Science.gov (United States)

    Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L

    2015-03-21

    Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.

  16. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  17. Visualizing electron pockets in cuprate superconductors

    Science.gov (United States)

    Das, Tanmoy; Markiewicz, R. S.; Bansil, A.; Balatsky, A. V.

    2012-06-01

    Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprates which dictates the direct fingerprints of electron pockets in these systems.

  18. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.

    Science.gov (United States)

    Gallina, Anna M; Bork, Peer; Bordo, Domenico

    2014-02-01

    The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein-ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug-like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co-occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Replantation of multi-level fingertip amputation using the pocket principle (palmar pocket method).

    Science.gov (United States)

    Arata, J; Ishikawa, K; Soeda, H; Kitayama, T

    2003-07-01

    Two cases of multi-level fingertip amputation are presented. In each case, replantation was achieved in a two-stage procedure, involving reattachment, de-epithelialisation and insertion into a palmar pocket in stage 1, followed by removal from the palmar pocket 16 days later. The cases are described and the technique is discussed.

  20. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Anna Albisetti

    2017-11-01

    Full Text Available Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP but remains attached to the cell body via the flagellum attachment zone (FAZ. The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC circumvents the flagellum. Overlapping the FPC is the hook complex (HC (a sub-structure of the previously named bilobe that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

  1. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    International Nuclear Information System (INIS)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki

    2015-01-01

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol

  2. Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akiyoshi; Tamura, Noriko; Yasutake, Yoshiaki, E-mail: y-yasutake@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062-8517 (Japan)

    2015-10-23

    The structure of the HIV-1 reverse transcriptase Q151M mutant was determined at a resolution of 2.6 Å in space group P321. Hepatitis B virus polymerase (HBV Pol) is an important target for anti-HBV drug development; however, its low solubility and stability in vitro has hindered detailed structural studies. Certain nucleotide reverse transcriptase (RT) inhibitors (NRTIs) such as tenofovir and lamivudine can inhibit both HBV Pol and Human immunodeficiency virus 1 (HIV-1) RT, leading to speculation on structural and mechanistic analogies between the deoxynucleotide triphosphate (dNTP)-binding sites of these enzymes. The Q151M mutation in HIV-1 RT, located at the dNTP-binding site, confers resistance to various NRTIs, while maintaining sensitivity to tenofovir and lamivudine. The residue corresponding to Gln151 is strictly conserved as a methionine in HBV Pol. Therefore, the structure of the dNTP-binding pocket of the HIV-1 RT Q151M mutant may reflect that of HBV Pol. Here, the crystal structure of HIV-1 RT Q151M, determined at 2.6 Å resolution, in a new crystal form with space group P321 is presented. Although the structure of HIV-1 RT Q151M superimposes well onto that of HIV-1 RT in a closed conformation, a slight movement of the β-strands (β2–β3) that partially create the dNTP-binding pocket was observed. This movement might be caused by the introduction of the bulky thioether group of Met151. The structure also highlighted the possibility that the hydrogen-bonding network among amino acids and NRTIs is rearranged by the Q151M mutation, leading to a difference in the affinity of NRTIs for HIV-1 RT and HBV Pol.

  3. VBScript pocket reference

    CERN Document Server

    Lomax, Paul; Petrusha, Ron

    2008-01-01

    Microsoft's Visual Basic Scripting Edition (VBScript), a subset of Visual Basic for Applications, is a powerful language for Internet application development, where it can serve as a scripting language for server-side, client-side, and system scripting. Whether you're developing code for Active Server Pages, client-side scripts for Internet Explorer, code for Outlook forms, or scripts for Windows Script Host, VBScript Pocket Reference will be your constant companion. Don't let the pocket-friendly format fool you. Based on the bestsellingVBScript in a Nutshell, this small book details every V

  4. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.

    Science.gov (United States)

    Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-09-01

    Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  6. Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Directory of Open Access Journals (Sweden)

    Caprez Adam

    2011-01-01

    Full Text Available Abstract Background A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2 database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. Findings We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. Conclusions CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores

  7. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  8. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  9. Understanding the physical and chemical nature of the warfarin drug binding site in human serum albumin: experimental and theoretical studies.

    Science.gov (United States)

    Abou-Zied, Osama K

    2015-01-01

    Human serum albumin (HSA) is one of the major carrier proteins in the body and constitutes approximately half of the protein found in blood plasma. It plays an important role in lipid metabolism, and its ability to reversibly bind a large variety of pharmaceutical compounds makes it a crucial determinant of drug pharmacokinetics and pharmacodynamics. This review deals with one of the protein's major binding sites "Sudlow I" which includes a binding pocket for the drug warfarin (WAR). The binding nature of this important site can be characterized by measuring the spectroscopic changes when a ligand is bound. Using several drugs, including WAR, and other drug-like molecules as ligands, the results emphasize the nature of Sudlow I as a flexible binding site, capable of binding a variety of ligands by adapting its binding pockets. The high affinity of the WAR pocket for binding versatile molecular structures stems from the flexibility of the amino acids forming the pocket. The binding site is shown to have an ionization ability which is important to consider when using drugs that are known to bind in Sudlow I. Several studies point to the important role of water molecules trapped inside the binding site in molecular recognition and ligand binding. Water inside the protein's cavity is crucial in maintaining the balance between the hydrophobic and hydrophilic nature of the binding site. Upon the unfolding and refolding of HSA, more water molecules are trapped inside the binding site which cause some swelling that prevents a full recovery from the denatured state. Better understanding of the mechanism of binding in macromolecules such as HSA and other proteins can be achieved by combining experimental and theoretical studies which produce significant synergies in studying complex biochemical phenomena.

  10. KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jia; Harrison, Rane A.; Li, Lianbo; Zeng, Mei; Gondi, Sudershan; Scott, David; Gray, Nathanael S.; Engen, John R.; Westover, Kenneth D. (NEU); (DFCI); (UTSMC); (Harvard-Med)

    2017-09-01

    KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basis for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.

  11. Google Pocket Guide

    CERN Document Server

    Calishain, Tara; Adams, DJ

    2003-01-01

    Beneath its deceptively simple search form, Google is a remarkably powerful and flexible search engine that indexes billions of web pages, handling more than 150 million searches a day. You know that what you're looking for must be in there somewhere, but how do you make Google work for you? Crafted from our best-selling Google Hacks title, the Google Pocket Guide provides exactly the information you need to make your searches faster and more effective, right from the start. The Google Pocket Guide unleashes the power behind that blinking cursor by delivering: A thorough but concise tour o

  12. Ondansetron and granisetron binding orientation in the 5-HT(3) receptor determined by unnatural amino acid mutagenesis.

    Science.gov (United States)

    Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A

    2012-10-19

    The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.

  13. Form and deformity: the trouble with Victorian pockets.

    Science.gov (United States)

    Matthews, Christopher Todd

    2010-01-01

    This essay explores the Victorian debate about the place of pockets in men's and women's clothing. By studying the representation of men as naturally pocketed creatures and the general denial of useful pockets to middle-class women, the essay demonstrates the tenacious cultural logic by which men's and women's pockets were imagined to correspond to sexual differences and to index access, or lack thereof, to public mobility and financial agency. Interconnected readings of visual art, essays, and novels show how the common sense about gendered pockets was utilized and promulgated in Victorian narratives. The question of who gets pockets is thus positioned as part of the history of gendered bodies in public space.

  14. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  15. SQL Pocket Guide

    CERN Document Server

    Gennick, Jonathan

    2010-01-01

    If you're a programmer or database administrator who uses SQL in your day-to-day work, this popular pocket guide is the ideal on-the-job reference. You'll find many examples that address the language's complexity, along with key aspects of SQL used in IBM DB2 Release 9.7, MySQL 5.1, Oracle Database 11g Release 2, PostgreSQL 9.0, and Microsoft SQL Server 2008 Release 2. SQL Pocket Guide describes how these database systems implement SQL syntax for querying, managing transactions, and making changes to data. It also shows how the systems use SQL functions, regular expression syntax, and type c

  16. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    Science.gov (United States)

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  17. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    Science.gov (United States)

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  18. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  19. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    Science.gov (United States)

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  20. Importance of Residues Outside the Cation Binding Pocket for Na+ and K+ Binding to the Na+/K+-ATPase

    DEFF Research Database (Denmark)

    Christiansen, Line; Toustrup-Jensen, Mads Schak; Einholm, Anja P.

    Mutagenesis studies have identified several oxygen-containing residues in the transmembrane region which are important for the coordination of Na+ and/or K+. These were later confirmed by the high-resolution crystal structures of the Na+/K+-ATPase with bound Na+ or K+. However, more information...... aromatic ring, while Arg882 and Asp886 were mutated to leucine and alanine, respectively, to investigate the importance of charge and size of the residues. All three mutants could sustain growth and proliferation under ouabain pressure. However, the mutants exhibited a reduced turnover number. All three...... mutants displayed an increased apparent K+ affinity at the external binding sites in measurements of ATPase activity: for Phe318Trp, Arg882Leu, and Asp886Ala 2.2-, 5.1-, and 1.8-fold increases compared to the wild type, respectively. Similarly the three mutants exhibited 10-, 6.4-, and 4.1-fold decreases...

  1. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    Science.gov (United States)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    conformation very similar to the one assumed by the antagonist JDTic into the K-opioid receptor. The proposed binding geometries fit better the binding pocket environment providing clues for experimental studies aimed to design selective or multifunctional opioid drugs.

  2. Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri

    Science.gov (United States)

    Pegos, Vanessa R.; Santos, Rodrigo M. L.; Medrano, Francisco J.

    2017-01-01

    In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases. PMID:28542513

  3. Small organic compounds enhance antigen loading of class II major histocompatibility complex proteins by targeting the polymorphic P1 pocket

    DEFF Research Database (Denmark)

    Höpner, Sabine; Dickhaut, Katharina; Hofstätter, Maria

    2006-01-01

    the peptide loading rate. The effect was evident only for an allelic subset and strictly correlated with the presence of glycine at the dimorphic position beta86 of the HLA-DR molecule. The residue forms the floor of the conserved pocket P1, located in the peptide binding site of MHC molecule. Apparently......, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl......-susceptible" MHC molecules. As catalysts of antigen loading, compounds targeting P1 may be useful molecular tools to amplify the immune response. The observation, however, that the ligand repertoire can be affected through polymorphic sites form the outside may also imply that environmental factors could induce...

  4. HTML & XHTML Pocket Reference

    CERN Document Server

    Robbins, Jennifer

    2010-01-01

    After years of using spacer GIFs, layers of nested tables, and other improvised solutions for building your web sites, getting used to the more stringent standards-compliant design can be intimidating. HTML and XHTML Pocket Reference is the perfect little book when you need answers immediately. Jennifer Niederst-Robbins, author Web Design in a Nutshell, has revised and updated the fourth edition of this pocket guide by taking the top 20% of vital reference information from her Nutshell book, augmenting it judiciously, cross-referencing everything, and organizing it according to the most com

  5. Newnes electrical pocket book

    CERN Document Server

    Reeves, E A

    2013-01-01

    Newnes Electrical Pocket Book, Twenty-first Edition, provides engineers with convenient access to various facts, tables, and formulae relating to the particular branch of engineering being dealt with. In the case of electrical engineering, it is essential that the engineer have a clear understanding of the methods by which the various formulae are derived to ensure that any particular formulae is applicable to the conditions being considered. The first section of the Pocket Book is devoted to the theoretical groundwork upon which all the practical applications are based. This covers symbols,

  6. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  7. Pocket companion to PMI's PMBOK guide

    CERN Document Server

    Snijders, Paul; Zandhuis, Anton

    2010-01-01

    This pocket guide is based on the PMBOK Guide® Fourth Edition.This pocket guide supplies a summary of the PMBOK Guide® , to provide a quick introduction as well as a structured overview of this method for project management.This pocket guide deals with the key issues and themes within project management and PMBOK:A short overview of the activities of PMI Inc., The organization and its standards: PMBOK Guide®, Standard for Project Portfolio Management, Standard for Program Management, OPM3.The essentials of the Project Lifecycle and Organization.What are the key project management knowledge ar

  8. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  9. Application of oxime-diversification to optimize ligand interactions within a cryptic pocket of the polo-like kinase 1 polo-box domain.

    Science.gov (United States)

    Zhao, Xue Zhi; Hymel, David; Burke, Terrence R

    2016-10-15

    By a process involving initial screening of a set of 87 aldehydes using an oxime ligation-based strategy, we were able to achieve a several-fold affinity enhancement over one of the most potent previously known polo-like kinase 1 (Plk1) polo-box domain (PBD) binding inhibitors. This improved binding may result by accessing a newly identified auxiliary region proximal to a key hydrophobic cryptic pocket on the surface of the protein. Our findings could have general applicability to the design of PBD-binding antagonists. Published by Elsevier Ltd.

  10. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery

    Directory of Open Access Journals (Sweden)

    Daura Xavier

    2010-03-01

    Full Text Available Abstract Background With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data. Results We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across

  11. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings - Part I: Theory

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar; Fuerst, Axel

    2007-01-01

    This is Part I of a two-part series of papers describing the effects of high-pressure injection pockets on the operating conditions of tilting-pad thrust bearings. In Part I a numerical model based on the Reynolds equation is developed extending the threedimensional thermoelastohydrodynamic (TEHD......) analysis of tilting-pad thrust bearings to include the effects of high-pressure injection and recesses in the bearing pads. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. In the analysis, the high-pressure oil injection used...... for hydrostatic jacking is turned off (i.e., only the effect of the pocket is studied). It is shown that a shallow pocket positively influences the performance of the bearing because it has characteristics similar to those of a Rayleigh-step bearing. In Part II of the paper (Heinrichson, N., Fuerst, A...

  12. Analysis of 3D models of octopus estrogen receptor with estradiol: evidence for steric clashes that prevent estrogen binding.

    Science.gov (United States)

    Baker, Michael E; Chandsawangbhuwana, Charlie

    2007-09-28

    Relatives of the vertebrate estrogen receptor (ER) are found in Aplysia californica, Octopus vulgaris, Thais clavigera, and Marisa cornuarietis. Unlike vertebrate ERs, invertebrate ERs are constitutively active and do not bind estradiol. To investigate the molecular basis of the absence of estrogen binding, we constructed a 3D model of the putative steroid-binding domain on octopus ER. Our 3D model indicates that binding of estradiol to octopus ER is prevented by steric clashes between estradiol and amino acids in the steroid-binding pocket. In this respect, octopus ER resembles vertebrate estrogen-related receptors (ERR), which have a ligand-binding pocket that cannot accommodate estradiol. Like ERR, octopus ER also may have the activation function 2 domain (AF2) in a configuration that can bind to coactivators in the absence of estrogens, which would explain constitutive activity of octopus ER.

  13. Immunization with influenza virus hemagglutinin globular region containing the receptor-binding pocket.

    Science.gov (United States)

    Jeon, Sung Ho; Arnon, Ruth

    2002-01-01

    The globular region of hemagglutinin (residues 91-261) membrane glycoprotein of influenza virus that encompasses the binding zone to the oligosaccharide receptor of target cells has been cloned by reverse transcriptase-polymerase chain reaction (RT-PCR). This protein segment (denoted HA91-261 peptide) induced significant immune response in mice. The serum antibodies and lung homogenates from the immunized mice cross-reacted with native virus particles. The cellular immunity was manifested by proliferative splenocyte responses and cytokine release indicating T helper type 1 activity. The plasmid DNA containing this segment (denoted pHA91-261) provoked, in addition, a significant cytotoxic T lymphocyte (CTL) response, whereas the HA91-261 protein fragment led to no such response. Both the DNA and the protein fragment of HA91-261 induced significant protection against viral challenge, although the immune response they induce might be along different pathways. Interestingly, the combined DNA priming-protein boosting immunization regimen did not induce protection against viral challenges even though it led to significant humoral immune responses similar to that induced by the peptide vaccine.

  14. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  15. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6

    DEFF Research Database (Denmark)

    Junker, Anne Kathrine Ravnsborg; Tropiano, Manuel; Faulkner, Stephen

    2016-01-01

    in a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction with azide-functionalized crown ethers. The resulting complexes were investigated using NMR and optical methods. Titrations with potassium chloride in methanol observing the sensititzed europium- and terbium-centered emissions were......-centered emission to report on the binding of potassium in an 18-crown-6 binding pocket. The responsive systems were made by linking a crown ether to a kinetically inert lanthanide binding pocket using a molecular building block approach. Specifically, an alkyne-appended Ln.DO3A was used as a building block...... used to investigate the response of the systems. The molecular reporters based on aliphatic crown ethers were found to have strongly inhibited binding of potassium, while the benzo-18-crown-6 derived systems had essentially the same association constants as the native crown ethers. The shape...

  16. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-04

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.

    Science.gov (United States)

    Kadam, Kiran; Prabhakar, Prashant; Jayaraman, V K

    2012-11-01

    Bacterial lipoproteins play critical roles in various physiological processes including the maintenance of pathogenicity and numbers of them are being considered as potential candidates for generating novel vaccines. In this work, we put forth an algorithm to identify and predict ligand-binding sites in bacterial lipoproteins. The method uses three types of pocket descriptors, namely fpocket descriptors, 3D Zernike descriptors and shell descriptors, and combines them with Support Vector Machine (SVM) method for the classification. The three types of descriptors represent shape-based properties of the pocket as well as its local physio-chemical features. All three types of descriptors, along with their hybrid combinations are evaluated with SVM and to improve classification performance, WEKA-InfoGain feature selection is applied. Results obtained in the study show that the classifier successfully differentiates between ligand-binding and non-binding pockets. For the combination of three types of descriptors, 10 fold cross-validation accuracy of 86.83% is obtained for training while the selected model achieved test Matthews Correlation Coefficient (MCC) of 0.534. Individually or in combination with new and existing methods, our model can be a very useful tool for the prediction of potential ligand-binding sites in bacterial lipoproteins.

  18. Current switching ratio optimization using dual pocket doping engineering

    Science.gov (United States)

    Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad

    2018-01-01

    This paper presents a smart idea to maximize current switching ratio of cylindrical gate tunnel FET (CGT) by growing pocket layers in both source and channel region. The pocket layers positioned in the source and channel of the device provides significant improvement in ON-state and OFF-state current respectively. The dual pocket doped cylindrical gate TFET (DP-CGT) exhibits much superior performance in term of drain current, transconductance and current ratio as compared to conventional CGT, channel pocket doped CGT (CP-CGT) and source pocket doped CGT (SP-CGT). Further, the current ratio has been optimized w.r.t. width and instantaneous position both the pocket layers. The much improved current ratio and low power consumption makes the proposed device suitable for low-power and high speed application. The simulation work of DP-CGT is done using 3D Sentaurus TCAD device simulator from Synopsys.

  19. The Influence of Injection Pockets on the Performance of Tilting-Pad Thrust Bearings: Part I – Theory

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2006-01-01

    This is Part I of a two-part series of papers describing the effects of high pressure injection pockets on the operating conditions of tilting-pad thrust bearings. A numerical model based on the Reynolds equation is developed extending the three dimensional thermo-elasto-hydrodynamic (TEHD......) analysis of tilting-pad thrust bearings to include the effects of high pressure injection and recesses in the bearing pad. The model is applied to the analysis of an existing bearing of large dimensions and the influence of the pocket is analyzed. It is shown that a shallow pocket positively influences...... the performance of the bearing as it has characteristics similar to those of a parallel step bearing....

  20. Do Danish children and young people receive pocket money?

    OpenAIRE

    Jens Bonke

    2013-01-01

    The aim of this study is to determine the extent to which Danish parents give their children pocket money, including an examination of whether there is a correlation between the amount of pocket money given and children’s income from paid work. We also examine the significance of parents’ income for the amount of pocket money they give to their children, and we consider how children use their income in relation to the amount of their pocket money and earnings. Finally, we examine the relation...

  1. Reasons not to ''pocket shoot''

    International Nuclear Information System (INIS)

    McCarroll, K.A.; Fisher, D.R.; Cawthon, L.A.; Donovan, K.R.; Roszler, M.H.; Kling, G.A.

    1987-01-01

    The authors' large population of intravenous drug abusers (IVDA) has increasingly resorted to supraclavicular central venous injection for vascular access. Few reports of complications associated with the practice of supraclavicular ''pocket'' injection have appeared in the radiologic literature. This exhibit demonstrates the complications associated with this practice, including pneumothorax, mycotic aneurysm, arteriovenous fistual, jugular vein thrombosis, cellulitis, foreign body and neck abscess. In addition, they show examples of sternoclavicular osteomyelities. The anatomy of the ''pocket'' and the pathophysiology and radiographic manifestations of these complications are reviewed

  2. Contralateral Abdominal Pocketing in Salvation of Replanted Fingertips with Compromised Circulation

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Shim

    2014-01-01

    Full Text Available Abdominal pocketing is one of the most useful methods in salvation of compromised replanted fingertips. Abdominal pocketing has generally been performed in the ipsilateral lower abdominal quadrant, but we have also performed contralateral pocketing at our institute. To determine which approach is more beneficial, a total of 40 patients underwent an abdominal pocketing procedure in either the ipsilateral or contralateral lower abdominal quadrant after fingertip replantation. Dates of abdominal pocketing after initial replantation, detachment after abdominal pocketing, range of motion (ROM before abdominal pocketing, and sequential ROM after the detachment operation and date of full ROM recovery and Disabilities of Arm, Shoulder, and Hand questionnaire (DASH score were recorded through medical chart review. Mean detachment date, mean abduction of shoulder after the detachment operation, and mean days to return to full ROM were not significantly different between the ipsilateral and contralateral pocketing groups. However, the mean DASH score was significantly lower in the contralateral group than the ipsilateral group. There were also fewer postoperative wound complications in the contralateral group than in the ipsilateral group. We, therefore, recommend contralateral abdominal pocketing rather than ipsilateral abdominal pocketing to increase patient comfort and reduce pain and complications.

  3. Contralateral Abdominal Pocketing in Salvation of Replanted Fingertips with Compromised Circulation

    Science.gov (United States)

    Shim, Hyung-Sup; Kim, Dong-Hwi; Kwon, Ho; Jung, Sung-No

    2014-01-01

    Abdominal pocketing is one of the most useful methods in salvation of compromised replanted fingertips. Abdominal pocketing has generally been performed in the ipsilateral lower abdominal quadrant, but we have also performed contralateral pocketing at our institute. To determine which approach is more beneficial, a total of 40 patients underwent an abdominal pocketing procedure in either the ipsilateral or contralateral lower abdominal quadrant after fingertip replantation. Dates of abdominal pocketing after initial replantation, detachment after abdominal pocketing, range of motion (ROM) before abdominal pocketing, and sequential ROM after the detachment operation and date of full ROM recovery and Disabilities of Arm, Shoulder, and Hand questionnaire (DASH) score were recorded through medical chart review. Mean detachment date, mean abduction of shoulder after the detachment operation, and mean days to return to full ROM were not significantly different between the ipsilateral and contralateral pocketing groups. However, the mean DASH score was significantly lower in the contralateral group than the ipsilateral group. There were also fewer postoperative wound complications in the contralateral group than in the ipsilateral group. We, therefore, recommend contralateral abdominal pocketing rather than ipsilateral abdominal pocketing to increase patient comfort and reduce pain and complications. PMID:25379539

  4. Air pocket removal from downward sloping pipes

    NARCIS (Netherlands)

    Pothof, I.W.M.; Clemens, F.H.L.R.

    2012-01-01

    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an

  5. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor.

    Science.gov (United States)

    Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2007-11-01

    We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.

  6. Pengembangan Pocket Mobile Learning Berbasis Android

    Directory of Open Access Journals (Sweden)

    Dasmo Dasmo

    2017-10-01

    Full Text Available Penelitian ini bertujuan untuk mengembangkan media pembelajaran pocket mobile learning berbasis android. Metode penelitian ini menggunakan model pengembangan ADDIE (Analysis, Design, Development, Implementation, dan Evaluation. Penelitian ini telah menghasilkan sebuah luaran berupa media pembelajaran pocket mobile learning berbasis android pada mata kuliah fisika. Media ini layak digunakan berdasarkan validasi dari ahli materi, ahli media dan respon mahasiswa terhadap media pembelajaran yang dibuat. Berdasarkan penilaian validasi ahli materi didapatkan rata-rata skor total sebesar 3,22 pada 14 butir pernyataan, dan termasuk pada kriteria “baik”. Sementara itu, berdasarkan validasi ahli media didapatkan rata-rata skor total sebesar 3,43 pada 15 butir pernyataan, dan termasuk pada kriteria “sangat baik”. Dan berdasarkan hasil analisis respon mahasiswa terhadap media pembelajaran diperoleh rata-rata skor total sebesar 4,0 atau 80%, dengan kategori “kuat”. Dengan demikian dapat disimpulkan bahwa media pembelajaran pocket mobile learning berbasis android layak untuk digunakan dan hampir semua mahasiswa menanggapi respon positif.The current research aims to develop the pocket mobile learning android based. It uses the Research and Development (R&D method with the ADDIE model (analysis, design, development, implementation, and evaluating. This research has resulted from an outcome of learning media pocket mobile android based on physics subject. This instructional media is feasible to be used based on validation from material experts, media experts, and student responses. Based on the assessment of material expert, the validation obtains an average total score of 3,22 at 14 statements and considered as "good" criteria. Meanwhile, based on the validation of media experts, the average total score reaches 3,43 at 15 statements and considered as "very good" criteria. And based on the analysis of students’ response to learning media, the

  7. Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles.

    Science.gov (United States)

    Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari; Beall, Anne; Mallory, Michael L; Yount, Boyd L; Graham, Rachel L; Huynh, Jeremy; Gates, J Edward; Donaldson, Eric F; Baric, Ralph S

    2018-05-22

    Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. IMPORTANCE Caliciviruses are

  8. Fingertip replantation using the subdermal pocket procedure.

    Science.gov (United States)

    Lin, Tsan-Shiun; Jeng, Seng-Feng; Chiang, Yuan-Cheng

    2004-01-01

    Restoration of finger length and function are the goals of replantation after fingertip amputation. Methods include microsurgical replantation and nonmicrosurgical replantation, such as composite graft techniques. To increase the survival rates for composite grafts, the subcutaneous pocket procedure has been used as a salvage procedure. The subdermal pocket procedure, which is a modification of the subcutaneous pocket procedure, was used for replantation of 17 fingertips in 16 consecutive patients. Eight fingertips experienced guillotine injuries and the other nine fingertips experienced crush injuries. Revascularization of one digital artery without available venous outflow was performed for six fingers, and composite graft techniques were used for the other 11 fingers. The success rate was 16 of 17 cases. The difference in success rates for guillotine versus crush injuries was statistically significant. Comparison of patients with arterial anastomoses and patients without arterial anastomoses also indicated a statistically significant difference. Thirteen fingertips survived completely. One finger, demonstrating complete loss and early termination of the pocketing procedure, was amputated on the eighth postoperative day. Two fingers were partially lost because of severe crushing injuries. One finger demonstrated partial loss of more than one quarter of the fingertip, which required secondary revision, because the patient was a heavy smoker. The pocketing period was 8 +/- 1 days (mean +/- SD, n = 6) for the fingers revascularized with one digital arterial anastomosis and 13.3 +/- 1.9 days (n = 10) for the fingers successfully replanted with composite graft techniques. The mean active range of motion of the interphalangeal joint of the three thumbs was 65 +/- 5 degrees, and that of the distal interphalangeal joint of the other 11 fingers was 51 +/- 11 degrees. The static two-point discrimination result was 6.4 +/- 1.0 mm (n = 14) after an average of 11 +/- 5 months

  9. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  10. Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket.

    Science.gov (United States)

    Soin, Thomas; Iga, Masatoshi; Swevers, Luc; Rougé, Pierre; Janssen, Colin R; Smagghe, Guy

    2009-08-01

    Molting in insects is regulated by ecdysteroids and juvenile hormones. Several synthetic non-steroidal ecdysone agonists are on the market as insecticides. These ecdysone agonists are dibenzoylhydrazine (DBH) analogue compounds that manifest their toxicity via interaction with the ecdysone receptor (EcR). Of the four commercial available ecdysone agonists, three (tebufenozide, methoxyfenozide and chromafenozide) are highly lepidopteran specific, one (halofenozide) is used to control coleopteran and lepidopteran insects in turf and ornamentals. However, compared to the very high binding affinity of these DBH analogues to lepidopteran EcRs, halofenozide has a low binding affinity for coleopteran EcRs. For the discovery of ecdysone agonists that target non-lepidopteran insect groups, efficient screening systems that are based on the activation of the EcR are needed. We report here the development and evaluation of two coleopteran-specific reporter-based screening systems to discover and evaluate ecdysone agonists. The screening systems are based on the cell lines BRL-AG-3A and BRL-AG-3C that are derived from the weevil Anthonomus grandis, which can be efficiently transduced with an EcR reporter cassette for evaluation of induction of reporter activity by ecdysone agonists. We also cloned the almost full length coding sequence of EcR expressed in the cell line BRL-AG-3C and used it to make an initial in silico 3D-model of its ligand-binding pocket docked with ponasterone A and tebufenozide.

  11. How Medicaid Expansion Affected Out-of-Pocket Health Care Spending for Low-Income Families.

    Science.gov (United States)

    Glied, Sherry; Chakraborty, Ougni; Russo, Therese

    2017-08-01

    ISSUE. Prior research shows that low-income residents of states that expanded Medicaid under the Affordable Care Act are less likely to experience financial barriers to health care access, but the impact on out-of-pocket spending has not yet been measured. GOAL. Assess how the Medicaid expansion affected out-of-pocket health care spending for low-income families compared to those in states that did not expand and consider whether effects differed in states that expanded under conventional Medicaid rules vs. waiver programs. METHODS. Analysis of the Consumer Expenditure Survey 2010–2015. KEY FINDINGS AND CONCLUSIONS. Compared to families in nonexpansion states, low-income families in states that did expand Medicaid saved an average of $382 in annual spending on health care. In these states, low-income families were less like to report any out-of-pocket spending on insurance premiums or medical care than were similar families in nonexpansion states. For families that did have some out-of-pocket spending, spending levels were lower in states that expanded Medicaid. Low-income families in Medicaid expansion states were also much less likely to have catastrophically high spending levels. The form of coverage expansion — conventional Medicaid or waiver rules — did not have a statistically significant effect on these outcomes.

  12. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs.

    Science.gov (United States)

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane

    DEFF Research Database (Denmark)

    Bach, Tinna Brøbech; Jensen, Anders A.; Petersen, Jette G.

    2015-01-01

    X-ray crystal structures of acetylcholine binding proteins (AChBPs) have revealed two different possible extensions to the classical ligand binding pocket known to accommodate various nicotinic agonists. One of the pockets is limited in size while the other is of considerable dimensions and protr...

  14. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M. (VA); (UCLA); (Vanderbilt); (UCSF)

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  15. A stochastic pocket model for aluminum agglomeration in solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Gallier, Stany [SNPE Materiaux Energetiques, Vert le Petit (France)

    2009-04-15

    A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well-known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger’s CATalytic Pocket

    Directory of Open Access Journals (Sweden)

    Mani Larijani

    2017-04-01

    Full Text Available Activation-induced cytidine deaminase (AID and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein–protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational–biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational–biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.

  17. Out-of-pocket costs for childhood stroke: the impact of chronic illness on parents' pocketbooks.

    Science.gov (United States)

    Plumb, Patricia; Seiber, Eric; Dowling, Michael M; Lee, JoEllen; Bernard, Timothy J; deVeber, Gabrielle; Ichord, Rebecca N; Bastian, Rachel; Lo, Warren D

    2015-01-01

    Direct costs for children who had stroke are similar to those for adults. There is no information regarding the out-of-pocket costs families encounter. We described the out-of-pocket costs families encountered in the first year after a child's ischemic stroke. Twenty-two subjects were prospectively recruited at four centers in the United States and Canada in 2008 and 2009 as part of the "Validation of the Pediatric NIH Stroke Scale" study; families' indirect costs were tracked for 1 year. Every 3 months, parents reported hours they did not work, nonreimbursed costs for medical visits or other health care, and mileage. They provided estimates of annual income. We calculated total out-of-pocket costs in US dollars and reported costs as a proportion of annual income. Total median out-of-pocket cost for the year after an ischemic stroke was $4354 (range, $0-$28,666; interquartile range, $1008-$8245). Out-of-pocket costs were greatest in the first 3 months after the incident stroke, with the largest proportion because of lost wages, followed by transportation, and nonreimbursed health care. For the entire year, median costs represented 6.8% (range, 0%-81.9%; interquartile range, 2.7%-17.2%) of annual income. Out-of-pocket expenses are significant after a child's ischemic stroke. The median costs are noteworthy provided that the median American household had cash savings of $3650 at the time of the study. These results with previous reports of direct costs provide a more complete view of the overall costs to families and society. Childhood stroke creates an under-recognized cost to society because of decreased parental productivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.

    Science.gov (United States)

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-12-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a noncanonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided.

  19. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker.

    Science.gov (United States)

    Ben-Aissa, Khadija; Patino-Lopez, Genaro; Belkina, Natalya V; Maniti, Ofelia; Rosales, Tilman; Hao, Jian-Jiang; Kruhlak, Michael J; Knutson, Jay R; Picart, Catherine; Shaw, Stephen

    2012-05-11

    Many cellular processes depend on ERM (ezrin, moesin, and radixin) proteins mediating regulated linkage between plasma membrane and actin cytoskeleton. Although conformational activation of the ERM protein is mediated by the membrane PIP2, the known properties of the two described PIP2-binding sites do not explain activation. To elucidate the structural basis of possible mechanisms, we generated informative moesin mutations and tested three attributes: membrane localization of the expressed moesin, moesin binding to PIP2, and PIP2-induced release of moesin autoinhibition. The results demonstrate for the first time that the POCKET containing inositol 1,4,5-trisphosphate on crystal structure (the "POCKET" Lys-63, Lys-278 residues) mediates all three functions. Furthermore the second described PIP2-binding site (the "PATCH," Lys-253/Lys-254, Lys-262/Lys-263) is also essential for all three functions. In native autoinhibited ERM proteins, the POCKET is a cavity masked by an acidic linker, which we designate the "FLAP." Analysis of three mutant moesin constructs predicted to influence FLAP function demonstrated that the FLAP is a functional autoinhibitory region. Moreover, analysis of the cooperativity and stoichiometry demonstrate that the PATCH and POCKET do not bind PIP2 simultaneously. Based on our data and supporting published data, we propose a model of progressive activation of autoinhibited moesin by a single PIP2 molecule in the membrane. Initial transient binding of PIP2 to the PATCH initiates release of the FLAP, which enables transition of the same PIP2 molecule into the newly exposed POCKET where it binds stably and completes the conformational activation.

  20. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2.

    Science.gov (United States)

    Tambunan, Usman Sf; Zahroh, Hilyatuz; Parikesit, Arli A; Idrus, Syarifuddin; Kerami, Djati

    2015-01-01

    Dengue is an infectious disease caused by dengue virus (DENV) and transmitted between human hosts by mosquitoes. Recently, Indonesia was listed as a country with the highest cases of dengue by the Association of Southeast Asian Nations. The current treatment for dengue disease is supportive therapy; there is no antiviral drug available in the market against dengue. Therefore, a research on antiviral drug against dengue is very important, especially to prevent outbreak explosion. In this research, the development of dengue antiviral is performed through the inhibition of n-octyl-β-D-glucoside (β-OG) binding pocket on envelope protein of DENV by using analogs of β-OG pocket binder. There are 828 compounds used in this study, and all of them were screened based on the analysis of molecular docking, pharmacological character prediction of the compounds, and molecular dynamics simulation. The result of these analyses revealed that the compound that can be used as an antiviral candidate against DENV is 5-(3,4-dichlorophenyl)-N-[2-(p-tolyl) benzotriazol-5-yl]furan-2-carboxamide.

  1. Impact of out-of-pocket spending caps on financial burden of those with group health insurance.

    Science.gov (United States)

    Riggs, Kevin R; Buttorff, Christine; Alexander, G Caleb

    2015-05-01

    The Affordable Care Act (ACA) mandates that all private health insurance include out-of-pocket spending caps. Insurance purchased through the ACA's Health Insurance Marketplace may qualify for income-based caps, whereas group insurance will not have income-based caps. Little is known about how out-of-pocket caps impact individuals' health care financial burden. We aimed to estimate what proportion of non-elderly individuals with group insurance will benefit from out-of-pocket caps, and the effect that various cap levels would have on their financial burden. We applied the expected uniform spending caps, hypothetical reduced uniform spending caps (reduced by one-third), and hypothetical income-based spending caps (similar to the caps on Health Insurance Marketplace plans) to nationally representative data from the Medical Expenditure Panel Survey (MEPS). Participants were non-elderly individuals (aged health insurance in the 2011 and 2012 MEPS surveys (n =26,666). (1) The percentage of individuals with reduced family out-of-pocket spending as a result of the various caps; and (2) the percentage of individuals experiencing health care services financial burden (family out-of-pocket spending on health care, not including premiums, greater than 10% of total family income) under each scenario. With the uniform caps, 1.2% of individuals had lower out-of-pocket spending, compared with 3.8% with reduced uniform caps and 2.1% with income-based caps. Uniform caps led to a small reduction in percentage of individuals experiencing financial burden (from 3.3% to 3.1%), with a modestly larger reduction as a result of reduced uniform caps (2.9%) and income-based caps (2.8%). Mandated uniform out-of-pocket caps for those with group insurance will benefit very few individuals, and will not result in substantial reductions in financial burden.

  2. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tomoyo [Osaka University, Toyonaka, Osaka 560-0043 (Japan); Suzuki, Hideyuki [Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Fukuyama, Keiichi [Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hiratake, Jun [Kyoto University, Uji, Kyoto 611-0011 (Japan); Wada, Kei, E-mail: keiwada@med.miyazaki-u.ac.jp [University of Miyazaki, Miyazaki 889-1692 (Japan); Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  3. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    International Nuclear Information System (INIS)

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-01-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp 2 hybridization to Thr403 O γ , the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs

  4. Dermal pocketing following distal finger replantation.

    Science.gov (United States)

    Puhaindran, Mark E; Paavilainen, Pasi; Tan, David M K; Peng, Yeong Pin; Lim, Aymeric Y T

    2010-08-01

    Replantation is an ideal technique for reconstruction following fingertip amputation as it provides 'like for like' total reconstruction of the nail complex, bone pulp tissue and skin with no donor-site morbidity. However, fingertips are often not replanted because veins cannot be found or are thought to be too small to repair. Attempts at 'cap-plasty' or pocketing of replanted tips with and without microvascular anastomosis have been done in the past with varying degrees of success. We prospectively followed up a group of patients who underwent digital replantation and dermal pocketing in the palm to evaluate the outcome of this procedure. There were 10 patients with 14 amputated digits (two thumbs, five index, four middle, two ring and one little) who underwent dermal pocketing of the amputated digit following replantation. Among the 14 digits that were treated with dermal pocketing, 11 survived completely, one had partial atrophy and two were completely lost. Complications encountered included finger stiffness (two patients) and infection of the replanted fingertip with osteomyelitis of the distal phalanx (one patient). We believe that this technique can help increase the chance of survival for distal replantation with an acceptable salvage rate of 85% in our series. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. ORNL Pocket Meter Program: internal operating procedures

    International Nuclear Information System (INIS)

    Berger, C.D.; Miller, J.H.; Dunsmore, M.R.

    1984-12-01

    The ORNL Pocket Meter Program is designed for auditing the approximate photon radiation exposure of Oak Ridge National Laboratory (ORNL) radiation workers. Although pocket meters are considered to be a secondary personnel dosimetry system at ORNL, they are valuable indicators of unplanned exposures if proper procedures are followed for testing, calibrating, deploying, wearing, processing, and recording data. 4 figures, 1 table

  6. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  7. The acid pocket: a target for treatment in reflux disease?

    Science.gov (United States)

    Kahrilas, Peter J; McColl, Kenneth; Fox, Mark; O'Rourke, Lisa; Sifrim, Daniel; Smout, Andre J P M; Boeckxstaens, Guy

    2013-07-01

    The nadir esophageal pH of reflux observed during pH monitoring in the postprandial period is often more acidic than the concomitant intragastric pH. This paradox prompted the discovery of the "acid pocket", an area of unbuffered gastric acid that accumulates in the proximal stomach after meals and serves as the reservoir for acid reflux in healthy individuals and gastroesophageal reflux disease (GERD) patients. However, there are differentiating features between these populations in the size and position of the acid pocket, with GERD patients predisposed to upward migration of the proximal margin onto the esophageal mucosa, particularly when supine. This upward migration of acid, sometimes referred to as an "acid film", likely contributes to mucosal pathology in the region of the squamocolumnar junction. Furthermore, movement of the acid pocket itself to a supradiaphragmatic location with hiatus hernia increases the propensity for acid reflux by all conventional mechanisms. Consequently, the acid pocket is an attractive target for GERD therapy. It may be targeted in a global way with proton pump inhibitors that attenuate acid pocket development, or with alginate/antacid combinations that colocalize with the acid pocket and displace it distally, thereby demonstrating the potential for selective targeting of the acid pocket in GERD.

  8. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    Science.gov (United States)

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  9. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  11. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Directory of Open Access Journals (Sweden)

    Mona N Rahman

    Full Text Available The development of heme oxygenase (HO inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl-4,4-diphenyl-2-butanone (QC-308. Using a carbon monoxide (CO formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50 = 0.27±0.07 µM than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50 = 4.0±1.8 µM. The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  12. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50) = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50) = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  13. How Cations Can Assist DNase I in DNA Binding and Hydrolysis

    Science.gov (United States)

    Guéroult, Marc; Picot, Daniel; Abi-Ghanem, Joséphine; Hartmann, Brigitte; Baaden, Marc

    2010-01-01

    DNase I requires Ca2+ and Mg2+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca2+ while the other two sites coordinate Mg2+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca2+ stabilizes the functional DNase I structure. The presence of Mg2+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions. PMID:21124947

  14. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  15. Equity in out-of-pocket payment in Chile.

    Science.gov (United States)

    Mondaca, Alicia Lorena Núñez; Chi, Chunhuei

    2017-05-04

    To assess the distribution of financial burden in Chile, with a focus on the burden and progressivity of out-of-pocket payment. Based on the principle of ability to pay, we explore factors that contribute to inequities in the health system finance and issues about the burden of out-of-pocket payment, as well as the progressivity and redistributive effect of out-of-pocket payment in Chile. Our analysis is based on data from the 2006 National Survey on Satisfaction and Out-of-Pocket Payments. Results from this study indicate evidence of inequity, in spite of the progressivity of the healthcare system. Our analysis also identifies relevant policy variables such as education, insurance system, and method of payment that should be taken into consideration in the ongoing debates and research in improving the Chilean system. In order to reduce the detected disparities among income groups, healthcare priorities should target low-income groups. Furthermore, policies should explore changes in the access to education and its impact on equity.

  16. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  17. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  18. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    Science.gov (United States)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  19. The Role of the Acid Pocket in Gastroesophageal Reflux Disease.

    Science.gov (United States)

    Mitchell, David R; Derakhshan, Mohammad H; Robertson, Elaine V; McColl, Kenneth E L

    2016-02-01

    Gastroesophageal reflux disease is one of the commonest chronic conditions in the western world and its prevalence is increasing worldwide. The discovery of the acid pocket explained the paradox of acid reflux occurring more frequently in the postprandial period despite intragastric acidity being low due to the buffering effect of the meal. The acid pocket was first described in 2001 when it was detected as an area of low pH immediately distal to the cardia using dual pH electrode pull-through studies 15 minutes after a meal. It was hypothesized that there was a local pocket of acid close to the gastroesophageal junction that escapes the buffering effect of the meal, and that this is the source of postprandial acidic reflux. The presence of the acid pocket has been confirmed in other studies using different techniques including high-resolution pHmetry, Bravo capsule, magnetic resonance imaging, and scintigraphy. This review aims to describe what we know about the acid pocket including its length, volume, fluid constituents, and its relationship to the lower esophageal sphincter and squamocolumnar junction. We will discuss the possible mechanisms that lead to the formation of the acid pocket and examine what differences exist in patients who suffer from acid reflux. Treatments for reflux disease that affect the acid pocket will also be discussed.

  20. A putative carbohydrate-binding domain of the lactose-binding Cytisus sessilifolius anti-H(O) lectin has a similar amino acid sequence to that of the L-fucose-binding Ulex europaeus anti-H(O) lectin.

    Science.gov (United States)

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1995-04-01

    The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).

  1. Review of Pocket Guide Megaliths [app

    Directory of Open Access Journals (Sweden)

    Barney Harris

    2017-09-01

    Full Text Available The Pocket Guide Megaliths app was developed by Senet Mobile UK in collaboration with The Megalithic Portal website. The app was released in 2016 and is currently available for iOS devices, such as iPhone and iPads. Pocket Guide Megaliths presents the Megalithic Portal's burgeoning worldwide database of ancient and prehistoric sites in a variety of innovative and engaging ways. It aims to act primarily as a guide to enjoying and exploring the rich prehistoric heritage of the world, though offers additional functionality for would-be monument explorers too.

  2. Calibrations of pocket dosemeters using a comparison method

    International Nuclear Information System (INIS)

    Somarriba V, I.

    1996-01-01

    This monograph is dedicated mainly to the calibration of pocket dosemeters. Various types of radiation sources used in hospitals and different radiation detectors with emphasis on ionization chambers are briefly presented. Calibration methods based on the use of a reference dosemeter were developed to calibrate all pocket dosemeters existing at the Radiation Physics and Metrology Laboratory. Some of these dosemeters were used in personnel dosimetry at hospitals. Moreover, a study was realized about factors that affect the measurements with pocket dosemeters in the long term, such as discharges due to cosmic radiation. A DBASE IV program was developed to store the information included in the hospital's registry

  3. Impact of the federal contraceptive coverage guarantee on out-of-pocket payments for contraceptives: 2014 update.

    Science.gov (United States)

    Sonfield, Adam; Tapales, Athena; Jones, Rachel K; Finer, Lawrence B

    2015-01-01

    The Affordable Care Act requires most private health plans to cover contraceptive methods, services and counseling, without any out-of-pocket costs to patients; that requirement took effect for millions of Americans in January 2013. Data for this study come from a subset of the 1842 women aged 18-39 years who responded to all four waves of a national longitudinal survey. This analysis focuses on the 892 women who had private health insurance and who used a prescription contraceptive method during any of the four study periods. Women were asked about the amount they paid out of pocket in an average month for their method of choice. Between fall 2012 and spring 2014, the proportion of privately insured women paying zero dollars out of pocket for oral contraceptives increased substantially, from 15% to 67%. Similar changes occurred among privately insured women using injectable contraception, the vaginal ring and the intrauterine device. The implementation of the federal contraceptive coverage requirement appears to have had a notable impact on the out-of-pocket costs paid by privately insured women, and that impact has increased over time. This study measures the out-of-pocket costs for women with private insurance prior to the federal contraceptive coverage requirement and after it took effect; in doing so, it highlights areas of progress in eliminating these costs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Exploitation of pocket gophers and their food caches by grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    2004-01-01

    I investigated the exploitation of pocket gophers (Thomomys talpoides) by grizzly bears (Ursus arctos horribilis) in the Yellowstone region of the United States with the use of data collected during a study of radiomarked bears in 1977-1992. My analysis focused on the importance of pocket gophers as a source of energy and nutrients, effects of weather and site features, and importance of pocket gophers to grizzly bears in the western contiguous United States prior to historical extirpations. Pocket gophers and their food caches were infrequent in grizzly bear feces, although foraging for pocket gophers accounted for about 20-25% of all grizzly bear feeding activity during April and May. Compared with roots individually excavated by bears, pocket gopher food caches were less digestible but more easily dug out. Exploitation of gopher food caches by grizzly bears was highly sensitive to site and weather conditions and peaked during and shortly after snowmelt. This peak coincided with maximum success by bears in finding pocket gopher food caches. Exploitation was most frequent and extensive on gently sloping nonforested sites with abundant spring beauty (Claytonia lanceolata) and yampah (Perdieridia gairdneri). Pocket gophers are rare in forests, and spring beauty and yampah roots are known to be important foods of both grizzly bears and burrowing rodents. Although grizzly bears commonly exploit pocket gophers only in the Yellowstone region, this behavior was probably widespread in mountainous areas of the western contiguous United States prior to extirpations of grizzly bears within the last 150 years.

  5. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    Science.gov (United States)

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group

  6. Structural and quantum mechanical computations to elucidate the altered binding mechanism of metal and drug with pyrazinamidase from Mycobacterium tuberculosis due to mutagenicity.

    Science.gov (United States)

    Rasool, Nouman; Iftikhar, Saima; Amir, Anam; Hussain, Waqar

    2018-03-01

    Pyrazinamide is known to be the most effective treatment against tuberculosis disease and is known to have bacteriostatic action. By targeting the bacterial spores, this drug reduces the chances for the progression of the infection in organisms. In recent years, increased instances of the drug resistance of bacterial strains are reported. Pyrazinamidase, activator for pyrazinamide, leads to resistance against the drug due to mutagenicity across the world. The present study aimed at the quantum mechanistic analysis of mutations in pyrazinamidase to gain insights into the mechanism of this enzyme. Quantum mechanical calculations were performed to analyse the effect of mutations at the metal coordination site using ORCA software program. Moreover, conformational changes in PZase binding cavity has also been analysed due to mutations of binding pocket residues using CASTp server. In order to elucidate the behaviour of the mutant pyrazinamidase, docking of PZA in the binding pocket of PZase was performed using AutoDock Vina. Analysis of results revealed that iron showed weak binding with the metal coordination site of the mutant proteins due to alteration in electron transfer mechanism. The binding cavity of the mutant PZase has undergone major conformational changes as the volume of pocket increased due to bulky R-chains of mutated amino acids. These conformational changes lead to weak binding of the drug at binding cavity of PZase and reduce the drug activation mechanism leading to increased drug resistance in the bacterial strains. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    Science.gov (United States)

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  8. Alarm pocket dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, H; Kitamura, S [Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan)

    1975-04-01

    This instrument is a highly reliable pocket dosimeter which has been developed for personal monitoring use. The dosimeter generates an alarm sound when the exposure dose reaches a preset value. Using a tiny GM tube for a radiation detector and measuring the integrated dose by means of a digital counting method, this new pocket dosimeter has high accuracy and stability. Using a sealed alkali storage battery for the power supply, and with an automatic control charger, this dosimetry system is easy and economical to operate and maintain. Detectable radiation by the dosimeter are X and ..gamma.. rays. Standard preset dose values are 30, 50, 80 and 100 mR. Detection accuracy is betwen +10% and -20%. The dosimeter is continuously usable for more than 14 hours after charging for 2 hours. The dosimeter has the following features; good realiability, shock-proof loud and clear alarm sound, the battery charger also serves as a stock container for the dosimeters, and no switching operation required for the power supply due to the internal automatic switch. Therefore, the dosimetry system is very useful for personal monitoring management in many radiation industry establishments.

  9. Health Promoting Pocket Parks in a Landscape Architectural Perspective

    DEFF Research Database (Denmark)

    Peschardt, Karin Kragsig

    This thesis presents how the health potential of pocket parks can be improved through design from a landscape architectural perspective. In developed countries, the densification of cities is a wide-spread tendency which often results in a compact city planning structure. People who live in dense...... promoting potential of nine pocket parks in Copenhagen. From a landscape architectural perspective the health potential is investigated based on both qualitative and quantitative methods. The study elucidates use, the restorative potential as well as how physical content within the pocket parks can...

  10. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    Science.gov (United States)

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  11. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  12. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  13. Macintosh Troubleshooting Pocket Guide for Mac OS

    CERN Document Server

    Lerner, David; Corporation, Tekserve

    2009-01-01

    The Macintosh Troubleshooting Pocket Guide covers the most common user hardware and software trouble. It's not just a book for Mac OS X (although it includes tips for OS X and Jaguar), it's for anyone who owns a Mac of any type-- there are software tips going back as far as OS 6. This slim guide distills the answers to the urgent questions that Tekserve's employee's answer every week into a handy guide that fits in your back pocket or alongside your keyboard.

  14. Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding

    DEFF Research Database (Denmark)

    Jensen, Pia C; Thiele, Stefanie; Ulven, Trond

    2008-01-01

    7 transmembrane-spanning (7TM) chemokine receptors having multiple endogenous ligands offer special opportunities to understand the molecular basis for allosteric mechanisms. Thus, CC-chemokine receptor 1 (CCR1) binds CC-chemokine 3 and 5 (CCL3 and CCL5) with K(d) values of 7.3 and 0.16 nm......5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand...... binding pocket as CCL5 but not by mutations in the extracellular domain. In agreement with the overlapping binding sites, the small non-peptide agonists displaced radiolabeled CCL5 with high affinity. Interestingly, the same compounds acted as allosteric enhancers of the binding of CCL3, with which...

  15. Isothermal titration calorimetric and computational studies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin.

    Science.gov (United States)

    Narahari, Akkaladevi; Singla, Hitesh; Nareddy, Pavan Kumar; Bulusu, Gopalakrishnan; Surolia, Avadhesha; Swamy, Musti J

    2011-04-14

    The interaction of chitooligosaccharides [(GlcNAc)(2-6)] with pumpkin phloem exudate lectin (PPL) was investigated by isothermal titration calorimetry and computational methods. The dimeric PPL binds to (GlcNAc)(3-5) with binding constants of 1.26-1.53 × 10(5) M(-1) at 25 °C, whereas chitobiose exhibits approximately 66-fold lower affinity. Interestingly, chitohexaose shows nearly 40-fold higher affinity than chitopentaose with a binding constant of 6.16 × 10(6) M(-1). The binding stoichiometry decreases with an increase in the oligosaccharide size from 2.26 for chitobiose to 1.08 for chitohexaose. The binding reaction was essentially enthalpy driven with negative entropic contribution, suggesting that hydrogen bonds and van der Waals' interactions are the main factors that stabilize PPL-saccharide association. The three-dimensional structure of PPL was predicted by homology modeling, and binding of chitooligosaccharides was investigated by molecular docking and molecular dynamics simulations, which showed that the protein binding pocket can accommodate up to three GlcNAc residues, whereas additional residues in chitotetraose and chitopentaose did not exhibit any interactions with the binding pocket. Docking studies with chitohexaose indicated that the two triose units of the molecule could interact with different protein binding sites, suggesting formation of higher order complexes by the higher oligomers of GlcNAc by their simultaneous interaction with two protein molecules.

  16. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III

    Directory of Open Access Journals (Sweden)

    Matsutani Sachiko

    2004-08-01

    Full Text Available Abstract Background In eukaryotes, RNA polymerase III (RNAP III transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs. The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Results Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Conclusion Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and α-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants

  17. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III.

    Science.gov (United States)

    Matsutani, Sachiko

    2004-08-09

    In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.

  18. Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti [v2; ref status: indexed, http://f1000r.es/4yp

    Directory of Open Access Journals (Sweden)

    Gabriel M. Leal

    2015-01-01

    Full Text Available Odorant-binding proteins (OBPs, also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new light on the mechanism of transport, although there is considerable debate on how they deliver odorant to receptors. An OBP from the southern house mosquito, Culex quinquefasciatus, binds the hydrophobic moiety of a mosquito oviposition pheromone (MOP on the edge of its binding cavity. Likewise, it has been demonstrated that the orthologous protein from the malaria mosquito binds the insect repellent DEET on a similar edge of its binding pocket. A high school research project was aimed at testing whether the orthologous protein from the yellow fever mosquito, AaegOBP1, binds DEET and other insect repellents, and MOP was used as a positive control. Binding assays using the fluorescence reporter N-phenyl-1-naphtylamine (NPN were inconclusive. However, titration of NPN fluorescence emission in AaegOBP1 solution with MOP led to unexpected and intriguing results. Quenching was observed in the initial phase of titration, but addition of higher doses of MOP led to a stepwise increase in fluorescence emission coupled with a blue shift, which can be explained at least in part by formation of MOP micelles to house stray NPN molecules.

  19. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  20. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  1. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: a computational study.

    KAUST Repository

    Di Marino, Daniele

    2015-03-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6.

  2. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: a computational study.

    KAUST Repository

    Di Marino, Daniele; D'Annessa, Ilda; Coletta, Andrea; Via, Allegra; Tramontano, Anna

    2015-01-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6.

  3. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  4. Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB

    Directory of Open Access Journals (Sweden)

    Beibei eWang

    2015-04-01

    Full Text Available The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states (access (A, binding (B and extrusion (E support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE→BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB.

  5. Pocket Guide to Transportation 2012

    Science.gov (United States)

    2012-01-01

    The Bureau of Transportation Statistics (BTS) of the Research and Innovative Technology Administration produces the Pocket Guide to Transportation as a compact resource that provides snapshots of the U.S. transportation system and highlights major tr...

  6. Data communications pocket book

    CERN Document Server

    Tooley, Michael

    2014-01-01

    Data Communications Pocket Book, Second Edition presents information relevant to data communication. The book provides tabulated reference materials with a brief description and diagrams. The coverage of the text includes abbreviations, terminal control codes, and conversion tables. The text will be of great use to individuals involved in the interconnection of computer systems.

  7. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Science.gov (United States)

    Karpov, V. Ya.; Shpatakovskaya, G. V.

    2017-03-01

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  8. On the atomic-number similarity of the binding energies of electrons in filled shells of elements of the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)

    2017-03-15

    An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.

  9. Setting the stage for electron transfer: Molecular basis of ABTS-binding to four laccases from Trametes versicolor at variable pH and protein oxidation state

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Kepp, Kasper Planeta

    2014-01-01

    , very high (R2∼0.99) correlation was observed between logKm (ABTS) and binding-pocket charge due to sites 157, 161, 269, 271, and 333, i.e. laccases optimal for ABTS turnover have positively charged anchor points in their pockets. Our work also demonstrates how activity-constraints can markedly improve...

  10. Pocket Guide to Transportation 2018

    Science.gov (United States)

    2018-01-01

    The 2018 BTS Pocket Guide to Transportation is a quick reference guide that provides transportation statistics at your fingertips. It provides key information and highlights major trends on the U.S. transportation system. This year features a new and...

  11. On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*

    Science.gov (United States)

    Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.

    2017-06-01

    Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

  12. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain

    Science.gov (United States)

    Mistry, Pragnesh; Laird, Michelle H. W.; Schwarz, Ryan S.; Greene, Shannon; Dyson, Tristan; Snyder, Greg A.; Xiao, Tsan Sam; Chauhan, Jay; Fletcher, Steven; Toshchakov, Vladimir Y.; MacKerell, Alexander D.; Vogel, Stefanie N.

    2015-01-01

    Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein–protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. PMID:25870276

  13. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL

    DEFF Research Database (Denmark)

    Elsøe, Sara; Ahnström, Josefin; Christoffersen, Christina

    2012-01-01

    Oxidation of LDL plays a key role in the development of atherosclerosis. HDL may, in part, protect against atherosclerosis by inhibiting LDL oxidation. Overexpression of HDL-associated apolipoprotein M (apoM) protects mice against atherosclerosis through a not yet clarified mechanism. Being a lip...... a lipocalin, apoM contains a binding pocket for small lipophilic molecules. Here, we report that apoM likely serves as an antioxidant in HDL by binding oxidized phospholipids, thus enhancing the antioxidant potential of HDL....

  14. Neopatrimonialism and Development: Pockets of Effectiveness as Drivers of Change

    NARCIS (Netherlands)

    W. Hout (Wil)

    2014-01-01

    markdownabstract__Abstract__ This paper focuses on the notion of ‘pockets of effectiveness’ in the light of the theorisation of regulated neopatrimonialism. The attention to pockets of effectiveness – understood as public organisations which deliver public goods and services relatively

  15. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  16. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds.

    Science.gov (United States)

    Liu, Shuangna; Peng, Pai; Wang, Huihui; Shi, Lili; Li, Tao

    2017-12-01

    A molecular rotor thioflavin T (ThT) is usually used as a fluorescent ligand specific for G-quadruplexes. Here, we demonstrate that ThT can tightly bind non-G-quadruplex DNAs with several GA motifs and dimerize them in a parallel double-stranded mode, accompanied by over 100-fold enhancement in the fluorescence emission of ThT. The introduction of reverse Watson-Crick T-A base pairs into these dimeric parallel-stranded DNA systems remarkably favors the binding of ThT into the pocket between G•G and A•A base pairs, where ThT is encapsulated thereby restricting its two rotary aromatic rings in the excited state. A similar mechanism is also demonstrated in antiparallel DNA duplexes where several motifs of two consecutive G•G wobble base pairs are incorporated and serve as the active pockets for ThT binding. The insight into the interactions of ThT with non-G-quadruplex DNAs allows us to introduce a new concept for constructing DNA-based sensors and devices. As proof-of-concept experiments, we design a DNA triplex containing GA motifs in its Hoogsteen hydrogen-bonded two parallel strands as a pH-driven nanoswitch and two GA-containing parallel duplexes as novel metal sensing platforms where C-C and T-T mismatches are included. This work may find further applications in biological systems (e.g. disease gene detection) where parallel duplex or triplex stretches are involved. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors.

    Science.gov (United States)

    Cinelli, Maris A; Li, Huiying; Chreifi, Georges; Poulos, Thomas L; Silverman, Richard B

    2017-05-11

    Neuronal nitric oxide synthase (nNOS) inhibition is a promising strategy to treat neurodegenerative disorders, but the development of nNOS inhibitors is often hindered by poor pharmacokinetics. We previously developed a class of membrane-permeable 2-aminoquinoline inhibitors and later rearranged the scaffold to decrease off-target binding. However, the resulting compounds had decreased permeability, low human nNOS activity, and low selectivity versus human eNOS. In this study, 5-substituted phenyl ether-linked aminoquinolines and derivatives were synthesized and assayed against purified NOS isoforms. 5-Cyano compounds are especially potent and selective rat and human nNOS inhibitors. Activity and selectivity are mediated by the binding of the cyano group to a new auxiliary pocket in nNOS. Potency was enhanced by methylation of the quinoline and by introduction of simple chiral moieties, resulting in a combination of hydrophobic and auxiliary pocket effects that yielded high (∼500-fold) n/e selectivity. Importantly, the Caco-2 assay also revealed improved membrane permeability over previous compounds.

  18. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  19. Guiding periodontal pocket recolonization: a proof of concept.

    Science.gov (United States)

    Teughels, W; Newman, M G; Coucke, W; Haffajee, A D; Van Der Mei, H C; Haake, S Kinder; Schepers, E; Cassiman, J-J; Van Eldere, J; van Steenberghe, D; Quirynen, M

    2007-11-01

    The complexity of the periodontal microbiota resembles that of the gastro-intestinal tract, where infectious diseases are treatable via probiotics. In the oropharyngeal region, probiotic or replacement therapies have shown some benefit in the prevention of dental caries, otitis media, and pharyngitis, but their effectiveness in the treatment of periodontitis is unknown. Therefore, this study addressed the hypothesis that the application of selected beneficial bacteria, as an adjunct to scaling and root planing, would inhibit the periodontopathogen recolonization of periodontal pockets. Analysis of the data showed, in a beagle dog model, that when beneficial bacteria were applied in periodontal pockets adjunctively after root planing, subgingival recolonization of periodontopathogens was delayed and reduced, as was the degree of inflammation, at a clinically significant level. The study confirmed the hypothesis and provides a proof of concept for a guided pocket recolonization (GPR) approach in the treatment of periodontitis.

  20. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  1. Electronics pocket book

    CERN Document Server

    Parr, E A

    1981-01-01

    Electronics Pocket Book, Fourth Edition is a nonmathematical presentation of the many varied topics covered by electronics. The book tackles electron physics, electronic components (i.e. resistors, capacitors, and conductors), integrated circuits, and the principles of a.c. and d.c. amplifiers. The text also discusses oscillators, digital circuits, digital computers, and optoelectronics (i.e., sensors, emitters, and devices that utilize light). Communications (such as line and radio communications, transmitters, receivers, and digital techniques); the principles and examples of servosystems; a

  2. NUnit Pocket Reference

    CERN Document Server

    Hamilton, Bill

    2009-01-01

    The open source NUnit framework is an excellent way to test .NET code as it is written, saving hundreds of QA hours and headaches. Unfortunately, some of those hours saved can be wasted trying to master this popular but under-documented framework. Proof that good things come in small packages, the NUnit Pocket Reference is everything you need to get NUnit up and working for you. It's the only book you'll need on this popular and practical new open source framework.

  3. Pocket dictionary of laboratory equipment

    International Nuclear Information System (INIS)

    Junge, H.D.

    1987-01-01

    This pocket dictionary contains the 2500 most common terms for scientific and technical equipment in chemical laboratories. It is a useful tool for those who are used to communicating in German and English, but have to learn the special terminology in this field. (orig.) [de

  4. PENGEMBANGAN ECONOMICS POCKET BOOK BERBASIS QUANTUM LEARNING UNTUK SISWA SEKOLAH MENENGAH ATAS

    Directory of Open Access Journals (Sweden)

    Ni Wayan Ayu Santi

    2017-04-01

    Full Text Available The purpose of this study is to produce and know the quality of quantum learning based economics pocket book. In developing economics pocket book the research uses design based research. The result of study show that the matter experts, education and education practtioners provide ratings that economics is a very decent to be used without revision. Besides design experts provide decent ratings with the revition. The result of the field test showed positive responses from students with the acquistion of a persentage of 90% in addition to the field tes results II also earn a percentage of 87,4%.  Based on the result above, economics pocket book is very decend for be used without revision.  Tujuan penelitian ini adalah untuk menghasilkan dan mengetahui kualitas economics pocket book berbasis quantum learning. Peneliti dalam mengembangkan economics pocket book menggunakan model pengembangan Design Based Research. Hasil penelitian menunjukkan ahli materi, pendidikan dan praktisi pendidikan memberikan penilaian bahwa economics pocket book sangat layak digunakan tanpa revisi, selain itu ahli desain memberikan penilaian bahwa layak digunakan dengan revisi. Hasil dari uji lapangan I menunjukkan tanggapan positif dari siswa dengan perolehan persentase 90%, selain itu hasil uji lapangan II juga memperoleh persentase sebesar 87,4%. Berdasarkan hasil tersebut maka economics pocket book berbasis quantum learning termasuk kualifikasi sangat layak digunakan tanpa revisi.

  5. Immunochemical similarity of GTP-binding proteins from different systems

    International Nuclear Information System (INIS)

    Kalinina, S.N.

    1986-01-01

    It was found that antibodies against the GTP-binding proteins of bovine retinal photoreceptor membranes blocked the inhibitory effect of estradiol on phosphodiesterase from rat and human uterine cytosol and prevented the cumulative effect of catecholamines and guanylyl-5'-imidodiphosphate on rat skeletal muscle adenylate cyclase. It was established by means of double radial immunodiffusion that these antibodies form a precipitating complex with purified bovine brain tubulin as well as with retinal preparations obtained from eyes of the bull, pig, rat, frog, some species of fish, and one reptile species. Bands of precipitation were not observed with these antibodies when retinal preparations from invertebrates (squid and octopus) were used as the antigens. The antibodies obtained interacted with the α- and β-subunits of GTP-binding proteins from bovine retinal photoreceptor membranes

  6. Pairing symmetries of several iron-based superconductor families and some similarities with cuprates and heavy-fermions

    Directory of Open Access Journals (Sweden)

    Das Tanmoy

    2012-03-01

    Full Text Available We show that, by using the unit-cell transformation between 1 Fe per unit cell to 2 Fe per unit cell, one can qualitatively understand the pairing symmetry of several families of iron-based superconductors. In iron-pnictides and iron-chalcogenides, the nodeless s±-pairing and the resulting magnetic resonance mode transform nicely between the two unit cells, while retaining all physical properties unchanged. However, when the electron-pocket disappears from the Fermi surface with complete doping in KFe2As2, we find that the unit-cell invariant requirement prohibits the occurrence of s±-pairing symmetry (caused by inter-hole-pocket nesting. However, the intra-pocket nesting is compatible here, which leads to a nodal d-wave pairing. The corresponding Fermi surface topology and the pairing symmetry are similar to Ce-based heavy-fermion superconductors. Furthermore, when the Fermi surface hosts only electron-pockets in KyFe2-xSe2, the inter-electron-pocket nesting induces a nodeless and isotropic d-wave pairing. This situation is analogous to the electron-doped cuprates, where the strong antiferromagnetic order creates similar disconnected electron-pocket Fermi surface, and hence nodeless d-wave pairing appears. The unit-cell transformation in KyFe2-xSe2 exhibits that the d-wave pairing breaks the translational symmetry of the 2 Fe unit cell, and thus cannot be realized unless a vacancy ordering forms to compensate for it. These results are consistent with the coexistence picture of a competing order and nodeless d-wave superconductivity in both cuprates and KyFe1.6Se2.

  7. Detection of fungal hyphae using smartphone and pocket magnifier: going cellular.

    Science.gov (United States)

    Agarwal, Tushar; Bandivadekar, Pooja; Satpathy, Gita; Sharma, Namrata; Titiyal, Jeewan S

    2015-03-01

    The aim of this study was to detect fungal hyphae in a corneal scraping sample using a cost-effective assembly of smartphone and pocket magnifier. In this case report, a tissue sample was obtained by conventional corneal scraping from a clinically suspicious case of mycotic keratitis. The smear was stained with Gram stain, and a 10% potassium hydroxide mount was prepared. It was imaged using a smartphone coupled with a compact pocket magnifier and integrated light-emitting diode assembly at point-of-care. Photographs of multiple sections of slides were viewed using smartphone screen and pinch-to-zoom function. The same slides were subsequently screened under a light microscope by an experienced microbiologist. The scraping from the ulcer was also inoculated on blood agar and Sabouraud dextrose agar. Smartphone-based digital imaging revealed the presence of gram-positive organism with hyphae. Examination under a light microscope also yielded similar findings. Fusarium was cultured from the corneal scraping, confirming the diagnosis of mycotic keratitis. The patient responded to topical 5% natamycin therapy, with resolution of the ulcer after 4 weeks. Smartphones can be successfully used as novel point-of-care, cost-effective, reliable microscopic screening tools.

  8. Cigarette smoking in Chinese adolescents: importance of controlling the amount of pocket money.

    Science.gov (United States)

    Ma, J; Zhu, J; Li, N; He, Y; Cai, Y; Qiao, Y; Redmon, P; Wang, Z

    2013-07-01

    To estimate the proportion of smokers that could potentially have been prevented from smoking by limiting the amount of pocket money received by Chinese adolescents. Cross-sectional study. Current smoking, ever smoking and the amount of pocket money were determined through self-administered questionnaires among 12,708 adolescents (aged 12-18 years) from 21 schools in Shanghai, China. Adjusted odds ratios for current smoking ranged from 2.0 [95% confidence interval (CI) 1.5-2.7] for adolescents receiving 200-399 Reminbin (RMB)/month as pocket money to 6.5 (95% CI 3.3-12.7) for those receiving ≥1000 RMB/month, compared with those receiving pocket money (≥200 RMB/month) for current smoking was 50.4% (95% CI 42.2-57.4), and adjusted PAR% was 43.3% (95% CI 30.7-53.1). Approximately half of current smokers may have been prevented from smoking if pocket money was limited to pocket money was reduced further. It is recommended that future intervention programmes should target parents to reduce the amount of pocket money in China. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins.

    Science.gov (United States)

    Konc, Janez; Janezic, Dusanka

    2012-07-01

    The ProBiS web server is a web server for detection of structurally similar binding sites in the PDB and for local pairwise alignment of protein structures. In this article, we present a new version of the ProBiS web server that is 10 times faster than earlier versions, due to the efficient parallelization of the ProBiS algorithm, which now allows significantly faster comparison of a protein query against the PDB and reduces the calculation time for scanning the entire PDB from hours to minutes. It also features new web services, and an improved user interface. In addition, the new web server is united with the ProBiS-Database and thus provides instant access to pre-calculated protein similarity profiles for over 29 000 non-redundant protein structures. The ProBiS web server is particularly adept at detection of secondary binding sites in proteins. It is freely available at http://probis.cmm.ki.si/old-version, and the new ProBiS web server is at http://probis.cmm.ki.si.

  10. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India

    Science.gov (United States)

    Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.

    2013-04-01

    Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.

  11. Newnes electronics assembly pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Produced in association with the Engineering Training Authority with contributions from dozens of people in the electronics industry. The material covers common skills in electrical and electronic engineering and concentrates mainly on wiring and assembly. 'Newnes Electronics Assembly Pocket Book' is for electronics technicians, students and apprentices.

  12. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.

    Science.gov (United States)

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A

    1997-03-15

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes

  13. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein.

    Science.gov (United States)

    Galloux, Marie; Tarus, Bogdan; Blazevic, Ilfad; Fix, Jenna; Duquerroy, Stéphane; Eléouët, Jean-François

    2012-08-01

    The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (P(CTD)) and N. However, the P binding region on N remains to be identified. In this study, glutathione S-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (N(NTD)) as a P binding domain. A biochemical characterization of the P(CTD) and molecular modeling of the N(NTD) allowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the P(CTD) interaction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolished in vitro and in vivo P-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.

  14. TclTk Pocket Reference

    CERN Document Server

    Raines, Paul

    1998-01-01

    The Tcl/Tk combination is increasingly popular because it lets you produce sophisticated graphical interfaces with a few easy commands, develop and change scripts quickly, and conveniently tie together existing utilities or programming libraries. The Tcl/Tk Pocket Reference,a handy reference guide to the basic Tcl language elements, Tcl and Tk commands, and Tk widgets, is a companion volume to Tcl/Tk in a Nutshell.

  15. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    2010-04-01

    Full Text Available The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized.The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher.Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  16. Enceladus' near-surface CO2 gas pockets and surface frost deposits

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep

    2018-03-01

    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat

  17. Frequency of "Pocket" Hematoma in Patients Receiving Vitamin K Antagonist and Antiplatelet Therapy at the Time of Pacemaker or Cardioverter Defibrillator Implantation (from the POCKET Study).

    Science.gov (United States)

    Malagù, Michele; Trevisan, Filippo; Scalone, Antonella; Marcantoni, Lina; Sammarco, Giuseppe; Bertini, Matteo

    2017-04-01

    In patients undergoing cardiac device implantation, anticoagulant and antiplatelet therapy are associated with an increased risk of pocket hematoma. In case of vitamin K antagonist therapy, a strategy of continued warfarin with no heparin bridge showed a reduction of pocket hematoma. Evidence regarding antiplatelet therapy management is limited. This is a single-center observational study which reflects our systematic approach to the problem. In 2012, we proposed an improved management protocol for anticoagulant and antiplatelet therapy (no-bridge protocol) based on individual thromboembolic risk stratification, noninterruption of oral anticoagulation, no bridge with heparin and elastic adherence compression bandage. The primary end point was the incidence of clinically significant pocket hematoma in the first 30 days after implantation. A total of 1,035 patients were enrolled, of whom 522 received the standard management and 513 the new protocol. The primary end point occurred in 34 patients of the standard management group and 8 patients of the no-bridge protocol group (6.5% vs 1.6%, p hematoma (relative risk [RR] 3.48, 95% confidence interval [CI] 1.55 to 7.83 and RR 2.43, 95% CI 1.25 to 4.76, respectively), whereas the no-bridge protocol was associated with a reduction of pocket hematoma (RR 0.33, 95% CI 0.14 to 0.76). New anticoagulant and antiplatelet therapy management protocol was associated with a reduced incidence of clinically significant pocket hematomas, thromboembolic events, pocket infections, and lead dislodgements. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. An SH2 domain model of STAT5 in complex with phospho-peptides define "STAT5 Binding Signatures".

    Science.gov (United States)

    Gianti, Eleonora; Zauhar, Randy J

    2015-05-01

    The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

  19. An SH2 domain model of STAT5 in complex with phospho-peptides define ``STAT5 Binding Signatures''

    Science.gov (United States)

    Gianti, Eleonora; Zauhar, Randy J.

    2015-05-01

    The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

  20. STL pocket reference

    CERN Document Server

    Lischner, Ray

    2003-01-01

    The STL Pocket Reference describes the functions, classes, and templates in that part of the C++ standard library often referred to as the Standard Template Library (STL). The STL encompasses containers, iterators, algorithms, and function objects, which collectively represent one of the most important and widely used subsets of standard library functionality. The C++ standard library, even the subset known as the STL, is vast. It's next to impossible to work with the STL without some sort of reference at your side to remind you of template parameters, function invocations, return types--ind

  1. CSS Pocket Reference

    CERN Document Server

    Meyer, Eric A

    2007-01-01

    They say that good things come in small packages, and it's certainly true for this edition of CSS Pocket Reference. Completely revised and updated to reflect the latest Cascading Style Sheet specifications in CSS 2.1, this indispensable little book covers the most essential information that web designers and developers need to implement CSS effectively across all browsers. Inside, you'll find: A short introduction to the key concepts of CSS A complete alphabetical reference to all CSS 2.1 selectors and properties A chart displaying detailed information about CSS support for every style ele

  2. Identification of an allosteric binding site for RORγt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Scheepstra, Marcel; Leysen, Seppe; vanAlmen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc (Merck); (Eindhoven)

    2015-12-07

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.

  3. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  4. Treatment of fingertip amputation in adults by palmar pocketing of the amputated part.

    Science.gov (United States)

    Jung, Mi Sun; Lim, Young Kook; Hong, Yong Taek; Kim, Hoon Nam

    2012-07-01

    First suggested by Brent in 1979, the pocket principle is an alternative method for patients for whom a microsurgical replantation is not feasible. We report the successful results of a modified palmar pocket method in adults. Between 2004 and 2008, we treated 10 patients by nonmicrosurgical replantation using palmar pocketing. All patients were adults who sustained a complete fingertip amputation from the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crush or avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmar pocketing method following a composite graft in these patients and prepared the pocket in the subcutaneous layer of the ipsilateral palm. Of a total of 10 cases, nine had complete survival of the replantation and one had 20% partial necrosis. All of the cases were managed to conserve the fingernails, which led to acceptable cosmetic results. A composite graft and palmar pocketing in adult cases of fingertip injury constitute a simple, reliable operation for digital amputation extending from the tip to the lunula. These methods had satisfactory results.

  5. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  6. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    Science.gov (United States)

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  8. A fragment-based approach leading to the discovery of a novel binding site and the selective CK2 inhibitor CAM4066.

    Science.gov (United States)

    De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R

    2017-07-01

    Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  9. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Science.gov (United States)

    2010-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  10. Ecology – A Pocket Guide

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 8. Ecology – A Pocket Guide. Renee M Borges. Book Review Volume 5 Issue 8 August 2000 pp 99-102. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/08/0099-0102. Author Affiliations.

  11. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G.; Ribeiro, José M. C.; Andersen, John F.

    2017-07-27

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  12. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    Science.gov (United States)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  13. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    Full Text Available The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis.

  14. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    Science.gov (United States)

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  15. Treatment of Fingertip Amputation in Adults by Palmar Pocketing of the Amputated Part

    Directory of Open Access Journals (Sweden)

    Mi Sun Jung

    2012-07-01

    Full Text Available BackgroundFirst suggested by Brent in 1979, the pocket principle is an alternative method for patients for whom a microsurgical replantation is not feasible. We report the successful results of a modified palmar pocket method in adults.MethodsBetween 2004 and 2008, we treated 10 patients by nonmicrosurgical replantation using palmar pocketing. All patients were adults who sustained a complete fingertip amputation from the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crush or avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmar pocketing method following a composite graft in these patients and prepared the pocket in the subcutaneous layer of the ipsilateral palm.ResultsOf a total of 10 cases, nine had complete survival of the replantation and one had 20% partial necrosis. All of the cases were managed to conserve the fingernails, which led to acceptable cosmetic results.ConclusionsA composite graft and palmar pocketing in adult cases of fingertip injury constitute a simple, reliable operation for digital amputation extending from the tip to the lunula. These methods had satisfactory results.

  16. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    Science.gov (United States)

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Apache 2 Pocket Reference For Apache Programmers & Administrators

    CERN Document Server

    Ford, Andrew

    2008-01-01

    Even if you know the Apache web server inside and out, you still need an occasional on-the-job reminder -- especially if you're moving to the newer Apache 2.x. Apache 2 Pocket Reference gives you exactly what you need to get the job done without forcing you to plow through a cumbersome, doorstop-sized reference. This Book provides essential information to help you configure and maintain the server quickly, with brief explanations that get directly to the point. It covers Apache 2.x, giving web masters, web administrators, and programmers a quick and easy reference solution. This pocket r

  18. Canvas Pocket Reference Scripted Graphics for HTML5

    CERN Document Server

    Flanagan, David

    2010-01-01

    The Canvas element is a revolutionary feature of HTML5 that enables powerful graphics for rich Internet applications, and this pocket reference provides the essentials you need to put this element to work. If you have working knowledge of JavaScript, this book will help you create detailed, interactive, and animated graphics -- from charts to animations to video games -- whether you're a web designer or a programmer interested in graphics. Canvas Pocket Reference provides both a tutorial that covers all of the element's features with plenty of examples and a definitive reference to each of t

  19. Perl Pocket Reference

    CERN Document Server

    Vromans, Johan

    2011-01-01

    If you have a Perl programming question, you'll find the answer quickly in this handy, easy-to-use quick reference. The Perl Pocket Reference condenses and organizes stacks of documentation down to the most essential facts, so you can find what you need in a heartbeat. Updated for Perl 5.14, the 5th edition provides a summary of Perl syntax rules and a complete list of operators, built-in functions, and other features. It's the perfect companion to O'Reilly's authoritative and in-depth Perl programming books, including Learning Perl, Programming Perl, and the Perl Cookbook..

  20. CSS Pocket Reference

    CERN Document Server

    Meyer, Eric

    2011-01-01

    When you're working with CSS and need a quick answer, CSS Pocket Reference delivers. This handy, concise book provides all of the essential information you need to implement CSS on the fly. Ideal for intermediate to advanced web designers and developers, the 4th edition is revised and updated for CSS3, the latest version of the Cascading Style Sheet specification. Along with a complete alphabetical reference to CSS3 selectors and properties, you'll also find a short introduction to the key concepts of CSS. Based on Cascading Style Sheets: The Definitive Guide, this reference is an easy-to-us

  1. JDBC Pocket Reference

    CERN Document Server

    Bales, Donald

    2003-01-01

    JDBC--the Java Database Connectivity specification--is a complex set of application programming interfaces (APIs) that developers need to understand if they want their Java applications to work with databases. JDBC is so complex that even the most experienced developers need to refresh their memories from time to time on specific methods and details. But, practically speaking, who wants to stop and thumb through a weighty tutorial volume each time a question arises? The answer is the JDBC Pocket Reference, a data-packed quick reference that is both a time-saver and a lifesaver. The JDBC P

  2. RTF Pocket Guide

    CERN Document Server

    Burke, Sean

    2008-01-01

    Rich Text Format, or RTF, is the internal markup language used by Microsoft Word and understood by dozens of other word processors. RTF is a universal file format that pervades practically every desktop. Because RTF is text, it's much easier to generate and process than binary .doc files. Any programmer working with word processing documents needs to learn enough RTF to get around, whether it's to format text for Word (or almost any other word processor), to make global changes to an existing document, or to convert Word files to (or from) another format. RTF Pocket Guide is a concise and e

  3. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.

    Directory of Open Access Journals (Sweden)

    Roberta Russo

    Full Text Available A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years, the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R and the tense (T states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.

  4. In silico docking of forchlorfenuron (FCF to septins suggests that FCF interferes with GTP binding.

    Directory of Open Access Journals (Sweden)

    Dimitrios Angelis

    Full Text Available Septins are GTP-binding proteins that form cytoskeleton-like filaments, which are essential for many functions in eukaryotic organisms. Small molecule compounds that disrupt septin filament assembly are valuable tools for dissecting septin functions with high temporal control. To date, forchlorfenuron (FCF is the only compound known to affect septin assembly and functions. FCF dampens the dynamics of septin assembly inducing the formation of enlarged stable polymers, but the underlying mechanism of action is unknown. To investigate how FCF binds and affects septins, we performed in silico simulations of FCF docking to all available crystal structures of septins. Docking of FCF with SEPT2 and SEPT3 indicated that FCF interacts preferentially with the nucleotide-binding pockets of septins. Strikingly, FCF is predicted to form hydrogen bonds with residues involved in GDP-binding, mimicking nucleotide binding. FCF docking with the structure of SEPT2-GppNHp, a nonhydrolyzable GTP analog, and SEPT7 showed that FCF may assume two alternative non-overlapping conformations deeply into and on the outer side of the nucleotide-binding pocket. Surprisingly, FCF was predicted to interact with the P-loop Walker A motif GxxxxGKS/T, which binds the phosphates of GTP, and the GTP specificity motif AKAD, which interacts with the guanine base of GTP, and highly conserved amino acids including a threonine, which is critical for GTP hydrolysis. Thus, in silico FCF exhibits a conserved mechanism of binding, interacting with septin signature motifs and residues involved in GTP binding and hydrolysis. Taken together, our results suggest that FCF stabilizes septins by locking them into a conformation that mimics a nucleotide-bound state, preventing further GTP binding and hydrolysis. Overall, this study provides the first insight into how FCF may bind and stabilize septins, and offers a blueprint for the rational design of FCF derivatives that could target septins with

  5. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke; Plunkett, Mary H.; Nixon, Peter; Serratore, Nicholas A.; Douglas, Christopher J.; Aihara, Hideki; Barney, Brett M.; Parales, Rebecca E.

    2017-04-07

    ABSTRACT

    Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes fromMarinobacter aquaeoleiVT8 and an additional enzyme fromAcinetobacter baylyiwere heterologously expressed inEscherichia coliand shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no.WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) fromM. aquaeoleiVT8. Crystals were independently treated with both the NAD+cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.

    IMPORTANCEThis study provides a comparison of multiple enzymes with the ability

  6. Indirect, out-of-pocket and medical costs from influenza-related illness in young children.

    Science.gov (United States)

    Ortega-Sanchez, Ismael R; Molinari, Noelle-Angelique M; Fairbrother, Gerry; Szilagyi, Peter G; Edwards, Kathryn M; Griffin, Marie R; Cassedy, Amy; Poehling, Katherine A; Bridges, Carolyn; Staat, Mary Allen

    2012-06-13

    Studies have documented direct medical costs of influenza-related illness in young children, however little is known about the out-of-pocket and indirect costs (e.g., missed work time) incurred by caregivers of children with medically attended influenza. To determine the indirect, out-of-pocket (OOP), and direct medical costs of laboratory-confirmed medically attended influenza illness among young children. Using a population-based surveillance network, we evaluated a representative group of children aged accounting databases, and follow-up interviews with caregivers. Outcome measures included work time missed, OOP expenses (e.g., over-the-counter medicines, travel expenses), and direct medical costs. Costs were estimated (in 2009 US Dollars) and comparisons were made among children with and without high risk conditions for influenza-related complications. Data were obtained from 67 inpatients, 121 ED patients and 92 outpatients with laboratory-confirmed influenza. Caregivers of hospitalized children missed an average of 73 work hours (estimated cost $1456); caregivers of children seen in the ED and outpatient clinics missed 19 ($383) and 11 work hours ($222), respectively. Average OOP expenses were $178, $125 and $52 for inpatients, ED-patients and outpatients, respectively. OOP and indirect costs were similar between those with and without high risk conditions (p>0.10). Medical costs totaled $3990 for inpatients and $730 for ED-patients. Out-of-pocket and indirect costs of laboratory-confirmed and medically attended influenza in young children are substantial and support the benefits of vaccination. Published by Elsevier Ltd.

  7. Use of a pocket compression device for the prevention and treatment of pocket hematoma after pacemaker and defibrillator implantation (STOP-HEMATOMA-I).

    Science.gov (United States)

    Turagam, Mohit K; Nagarajan, Darbhamulla V; Bartus, Krzysztof; Makkar, Akash; Swarup, Vijay

    2017-08-01

    Pocket hematoma is a recognized complication after placement of cardiac implantable electronic devices and is associated with increased device infection, length of hospitalization, and morbidity especially with uninterrupted antiplatelet agents and anticoagulants. We assessed the use of a post-surgical vest to decrease the incidence of pocket hematoma in patients undergoing device implantation with uninterrupted antiplatelet and anticoagulants. In this observational study, a vest was used by 20 consecutive patients who were compared to 20 age-, gender-, procedure-matched patients who received standard care. All patients were continued on antiplatelet and anticoagulants in the perioperative period. The pocket was assessed at post procedure day 0, 2, and 7, respectively. There were no significant differences in the baseline characteristics between both groups. Baseline mean international normalized ratio (INR) was significantly higher in the vest group when compared with the control group (2.7 ± 0.4 vs. 2.2 ± 0.3 = hematoma was significantly lower in the vest group than the control group (0 vs 30%, p = 0.02) at the end of 7 days. Control group had a total of six hematomas with one patient requiring evacuation and blood transfusion. The vest group had three hematomas on day 2 that resolved by day 7. The risk of moderate or large pocket hematoma is significantly reduced with the use of this vest in high-risk patients undergoing implantable devices on uninterrupted antiplatelet and anticoagulants.

  8. E-mail security a pocket guide

    CERN Document Server

    Furnell, Steven

    2010-01-01

    This pocket guide will help businesses to address the most important issues. Its comprehensive approach covers both the technical and the managerial aspects of the subject, offering valuable insights for IT professionals, managers and executives, as well as for individual users of e-mail.

  9. CIED infection with either pocket or systemic infection presentation

    DEFF Research Database (Denmark)

    Ihlemann, Nikolaj; Møller-Hansen, Michael; Salado-Rasmussen, Kirsten

    2016-01-01

    OBJECTIVE: Cardiovascular implantable electronic device (CIED) infections are increasing in numbers. The objective was to review the clinical presentation and outcome in patients affected with CIED infections with either local pocket or systemic presentation. DESIGN: All device removals due to CIED......-up no relapses and two cases of new infections were noted (2.8%). CONCLUSIONS: CIED infection with systemic or pocket infection was difficult to distinguish in clinical presentation and outcome. Complete device removal and antibiotic treatment of long duration was safe and without relapses....

  10. Software engineer's pocket book

    CERN Document Server

    Tooley, Michael

    2013-01-01

    Software Engineer's Pocket Book provides a concise discussion on various aspects of software engineering. The book is comprised of six chapters that tackle various areas of concerns in software engineering. Chapter 1 discusses software development, and Chapter 2 covers programming languages. Chapter 3 deals with operating systems. The book also tackles discrete mathematics and numerical computation. Data structures and algorithms are also explained. The text will be of great use to individuals involved in the specification, design, development, implementation, testing, maintenance, and qualit

  11. Python pocket reference

    CERN Document Server

    Lutz, Mark

    2010-01-01

    This is the book to reach for when you're coding on the fly and need an answer now. It's an easy-to-use reference to the core language, with descriptions of commonly used modules and toolkits, and a guide to recent changes, new features, and upgraded built-ins -- all updated to cover Python 3.X as well as version 2.6. You'll also quickly find exactly what you need with the handy index. Written by Mark Lutz -- widely recognized as the world's leading Python trainer -- Python Pocket Reference, Fourth Edition, is the perfect companion to O'Reilly's classic Python tutorials, also written by Mark

  12. LINQ Pocket Reference

    CERN Document Server

    Albahari, Joseph

    2008-01-01

    Ready to take advantage of LINQ with C# 3.0? This guide has the detail you need to grasp Microsoft's new querying technology, and concise explanations to help you learn it quickly. And once you begin to apply LINQ, the book serves as an on-the-job reference when you need immediate reminders. All the examples in the LINQ Pocket Reference are preloaded into LINQPad, the highly praised utility that lets you work with LINQ interactively. Created by the authors and free to download, LINQPad will not only help you learn LINQ, it will have you thinking in LINQ. This reference explains: LINQ's ke

  13. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  14. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  15. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Treatment of Fingertip Amputation in Adults by Palmar Pocketing of the Amputated Part

    Directory of Open Access Journals (Sweden)

    Mi Sun Jung

    2012-07-01

    Full Text Available Background First suggested by Brent in 1979, the pocket principle is an alternative methodfor patients for whom a microsurgical replantation is not feasible. We report the successfulresults of a modified palmar pocket method in adults.Methods Between 2004 and 2008, we treated 10 patients by nonmicrosurgical replantationusing palmar pocketing. All patients were adults who sustained a complete fingertip amputationfrom the tip to lunula in a digits. In all of these patients, the amputation occurred due to a crushor avulsion-type injury, and a microsurgical replantation was not feasible. We used the palmarpocketing method following a composite graft in these patients and prepared the pocket in thesubcutaneous layer of the ipsilateral palm.Results Of a total of 10 cases, nine had complete survival of the replantation and one had20% partial necrosis. All of the cases were managed to conserve the fingernails, which led toacceptable cosmetic results.Conclusions A composite graft and palmar pocketing in adult cases of fingertip injuryconstitute a simple, reliable operation for digital amputation extending from the tip to thelunula. These methods had satisfactory results.

  17. A mild phenotype of dihydropyrimidine dehydrogenase deficiency and developmental retardation associated with a missense mutation affecting cofactor binding

    NARCIS (Netherlands)

    Weidensee, Sabine; Goettig, Peter; Bertone, Marko; Haas, Dorothea; Magdolen, Viktor; Kiechle, Marion; Meindl, Alfons; van Kuilenburg, André B. P.; Gross, Eva

    2011-01-01

    Evaluation of a non-synonymous mutation associated with dihydropyrimidine dehydrogenase (DPD) deficiency. DPD enzyme analysis, mutation analysis and molecular dynamics simulations based on the 3D-model of DPD. The substitution Lys63Glu is likely to affect the FAD binding pocket within the DPD

  18. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  19. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    Science.gov (United States)

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. JavaScript Pocket Reference

    CERN Document Server

    Flanagan, David

    1998-01-01

    JavaScript is a powerful, object-based scripting language that can be embedded directly in HTML pages. It allows you to create dynamic, interactive Web-based applications that run completely within a Web browser -- JavaScript is the language of choice for developing Dynamic HTML (DHTML) content. JavaScript can be integrated effectively with CGI and Java to produce sophisticated Web applications, although, in many cases, JavaScript eliminates the need for complex CGI scripts and Java applets altogether. The JavaScript Pocket Reference is a companion volume to JavaScript: The Definitive Guide

  1. Newnes microprocessor pocket book

    CERN Document Server

    Money, Steve

    2014-01-01

    Newnes Microprocessor Pocket Book explains the basic hardware operation of a microprocessor and describes the actions of the various types of instruction that can be executed. A summary of the characteristics of many of the popular microprocessors is presented. Apart from the popular 8- and 16-bit microprocessors, some details are also given of the popular single chip microcomputers and of the reduced instruction set computer (RISC) type processors such as the Transputer, Novix FORTH processor, and Acorn ARM processor.Comprised of 15 chapters, this book discusses the principles involved in bot

  2. Periodontal Pocket Depth, Hyperglycemia, and Progression of Chronic Kidney Disease: A Population-Based Longitudinal Study.

    Science.gov (United States)

    Chang, Jia-Feng; Yeh, Jih-Chen; Chiu, Ya-Lin; Liou, Jian-Chiun; Hsiung, Jing-Ru; Tung, Tao-Hsin

    2017-01-01

    No large epidemiological study has been conducted to investigate the interaction and joint effects of periodontal pocket depth and hyperglycemia on progression of chronic kidney disease in patients with periodontal diseases. Periodontal pocket depth was utilized for the grading severity of periodontal disease in 2831 patients from January 2002 to June 2013. Progression of chronic kidney disease was defined as progression of color intensity in glomerular filtration rate and albuminuria grid of updated Kidney Disease-Improving Global Outcomes guidelines. Multivariable-adjusted hazard ratios (aHR) in various models were presented across different levels of periodontal pocket depth and hemoglobin A1c (HbA1c) in forest plots and 3-dimensional histograms. During 7621 person-years of follow-up, periodontal pocket depth and HbA1C levels were robustly associated with incremental risks for progression of chronic kidney disease (aHR 3.1; 95% confidence interval [CI], 2.0-4.6 for periodontal pocket depth >4.5 mm, and 2.5; 95% CI, 1.1-5.4 for HbA1C >6.5%, respectively). The interaction between periodontal pocket depth and HbA1C on progression of chronic kidney disease was strong (P periodontal pocket depth (>4.5 mm) and higher HbA1C (>6.5%) had the greatest risk (aHR 4.2; 95% CI, 1.7-6.8) compared with the lowest aHR group (periodontal pocket depth ≤3.8 mm and HbA1C ≤6%). Our study identified combined periodontal pocket depth and HbA1C as a valuable predictor of progression of chronic kidney disease in patients with periodontal diseases. While considering the interaction between periodontal diseases and hyperglycemia, periodontal survey and optimizing glycemic control are warranted to minimize the risk of worsening renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Word Pocket Guide

    CERN Document Server

    Glenn, Walter

    2004-01-01

    Millions of people use Microsoft Word every day and, chances are, you're one of them. Like most Word users, you've attained a certain level of proficiency--enough to get by, with a few extra tricks and tips--but don't get the opportunity to probe much further into the real power of Word. And Word is so rich in features that regardless of your level of expertise, there's always more to master. If you've ever wanted a quick answer to a nagging question or had the thought that there must be a better way, then this second edition of Word Pocket Guide is just what you need. Updated for Word 2003

  4. Pocket money, eating behaviors, and weight status among Chinese children: The Childhood Obesity Study in China mega-cities.

    Science.gov (United States)

    Li, Miao; Xue, Hong; Jia, Peng; Zhao, Yaling; Wang, Zhiyong; Xu, Fei; Wang, Youfa

    2017-07-01

    Both the obesity rate and pocket money are rising among children in China. This study examined family correlates of children's pocket money, associations of pocket money with eating behaviors and weight status, and how the associations may be modified by schools' unhealthy food restrictions in urban China. Data were collected in 2015 from 1648 students in 16 primary and middle schools in four mega-cities in China (4 schools/city): Beijing, Shanghai, Nanjing, and Xi'an. Cluster robust negative binomial regression models were fit to assess family correlates of pocket money, associations of pocket money with child eating behaviors and weight outcomes, and possible modifying effects of schools' unhealthy food restrictions. Sixty-nine percent of students received pocket money weekly. Students received more pocket money if mothers frequently ate out of home (IRR=2.28 [1.76, 2.94]) and/or family rarely had dinner together (IRR=1.42, 95%=[1.01, 1.99]). Students got less pocket money if parents were concerned about child's future health due to unhealthy eating (IRR=0.56 [0.32,0.98]). Students with more pocket money more frequently consumed (by 25-89%) sugary beverages, snacks, fast food, or at street food stalls, and were 45-90% more likely to be overweight/obese. Associations of pocket money with unhealthy eating and overweight/obesity were weaker in schools with unhealthy food restrictions. Pocket money is a risk factor for unhealthy eating and obesity in urban China. School policies may buffer pocket money's negative influence on students' eating and weight status. Copyright © 2017. Published by Elsevier Inc.

  5. UML 2.0 Pocket Reference UML Syntax and Usage

    CERN Document Server

    Pilone, Dan

    2006-01-01

    Globe-trotting travelers have long resorted to handy, pocket-size dictionaries as an aid to communicating across the language barrier. Dan Pilone's UML 2.0 Pocket Reference is just such an aid for on-the-go developers who need to converse in the Unified Modeling Language (UML). Use this book to decipher the many UML diagrams you'll encounter on the path to delivering a modern software system. Updated to cover the very latest in UML, you'll find coverage of the following UML 2.0 diagram types: Class diagramsComponent diagrams*Sequence diagrams*Communication diagrams*Timing diagrams*Interactio

  6. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    Science.gov (United States)

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  7. Out-of-pocket fertility patient expense: data from a multicenter prospective infertility cohort.

    Science.gov (United States)

    Wu, Alex K; Odisho, Anobel Y; Washington, Samuel L; Katz, Patricia P; Smith, James F

    2014-02-01

    The high costs of fertility care may deter couples from seeking care. Urologists often are asked about the costs of these treatments. To our knowledge previous studies have not addressed the direct out-of-pocket costs to couples. We characterized these expenses in patients seeking fertility care. Couples were prospectively recruited from 8 community and academic reproductive endocrinology clinics. Each participating couple completed face-to-face or telephone interviews and cost diaries at study enrollment, and 4, 10 and 18 months of care. We determined overall out-of-pocket costs, in addition to relationships between out-of-pocket costs and treatment type, clinical outcomes and socioeconomic characteristics on multivariate linear regression analysis. A total of 332 couples completed cost diaries and had data available on treatment and outcomes. Average age was 36.8 and 35.6 years in men and women, respectively. Of this cohort 19% received noncycle based therapy, 4% used ovulation induction medication only, 22% underwent intrauterine insemination and 55% underwent in vitro fertilization. The median overall out-of-pocket expense was $5,338 (IQR 1,197-19,840). Couples using medication only had the lowest median out-of-pocket expenses at $912 while those using in vitro fertilization had the highest at $19,234. After multivariate adjustment the out-of-pocket expense was not significantly associated with successful pregnancy. On multivariate analysis couples treated with in vitro fertilization spent an average of $15,435 more than those treated with intrauterine insemination. Couples spent about $6,955 for each additional in vitro fertilization cycle. These data provide real-world estimates of out-of-pocket costs, which can be used to help couples plan for expenses that they may incur with treatment. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Pocket Checklists of Indonesian timber trees

    NARCIS (Netherlands)

    Prawira, Soewanda A.; Tantra, I.G.M.; Whitmore, T.C.

    1984-01-01

    Indonesia as yet does not have a comprehensive account of the forest trees which reach timber size (35 cm dbh = 14 inch or 105 cm gbh = 42 inch). A project has been started in August 1983 by the Botany Section of the Forest Research Institute in Bogor, Indonesia, to prepare pocket checklists of the

  10. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  11. Crystallographic Study of a Novel Sub-Nanomolar Inhibitor Provides Insight on the Binding Interactions of Alkenyldiarylmethanes with Human Immunodeficiency Virus-1 (HIV-1) Reverse Transcriptase†

    Science.gov (United States)

    Cullen, Matthew D.; Ho, William C.; Bauman, Joseph D.; Das, Kalyan; Arnold, Eddy; Hartman, Tracy L.; Watson, Karen M.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2009-01-01

    Two crystal structures have been solved for separate complexes of alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTI) 3 and 4 with HIV-1 reverse transcriptase (RT). The structures reveal inhibitor binding is exclusively hydrophobic in nature and the shape of the inhibitor-bound NNRTI binding pocket is unique among other reported inhibitor-RT crystal structures. Primarily, ADAMs 3 and 4 protrude from a large gap in the backside of the binding pocket, placing portions of the inhibitors unusually close to the polymerase active site and allowing 3 to form a weak hydrogen bond with Lys223. The lack of additional stabilizing interactions, beyond the observed hydrophobic surface contacts, between 4 and RT is quite perplexing given the extreme potency of the compound (IC50 ≤ nM). ADAM 4 was designed to be hydrolytically stable in blood plasma, and an investigation of its hydrolysis in rat plasma demonstrated it has a significantly prolonged half-life in comparison to ADAM lead compounds 1 and 2. PMID:19775161

  12. Oracle PL/SQL Language Pocket Reference

    CERN Document Server

    Feuerstein, Steven; Dawes, Chip

    2007-01-01

    The fourth edition of this popular pocket guide provides quick-reference information that will help you use Oracle's PL/SQL language, including the newest Oracle Database 11g features. A companion to Steven Feuerstein and Bill Pribyl's bestselling Oracle PL/SQL Programming, this concise guide boils down the most vital PL/SQL information into an accessible summary

  13. Method for cleaning the filter pockets of dust gas filter systems

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, A

    1975-05-07

    The invention deals with a method to clean filter pockets filled with dust gas. By a periodic to and fro air jet attached to a scavenging blower, a pulsed fluttering movement of the filter surface is obtained which releases the outer layers of dust. The charging of the filter pockets with scavenging air to clean the filter material can be carried out immediately on the pulsed admission with suitable time control.

  14. Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

    Science.gov (United States)

    Chen, Rong; Chung, Shin-Ho

    2012-10-02

    Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat Na(V)1.2, a subtype of Na(V) channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of Na(V)1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and Na(V)1.2 and stabilize the toxin-channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for Na(V)1.2. The dissociation constants for the two toxin-channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

  15. Why not to ''pocket shoot'': Radiology of intravenous drug abuse

    International Nuclear Information System (INIS)

    McCarroll, K.A.; Fisher, D.R.; Cawthon, L.A.; Donovan, K.R.; Roszler, M.H.; Kling, G.A.

    1987-01-01

    Our large population of intravenous drug abusers has increasingly resorted to supraclavicular central venous injection for vascular access. Few reports of complications associated with the practice of supraclavicular ''pocket'' injection have appeared in the radiologic literature. The authors describe the complications associated with this practice, including pneumothorax, mycotic aneurysm, arteriovenous fistula, jugular vein thrombosis, cellulitis, foreign body reaction, and neck abscess. In addition, the authors provide examples of sternoclavicular osteomyelitis. The anatomy of the ''pocket,'' and the pathophysiology and radiographic manifestations of these complications, are reviewed

  16. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    Science.gov (United States)

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.

  17. Patterns and determinants of communal latrine usage in urban poverty pockets in Bhopal, India.

    Science.gov (United States)

    Biran, A; Jenkins, M W; Dabrase, P; Bhagwat, I

    2011-07-01

    To explore and explain patterns of use of communal latrine facilities in urban poverty pockets. Six poverty pockets with communal latrine facilities representing two management models (Sulabh and municipal) were selected. Sampling was random and stratified by poverty pocket population size. A seventh, community-managed facility was also included. Data were collected by exit interviews with facility users and by interviews with residents from a randomly selected representative sample of poverty pocket households, on social, economic and demographic characteristics of households, latrine ownership, defecation practices, costs of using the facility and distance from the house to the facility. A tally of facility users was kept for 1 day at each facility. Data were analysed using logistic regression modelling to identify determinants of communal latrine usage. Communal latrines differed in their facilities, conditions, management and operating characteristics, and rates of usage. Reported usage rates among non-latrine-owning households ranged from 15% to 100%. There was significant variation in wealth, occupation and household structure across the poverty pockets as well as in household latrine ownership. Households in pockets with municipal communal latrine facilities appeared poorer. Households in pockets with Sulabh-managed communal facilities were significantly more likely to own a household latrine. Determinants of communal facility usage among households without a latrine were access and convenience (distance and opening hours), facility age, cleanliness/upkeep and cost. The ratio of male to female users was 2:1 across all facilities for both adults and children. Provision of communal facilities reduces but does not end the problem of open defecation in poverty pockets. Women appear to be relatively poorly served by communal facilities and, cost is a barrier to use by poorer households. Results suggest improving facility convenience and access and modifying fee

  18. XSLT 10 Pocket Reference

    CERN Document Server

    Lenz, Evan

    2008-01-01

    XSLT is an essential tool for converting XML into other kinds of documents: HTML, PDF file, and many others. It's a critical technology for XML-based platforms such as Microsoft .NET, Sun Microsystems' Sun One, as well as for most web browsers and authoring tools. As useful as XSLT is, however, most people have a difficult time getting used to its peculiar characteristics. The ability to use advanced techniques depends on a clear and exact understanding of how XSLT templates work and interact. The XSLT 1.0 Pocket Reference from O'Reilly wants to make sure you achieve that level of understan

  19. Linux Desktop Pocket Guide

    CERN Document Server

    Brickner, David

    2005-01-01

    While Mac OS X garners all the praise from pundits, and Windows XP attracts all the viruses, Linux is quietly being installed on millions of desktops every year. For programmers and system administrators, business users, and educators, desktop Linux is a breath of fresh air and a needed alternative to other operating systems. The Linux Desktop Pocket Guide is your introduction to using Linux on five of the most popular distributions: Fedora, Gentoo, Mandriva, SUSE, and Ubuntu. Despite what you may have heard, using Linux is not all that hard. Firefox and Konqueror can handle all your web bro

  20. Perl/Tk Pocket Reference

    CERN Document Server

    Lidie, Stephen

    1998-01-01

    The Perl/Tk Pocket Reference is a companion volume to Learning Perl/Tk, an O'Reilly Animal Guide. Learning Perl/Tk is a tutorial for Perl/Tk, the extension to Perl for creating graphical user interfaces. With Tk, Perl programs can be window-based rather than command-line based, with buttons, entry fields, listboxes, menus, scrollbars, balloons, tables, dialogs, and more. And Perl/Tk programs run on UNIX and Windows-based computers. This small book is a handy reference guide geared toward the advanced Perl/Tk programmer. Novice Perl/Tk programmers will find that its compact size gives th

  1. Regular Expression Pocket Reference

    CERN Document Server

    Stubblebine, Tony

    2007-01-01

    This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp

  2. In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function.

    Science.gov (United States)

    Follin, Elna; Karlsson, Maria; Lundegaard, Claus; Nielsen, Morten; Wallin, Stefan; Paulsson, Kajsa; Westerdahl, Helena

    2013-04-01

    The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.

  3. Mutation of Tyr137 of the universal Escherichia coli fimbrial adhesin FimH relaxes the tyrosine gate prior to mannose binding

    Directory of Open Access Journals (Sweden)

    Said Rabbani

    2017-01-01

    Full Text Available The most prevalent diseases manifested by Escherichia coli are acute and recurrent bladder infections and chronic inflammatory bowel diseases such as Crohn's disease. E. coli clinical isolates express the FimH adhesin, which consists of a mannose-specific lectin domain connected via a pilin domain to the tip of type 1 pili. Although the isolated FimH lectin domain has affinities in the nanomolar range for all high-mannosidic glycans, differentiation between these glycans is based on their capacity to form predominantly hydrophobic interactions within the tyrosine gate at the entrance to the binding pocket. In this study, novel crystal structures of tyrosine-gate mutants of FimH, ligand-free or in complex with heptyl α-d-O-mannopyranoside or 4-biphenyl α-d-O-mannopyranoside, are combined with quantum-mechanical calculations and molecular-dynamics simulations. In the Y48A FimH crystal structure, a large increase in the dynamics of the alkyl chain of heptyl α-d-O-mannopyranoside attempts to compensate for the absence of the aromatic ring; however, the highly energetic and stringent mannose-binding pocket of wild-type FimH is largely maintained. The Y137A mutation, on the other hand, is the most detrimental to FimH affinity and specificity: (i in the absence of ligand the FimH C-terminal residue Thr158 intrudes into the mannose-binding pocket and (ii ethylenediaminetetraacetic acid interacts strongly with Glu50, Thr53 and Asn136, in spite of multiple dialysis and purification steps. Upon mutation, pre-ligand-binding relaxation of the backbone dihedral angles at position 137 in the tyrosine gate and their coupling to Tyr48 via the interiorly located Ile52 form the basis of the loss of affinity of the FimH adhesin in the Y137A mutant.

  4. Active-site modification of mammalian DNA polymerase β with pyridoxal 5'-phosphate: Mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket

    International Nuclear Information System (INIS)

    Basu, A.; Kedar, P.; Wilson, S.H.; Modak, M.J.

    1989-01-01

    Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase β. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [ 3 H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate

  5. Pocket PC-based portable gamma-ray spectrometer

    Directory of Open Access Journals (Sweden)

    Kamontip Ploykrachang

    2011-04-01

    Full Text Available A portable gamma-ray spectrometer based on a Pocket PC has been developed. A 12-bit pipeline analog-to-digitalconverter (ADC associated with an implemented pulse height histogram function on field programmable gate array (FPGAoperating at 15 MHz is employed for pulse height analysis from built-in pulse amplifier. The system, which interfaces withthe Pocket PC via an enhanced RS-232 serial port under the microcontroller facilitation, is utilized for spectrum acquisition,display and analysis. The pulse height analysis capability of the system was tested and it was found that the ADC integralnonlinearity of ±0.45% was obtained with the throughput rate at 160 kcps. The overall system performance was tested usinga PIN photodiode-CsI(Tl crystal coupled scintillation detector and gamma standard radioactive sources of Cs-137 andCo-60. Low cost and the compact system size as a result of the implemented logical function are also discussed.

  6. Out-Of-Pocket Expenditure on Institutional Delivery in Rural Lucknow

    Directory of Open Access Journals (Sweden)

    Mukesh Shukla

    2015-06-01

    Full Text Available   Introduction: Promotion of reproductive health through institutional delivery has been adopted by government as a strategy for reducing maternal mortality rate but still about half of the deliveries have been conducted at home. Cost barrier is one of the major cause for preferring home delivery instead of institutional delivery. Not only the direct costs responsible for low institutional delivery but also indirect costs too accountable for less number of institutional births in the country. Aims & Objectives: To estimate the out of pocket expenditure incurred by households during delivery and its determinants. Materials and methods: A community based cross sectional study was conducted during which a total 272 households having women who had recently delivered in government institutions were interviewed. Result: The mean out of pocket expenditure was found to be Rs. 1406.04 ± 103.27 including spending’s on drugs, travel, pathological tests and unofficial payments. Low socioeconomic class, residence outside the catchment area of delivery point, tertiary and secondary health care facilities as place of delivery and low literacy status of head of the family below high school  were found to be significantly associated with out of pocket expenditure bivariate analysis (p<0.05. On multivariate analysis low socioeconomic (OR 22.40; 95% CI 9.44-53.15; p = 0.01   and residence (OR 13.07; 95% CI (1.58-116.55; p = 0.03  outside the catchment area of delivery point were found to be independent predictors of catastrophic out of pocket expenditure during delivery. Conclusions: Although government has been running lot of schemes for availing free of cost health services but still one has to pay from their pocket as medical expenses. In order to bear these expenses, they have to borrow money, sell their assets and securities due to which households suffer a lot. In the present study, unofficial payment was found prevalent in public institutions

  7. Out-Of-Pocket Expenditure on Institutional Delivery in Rural Lucknow

    Directory of Open Access Journals (Sweden)

    Mukesh Shukla

    2015-06-01

    Full Text Available AbstractIntroduction: Promotion of reproductive health through institutional delivery has been adopted by government as a strategy for reducing maternal mortality rate but still about half of the deliveries have been conducted at home. Cost barrier is one of the major cause for preferring home delivery instead of institutional delivery. Not only the direct costs responsible for low institutional delivery but also indirect costs too accountable for less number of institutional births in the country. Aims & Objectives: To estimate the out of pocket expenditure incurred by households during delivery and its determinants. Materials and methods: A community based cross sectional study was conducted during which a total 272 households having women who had recently delivered in government institutions were interviewed. Result: The mean out of pocket expenditure was found to be Rs. 1406.04 ± 103.27 including spending’s on drugs, travel, pathological tests and unofficial payments. Low socioeconomic class, residence outside the catchment area of delivery point, tertiary and secondary health care facilities as place of delivery and low literacy status of head of the family below high school  were found to be significantly associated with out of pocket expenditure bivariate analysis (p<0.05. On multivariate analysis low socioeconomic (OR 22.40; 95% CI 9.44-53.15; p = 0.01   and residence (OR 13.07; 95% CI (1.58-116.55; p = 0.03  outside the catchment area of delivery point were found to be independent predictors of catastrophic out of pocket expenditure during delivery. Conclusions: Although government has been running lot of schemes for availing free of cost health services but still one has to pay from their pocket as medical expenses. In order to bear these expenses, they have to borrow money, sell their assets and securities due to which households suffer a lot. In the present study, unofficial payment was found prevalent in public institutions

  8. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  9. C-terminal β9-strand of the cyclic nucleotide-binding homology domain stabilizes activated states of Kv11.1 channels.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K(+ channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal β9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the β9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the β9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this β9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal β9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels.

  10. Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor.

    Science.gov (United States)

    Kim, Sun Jin; Han, Jin-Woo; Kim, Beomseok; Meyyappan, M

    2017-11-22

    Carbon nanotube (CNT) is a promising candidate as a sensor material for the sensitive detection of gases/vapors, biomarkers, and even some radiation, as all these external variables affect the resistance and other properties of nanotubes, which forms the basis for sensing. Ultraviolet (UV) radiation does not impact the nanotube properties given the substantial mismatch of bandgaps and therefore, CNTs have never been considered for UV sensing, unlike the popular ZnO and other oxide nanwires. It is well-known that UV assists the adsorption/desorption characteristics of oxygen on carbon nanotubes, which changes the nanotube resistance. Here, we demonstrate a novel sensor structure encapsulated with an air pocket, where the confined air is responsible for the UV sensing mechanism and assures sensor stability and repeatability over time. In addition to the protection from any contamination, the air pocket encapsulated sensor offers negligible baseline drift and fast recovery compared to previously reported sensors. The air pocket isolated from the outside environment can act as a stationary oxygen reservoir, resulting in consistent sensor characteristics. Furthermore, this sensor can be used even in liquid environments.

  11. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  12. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Directory of Open Access Journals (Sweden)

    Sau-Ching Wu

    Full Text Available Development of a high-affinity streptavidin-binding peptide (SBP tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine in this loop selectively reduces the biotin binding affinity (Kd from 4 × 10(-14 M to 4.45 × 10(-10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A to the first mutein (G48T results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable

  13. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Science.gov (United States)

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for

  14. Retiree out-of-pocket healthcare spending: a study of consumer expectations and policy implications.

    Science.gov (United States)

    Hoffman, Allison K; Jackson, Howell E

    2013-01-01

    Even though most American retirees benefit from Medicare coverage, a mounting body of research predicts that many will face large and increasing out-of-pocket expenditures for healthcare costs in retirement and that many already struggle to finance these costs. It is unclear, however, whether the general population understands the likely magnitude of these out-of-pocket expenditures well enough to plan for them effectively. This study is the first comprehensive examination of Americans' expectations regarding their out-of-pocket spending on healthcare in retirement. We surveyed over 1700 near retirees and retirees to assess their expectations regarding their own spending and then compared their responses to experts' estimates. Our main findings are twofold. First, overall expectations of out-of-pocket spending are mixed. While a significant proportion of respondents estimated out-of-pocket costs in retirement at or above expert estimates of what the typical retiree will spend, a disproportionate number estimated their future spending substantially below what experts view as likely. Estimates by members of some demographic subgroups, including women and younger respondents, deviated relatively further from the experts' estimates. Second, respondents consistently misjudged spending uncertainty. In particular, respondents significantly underestimated how much individual health experience and changes in government policy can affect individual out-of-pocket spending. We discuss possible policy responses, including efforts to improve financial planning and ways to reduce unanticipated financial risk through reform of health insurance regulation.

  15. Newnes electronics engineers pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    This book is packed with information and material which everyone involved in electronics will find indispensable. Now when you need to know a transistor's characteristics, or an integrated circuit's pinout details, simply look it up! The book is full of tables, symbols, formulae, conversions and illustrations.Promotion via the new Newnes Pocket Book catalogue to the electronics trade will drive sales into the book trade Covers component data; encapsulations; pin-outs; symbols & codings Extensive material on conversion factors, formulae; units and relationships

  16. Out-of-pocket health spending by poor and near-poor elderly Medicare beneficiaries.

    Science.gov (United States)

    Gross, D J; Alecxih, L; Gibson, M J; Corea, J; Caplan, C; Brangan, N

    1999-04-01

    To estimate out-of-pocket health care spending by lower-income Medicare beneficiaries, and to examine spending variations between those who receive Medicaid assistance and those who do not receive such aid. DATA SOURCES AND COLLECTION: 1993 Medicare Current Beneficiary Survey (MCBS) Cost and Use files, supplemented with data from the Bureau of the Census (Current Population Survey); the Congressional Budget Office; the Health Care Financing Administration, Office of the Actuary (National Health Accounts); and the Social Security Administration. We analyzed out-of-pocket spending through a Medicare Benefits Simulation model, which projects out-of-pocket health care spending from the 1993 MCBS to 1997. Out-of-pocket health care spending is defined to include Medicare deductibles and coinsurance; premiums for private insurance, Medicare Part B, and Medicare HMOs; payments for non-covered goods and services; and balance billing by physicians. It excludes the costs of home care and nursing facility services, as well as indirect tax payments toward health care financing. Almost 60 percent of beneficiaries with incomes below the poverty level did not receive Medicaid assistance in 1997. We estimate that these beneficiaries spent, on average, about half their income out-of-pocket for health care, whether they were enrolled in a Medicare HMO or in the traditional fee-for-service program. The 75 percent of beneficiaries with incomes between 100 and 125 percent of the poverty level who were not enrolled in Medicaid spent an estimated 30 percent of their income out-of-pocket on health care if they were in the traditional program and about 23 percent of their income if they were enrolled in a Medicare HMO. Average out-of-pocket spending among fee-for-service beneficiaries varied depending on whether beneficiaries had Medigap policies, employer-provided supplemental insurance, or no supplemental coverage. Those without supplemental coverage spent more on health care goods and

  17. Placement Of Cardiac PacemaKEr Trial (POCKET – rationale and design: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Peter Magnusson

    2017-04-01

    Full Text Available BackgroundA pacemaker system consists of one or two leads connected to a device that is implanted into a pocket formed just below the collarbone. This pocket is typically subcutaneous, that is, located just above the pectoral fascia. Even though the size of pacemakers has decreased markedly, complications due to superficial implants do occur. An alternative technique would be intramuscular placement of the pacemaker device, but there are no randomized controlled trials (RCTs to support this approach, which is the rationale for the Placement Of Cardiac PacemaKEr Trial (POCKET. The aim is to study if intramuscular is superior to subcutaneous placement of a pacemaker pocket.MethodsIn October 2016, we started to enroll 200 consecutive patients with an indication for bradycardia pacemaker implantation. Patients are randomized to random block sizes, stratified by age group (cut-off: 65 years and sex, and then randomized to either subcutaneous or intramuscular implant. A concealed allocation procedure is employed, using sequentially numbered, sealed envelopes. Pocket site is blinded to the patient and in all subsequent care. The primary endpoint is patient overall satisfaction with the pocket location at 24 months as measured using a visual analog scale (VAS 0-10. Secondary endpoints are: complications, patient-reported satisfaction at 1, 12, and 24 months (overall satisfaction, pain, discomfort, degree of unsightly appearance, movement problems, and sleep problems due to device.ConclusionsPOCKET is a prospective interventional RCT designed to evaluate if intramuscular is superior to subcutaneous placement of a bradycardia pacemaker during a two-year follow-up.

  18. Placement Of Cardiac PacemaKEr Trial (POCKET – rationale and design: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Peter Magnusson

    2017-04-01

    Full Text Available Background: A pacemaker system consists of one or two leads connected to a device that is implanted into a pocket formed just below the collarbone. This pocket is typically subcutaneous, that is, located just above the pectoral fascia. Even though the size of pacemakers has decreased markedly, complications due to superficial implants do occur. An alternative technique would be intramuscular placement of the pacemaker device, but there are no randomized controlled trials (RCTs to support this approach, which is the rationale for the Placement Of Cardiac PacemaKEr Trial (POCKET. The aim is to study if intramuscular is superior to subcutaneous placement of a pacemaker pocket. Methods: In October 2016, we started to enroll 200 consecutive patients with an indication for bradycardia pacemaker implantation. Patients are randomized to random block sizes, stratified by age group (cut-off: 65 years and sex, and then randomized to either subcutaneous or intramuscular implant. A concealed allocation procedure is employed, using sequentially numbered, sealed envelopes. Pocket site is blinded to the patient and in all subsequent care. The primary endpoint is patient overall satisfaction with the pocket location at 24 months as measured using a visual analog scale (VAS 0-10. Secondary endpoints are: complications, patient-reported satisfaction at 1, 12, and 24 months (overall satisfaction, pain, discomfort, degree of unsightly appearance, movement problems, and sleep problems due to device. Conclusions: POCKET is a prospective interventional RCT designed to evaluate if intramuscular is superior to subcutaneous placement of a bradycardia pacemaker during a two-year follow-up.

  19. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A

    2015-01-01

    Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three......-yl)-1,4-diazepane], highlights the roles of the three residues in determining binding affinities and functional properties of ligands at the α4-α4 interface. Confirmed by mutational studies, our structures suggest a unique ligand-specific role of residue H142 on the α4 subunit. In the cocrystal...... that could not be predicted based on wild-type Ls-AChBP structures in complex with the same agonists. The results show that an unprecedented correlation between binding in engineered AChBPs and functional receptors can be obtained and provide new opportunities for structure-based design of drugs targeting...

  20. Tissue expander infections in children: look beyond the expander pocket.

    Science.gov (United States)

    Mason, A C; Davison, S P; Manders, E K

    1999-11-01

    Infection of the expander pocket is the most common complication encountered with soft-tissue expansion. It is usually due to direct inoculation with skin flora either at the time of expander insertion or from extrusion of the device. The authors report two cases of infection of tissue expanders in which the children had concomitant infected sites distant from the prosthesis. Etiological bacteria of common pediatric infections like otitis media and pharyngitis were cultured from the infected expander pocket, raising suspicion that translocation of the organism to the expander had occurred. Aggressive antibiotic treatment, removal of the prosthesis, and flap advancement is advocated.

  1. Coastal geomorphological study of pocket beaches in Crete, with the use of planview indices.

    Science.gov (United States)

    Alexandrakis, George; Karditsa, Aikaterini; Poulos, Serafim; Kampanis, Nikos

    2013-04-01

    The formation of pocket beaches is a result of a large number of processes and mechanisms that vary on space and time scales. This study aims in defining the planform characteristics of pocket beaches in Crete Isl. and to determine their sheltering effect, embaymentization and their status of equilibrium. Thus, data from 30 pocket beaches along the coastline of Crete, with different geomorphological and hydrodynamical setting, were collected. Planform parameters were applied and coastal planview indices from the bibliography were applied. The parameters included: length and orientation of the headlands between the pocket beach; length between the bay entrance and the center of the beach; lengths of the i) embayed shoreline, ii) embayed beach, iii) beach segment located at the shadow of a headland; linear distance and orientation between the edges of the embayed beach; direction of the incident wave energy flux; wave crest obliquity to the control line; beach area, maximum beach width and headland orientation and river/ torrent catchment areas in beach zones that an active river system existed (Bowman et al.2009). For the morphological mapping of the study areas, 1:5000 orthophoto maps were used. Wave regime has been calculated with the use of prognostic equations and utilising local wind data (mean annual frequency of wind speed and direction), provided by the Wind and Wave Atlas of the Eastern Mediterranean Sea. The diffraction and refraction of the waves has been simulated with the use of numerical models. The study shows that Cretan pocket beaches display a wide range of indentation, suggesting that is the result of several parameters that include tectonics, coastal hydrodynamics and river catchment areas. The more indented bays are, the shorter their beaches become, while low-indented pocket beaches are the widest and the longest ones. Beaches with headland with large length appear to be more protected and receive smaller amount of wave energy. Most of the

  2. Structure–kinetic relationship study of CDK8/CycC specific compounds

    Science.gov (United States)

    Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars

    2013-01-01

    In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251

  3. Advanced Geometric Optics on a Programmable Pocket Calculator.

    Science.gov (United States)

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  4. Structural analysis of papain-like NlpC/P60 superfamily enzymes with a circularly permuted topology reveals potential lipid binding sites.

    Directory of Open Access Journals (Sweden)

    Qingping Xu

    Full Text Available NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, "closed" conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6 identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes.

  5. Novel Bacterial Topoisomerase Inhibitors Exploit Asp83 and the Intrinsic Flexibility of the DNA Gyrase Binding Site

    Directory of Open Access Journals (Sweden)

    Sebastian Franco-Ulloa

    2018-02-01

    Full Text Available DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics such as quinolones. Recently, structural and biochemical investigations identified a new class of DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors. NBTIs are particularly promising because they are active against multi-drug resistant bacteria, an alarming clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly identified pocket at the dimer interface of the DNA–protein complex. In the present study, we used molecular dynamics (MD simulations and docking calculations to shed new light on the binding of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this binding site, which allows the pocket to adapt its conformation and form optimal interactions with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced a repositioning of a key aspartate (Asp83B, whose side chain can rotate within the binding site. The conformational rearrangement of Asp83B allows the formation of a newly identified H-bond interaction with an NH on the bound NBTI, which seems important for the binding of NBTIs having such functionality. We validated these findings through docking calculations using an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total, screened against multiple target conformations. The newly identified H-bond interaction significantly improves the docking enrichment. These insights could be helpful for future virtual screening campaigns against DNA gyrase.

  6. Windows® 7 Administrator's Pocket Consultant

    CERN Document Server

    Stanek, William

    2009-01-01

    Portable and precise, this pocket-sized guide delivers immediate answers for the day-to-day administration of Windows 7-from desktop configuration and management to networking and security issues. Zero in on core support and maintenance tasks by using quick-reference tables, instructions, and lists. You'll get the precise information you need to solve problems and get the job done-whether at your desk or in the field!

  7. Practical Pocket PC Application w/Biometric Security

    Science.gov (United States)

    Logan, Julian

    2004-01-01

    I work in the Flight Software Engineering Branch, where we provide design and development of embedded real-time software applications for flight and supporting ground systems to support the NASA Aeronautics and Space Programs. In addition, this branch evaluates, develops and implements new technologies for embedded real-time systems, and maintains a laboratory for applications of embedded technology. The majority of microchips that are used in modern society have been programmed using embedded technology. These small chips can be found in microwaves, calculators, home security systems, cell phones and more. My assignment this summer entails working with an iPAQ HP 5500 Pocket PC. This top-of-the-line hand-held device is one of the first mobile PC's to introduce biometric security capabilities. Biometric security, in this case a fingerprint authentication system, is on the edge of technology as far as securing information. The benefits of fingerprint authentication are enormous. The most significant of them are that it is extremely difficult to reproduce someone else's fingerprint, and it is equally difficult to lose or forget your own fingerprint as opposed to a password or pin number. One of my goals for this summer is to integrate this technology with another Pocket PC application. The second task for the summer is to develop a simple application that provides an Astronaut EVA (Extravehicular Activity) Log Book capability. The Astronaut EVA Log Book is what an astronaut would use to report the status of field missions, crew physical health, successes, future plans, etc. My goal is to develop a user interface into which these data fields can be entered and stored. The applications that I am developing are created using eMbedded Visual C++ 4.0 with the Pocket PC 2003 Software Development Kit provided by Microsoft.

  8. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    Science.gov (United States)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  9. Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets.

    Science.gov (United States)

    Kulkarni, Chidambar; Korevaar, Peter A; Bejagam, Karteek K; Palmans, Anja R A; Meijer, E W; George, Subi J

    2017-10-04

    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (CBI-35CH), leading to "molecular pockets" in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of CBI-35CH at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly.

  10. Pathological periodontal pockets are associated with raised diastolic blood pressure in obese adolescents.

    Science.gov (United States)

    Zeigler, Cecilia C; Wondimu, Biniyam; Marcus, Claude; Modéer, Thomas

    2015-03-24

    Obesity, a well-known risk factor for developing cardiovascular disease (CVD), is associated with chronic periodontitis in adults. This cross-sectional pilot study on obese adolescents was designed to investigate whether periodontal disease in terms of pathological periodontal pockets is associated with raised blood pressure and other risk markers for CVD. The study included 75 obese subjects between 12 to 18 years of age, mean 14.5. Subjects answered a questionnaire regarding health, oral hygiene habits and sociodemographic factors. A clinical examination included Visible Plaque Index (VPI %), Gingival inflammation (BOP %) and the occurrence of pathological pockets exceeding 4 mm (PD ≥ 4 mm). Blood serum were collected and analyzed. The systolic and diastolic blood pressures were registered. Adolescents with pathological periodontal pockets (PD ≥ 4 mm; n = 14) had significantly higher BOP >25% (P = 0.002), higher diastolic blood pressure (P = 0.008), higher levels of Interleukin (IL)-6 (P periodontal pockets (PD ≥ 4 mm; n = 61). The bivariate linear regression analysis demonstrated that PD ≥ 4 mm (P = 0.008) and systolic blood pressure (P 25%, IL-6, IL-8, Leptin, MCP-1, TSH and total cholesterol in the multiple regression analysis. In conclusion, this study indicates an association between pathological periodontal pockets and diastolic blood pressure in obese adolescents. The association was unaffected by other risk markers for cardiovascular events or periodontal disease. The results call for collaboration between pediatric dentists and medical physicians in preventing obesity development and its associated disorders.

  11. Structures of BIR domains from human NAIP and cIAP2.

    Science.gov (United States)

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-11-01

    The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1'-P4' side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3' position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2' and P4' pockets make similar interactions to those seen in other BIR domain-peptide complexes. The structures also reveal how a serine in the P1' position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins.

  12. Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium

    NARCIS (Netherlands)

    Dierickx, K; Pauwels, M; Laine, ML; Van Eldere, J; Cassiman, JJ; van Winkelhoff, AJ; van Steenberghe, D; Quirynen, M

    Background: Porphyromonas gingivalis, a key pathogen in periodontitis, is able to adhere to and invade the pocket epithelium. Different capsular antigens of P gingivalis have been identified (K-serotyping). These P gingivalis capsular types show differences in adhesion capacity to human cell lines

  13. Electrical engineering a pocket reference

    CERN Document Server

    Schmidt-Walter, Heinz

    2007-01-01

    This essential reference offers you a well-organized resource for accessing the basic electrical engineering knowledge you need for your work. Whether you're an experienced engineer who appreciates an occasional refresher in key areas, or a student preparing to enter the field, Electrical Engineering: A Pocket Reference provides quick and easy access to fundamental principles and their applications. You also find an extensive collection of time-saving equations that help simplify your daily projects.Supported with more than 500 diagrams and figures, 60 tables, and an extensive index, this uniq

  14. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin

    DEFF Research Database (Denmark)

    Enkavi, Giray; Mikkolainen, Heikki; Güngör, Burçin

    2017-01-01

    remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic......Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has......). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required...

  15. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    Science.gov (United States)

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  16. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide.

    Science.gov (United States)

    Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F

    1999-03-09

    The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.

  17. Pocket money, eating behaviors, and weight status among Chinese children : The Childhood Obesity Study in China mega-cities

    NARCIS (Netherlands)

    Li, Miao; Xue, Hong; Jia, Peng; Zhao, Yaling; Wang, Zhiyong; Xu, Fei; Wang, Youfa

    2017-01-01

    Both the obesity rate and pocket money are rising among children in China. This study examined family correlates of children's pocket money, associations of pocket money with eating behaviors and weight status, and how the associations may be modified by schools' unhealthy food restrictions in urban

  18. Periodontal pocket as a potential reservoir of high risk human papilloma virus: A pilot study

    Directory of Open Access Journals (Sweden)

    Manjunath Mundoor Dayakar

    2016-01-01

    Full Text Available Aim: Human papilloma viruses (HPVs are small DNA viruses that have been identified in periodontal pocket as well as gingival sulcus. High risk HPVs are also associated with a subset of head and neck carcinomas. HPV detection in periodontium has previously involved DNA detection. This study attempts to: (a Detect the presence or absence of high risk HPV in marginal periodontiun by identifying E6/E7 messenger RNA (mRNA in cells from samples obtained by periodontal pocket scraping. (b Detect the percentage of HPV E6/E7 mRNA in cells of pocket scrapings, which is responsible for producing oncoproteins E6 and E7. Materials and Methods: Pocket scrapings from the periodontal pockets of eight subjects with generalized chronic periodontitis were taken the detection of presence or absence of E6, E7 mRNA was performed using in situ hybridization and flow cytometry. Results: HPV E6/E7 mRNA was detected in four of the eight samples. Conclusion: Presence of high risk human papillomaviruses in periodontal pockets patients of diagnosed with chronic periodontitis, not suffering from head and neck squamous cell carcinoma in the present day could link periodontitis to HPV related squamous cell carcinoma. Prevalence studies are needed detecting the presence of HPV in marginal periodontium as well as prospective studies of HPV positive periodontitis patients are required to explore this possible link.

  19. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  20. Medicare Advantage Members' Expected Out-Of-Pocket Spending For Inpatient And Skilled Nursing Facility Services.

    Science.gov (United States)

    Keohane, Laura M; Grebla, Regina C; Mor, Vincent; Trivedi, Amal N

    2015-06-01

    Inpatient and skilled nursing facility (SNF) cost sharing in Medicare Advantage (MA) plans may reduce unnecessary use of these services. However, large out-of-pocket expenses potentially limit access to care and encourage beneficiaries at high risk of needing inpatient and postacute care to avoid or leave MA plans. In 2011 new federal regulations restricted inpatient and skilled nursing facility cost sharing and mandated limits on out-of-pocket spending in MA plans. After these regulations, MA members in plans with low premiums averaged $1,758 in expected out-of-pocket spending for an episode of seven hospital days and twenty skilled nursing facility days. Among members with the same low-premium plan in 2010 and 2011, 36 percent of members belonged to plans that added an out-of-pocket spending limit in 2011. However, these members also had a $293 increase in average cost sharing for an inpatient and skilled nursing facility episode, possibly to offset plans' expenses in financing out-of-pocket limits. Some MA beneficiaries may still have difficulty affording acute and postacute care despite greater regulation of cost sharing. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Medicare Advantage Members’ Expected Out-Of-Pocket Spending For Inpatient And Skilled Nursing Facility Services

    Science.gov (United States)

    Keohane, Laura M.; Grebla, Regina C.; Mor, Vincent; Trivedi, Amal N.

    2015-01-01

    Inpatient and skilled nursing facility (SNF) cost sharing in Medicare Advantage (MA) plans may reduce unnecessary use of these services. However, large out-of-pocket expenses potentially limit access to care and encourage beneficiaries at high risk of needing inpatient and postacute care to avoid or leave MA plans. In 2011 new federal regulations restricted inpatient and skilled nursing facility cost sharing and mandated limits on out-of-pocket spending in MA plans. After these regulations, MA members in plans with low premiums averaged $1,758 in expected out-of-pocket spending for an episode of seven hospital days and twenty skilled nursing facility days. Among members with the same low-premium plan in 2010 and 2011, 36 percent of members belonged to plans that added an out-of-pocket spending limit in 2011. However, these members also had a $293 increase in average cost sharing for an inpatient and skilled nursing facility episode, possibly to offset plans’ expenses in financing out-of-pocket limits. Some MA beneficiaries may still have difficulty affording acute and postacute care despite greater regulation of cost sharing. PMID:26056208

  2. Replantation of fingertip amputation by using the pocket principle in adults.

    Science.gov (United States)

    Lee, P K; Ahn, S T; Lim, P

    1999-04-01

    There are several treatment modalities for zone 1 or zone 2 fingertip amputations that cannot be replanted by using microsurgical techniques, such as delayed secondary healing, stump revision, skin graft, local flaps, distant flaps, and composite graft. Among these, composite graft of the amputated digit tip is the only possible means of achieving a full-length digit with a normal nail complex. The pocket principle can provide an extra blood supply for survival of the composite graft of the amputated finger by enlarging the area of vascular contact. The surgery was performed in two stages. The amputated digit was debrided, deepithelialized, and reattached to the proximal stump. The reattached finger was inserted into the abdominal pocket. About 3 weeks later, the finger was removed from the pocket and covered with a skin graft. We have consecutively replanted 29 fingers in 25 adult patients with fingertip amputations by using the pocket principle. All were complete amputations with crushing or avulsion injuries. Average age was 33.64 years, and men were predominant. The right hand, the dominant one, was more frequently injured, with the middle finger being the most commonly injured. Of the 29 fingers, 16 (55.2 percent) survived completely and 10 (34.5 percent) had partial necrosis less than one-quarter of the length of the amputated part. The results of the above 26 fingers were satisfactory from both functional and cosmetic aspects. Twenty of the 29 fingers, which had been followed up for more than 6 months (an average of 16 months), were included in a sensory evaluation. Fifteen of these 20 fingers (75 percent) were classified as "good" (static two-point discrimination of less than 8 mm and normal use). From the overall results and our experience, we suggest that the pocket principle is a safe and valuable method in replantation of zone 1 or zone 2 fingertip amputation, an alternative to microvascular replantation, even in adults.

  3. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  4. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Science.gov (United States)

    Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji

    2014-01-01

    Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467

  5. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    Science.gov (United States)

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  6. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    Science.gov (United States)

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Investigation of tool engagement and cutting performance in machining a pocket

    Science.gov (United States)

    Adesta, E. Y. T.; Hamidon, R.; Riza, M.; Alrashidi, R. F. F. A.; Alazemi, A. F. F. S.

    2018-01-01

    This study investigates the variation of tool engagement for different profile of cutting. In addition, behavior of cutting force and cutting temperature for different tool engagements for machining a pocket also been explored. Initially, simple tool engagement models were developed for peripheral and slot cutting for different types of corner. Based on these models, the tool engagements for contour and zig zag tool path strategies for a rectangular shape pocket with dimension 80 mm x 60 mm were analyzed. Experiments were conducted to investigate the effect of tool engagements on cutting force and cutting temperature for the machining of a pocket of AISI H13 material. The cutting parameters used were 150m/min cutting speed, 0.05mm/tooth feed, and 0.1mm depth of cut. Based on the results obtained, the changes of cutting force and cutting temperature performance there exist a relationship between cutting force, cutting temperature and tool engagement. A higher cutting force and cutting temperature is obtained when the cutting tool goes through up milling and when the cutting tool makes a full engagement with the workpiece.

  8. Monitoring of Entrance Channel Navigation Improvements at Pentwater, Michigan, and Design Guidance for Pocket Wave Absorbers

    National Research Council Canada - National Science Library

    Thompson, Edward F; Myrick, Glenn B; Zager, Nicholas J; Bottin, Jr., Robert R; Sabol, Margaret A; Selegean, James P; McKinney, James P; Demirbilek, Zeki; Acuff, Jr, Hugh F

    2006-01-01

    .... The objectives of the monitoring effort at Pentwater Harbor were to evaluate the design of existing pocket wave absorbers and to develop better design guidance for future pocket wave absorber projects...

  9. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Role of Electronic Pocket Dictionaries as an English Learning Tool among Chinese Students

    Science.gov (United States)

    Jian, Hua-Li; Sandnes, Frode Eika; Law, Kris M. Y.; Huang, Yo-Ping; Huang, Yueh-Min

    2009-01-01

    This study addressed the role of electronic pocket dictionaries as a language learning tool among university students in Hong Kong and Taiwan. The target groups included engineering and humanities students at both undergraduate and graduate level. Speed of reference was found to be the main motivator for using an electronic pocket dictionary.…

  11. Patients' annual income adequacy, insurance premiums and out-of-pocket expenses related to heart failure care.

    Science.gov (United States)

    Piamjariyakul, Ubolrat; Yadrich, Donna Macan; Russell, Christy; Myer, Jane; Prinyarux, Chanawee; Vacek, James L; Ellerbeck, Edward F; Smith, Carol E

    2014-01-01

    To (1) identify the amount patients spend for insurance premiums, co-payments, deductibles, and other out-of-pocket costs related to HF and chronic health care services and estimate their annual non-reimbursed and out-of-pocket costs; and (2) identify patients' concerns about nonreimbursed and out-of-pocket expenses. HF is one of the most expensive illnesses for our society with multiple health services and financial burdens for families. Mixed methods with quantitative questionnaires and qualitative interviews. Patients (N = 149) reported annual averages for non-reimbursed health services co-payments and out-of-pocket costs ranging from $3913 to $5829 depending on insurance coverage. Thirty one patients (21%) reported inadequate health coverage related to their non-reimbursed costs. Non-reimbursed costs related to HF care are substantial and vary depending on their insurance, health services use, and out-of-pocket costs. Patient referral to social services to assist with expenses could provide some relief from the burden of high HF-related costs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. PERENCANAAN SAND POCKET SEBAGAI BANGUNAN PENGENDALI ALIRAN SEDIMEN DI KALI OPAK YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    Yeri Sutopo

    2016-07-01

    Full Text Available This research conducted in Opak River, in Yogyakarta. This river has broad (river flow area 27,04 km2, and 20,11 km in length. The research objective is to make a planning about effective rainfall in 50 years and found the Opak Sand Pocket design. This research used methods with direct-survey in location, and collected secondary data from related agencies. From the data, it was obtained the value of precipitation the design, discharge flood design, dimensions of building hydrolic design (Main Dam, Sub Dam, Apron, and analysis the effectiveness of sand pocket in reducing the sediment that has happened. Based on the results of the research, discharge maximum ( Q50 that occurs in the river of 202,77 m3/s. So it can be calculated that sand pocket designed will have wide of apron 54,04 m, with total high of Main Dam 6 m, total high of Sub Dam 6 m, length of apron 10 m, thick of apron 0,96 m. Based on the ability of sand pocket in reducing the rate of the sediment that is happened, the building has effectiveness until 90,20 % in reducing bed load based on the calculation. Therefore, it can be argued that the building has been effective to reduce the speed of sediment occurring in Opak River.

  13. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    Science.gov (United States)

    Strecker, Claas; Meyer, Bernd

    2018-05-02

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  14. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Taymans

    Full Text Available Leucine rich repeat kinase 2 (LRRK2 is a Parkinson's disease (PD gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  15. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function.

    Directory of Open Access Journals (Sweden)

    Jérôme Beaufays

    Full Text Available BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM, similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.

  16. A pocket type thermoluminescent personnel dosimeter

    International Nuclear Information System (INIS)

    Vora, K.G.; Nagpal, J.S.; Pendurkar, H.K.; Gangadharan, P.

    1979-01-01

    A pocket type thermoluminescent personnel dosemeter using CaSO 4 : Dy phosphor is described. Two glass capillaries containing the phosphor are fitted into a plastic tube and covered by a cylindrical filter. The combination is fitted into an ink barrel of a fountain pen. The response of this Dy glass dosimeter was studied for various incident photon energies. A uniform response over the energy range from 33 keV to 1250 keV is achieved. (A.K.)

  17. Identifying features of pocket parks that may be related to health promoting use

    DEFF Research Database (Denmark)

    Peschardt, Karin Kragsig; Stigsdotter, Ulrika K.; Schipperijn, Jasper

    2016-01-01

    . The results show that ‘green features’ do not seem to be of crucial importance for ‘socialising’ whereas, as expected, features promoting gathering should be prioritised. For ‘rest and restitution’, the main results show that ‘green ground cover’ and ‘enclosed green niches’ are important, while ‘disturbing......Urban green spaces have been shown to promote health and well-being and recent research indicates that the two primary potentially health promoting uses of pocket parks are ‘rest and restitution’ and ‘socialising’. The aim of this study is to identify features in pocket parks that may support...... features’ (playground, view outside park) should be avoided. The results add knowledge about the features which support the health promoting use of pocket parks to the existing body of research....

  18. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach.

    Science.gov (United States)

    Sanusi, Z K; Govender, T; Maguire, G E M; Maseko, S B; Lin, J; Kruger, H G; Honarparvar, B

    2017-09-01

    Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?G bind ) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. pH-tuneable binding of 2'-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study.

    Science.gov (United States)

    Ciulli, Alessio; Lobley, Carina M C; Tuck, Kellie L; Smith, Alison G; Blundell, Tom L; Abell, Chris

    2007-02-01

    The crystal structure of Escherichia coli ketopantoate reductase in complex with 2'-monophosphoadenosine 5'-diphosphoribose, a fragment of NADP+ that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP+, with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ;reversed binding mode' observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes.

  20. Variables relating to the allocation of pocket money to children: parental reasons and values.

    Science.gov (United States)

    Feather, N T

    1991-09-01

    This study was concerned with relations among parents' beliefs, values and practices in regard to the allocation of pocket money to their children. Mothers and fathers in 133 Adelaide families provided information about the pocket money allowance they gave to each child in their family and they completed items designed to measure the importance of various possible reasons for their allocations (family concern, independence training, child's needs), as well as items that assessed value dimensions (work ethic, social welfare, compassion). Results showed that social welfare values were associated with family concern reasons, and that individualistic work ethic values were associated with independence training reasons but were antagonistic to reasons concerned with meeting the child's needs. The amount of pocket money provided was positively related to both the age of the child and to the importance of family concern reasons. Parents saw independence training and meeting the child's needs as more important reasons for older children and mothers emphasized children's needs more than fathers. These results were discussed in relation to other research on distributive justice, allocation decisions, pocket money and household tasks.

  1. Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive "Lid".

    Directory of Open Access Journals (Sweden)

    Ney Ribeiro Leite

    Full Text Available BACKGROUND: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. METHODOLOGY: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 A resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. CONCLUSION: The structure of AaegOBP1 ( = AaegOBP39 shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors. A C-terminal loop covers the binding cavity and this "lid" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

  2. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    Science.gov (United States)

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, pacid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, preflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  3. Windows Vista Administrator's Pocket Guide

    CERN Document Server

    Stanek, William R

    2007-01-01

    Portable and precise, this pocket-sized guide delivers immediate answers for the day-to-day administration of Windows Vista. Zero in on core support and maintenance tasks using quick-reference tables, instructions, and lists. You'll get the precise information you need to solve problems and get the job done-whether you're at your desk or in the field! Get fast facts to: Install and configure Windows Vista-and optimize the user workspaceMaintain operating system components, hardware devices, and driversCreate user and group accounts-and control rights and permissionsAdminister group policy se

  4. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.

    Science.gov (United States)

    Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor

    2017-05-24

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how

  5. Book Review: Nelson Mandela: A Jacana Pocket Biography ...

    African Journals Online (AJOL)

    Book Title: Nelson Mandela: A Jacana Pocket Biography. Author: Colin Bundy. Jacana: Auckland Park, 2015. 159 pp. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  6. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach

    NARCIS (Netherlands)

    Rohof, Wout O.; Bennink, Roelof J.; Boeckxstaens, Guy E.

    2014-01-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease

  7. ISO27001 / ISO27002 a pocket guide

    CERN Document Server

    Calder, Alan

    2013-01-01

    Information is one of your organisation's most important resources. Keeping it secure is therefore vital to your business. This handy pocket guide is an essential overview of two key information security standards that cover the formal requirements (ISO27001:2013) for creating an Information Security Management System (ISMS), and the best-practice recommendations (ISO27002:2013) for those responsible for initiating, implementing or maintaining it.

  8. Pocket Money: Influence on Body Mass Index and Dental Caries among Urban Adolescents.

    Science.gov (United States)

    Punitha, V C; Amudhan, A; Sivaprakasam, P; Rathnaprabhu, V

    2014-12-01

    To explore the influence of pocket money on Dental Caries and Body Mass Index. A cross-sectional study was conducted wherein urban adolescent schoolchildren of age 13-18(n=916) were selected by two stage random sampling technique. Dental caries was measured using the DMFT Index. The children's nutritional status was assessed by means of anthropometric measurements. Body Mass Index using weight and height of children was evaluated using the reference standard of the WHO 2007. RESULTS showed that 50% of children receive pocket money from parents. The average amount received was Rs. 360/month. There was a significant correlation between age and amount of money received (r=0.160, p=.001). The average amount received by male children was significantly higher (Rs. 400) when compared to female children (Rs. 303). It was observed that income of the family (>30,000 Rs./month) and socioeconomic status (Upper class) was significantly dependent on the amount of money received by children (ppocket money or not. When BMI categories and pocket money were considered, statistically significant difference was seen among overweight and obese and normal weight children (ppocket money from parents could influence their eating habits in turn affect general health. Parents and teachers should motivate children on healthy spending of their pocket money.

  9. Pocket pathologist: A mobile application for rapid diagnostic surgical pathology consultation

    Directory of Open Access Journals (Sweden)

    Douglas J Hartman

    2014-01-01

    Full Text Available Introduction: Telepathology allows the digital transmission of images for rapid access to pathology experts. Recent technologic advances in smartphones have allowed them to be used to acquire and transmit digital images of the glass slide, representing cost savings and efficiency gains over traditional forms of telepathology. We report our experience with developing an iPhone application (App - Pocket Pathologist to facilitate rapid diagnostic pathology teleconsultation utilizing a smartphone. Materials and Methods: A secure, web-based portal (http://pathconsult.upmc.com/ was created to facilitate remote transmission of digital images for teleconsultation. The App augments functionality of the web-based portal and allows the user to quickly and easily upload digital images for teleconsultation. Image quality of smartphone cameras was evaluated by capturing images using different adapters that directly attach phones to a microscope ocular lens. Results: The App was launched in August 2013. The App facilitated easy submission of cases for teleconsultation by limiting the number of data entry fields for users and enabling uploading of images from their smartphone′s gallery wirelessly. Smartphone cameras properly attached to a microscope create static digital images of similar quality to a commercial digital microscope camera. Conclusion: Smartphones have great potential to support telepathology because they are portable, provide ubiquitous internet connectivity, contain excellent digital cameras, and can be easily attached to a microscope. The Pocket Pathologist App represents a significant reduction in the cost of creating digital images and submitting them for teleconsultation. The iPhone App provides an easy solution for global users to submit digital pathology images to pathology experts for consultation.

  10. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    Science.gov (United States)

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  11. Src binds cortactin through an SH2 domain cystine-mediated linkage

    Science.gov (United States)

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  12. Src binds cortactin through an SH2 domain cystine-mediated linkage.

    Science.gov (United States)

    Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A

    2012-12-15

    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.

  13. An integrated strategy for improving contrast, durability, and portability of a Pocket Colposcope for cervical cancer screening and diagnosis

    Science.gov (United States)

    Mueller, Jenna; Asma, Betsy; Asiedu, Mercy; Krieger, Marlee S.; Chitalia, Rhea; Dahl, Denali; Taylor, Peyton; Schmitt, John W.; Ramanujam, Nimmi

    2018-01-01

    Introduction We have previously developed a portable Pocket Colposcope for cervical cancer screening in resource-limited settings. In this manuscript we report two different strategies (cross-polarization and an integrated reflector) to improve image contrast levels achieved with the Pocket Colposcope and evaluate the merits of each strategy compared to a standard-of-care digital colposcope. The desired outcomes included reduced specular reflection (glare), increased illumination beam pattern uniformity, and reduced electrical power budget. In addition, anti-fogging and waterproofing features were incorporated to prevent the Pocket Colposcope from fogging in the vaginal canal and to enable rapid disinfection by submersion in chemical agents. Methods Cross-polarization (Generation 3 Pocket Colposcope) and a new reflector design (Generation 4 Pocket Colposcope) were used to reduce glare and improve contrast. The reflector design (including the angle and height of the reflector sidewalls) was optimized through ray-tracing simulations. Both systems were characterized with a series of bench tests to assess specular reflection, beam pattern uniformity, and image contrast. A pilot clinical study was conducted to compare the Generation 3 and 4 Pocket Colposcopes to a standard-of-care colposcope (Leisegang Optik 2). Specifically, paired images of cervices were collected from the standard-of-care colposcope and either the Generation 3 (n = 24 patients) or the Generation 4 (n = 32 patients) Pocket Colposcopes. The paired images were blinded by device, randomized, and sent to an expert physician who provided a diagnosis for each image. Corresponding pathology was obtained for all image pairs. The primary outcome measures were the level of agreement (%) and κ (kappa) statistic between the standard-of-care colposcope and each Pocket Colposcope (Generation 3 and Generation 4). Results Both generations of Pocket Colposcope had significantly higher image contrast when compared to

  14. An integrated strategy for improving contrast, durability, and portability of a Pocket Colposcope for cervical cancer screening and diagnosis.

    Directory of Open Access Journals (Sweden)

    Christopher T Lam

    Full Text Available We have previously developed a portable Pocket Colposcope for cervical cancer screening in resource-limited settings. In this manuscript we report two different strategies (cross-polarization and an integrated reflector to improve image contrast levels achieved with the Pocket Colposcope and evaluate the merits of each strategy compared to a standard-of-care digital colposcope. The desired outcomes included reduced specular reflection (glare, increased illumination beam pattern uniformity, and reduced electrical power budget. In addition, anti-fogging and waterproofing features were incorporated to prevent the Pocket Colposcope from fogging in the vaginal canal and to enable rapid disinfection by submersion in chemical agents.Cross-polarization (Generation 3 Pocket Colposcope and a new reflector design (Generation 4 Pocket Colposcope were used to reduce glare and improve contrast. The reflector design (including the angle and height of the reflector sidewalls was optimized through ray-tracing simulations. Both systems were characterized with a series of bench tests to assess specular reflection, beam pattern uniformity, and image contrast. A pilot clinical study was conducted to compare the Generation 3 and 4 Pocket Colposcopes to a standard-of-care colposcope (Leisegang Optik 2. Specifically, paired images of cervices were collected from the standard-of-care colposcope and either the Generation 3 (n = 24 patients or the Generation 4 (n = 32 patients Pocket Colposcopes. The paired images were blinded by device, randomized, and sent to an expert physician who provided a diagnosis for each image. Corresponding pathology was obtained for all image pairs. The primary outcome measures were the level of agreement (% and κ (kappa statistic between the standard-of-care colposcope and each Pocket Colposcope (Generation 3 and Generation 4.Both generations of Pocket Colposcope had significantly higher image contrast when compared to the standard

  15. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Yuzhen Niu

    Full Text Available As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1 protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S-crizotinib against MTH1 is about 20 times over that of (R-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA and Adaptive biasing force (ABF methodologies is much lower than that of (R-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S-crizotinib and (R-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S-crizotinib to MTH1. The adaptive biasing force (ABF method was further employed to elucidate the unbinding process of (S-crizotinib and (R-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S-crizotinib from the binding pocket is different from (R-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.

  16. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  17. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.

    Science.gov (United States)

    Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca

    2017-08-07

    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of

  18. Football Sticker Markets: An Insight into Pocket Money Budgets.

    Science.gov (United States)

    Hurd, Stephen J.

    1985-01-01

    Formal and informal markets for football stickers and children's pocket money budgets are discussed. Included is a questionnaire that can be used by junior high school students to investigate these topics locally. The materials have been successfully used in the classroom. (Author/RM)

  19. Python pocket reference, version 2.4

    CERN Document Server

    Lutz, Mark

    2005-01-01

    Python is optimized for quality, productivity, portability, and integration. Hundreds of thousands of Python developers around the world rely on Python for general-purpose tasks, Internet scripting, systems programming, user interfaces, and product customization. Available on all major computing platforms, including commercial versions of Unix, Linux, Windows, and Mac OS X, Python is portable, powerful and remarkable easy to use. With its convenient, quick-reference format, Python Pocket Reference, 3rd Edition is the perfect on-the-job reference. More importantly, it's now been refreshed

  20. Botulinum neurotoxin G binds synaptotagmin-II in a mode similar to that of serotype B: tyrosine 1186 and lysine 1191 cause its lower affinity.

    Science.gov (United States)

    Willjes, Gesche; Mahrhold, Stefan; Strotmeier, Jasmin; Eichner, Timo; Rummel, Andreas; Binz, Thomas

    2013-06-04

    Botulinum neurotoxins (BoNTs) block neurotransmitter release by proteolyzing SNARE proteins in peripheral nerve terminals. Entry into neurons occurs subsequent to interaction with gangliosides and a synaptic vesicle protein. Isoforms I and II of synaptotagmin were shown to act as protein receptors for two of the seven BoNT serotypes, BoNT/B and BoNT/G, and for mosaic-type BoNT/DC. BoNT/B and BoNT/G exhibit a homologous binding site for synaptotagmin whose interacting part adopts helical structure upon binding to BoNT/B. Whereas the BoNT/B-synaptotagmin-II interaction has been elucidated in molecular detail, corresponding information about BoNT/G is lacking. Here we systematically mutated the synaptotagmin binding site in BoNT/G and performed a comparative binding analysis with mutants of the cell binding subunit of BoNT/B. The results suggest that synaptotagmin takes the same overall orientation in BoNT/B and BoNT/G governed by the strictly conserved central parts of the toxins' binding site. The surrounding nonconserved areas differently contribute to receptor binding. Reciprocal mutations Y1186W and L1191Y increased the level of binding of BoNT/G approximately to the level of BoNT/B affinity, suggesting a similar synaptotagmin-bound state. The effects of the mutations were confirmed by studying the activity of correspondingly mutated full-length BoNTs. On the basis of these data, molecular modeling experiments were employed to reveal an atomistic model of BoNT/G-synaptotagmin recognition. These data suggest a reduced length and/or a bend in the C-terminal part of the synaptotagmin helix that forms upon contact with BoNT/G as compared with BoNT/B and are in agreement with the data of the mutational analyses.

  1. Pocket money and child effort at school

    OpenAIRE

    François-Charles Wolff; Christine Barnet-Verzat

    2008-01-01

    In this paper, we study the relationship between the provision of parental pocket and the level of effort undertaken by the child at school. Under altruism, an increased amount of parental transfer should reduce the child's effort. Our empirical analysis is based on a French data set including about 1,400 parent-child pairs. We find that children do not undertake less effort when their parents are more generous.

  2. Results on Laplacian spectra of graphs with pockets

    Directory of Open Access Journals (Sweden)

    Sasmita Barik

    2018-04-01

    Full Text Available Let F , H v be simple connected graphs on n and m + 1 vertices, respectively. Let v be a specified vertex of H v and u 1 , … , u k ∈ F . Then the graph G = G [ F , u 1 , … , u k , H v ] obtained by taking one copy of F and k copies of H v , and then attaching the i th copy of H v to the vertex u i , i = 1 , … , k , at the vertex v of H v (identify u i with the vertex v of the i th copy is called a graph with k pockets. In 2008, Barik raised the question that ‘how far can the Laplacian spectrum of G be described by using the Laplacian spectra of F and H v ?’ and discussed the case when deg ( v = m in H v . In this article, we study the problem for more general cases and describe the Laplacian spectrum. As an application, we construct new nonisomorphic Laplacian cospectral graphs from the known ones. Keywords: Laplacian matrix, Laplacian spectrum, Join, Pockets

  3. Oracle Data Dictionary Pocket Reference

    CERN Document Server

    Kreines, David

    2003-01-01

    If you work with Oracle, then you don't need to be told that the data dictionary is large and complex, and grows larger with each new Oracle release. It's one of the basic elements of the Oracle database you interact with regularly, but the sheer number of tables and views makes it difficult to remember which view you need, much less the name of the specific column. Want to make it simpler? The Oracle Data Dictionary Pocket Reference puts all the information you need right at your fingertips. Its handy and compact format lets you locate the table and view you need effortlessly without stoppin

  4. Pocket atlas of radiographic anatomy

    International Nuclear Information System (INIS)

    Moeller, T.B.; Reif, E.; Stark, P.

    1993-01-01

    The 'Pocket Atlas of Radiographic Anatomy' presents 170 radiographs of the various body regions of adults, showing only the normal radiographic anatomy. Each radiograph is supplemented on the opposite page by a drawing of the particular body region. There is no commenting text, but the drawings are provided with captions in English. The atlas is a useful guide for interpreting radiographs. The pictures are arranged in chapters entitled as follows: Skeletal Imaging (skull, spine, upper extremity), lower extremity; Miscellaneous Plain Films (chest, mammogram, trachea, lung tomograms); Contrast Examinations (gastrointestinal tract, intravenous contrast examinations, arthrography, angiography); Special Examinations (myelograms, lymphangiograms, bronchograms, sialograms). (UWA). 348 figs [de

  5. Pocket atlas of dental radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, F.A. [Geneva Univ. (Switzerland). Dept. of Radiology, Dental Institute; Visser, H. [Goettingen Univ. (Germany). Dental School

    2007-07-01

    In this age of highly specialized medical imaging, an examination of the teeth and alveolar bone is almost unthinkable without the use of radiographs. This highly informative and easy-to-read book with a collection of 798 radiographs, tables, and photos provides a myriad of problem-solving tips concerning the fundamentals of radiographic techniques, quality assurance, image processing, radiographic anatomy, and radiographic diagnosis. Information is easy to find, enabling the reader to literally get a grasp of essential new knowledge in next to no time. The dental practice team now has a pocket 'consultant' at its fingertips, providing practical ways to incorporate new technique into daily practice. (orig.)

  6. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  7. An alginate-antacid formulation localizes to the acid pocket to reduce acid reflux in patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Rohof, Wout O; Bennink, Roel J; Smout, Andre J P M; Thomas, Edward; Boeckxstaens, Guy E

    2013-12-01

    Alginate rafts (polysaccharide polymers that precipitate into a low-density viscous gel when they contact gastric acid) have been reported to form at the acid pocket, an unbuffered pool of acid that floats on top of ingested food and causes postprandial acid reflux. We studied the location of an alginate formulation in relation to the acid pocket and the corresponding effects on reflux parameters and acid pocket positioning in patients with gastroesophageal reflux disease (GERD). We randomly assigned patients with symptomatic GERD and large hiatal hernias to groups who were given either (111)In-labeled alginate-antacid (n = 8, Gaviscon Double Action Liquid) or antacid (n = 8, Antagel) after a standard meal. The relative positions of labeled alginate and acid pocket were analyzed for 2 hours by using scintigraphy; reflux episodes were detected by using high-resolution manometry and pH-impedance monitoring. The alginate-antacid label localized to the acid pocket. The number of acid reflux episodes was significantly reduced in patients receiving alginate-antacid (3.5; range, 0-6.5; P = .03) compared with those receiving antacid (15; range, 5-20), whereas time to acid reflux was significantly increased in patients receiving alginate-antacid (63 minutes; range, 23-92) vs those receiving antacid (14 minutes; range, 9-23; P = .01). The acid pocket was located below the diaphragm in 71% of patients given alginate-antacid vs 21% of those given antacid (P = .08). There was an inverse correlation between a subdiaphragm position of the acid pocket and acid reflux (r = -0.76, P acid pocket and displaces it below the diaphragm to reduce postprandial acid reflux. These findings indicate the importance of the acid pocket in GERD pathogenesis and establish alginate-antacid as an appropriate therapy for postprandial acid reflux. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Out-of-pocket healthcare payments on chronic conditions impoverish urban poor in Bangalore, India

    Directory of Open Access Journals (Sweden)

    Bhojani Upendra

    2012-11-01

    Full Text Available Abstract Background The burden of chronic conditions is on the rise in India, necessitating long-term support from healthcare services. Healthcare, in India, is primarily financed through out-of-pocket payments by households. Considering scarce evidence available from India, our study investigates whether and how out-of-pocket payments for outpatient care affect individuals with chronic conditions. Methods A large census covering 9299 households was conducted in Bangalore, India. Of these, 3202 households that reported presence of chronic condition were further analysed. Data was collected using a structured household-level questionnaire. Out-of-pocket payments, catastrophic healthcare expenditure, and the resultant impoverishment were measured using a standard technique. Results The response rate for the census was 98.5%. Overall, 69.6% (95%CI=68.0-71.2 of households made out-of-pocket payments for outpatient care spending a median of 3.2% (95%CI=3.0-3.4 of their total income. Overall, 16% (95%CI=14.8-17.3 of households suffered financial catastrophe by spending more than 10% of household income on outpatient care. Occurrence and intensity of financial catastrophe were inequitably high among poor. Low household income, use of referral hospitals as place for consultation, and small household size were associated with a greater likelihood of incurring financial catastrophe. The out-of-pocket spending on chronic conditions doubled the number of people living below the poverty line in one month, with further deepening of their poverty. In order to cope, households borrowed money (4.2% instances, and sold or mortgaged their assets (0.4% instances. Conclusions This study provides evidence from India that the out-of-pocket payment for chronic conditions, even for outpatient care, pushes people into poverty. Our findings suggest that improving availability of affordable medications and diagnostics for chronic conditions, as well as strengthening the

  9. Out-of-pocket healthcare payments on chronic conditions impoverish urban poor in Bangalore, India.

    Science.gov (United States)

    Bhojani, Upendra; Thriveni, Bs; Devadasan, Roopa; Munegowda, Cm; Devadasan, Narayanan; Kolsteren, Patrick; Criel, Bart

    2012-11-16

    The burden of chronic conditions is on the rise in India, necessitating long-term support from healthcare services. Healthcare, in India, is primarily financed through out-of-pocket payments by households. Considering scarce evidence available from India, our study investigates whether and how out-of-pocket payments for outpatient care affect individuals with chronic conditions. A large census covering 9299 households was conducted in Bangalore, India. Of these, 3202 households that reported presence of chronic condition were further analysed. Data was collected using a structured household-level questionnaire. Out-of-pocket payments, catastrophic healthcare expenditure, and the resultant impoverishment were measured using a standard technique. The response rate for the census was 98.5%. Overall, 69.6% (95%CI=68.0-71.2) of households made out-of-pocket payments for outpatient care spending a median of 3.2% (95%CI=3.0-3.4) of their total income. Overall, 16% (95%CI=14.8-17.3) of households suffered financial catastrophe by spending more than 10% of household income on outpatient care. Occurrence and intensity of financial catastrophe were inequitably high among poor. Low household income, use of referral hospitals as place for consultation, and small household size were associated with a greater likelihood of incurring financial catastrophe.The out-of-pocket spending on chronic conditions doubled the number of people living below the poverty line in one month, with further deepening of their poverty. In order to cope, households borrowed money (4.2% instances), and sold or mortgaged their assets (0.4% instances). This study provides evidence from India that the out-of-pocket payment for chronic conditions, even for outpatient care, pushes people into poverty. Our findings suggest that improving availability of affordable medications and diagnostics for chronic conditions, as well as strengthening the gate keeping function of the primary care services are important

  10. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins

    International Nuclear Information System (INIS)

    Hoffman, D.W.; Query, C.C.; Golden, B.L.; White, S.W.; Keene, J.D.

    1991-01-01

    An RNA recognition motif (RRM) of ∼80 amino acids constitutes the core of RNA-binding domains found in a large family of proteins involved in RNA processing. The U1 RNA-binding domain of the A protein component of the human U1 small nuclear ribonucleoprotein (RNP), which encompasses the RRM sequence, was analyzed by using NMR spectroscopy. The domain of the A protein is a highly stable monomer in solution consisting of four antiparallel β-strands and two α-helices. The highly conserved RNP1 and RNP2 consensus sequences, containing residues previously suggested to be involved in nucleic acid binding, are juxtaposed in adjacent β-strands. Conserved aromatic side chains that are critical for RNA binding are clustered on the surface to the molecule adjacent to a variable loop that influences recognition of specific RNA sequences. The secondary structure and topology of the RRM are similar to those of ribosomal proteins L12 and L30, suggesting a distant evolutionary relationship between these two types of RNA-associated proteins

  11. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles

    Czech Academy of Sciences Publication Activity Database

    Grones, P.; Chen, X.; Simon, S.; Kaufmann, W.A.; De Rycke, R.; Nodzyński, T.; Zažímalová, Eva; Friml, J.

    2015-01-01

    Roč. 66, č. 16 (2015), s. 5055-5065 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Auxin * ABP1 * Auxin binding Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.677, year: 2015

  12. Effect of soy addition on microwavable pocket-type flat doughs.

    Science.gov (United States)

    Serventi, Luca; Sachleben, Joseph; Vodovotz, Yael

    2011-01-01

    Microwavable frozen baked goods are widely used by the food industry. However, the altered heat and mass transfer patterns associated with microwave radiation result in tough and rubbery baked products due to reduced plasticization of the polymers. Ingredients with high water-holding capacity and high content of polar lipids have been shown to enhance gluten plasticization and to improve water retention. Therefore, this study explored the physicochemical changes imparted by microwave baking of pocket-type flat doughs with and without soy added at 10%, 20%, and 26% and compared these to their conventionally baked counterparts. Microwave baking resulted in a soft, rubbery, and tough wheat product with increased "freezable" water. Soy was added to the formulation as a means to improve polymer plasticization. Conventional baking of soy doughs resulted in rubbery and tough products due to changes in water state and mobility (freezable water approximately 15 compared with 7.09 of the control). However, soy reduced the cohesiveness of the microwave baked products reaching the lowest value at 20% soy addition (cohesiveness 0.33 ± 1, comparable to that of the conventionally baked control). These data suggest that reduction of water mobility induced by soy proteins and polar lipids (confirmed by thermogravimetric analysis [TGA] and ¹H nuclear magnetic resonance [¹H NMR]) possibly plasticized the starch-gluten network of microwave baked soy doughs. Thus, soy was shown to improve the texture of microwave baked pocket-type flat doughs although further formula optimization is warranted. Microwavable pocket-type flat doughs are used frequently by the food industry to enrobe meat, vegetable, and sweet items for convenient meal delivery. Microwave heating of such doughs induces the development of crustless products compared to conventionally baked products, resulting in a tough and rubbery texture. Partial substitution of wheat flour with soy, in the form of soy flour and soy

  13. Sonographic assessment of predictors of depth of the corner pocket for ultrasound-guided supraclavicular brachial plexus block

    Directory of Open Access Journals (Sweden)

    Naveen Yadav

    2016-01-01

    Conclusion: Prescanning of supraclavicular region for estimating depth of corner pocket should be done before choosing an appropriate size needle. Furthermore, the needle should not be advanced more than the predicted corner pocket depth.

  14. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    Science.gov (United States)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  15. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period

    NARCIS (Netherlands)

    Rohof, W. O.; Bennink, R. J.; de Ruigh, A. A.; Hirsch, D. P.; Zwinderman, A. H.; Boeckxstaens, G. E.

    2012-01-01

    Background The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. Objective To study the effect of azithromycin (Azi)

  16. Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism.

    Science.gov (United States)

    Riddell, Imogen A; Smulders, Maarten M J; Clegg, Jack K; Hristova, Yana R; Breiner, Boris; Thoburn, John D; Nitschke, Jonathan R

    2012-09-01

    Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.

  17. Newnes radio and electronics engineer's pocket book

    CERN Document Server

    Moorshead, H W; Perry, J

    1978-01-01

    Newnes Radio and Electronics Engineer's Pocket Book, Fifteenth Edition provides reference of the information relevant in radio and electronics engineering. The book presents tables, illustrations, and diagrams of various data used in radio and electronics engineering. The coverage of the text includes abbreviations and symbols, electrical equations, and code conversions. The text will be useful to engineers, technicians, and other professionals who require a reference about the different aspects of radio and electronics.

  18. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  19. Suicide with One Cranial Gunshot by a .320 Caliber Pocket Revolver

    Directory of Open Access Journals (Sweden)

    Lucia Tattoli

    2015-05-01

    Full Text Available Suicide using a firearm is the most commonly used method of committing suicide for men and women. In this paper, we present and discuss a suicide case in which an 86-year-old man shot himself using a .320 caliber pocket revolver. Proper crime scene investigation, recovery of the weapon used, and precise interpretation of autopsy findings play a fundamental role in determining the exact cause and manner of death. Accurate analysis of the injuries and a thorough knowledge of weapons and ballistics are essential for an adequate investigation in these unusual cases. To the best of our knowledge, this is the first report of a cranial gunshot inflicted by a .320 caliber pocket revolver.

  20. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    Science.gov (United States)

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-06

    suggest that reversal of a negative charge at a pocket has a larger effect on stability than a similar reversal at a protrusion and that this difference arises largely from short-range interactions with polar groups within the pocket, rather than long-range interactions with solvent-exposed charged groups.

  1. Case of pacemaker pocket infection caused by Finegoldia magna.

    Science.gov (United States)

    Hosseini Dehkordi, Seyed Hamed; Osorio, Georgina

    2017-10-01

    Finegoldia magna (formerly called Peptostreptococcus magnus) is a Gram-positive anaerobic coccus which is increasingly recognized as an opportunistic pathogen. We present a case of F. magna associated non-valvular cardiovascular device-related infection in an 83 year-old male who received a permanent pacemaker for sick sinus syndrome seven weeks prior to his presentation. Five weeks after the implantation, the pacemaker and leads were explanted because of clinical evidence of pacemaker pocket infection. He was initially treated with sulfamethoxazole-trimethoprim based on the Gram stain results from the removed pacemaker. However, two weeks later, he was readmitted with sepsis and was successfully treated with ampicillin-sulbactam. Culture results from the pacemaker and pocket as well as blood cultures grew F. magna. Clinicians should be aware of the possibility of F. magna infection when initial gram stain results show "gram positive cocci". Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Skin lesions over the pocket area that may mimic cardiac implantable electronic device infection: A case series.

    Science.gov (United States)

    Korantzopoulos, Panagiotis; Plakoutsi, Sofia; Florou, Elizabeth; Bechlioulis, Aris

    2018-05-21

    The early and correct diagnosis of cardiac implantable electronic device (CIED) infections is critical given that early aggressive treatment with complete removal of the system along with antimicrobial therapy dramatically improves outcomes. Pocket infection manifested by local signs of inflammation is the most common form of CIED infections. Conditions mimicking pocket infection have been described in the literature. These include various types of malignancy and rarely allergic reactions/contact dermatitis to pacemaker compounds. We aimed to describe skin lesions and disorders over the pocket area that mimic CIED infection. We present a series of 5 cases with skin lesions that mimic pocket infection. We document these cases with corresponding photographs. Most of them have not been described in this setting. We report the following cases of conditions that proved not to be CIED infection: One case of superficial cellulitis, one case of herpes zoster over the pocket area, one case of spontaneous bruising over the pocket a long time after implantation in a patient taking oral anticoagulation, and 2 cases of contact dermatitis due to prolonged postoperative application of povidone iodine. All cases had favorable outcome after conservative treatment and no CIED infection was developed during follow-up. Clinicians should be aware of rare conditions that mimic CIED infection. Incorrect diagnosis of these disorders may falsely lead to CIED extraction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Women Saw Large Decrease In Out-Of-Pocket Spending For Contraceptives After ACA Mandate Removed Cost Sharing.

    Science.gov (United States)

    Becker, Nora V; Polsky, Daniel

    2015-07-01

    The Affordable Care Act mandates that private health insurance plans cover prescription contraceptives with no consumer cost sharing. The positive financial impact of this new provision on consumers who purchase contraceptives could be substantial, but it has not yet been estimated. Using a large administrative claims data set from a national insurer, we estimated out-of-pocket spending before and after the mandate. We found that mean and median per prescription out-of-pocket expenses have decreased for almost all reversible contraceptive methods on the market. The average percentages of out-of-pocket spending for oral contraceptive pill prescriptions and intrauterine device insertions by women using those methods both dropped by 20 percentage points after implementation of the ACA mandate. We estimated average out-of-pocket savings per contraceptive user to be $248 for the intrauterine device and $255 annually for the oral contraceptive pill. Our results suggest that the mandate has led to large reductions in total out-of-pocket spending on contraceptives and that these price changes are likely to be salient for women with private health insurance. Project HOPE—The People-to-People Health Foundation, Inc.

  4. Proton NMR investigation of heme pocket mobility in hemoglobin via hydrogen isotope exchange kinetics

    International Nuclear Information System (INIS)

    Han, K.

    1985-01-01

    Dynamic mobility of heme cavity, the active site of Hb, was investigated by analyzing the hydrogen isotope exchange kinetics of the proximal histidyl ring NH of various kinds of Hbs with the aid of the high field Fourier Transform 1 H NMR spectroscopy. The exchange reaction occurs faster in oxy or R-state Hb than in deoxy or T-state Hb and there exists a good correlation between the oxygen affinity of Hb and the heme pocket mobility reflected in the hydrogen exchange rate. The effect of pH on the exchange is dramatically different for the two subunits of Hb A. Studying the exchange characteristics of mutant Hbs and chemically modified Hbs not only showed the existence of three well-defined localized paths for transmission of conformational changes between different heme pockets through a 1 b 2 subunit interface, but also indicated that the heme pocket mobility is regulated by the quaternary state of Hb as well as by the ligation state of Hb. Finally, the effect of the quaternary state on the heme pocket mobility is separated from that of the ligation by following the exchange reactions in Hbs where only their quaternary structure transition can be achieved without changing their ligation states by adjusting experimental conditions such as adding inositol hexaphosphate

  5. Out-of-pocket payments for health care services in Bulgaria: financial burden and barrier to access.

    Science.gov (United States)

    Atanasova, Elka; Pavlova, Milena; Moutafova, Emanuela; Rechel, Bernd; Groot, Wim

    2013-12-01

    In recent years, Bulgaria has increasingly relied on out-of-pocket payments as one of the main sources of health care financing. However, it is largely unknown whether the official patient charges, combined with informal payments, are affordable for the population. Our study aimed to explore the scale of out-of-pocket payments for health care services and their affordability. Data were collected in two nationally representative surveys, conducted in Bulgaria in 2010 and 2011, using face-to-face interviews based on a standardized questionnaire. To select respondents, a multi-stage random probability method was used. The questionnaire included questions on the out-of-pocket payments for health care services used by the respondent during the preceding 12 months. In total, 75.7% (2010) and 84.0% (2011) of outpatient service users reported to have paid out-of-pocket, with 12.6% (2010) and 9.7% (2011) of users reporting informal payments. Of those who had used inpatient services, 66.5% (2010) and 63.1% (2011) reported to have made out-of-pocket payments, with 31.8% (2010) and 18.3% (2011) reporting to have paid informally. We found large inability to pay indicated by the need to borrow money and/or forego services. Regression analysis showed that the inability to pay is especially pronounced among those with poor health status and chronic diseases and those on low household incomes. The high level of both formal and informal out-of-pocket payments for health care services in Bulgaria poses a considerable burden for households and undermines access to health services for poorer parts of the population.

  6. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Influences of lubricant pocket geometry and working conditions upon micro lubrication mechanisms in upsetting and strip drawing

    DEFF Research Database (Denmark)

    Shimizu, Ichiro; Martins, P. A. F.; Bay, Niels

    2010-01-01

    , during upsetting and strip drawing, by means of a rigid-viscoplastic finite-element formulation. Special emphasis is placed on the effect of pocket geometry on the build-up of hydrostatic pressure, which is responsible for the onset of micro-lubrication mechanisms. A good agreement is found between......Micro-lubricant pockets located in the surface of plastically deforming workpieces are recognised to improve the performance of fluid lubrication in a metal-forming process. This work investigates the joint influence of pocket geometry and process working conditions on micro-lubrication mechanisms...

  8. Out-of-pocket payment for health services: constraints and ...

    African Journals Online (AJOL)

    Conclusion: This study brings to the fore the fact that most government employees and their dependants in Abakaliki have difficulties in accessing quality health care services via paying for them out-of-pocket. Keywords: Health services, payment, constraints, government employees. African Health Sciences 2011; 11(3): 481 ...

  9. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  10. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    Science.gov (United States)

    Ciulli, Alessio; Lobley, Carina M. C.; Tuck, Kellie L.; Smith, Alison G.; Blundell, Tom L.; Abell, Chris

    2007-01-01

    The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP+ that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP+, with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes. PMID:17242510

  11. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery

    Directory of Open Access Journals (Sweden)

    Sreeja C Nair

    2012-01-01

    Full Text Available Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease.

  12. Feature Binding in Zebrafish

    Directory of Open Access Journals (Sweden)

    P Neri

    2012-07-01

    Full Text Available Binding operations are primarily ascribed to cortex or similarly complex avian structures. My experiments show that the zebrafish, a lower vertebrate lacking cortex, supports visual feature binding of form and motion for the purpose of social behavior. These results challenge the notion that feature binding may require highly evolved neural structures and demonstrate that the nervous system of lower vertebrates can afford unexpectedly complex computations.

  13. Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches.

    Science.gov (United States)

    Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min

    2014-01-03

    This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.

  14. The selectivity of the Na(+)/K(+)-pump is controlled by binding site protonation and self-correcting occlusion.

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-08-04

    The Na(+)/K(+)-pump maintains the physiological K(+) and Na(+) electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle.

  15. mGluR5

    DEFF Research Database (Denmark)

    Mølck, Christina; Harpsøe, Kasper; Gloriam, David E

    2014-01-01

    Since its discovery in 1992, mGluR5 has attracted significant attention and been linked to several neurological and psychiatric diseases. Ligand development was initially focused on the orthosteric binding pocket, but lack of subtype selective ligands changed the focus to the transmembrane...... allosteric binding pocket. This strategy has resulted in several drug candidates in clinical testing. In the present article we explore the orthosteric and allosteric binding pockets in terms of structure and ligand recognition across the mGluR subtypes and groups, and discuss the clinical potential...... of ligands targeting these pockets. We have performed binding mode analyses of non- and group-selective orthosteric ligands based on molecular docking in mGluR crystal structures and models. For the analysis of the allosteric binding pocket we have combined data from all mGluR5-mutagenesis studies...

  16. Spectroscopic investigations of the B12-binding subunit of glutamate mutase: refined solution structure of the complex with the B12-nucleotide, dynamics and binding studies with two corrinoid cofactors

    International Nuclear Information System (INIS)

    Eichmueller, C.

    2002-06-01

    Glutamate mutase is an enzyme isolated from Clostridium tetanomorphum and Clostridium cochlearum. It catalyses the reversible rearrangement of (2S)-glutamate to (2S,3S)-3-methylaspartate. Coenzyme B12 is required as cofactor for an active enzyme, as the first step of the catalytic cycle is the homolytic cleavage of the cobalt-carbon bond. The rearrangement itself follows a radical mechanism. The holoenzyme is an alpha2beta2 heterotetramer containing two identical catalytic and two B12 binding domains, as well as two coenzyme B12 molecules. The smaller B12 binding domain from Clostridium tetanomorphum, MutS, is known to bind coenzyme B12 in its unusual 'base-off' form. A conserved histidine residue coordinates to the cobalt atom instead of the normally coordinated dimethlybenzimidole in free coenzyme B12. In the present work a refined solution structure of the B12 binding subunit from Clostridium tetanomorphum (MutS) in complex with the detached nucleotide loop of coenzyme B12 has been determined using nuclear magnetic resonance. The found topology is almost identical to the crystal structure of glutamate mutase from C.cochlearum [Reitzer et al., 1999], in contrast to the solution structures obtained for apo-MutS [Hoffmann et al., 2001; Tollinger et al., 1998] and apo-GlmS [Hoffmann et al., 1999]. In these two structures a helix at one side of the B12 nucleotide loop binding pocket is mostly unstructured and shows motions on a microsecond to millisecond timescale. The previously found stabilization of this helix upon B12-nucleotide binding [Tollinger et al., 2001] was confirmed using 13C and 15N labeled MutS. Some differences are found in the structure of the binding pocket and the bound nucleotide loop compared to the crystal structure. This indicates that additional conformational changes occur upon binding of the corrin ring of coenzyme B12. NMR-relaxation measurements performed on apo-MutS showed interesting slow molecular motions not only in the mainly

  17. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  18. Nearshore hydrodynamics at pocket beaches with contrasting wave exposure in southern Portugal

    Science.gov (United States)

    Horta, João; Oliveira, Sónia; Moura, Delminda; Ferreira, Óscar

    2018-05-01

    Pocket beaches on rocky coasts with headlands that control hydro-sedimentary processes are considered to be constrained sedimentary systems, generally with limited sediment inputs. Pocket beaches face severe changes over time. Under worst-case scenarios, these changes can result in the loss of the beach, causing waves to directly attack adjacent cliffs. Studies of nearshore hydrodynamics can help to understand such changes and optimise sediment nourishment procedures. The present work contributes to the knowledge of hydrodynamic forcing mechanisms at pocket beaches by providing a comprehensive description of the nearshore circulation at two beaches with contrasting wave exposures. Two pocket beaches in southern Portugal were studied by combining field measurements of waves and currents with numerical models (STWAVE and BOUSS-2D). The aim of this analysis was to evaluate nearshore hydrodynamics under different wave exposure forcing conditions (e.g. variable wave heights/directions and different tidal levels). The results show that the beach circulation can rapidly shift from longshore-to rip-dominated depending on changes in both the offshore wave direction and tidal levels. Waves with higher obliquity (for both low and moderate wave energy conditions) tend to generate longshore circulation in all considered tidal stages, while waves with lower obliquity tend to produce rip flow with higher-velocity rip currents during low to intermediate tidal stages. The results indicate that the location and intensity of rip currents strongly depend on geomorphological constraints, that is, the control exerted by shore platforms. A larger morphological control is observed at mean sea level because most platforms are submerged/exposed during high/low tide and therefore exert less control on nearshore circulation.

  19. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Katayama, Kota; Furutani, Yuji; Iwaki, Masayo; Fukuda, Tetsuya; Imai, Hiroo; Kandori, Hideki

    2018-01-31

    Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the β-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br - , I - and NO 3 - ), our findings suggest that the anion binding pocket is organized for only Cl - (or Br - ) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.

  20. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    Science.gov (United States)

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  1. Pocket atlas of radiographic anatomy. 2. rev. ed.; Taschenatlas der Roentgenanatomie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, T.B.; Reif, E. [Caritas-Krankenhaus, Dillingen (Germany)

    1998-07-01

    This pocket atlas is the second, revised German edition of the pocket atlas of radiographic anatomy. All anatomic structures of clinical relevance are reproduced according to the split page concept, showing the radiographs, the accompanying drawings and the clinical terminology. (orig./CB) [German] Diese 2. ueberarbeitete Auflage des Taschenatlas der Roentgenanatomie und zeichnet sich aus durch folgende Aspekte: - Hoher Informationsgehalt: alle gaengigen Standard- und Spezialeinstellungen der konventionellen Radiologie einschliesslich aller Kontrastmitteluntersuchungen werden beschrieben. - Praezise im Detail: alle klinisch relevanten anatomischen Strukturen werden in einer dem Roentgenbild direkt gegenuebergestellten Zeichnung wiedergegeben und benannt. Der Benennung liegt die klinisch gebraeuchliche Terminologie zugrunde. - Immer griffbereit, handlich und uebersichtlich: das praktische Taschenbuchformat macht es leicht, das Buch immer dabeizuhaben. Der einfache Aufbau erspart muehsames Suchen in Inhalts- oder Sachverzeichnissen. (orig.)

  2. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    Science.gov (United States)

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  3. Structures of BIR domains from human NAIP and cIAP2

    International Nuclear Information System (INIS)

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-01-01

    The crystal structures of the human NAIP BIR2 and cIAP2 BIR3 domains have been determined. Both BIR domains harbors an amino-terminal tetrapeptide in its peptide-binding groove. The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1′–P4′ side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3′ position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2′ and P4′ pockets make similar interactions to those seen in other BIR domain–peptide complexes. The structures also reveal how a serine in the P1′ position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins

  4. AIR for Javascript Developers Pocket Guide

    CERN Document Server

    Chambers, Mike; Hoyt, Kevin; Georgita, Dragos

    2009-01-01

    This book is the official guide to Adobe ® AIR[TM], written by members of the AIR team. With Adobe AIR, web developers can use technologies like HTML and JavaScript to build and deploy web applications to the desktop. Packed with examples, this book explains how AIR works and features recipes for performing common runtime tasks. Part of the Adobe Developer Library, this concise pocket guide explains: What Adobe AIR is, and the problems this runtime aims to solveHow to set up your development environmentThe HTML and JavaScript environments within AIRHow to create your first AIR application

  5. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  6. How the ACA's Health Insurance Expansions Have Affected Out-of-Pocket Cost-Sharing and Spending on Premiums.

    Science.gov (United States)

    Glied, Sherry; Solís-Román, Claudia; Parikh, Shivani

    2016-09-01

    One important benefit gained by the millions of Americans with health insurance through the Affordable Care Act (ACA) is protection from high out-of-pocket health spending. While Medicaid unambiguously reduces out-of-pocket premium and medical costs for low-income people, it is less certain that marketplace coverage and other types of insurance purchased to comply with the law's individual mandate also protect from high health spending. Goal: To compare out-of-pocket spending in 2014 to spending in 2013; assess how this spending changed in states where many people enrolled in the marketplaces relative to states where few people enrolled; and project the decline in the percentage of people paying high amounts out-of-pocket. Methods: Linear regression models were used to estimate whether people under age 65 spent above certain thresholds. Key findings and conclusions: The probability of incurring high out-of-pocket costs and premium expenses declined as marketplace enrollment increased. The percentage reductions were greatest among those with incomes between 250 percent and 399 percent of poverty, those who were eligible for premium subsidies, and those who previously were uninsured or had very limited nongroup coverage. These effects appear largely attributable to marketplace enrollment rather than to other ACA provisions or to economic trends.

  7. Impacts of chronic non-communicable diseases on households' out-of-pocket healthcare expenditures in Sri Lanka.

    Science.gov (United States)

    Pallegedara, Asankha

    2018-01-10

    This article examines the effects of chronic non-communicable diseases (NCDs) on households' out-of-pocket health expenditures in Sri Lanka. We explore the disease specific impacts on out-of-pocket health care expenses from chronic NCDs such as heart diseases, hypertension, cancer, diabetics and asthma. We use nationwide cross-sectional household income and expenditure survey 2012/2013 data compiled by the department of census and statistics of Sri Lanka. Employing propensity score matching method to account for selectivity bias, we find that chronic NCD affected households appear to spend significantly higher out-of-pocket health care expenditures and encounter grater economic burden than matched control group despite having universal public health care policy in Sri Lanka. The results also suggest that out-of-pocket expenses on medicines and other pharmaceutical products as well as expenses on medical laboratory tests and other ancillary services are particularly higher for households with chronic NCD patients. The findings underline the importance of protecting households against the financial burden due to NCDs.

  8. The Structure of the Iron Binding Protein, FutA1, from Synechocystis 6803*

    International Nuclear Information System (INIS)

    Koropatkin, Nicole; Randich, Amelia M.; Bhattacharyya-Pakrasi, Maitrayee; Pakrasi, Himadri B.; Smith, Thomas J.

    2007-01-01

    Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute-binding domain of an ABC iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the 'C-clamp' structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc binding protein, ZnuA, where the domains of the metal binding protein remain relatively fixed while the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible β-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependency of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions and both preferentially bind ferrous over ferric ions

  9. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  10. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure.

    Science.gov (United States)

    Barta, Michael L; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E; Patil, Mrinalini; Geisbrecht, Brian V; Picking, Wendy L; Picking, William D

    2012-03-01

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  11. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  12. Characterization of molecular determinants of the conformational stability of macrophage migration inhibitory factor: leucine 46 hydrophobic pocket.

    Directory of Open Access Journals (Sweden)

    Farah El-Turk

    Full Text Available Macrophage Migration Inhibitory Factor (MIF is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G, alanine (L46A and phenylalanine (L46F, and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

  13. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Ciulli, Alessio [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Lobley, Carina M. C. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Tuck, Kellie L. [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Smith, Alison G. [Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA (United Kingdom); Blundell, Tom L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom); Abell, Chris, E-mail: ca26@cam.ac.uk [University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-02-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP{sup +} that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP{sup +}, with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes.

  14. pH-tuneable binding of 2′-phospho-ADP-ribose to ketopantoate reductase: a structural and calorimetric study

    International Nuclear Information System (INIS)

    Ciulli, Alessio; Lobley, Carina M. C.; Tuck, Kellie L.; Smith, Alison G.; Blundell, Tom L.; Abell, Chris

    2007-01-01

    A combined crystallographic, calorimetric and mutagenic study has been used to show how changes in pH give rise to two distinct binding modes of 2′-phospho-ADP-ribose to ketopantoate reductase. The crystal structure of Escherichia coli ketopantoate reductase in complex with 2′-monophosphoadenosine 5′-diphosphoribose, a fragment of NADP + that lacks the nicotinamide ring, is reported. The ligand is bound at the enzyme active site in the opposite orientation to that observed for NADP + , with the adenine ring occupying the lipophilic nicotinamide pocket. Isothermal titration calorimetry with R31A and N98A mutants of the enzyme is used to show that the unusual ‘reversed binding mode’ observed in the crystal is triggered by changes in the protonation of binding groups at low pH. This research has important implications for fragment-based approaches to drug design, namely that the crystallization conditions and the chemical modification of ligands can have unexpected effects on the binding modes

  15. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    Science.gov (United States)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  16. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara, E-mail: Chiara.Perazzolo@epfl.ch; Verde, Mariachiara [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Homans, Steve W. [University of Leeds, Institute of Molecular and Cellular Biology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)

    2007-05-15

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k{sub ex} = 500-2000 s{sup -1} were typically observed in APO-rMUP for residues located adjacent to a {beta}-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change.

  17. Evidence of chemical exchange in recombinant Major Urinary Protein and quenching thereof upon pheromone binding

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Verde, Mariachiara; Homans, Steve W.; Bodenhausen, Geoffrey

    2007-01-01

    The internal dynamics of recombinant Major Urinary Protein (rMUP) have been investigated by monitoring transverse nitrogen-15 relaxation using multiple-echo Carr-Purcell-Meiboom-Gill (CPMG) experiments. While the ligand-free protein (APO-rMUP) features extensive evidence of motions on the milliseconds time scale, the complex with 2-methoxy-3-isobutylpyrazine (HOLO-rMUP) appears to be much less mobile on this time scale. At 308 K, exchange rates k ex = 500-2000 s -1 were typically observed in APO-rMUP for residues located adjacent to a β-turn comprising residues 83-87. These residues occlude an entry to the binding pocket and have been proposed to be a portal for ligand entry in other members of the lipocalin family, such as the retinol binding protein and the human fatty-acid binding protein. Exchange rates and populations are largely uncorrelated, suggesting local 'breathing' motions rather than a concerted global conformational change

  18. Solvation of excess electrons trapped in charge pockets on molecular surfaces

    Science.gov (United States)

    Jalbout, Abraham F.

    This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).

  19. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology study

    Directory of Open Access Journals (Sweden)

    Schiattarella Pier

    2010-11-01

    Full Text Available Abstract Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study. All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users.

  20. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Chien, Chih-Ta Henry; Ho, Meng-Ru; Lin, Chung-Hung; Hsu, Shang-Te Danny

    2017-08-16

    Galectins are β-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8 NTD and hGal8 CTD , respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8 NTD . We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8 NTD , indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8 CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8 CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.

  1. Out-of-pocket medical expenses for inpatient care among beneficiaries of the National Health Insurance Program in the Philippines.

    Science.gov (United States)

    Tobe, Makoto; Stickley, Andrew; del Rosario, Rodolfo B; Shibuya, Kenji

    2013-08-01

    OBJECTIVE The National Health Insurance Program (NHIP) in the Philippines is a social health insurance system partially subsidized by tax-based financing which offers benefits on a fee-for-service basis up to a fixed ceiling. This paper quantifies the extent to which beneficiaries of the NHIP incur out-of-pocket expenses for inpatient care, and examines the characteristics of beneficiaries making these payments and the hospitals in which these payments are typically made. METHODS Probit and ordinary least squares regression analyses were carried out on 94 531 insurance claims from Benguet province and Baguio city during the period 2007 to 2009. RESULTS Eighty-six per cent of claims involved an out-of-pocket payment. The median figure for out-of-pocket payments was Philippine Pesos (PHP) 3016 (US$67), with this figure varying widely [inter-quartile range (IQR): PHP 9393 (US$209)]. Thirteen per cent of claims involved very large out-of-pocket payments exceeding PHP 19 213 (US$428)-the equivalent of 10% of the average annual household income in the region. Membership type, disease severity, age and residential location of the patient, length of hospitalization, and ownership and level of the hospital were all significantly associated with making out-of-pocket payments and/or the size of these payments. CONCLUSION Although the current NHIP reduces the size of out-of-pocket payments, NHIP beneficiaries are not completely free from the risk of large out-of-pocket payments (as the size of these payments varies widely and can be extremely large), despite NHIP's attempts to mitigate this by setting different benefit ceilings based on the level of the hospital and the severity of the disease. To reduce these large out-of-pocket payments and to increase financial risk protection further, it is essential to ensure more investment for health from social health insurance and/or tax-based government funding as well as shifting the provider payment mechanism from a fee

  2. Pocket rocket: An electrothermal plasma micro-thruster

    Science.gov (United States)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD

  3. Oracle PL/SQL Language Pocket Reference

    CERN Document Server

    Feuerstein, Steven; Dawes, Chip

    2004-01-01

    While it's good to have a book with all the answers--like your trusty copy of Oracle PL/SQL Programming-- how often do you need all the answers? More likely, you just need a reminder, a quick answer to a problem you're up against. For these times, nothing's handier than the new edition of the Oracle PL/SQL Language Pocket Reference by PL/SQL experts Stephen Feuerstein, Bill Pribyl, and Chip Dawes. Newly updated for Oracle10g, this little book is always at the ready for the quick problem solving you need. The 3rd edition of this popular mini-reference boils down the most vital information fr

  4. Parallel pocket incision: Less invasive surgical intervention for the treatment of intractable pressure ulcer with wound edge undermining.

    Science.gov (United States)

    Yamamoto, Takumi; Yoshimatsu, Hidehiko; Hayashi, Akitatsu; Koshima, Isao

    2015-10-01

    The treatment of deep pressure ulcer with a wide wound edge undermining (pocket) is challenging, especially when conservative treatments are ineffective. As most patients with a pressure ulcer suffer from systemic comorbidities, invasive surgery cannot be performed on all patients, and less invasive treatment is required. Less invasive surgical intervention to a deep pressure ulcer, parallel pocket incision (PPI), was performed on 10 patients with intractable pressure ulcers with a pocket formation. In PPI procedures, two parallel skin incisions were made to open up the deepest fold of the pocket and to preserve the skin overlying the pocket lesion; through the created incisions, the necrotic tissues around the deepest fold of the undermining could be easily removed, which facilitated spontaneous wound healing. Postoperative results and complications were evaluated. All PPI procedures were safely performed under local infiltration anesthesia without major postoperative complication; minor bleeding was seen intraoperatively in three patients, which could be easily controlled with electric cautery coagulation. Nine of 10 ulcers were cured after PPI, and one could not be followed up due to the patient's death non-related to the pressure ulcer. For the nine cured patients, the average time for cure was 14.9 weeks, and no recurrence was observed at postoperative 6 months. PPI is a simple, technically easy, and less invasive surgical intervention to an intractable pressure ulcer with a pocket, which can be safely performed under local infiltration anesthesia even on a patient with severe systemic comorbidities. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Burden of out-of-pocket expenditure for road traffic injuries in urban India

    Directory of Open Access Journals (Sweden)

    Kumar G

    2012-08-01

    Full Text Available Abstract Background Road traffic injuries (RTI are an increasing public health problem in India where out-of-pocket (OOP expenditures on health are among the highest in the world. We estimated the OOP expenses for RTI in a large city in India. Methods Information on medical and non-medical expenditure was documented for RTI cases of all ages that reported alive or dead to the emergency departments of two public hospitals and a large private hospital in Hyderabad. Differential risk of catastrophic OOP total expenditure (COPE-T and medical expenditure (COPE-M, and distress financing was assessed for 723 RTI cases that arrived alive at the study hospitals with multiple logistic regression. Catastrophic expenditure was defined as expenditure > 25% of the RTI patient’s annual household income. Variation in intensity of COPE-M in RTI was assessed using multiple classification analysis (MCA. Results The median OOP medical and non-medical expenditure was USD 169 and USD 163, respectively. The prevalence of COPE-M and COPE-T was 21.9% (95% CI 18.8-24.9 and 46% (95% CI 42–49.3, respectively. Only 22% had access to medical insurance. Being admitted to a private hospital (OR 5.2, 95% CI 2.7–9.9 and not having access to insurance (OR 3.8, 95% CI 1.9–7.6 were significantly associated with risk of having COPE – M. Similar results were seen for COPE - T. MCA analysis showed that the burden of OOP medical expenditure was mainly associated with in-patient days in hospital (Eta =0.191. Prevalence of distress financing was 69% (95% CI 65.5-72.3 with it being significantly higher for those reporting to the public hospitals (OR 2.8, 95% CI 1.7-4.6, those belonging to the lowest per capita annual household income quartile (OR 7.0, 95% CI 3.7-13.3, and for those without insurance access (OR 3.4, 95% CI 2.0-5.7. Conclusions This paper has outlined the high burden of out-of-pocket medical and total expenditure associated with RTI in India. These data

  6. E-dictionary Use under the Spotlight: Students' Use of Pocket ...

    African Journals Online (AJOL)

    This article reports on the utilisation of pocket electronic dictionaries (PEDs) for writing by learners of English at a Thai university. It aims to enrich the study of dictionary use behaviour by investigating, through the use of combined research methods, exactly what happens when students use PEDs for production.

  7. The Use of Pocket Electronic Dictionaries by Thai University Students

    African Journals Online (AJOL)

    This article reports on a small-scale study of Thai-speaking learners using pocket electronic dictionaries (PEDs) to read an English news article. It investigates how the subjects use their PEDs for reading comprehension. Thirty-nine undergraduate students completed a questionnaire survey. Of these, four were chosen to ...

  8. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  9. Similarities of cellular receptors for interferon and cortisol

    International Nuclear Information System (INIS)

    Filipic, B.; Schauer, P.; Likar, M.

    1977-01-01

    Cellular receptors are molecules located on the cell membrane. Their function is to bind different molecules to the cell surface. These molecules can penetrate into the cytoplasm and trigger cellular changes. One kind of such bound molecules are interferons and corticosteroids. Until very recently very little was known about interferon's receptors on the cell surface, mechanisms of interferon's binding to them or about kinetics of such binding. On the basis of results published elsewhere and on the basis of experimental results, the authors suggest: receptors for interferon and cortisol are glycoproteins located on the cell surface, in analogy with PHA receptors they are chemically sialoglycoproteins, binding kinetics of cortisol and interferon is similar, interferon and cortisol compete for cellular receptors, binding of cortisol or interferon is dependent on allosteric configuration of receptor molecules. (author)

  10. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR.

    Science.gov (United States)

    Selvaraj, Chandrabose; Singh, Poonam; Singh, Sanjeev Kumar

    2014-12-01

    Retroviruses HTLV-1 and HIV-1 are the primary causative agents of fatal adult T-cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV-1 PR inhibitors, the protease of HTLV-1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV-1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV-1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV-1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV-1 PR binding pocket. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Families at financial risk due to high ratio of out-of-pocket health care expenditures to total income.

    Science.gov (United States)

    Bennett, Kevin J; Dismuke, Clara E

    2010-05-01

    High out-of-pocket expenditures for health care can put individuals and families at financial risk. Several groups, including racial/ethnic minority groups, the uninsured, rural residents, and those in poorer health are at risk for this increased burden. The analysis utilized 2004-2005 MEPS data. The dependent variables were the out-of-pocket health care spending to total income ratios for total spending, office-based visits, and prescription drugs. Multivariate analyses with instrumental variables controlled for respondent characteristics. Gender, age, rurality, insurance coverage, health status, and health care utilization were all associated with higher out-of-pocket to income ratios. Certain groups, such as women, the elderly, those in poor health, and rural residents, are at a greater financial risk due to their higher out-of-pocket to total income spending ratios. Policymakers must be aware of these increased risks in order to provide adequate resources and targeted interventions to alleviate some of this burden.

  12. Thermodynamic evaluation and modeling of proton and water exchange associated with benzamidine and berenil binding to ß-trypsin

    Directory of Open Access Journals (Sweden)

    M.T. Pereira

    2005-11-01

    Full Text Available Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05. Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp, a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively. The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.

  13. Effect of asymmetrical double-pockets and gate-drain underlap on Schottky barrier tunneling FET: Ambipolar conduction vs. high frequency performance

    Science.gov (United States)

    Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.

    2016-08-01

    In this paper, a proposed structure based on asymmetrical double pockets SB-TFET with gate-drain underlap is presented. 2D extensive modeling and simulation, using Silvaco TCAD, were carried out to study the effect of both underlap length and pockets' doping on the transistor performance. It was found that the underlap from the drain side suppresses the ambipolar conduction and doesn't enhance the high-frequency characteristics. The enhancement of the high-frequency characteristics could be realized by increasing the doping of the drain pocket over the doping of the source pocket. An optimum choice was found which gives the conditions of minimum ambipolar conduction, maximum ON current and maximum cut-off frequency. These enhancements render the device more competitive as a nanometer transistor.

  14. The acid pocket: a target for treatment in reflux disease?

    NARCIS (Netherlands)

    Kahrilas, Peter J.; McColl, Kenneth; Fox, Mark; O'Rourke, Lisa; Sifrim, Daniel; Smout, Andre J. P. M.; Boeckxstaens, Guy

    2013-01-01

    The nadir esophageal pH of reflux observed during pH monitoring in the postprandial period is often more acidic than the concomitant intragastric pH. This paradox prompted the discovery of the "acid pocket", an area of unbuffered gastric acid that accumulates in the proximal stomach after meals and

  15. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J.; Ambepitiya Wickramasinghe, Iresha N.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Bouwman, Kim M.; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.

    2017-07-10

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.

  16. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    Science.gov (United States)

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  17. Design and Implementation of Accurate and Efficient Pocket Dosimeter

    International Nuclear Information System (INIS)

    Shehata, S.A.; Abdelkhalek, K.L.

    2005-01-01

    It is so important in the field of radiation therapy and radiation protection to have dosimeters to determine the absorbed dose, which is transferred to human body by ionizing radiation. In this paper the design and implementation of a wide-range pocket dosimeter (PKD-1) with high accuracy to measure personal equivalent dose and dose rate of gamma radiation will be presented. This pocket dosimeter is micro controller-based and powered from 9 V rechargeable battery. The overall power consumption is significantly reduced by smart software and hardware design allowing longer time intervals between recharging. The integrated alphanumerical LCD displays not only of the accumulated dose and current dose rate, but also displays alarm messages such as low battery. For reasons of power saving the LCD is activated on demand by pressing the push button or automatically when an alarm occurs. Audible and visual alarms have been added to PKD-1 in order that they cannot be accidentally overlooked or ignored. PKD-1 can be connected to any PC through its serial port (RS232) and User Interface software has been developed for easy displaying and recording of radiation readings over any time period

  18. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    Science.gov (United States)

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  19. Newnes circuit calculations pocket book with computer programs

    CERN Document Server

    Davies, Thomas J

    2013-01-01

    Newnes Circuit Calculations Pocket Book: With Computer Programs presents equations, examples, and problems in circuit calculations. The text includes 300 computer programs that help solve the problems presented. The book is comprised of 20 chapters that tackle different aspects of circuit calculation. The coverage of the text includes dc voltage, dc circuits, and network theorems. The book also covers oscillators, phasors, and transformers. The text will be useful to electrical engineers and other professionals whose work involves electronic circuitry.

  20. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  1. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  2. Three-dimensional model of a selective theophylline-binding RNA molecule

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Chang-Shung; Oprea, T.I.; Hummer, G.; Garcia, A.E.

    1995-07-01

    We propose a three-dimensional (3D) model for an RNA molecule that selectively binds theophylline but not caffeine. This RNA, which was found using SELEX [Jenison, R.D., et al., Science (1994) 263:1425] is 10,000 times more specific for theophylline (Kd=320 nM) than for caffeine (Kd=3.5 mM), although the two ligands are identical except for a methyl group substituted at N7 (present only in caffeine). The binding affinity for ten xanthine-based ligands was used to derive a Comparative Molecular Field Analysis (CoMFA) model (R{sup 2} = 0.93 for 3 components, with cross-validated R{sup 2} of 0.73), using the SYBYL and GOLPE programs. A pharmacophoric map was generated to locate steric and electrostatic interactions between theophylline and the RNA binding site. This information was used to identify putative functional groups of the binding pocket and to generate distance constraints. Based on a model for the secondary structure (Jenison et al., idem), the 3D structure of this RNA was then generated using the following method: each helical region of the RNA molecule was treated as a rigid body; single-stranded loops with specific end-to-end distances were generated. The structures of RNA-xanthine complexes were studied using a modified Monte Carlo algorithm. The detailed structure of an RNA-ligand complex model, as well as possible explanations for the theophylline selectivity will be discussed.

  3. Fingerprinting of near-homogeneous DNA ligase I and II from human cells. Similarity of their AMP-binding domains.

    Science.gov (United States)

    Yang, S W; Becker, F F; Chan, J Y

    1990-10-25

    DNA ligases play obligatory roles during replication, repair, and recombination. Multiple forms of DNA ligase have been reported in mammalian cells including DNA ligase I, the high molecular mass species which functions during replication, and DNA ligase II, the low molecular mass species which is associated with repair. In addition, alterations in DNA ligase activities have been reported in acute lymphocytic leukemia cells, Bloom's syndrome cells, and cells undergoing differentiation and development. To better distinguish the biochemical and molecular properties of the various DNA ligases from human cells, we have developed a method of purifying multiple species of DNA ligase from HeLa cells by chromatography through DEAE-Bio-Gel, CM-Bio-Gel, hydroxylapatite, Sephacryl S-300, Mono P, and DNA-cellulose. DNA-cellulose chromatography of the partially purified enzymes resolved multiple species of DNA ligase after labeling the enzyme with [alpha-32P]ATP to form the ligase-[32P]AMP adduct. The early eluting enzyme activity (0.25 M NaCl) contained a major 67-kDa-labeled protein, while the late eluting activity (0.48 M NaCl) contained two major labeled proteins of 90 and 78 kDa. Neutralization experiments with antiligase I antibodies indicated that the early and late eluting activity peaks were DNA ligase II and I, respectively. The three major ligase-[32P]AMP polypeptides (90, 78, and 67 kDa) were subsequently purified to near homogeneity by elution from preparative sodium dodecyl sulfate-polyacrylamide gels. All three polypeptides retained DNA ligase activities after gel elution and renaturation. To further reveal the relationship between these enzymes, partial digestion by V8-protease was performed. All three purified polypeptides gave rise to a common 22-kDa-labeled fragment for their AMP-binding domains, indicating that the catalytic sites of ligase I and II are quite similar, if not identical. Similar findings were obtained from the two-dimensional gel

  4. Book Review: Chris Hani: A Jacana Pocket Biography | Smith | New ...

    African Journals Online (AJOL)

    Book Title: Chris Hani: A Jacana Pocket Biography. Author: Hugh Macmillan. Jacana: Auckland Park, 2014. 152 pp. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  5. Pocket dictionary of laboratory equipment. English/German. Taschenwoerterbuch Laborausruestung. Deutsch/Englisch

    Energy Technology Data Exchange (ETDEWEB)

    Junge, H D

    1987-01-01

    This pocket dictionary contains the 2500 most common terms for scientific and technical equipment in chemical laboratories. It is a useful tool for those who are used to communicating in German and English, but have to learn the special terminology in this field.

  6. [Out-of-pocket expenditure by elderly adults enrolled in a public health insurance programme in Mexico].

    Science.gov (United States)

    Pavón-León, Patricia; Reyes-Morales, Hortensia; Martínez, Armando J; Méndez-Maín, Silvia María; Gogeascoechea-Trejo, María Del Carmen; Blázquez-Morales, María Sobeida L

    To identify the association between various sociodemographic variables and out-of-pocket expenditure on health by elderly people enrolled in Seguro Popular (SP). Analytical cross-sectional study. An in-person survey was administered to users of three outpatient clinics in the state of Veracruz: a health centre (first level), regional hospital (second level) and highly specialised hospital. The out-of-pocket expenditure on health was analysed using a generalised linear model. The sample consisted of 1,049 beneficiaries of SP over age 60 with a response rate of 97.7%. The monthly out-of-pocket expenditure on health was $64.80 (95% confidence interval [95% CI]: 59.90-69.80). The highest expense category was drugs that are included in the SP ($28.80; 95% CI: 25.80-31.70) and drugs that are not covered by the SP ($8.00; 95% CI: 6.70-9.20). People over age 60 enrolled in SP pay out of their pocket to meet their health needs, despite having public health insurance. This represents an inequity in access, especially for the most vulnerable such as the rural population. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    Science.gov (United States)

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  8. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria.

    Science.gov (United States)

    Ranganathan, Sridevi; Cheung, Jonah; Cassidy, Michael; Ginter, Christopher; Pata, Janice D; McDonough, Kathleen A

    2018-01-09

    Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K. (Stanford-MED); (ConfometRx); (UCB Pharma)

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  10. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  11. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, Caroline; Joshi, Monika [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Allingham, John S., E-mail: allinghj@queensu.ca [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  12. Tax-Assisted Approaches for Helping Canadians Meet Out-of-Pocket Health-Care Costs

    Directory of Open Access Journals (Sweden)

    J.C. Herbert Emery

    2016-06-01

    Full Text Available Canadians are not saving for the inevitable costs of drugs and long-term care which they will have to pay for out of pocket in their old age, and these costs could potentially be financially devastating for them. Later in life, when out-of-pocket health-care costs mount, those who previously enjoyed the security of a workplace insurance plan to cover such expenses will face a grim financial reality. Many aspects of care for older Canadians aren’t covered by this country’s single-payer health-care system. Besides prescription drugs, these include management of chronic conditions by ancillary health professionals, home care, long-term care, and dental and vision care. Statistics show that in 2012, Canadians’ private spending on health care totaled $60 billion, with private health insurance covering $24.5 billion of that amount. Coverage of health-care costs that don’t fall under Medicare’s purview is at present rather piecemeal. The non-refundable federal Medical Expense Tax Credit covers expenses only after the three-per-cent minimum, or first $2,171, of out-of-pocket costs have been paid by the individual. The Disability Tax Credit is available to those with a certified chronic disability, and these individuals are eligible for further support via the Registered Disability Savings Plan. A Caregiver Tax Credit is also available. The federal government has a golden opportunity to provide an incentive for Canadians to set aside money to pay not only for the often catastrophic medical and drug costs that can come with aging, but also to save so they can afford long-term care, or purchase private health insurance. Too many Canadians, unfortunately, believe that the federal government picks up the tab for long-term care. In fact, provincial subsidies are provided on a means-testing basis, thus leaving many better-off Canadians in the lurch when they can no longer live alone and must make the transition to long-term care. Providing more

  13. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA.

    Science.gov (United States)

    Iakhiaeva, Elena; Iakhiaev, Alexei; Zwieb, Christian

    2010-11-13

    Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  14. Analyzing the Interaction of Andrographolide and Neoandrographolide, Diterpenoid Compounds From Andrographis Paniculata (Burm.F Nees, to Cyclooxygenase-2 Enzyme by Docking Simulation

    Directory of Open Access Journals (Sweden)

    Jutti Levita

    2009-09-01

    Full Text Available Cyclooxygenase (COX, an enzyme involved in the conversion of arachidonic acid to prostaglandins, exists in two isoforms, which are COX-1 and COX-2. Despite the similarities of COX-1 and COX-2, the two isoforms show subtle differences in amino acid composition at the active sites. Since COX-1 has isoleucine, a bulkier amino acid at position 523 than COX-2’s valine, it allows COX-2 to have a larger space in its active site. Andrographolide reduces COX-2 expression induced by PAF and fMLP in HL60/neutrophils. Neoandrographolide inhibits COX-2 expression at the translational level. The purpose of this study is to examine the binding modes of andrographolide and neoandrographolide against COX-1 and COX-2 in terms of hydrogen bonds and docking energy, to understand their antiinflammatory property. The docking study indicates that both andrographolide and neoandrographolide are able to be located in the COX-2’s binding pocket but not in the COX-1’s. It confirms that COX-1’s binding pocket is smaller than COX-2’s. Based on this study, both andrographolide and neoandrographolide show selective inhibitory property to COX-2. Their selectivity are due to their specific interaction with Arg 513 in the binding pocket of COX-2, which is also shown by SC-558, a COX-2 selective inhibitor.

  15. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    Science.gov (United States)

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  16. Pocket Electronic Dictionaries for Second Language Learning: Help or Hindrance?

    Science.gov (United States)

    Tang, Gloria M.

    1997-01-01

    Reports on the concerns of English-as-a-Second-Language (ESL) teachers in Canada regarding their students' use of pocket bilingual electronic dictionaries (EDs). The article highlights the ED's features, uses, and effectiveness as a tool for learning ESL at the secondary level and ESL students' perceptions of the ED's usefulness. (nine references)…

  17. Newnes passive and discrete circuits pocket book

    CERN Document Server

    MARSTON, R M

    2000-01-01

    Newnes Passive and Discrete Circuits Pocket Book is aimed at all engineers, technicians, students and experimenters who can build a design directly from a circuit diagram. In a highly concise form Ray Marston presents a huge compendium of circuits that can be built as they appear, adapted or used as building blocks. The devices used have been carefully chosen for their ease of availability and reasonable price. The selection of devices has been thoroughly updated for the second edition, which has also been expanded to cover the latest ICs.The three sections of the book cover: Moder

  18. Windows® Group Policy Administrators Pocket Consultant

    CERN Document Server

    Stanek, William

    2009-01-01

    Portable and precise, this pocket-sized guide delivers ready answers for the day-to-day administration of Group Policy. Zero in on core support and maintenance tasks using quick-reference tables, instructions, and lists. You'll get the focused information you need to solve problems and get the job done-whether at your desk or in the field! Get fast facts to: Configure Local GPOs and Active Directory®-based GPOsManage policy preferences and settingsModel policy changes through the consoleMigrate and maintain the SYSVOLDiagnose and troubleshoot replication issuesKnow when to enforce, block,

  19. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  20. Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNA-Encoded Self-Assembling Chemical Libraries.

    Science.gov (United States)

    Bigatti, Martina; Dal Corso, Alberto; Vanetti, Sara; Cazzamalli, Samuele; Rieder, Ulrike; Scheuermann, Jörg; Neri, Dario; Sladojevich, Filippo

    2017-11-08

    The screening of encoded self-assembling chemical libraries allows the identification of fragment pairs that bind to adjacent pockets on target proteins of interest. For practical applications, it is necessary to link these ligand pairs into discrete organic molecules, devoid of any nucleic acid component. Here we describe the discovery of a synergistic binding pair for acid alpha-1 glycoprotein and a chemical strategy for the identification of optimal linkers, connecting the two fragments. The procedure yielded a set of small organic ligands, the best of which exhibited a dissociation constant of 9.9 nm, as measured in solution by fluorescence polarization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.