WorldWideScience

Sample records for binding exogenous ligands

  1. Construction of a bisaquo heme enzyme and binding by exogenous ligands.

    OpenAIRE

    McRee, D E; Jensen, G M; Fitzgerald, M M; Siegel, H A; Goodin, D. B.

    1994-01-01

    The crystal structure of the His-175-->Gly (H175G) mutant of cytochrome-c peroxidase (EC 1.11.1.5), missing its only heme ligand, reveals that the histidine is replaced by solvent to give a bisaquo heme protein. This protein retains some residual activity, which can be stimulated or inhibited by addition of exogenous ligands. Structural analysis confirms the binding of imidazole to the heme at the position of the wild-type histidine ligand. This imidazole complex reacts readily with hydrogen ...

  2. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    Science.gov (United States)

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  3. Impact of receptor clustering on ligand binding

    Directory of Open Access Journals (Sweden)

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  4. A sensitive competitive binding assay for exogenous and endogenous heparins

    International Nuclear Information System (INIS)

    A new type of assay for heparins has been devised, in which the test material competes with 125I-labelled heparin for binding to protamine-Sepharose. The assay is very sensitive and will measure heparin concentrations down to 10 ng ml-1. It responds to both the degree of sulphation and the molecular weight of acidic polysaccharides, but is independent of their biological activities. It can be used to quantitate heparins in biological fluids after pretreatment of the samples with protease. In this way endogenous heparins were measured in normal human serum, plasma and urine. The assay is extremely versatile and has great potential for the investigation of endogenous and exogenous heparins

  5. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  6. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  7. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    OpenAIRE

    Sch n, Arne; Brown, Richard K; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization ef...

  8. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  9. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop...

  10. Serum albumin ligand binding volumes using high pressure denaturation

    International Nuclear Information System (INIS)

    Highlights: ► We use pressure shift assay to study the thermodynamics of decanoate and dodecanoate ligand binding to human serum albumin. ► Pressure shift assay provides information on ligand binding volumes. ► The ligands stabilized human serum albumin against both pressure and temperature denaturation. ► ANS is a strong human serum albumin stabilizer and competes with lipids for the same binding sites. - Abstract: The pressure shift assay (PSA, also termed either PressureFluor or differential pressure fluorimetry) was used to study the thermodynamics of decanoate and dodecanoate lipid binding to human serum albumin (HSA) in the temperature range from 25 °C to 80 °C and the pressure range from 0.1 MPa to 400 MPa. The ligands stabilized HSA against both pressure and temperature denaturation. The P–T phase diagram for HSA bound to saturated fatty acids is shown. Pressure induced HSA denaturation reversibility is demonstrated via either intrinsic tryptophan or extrinsic probe 1,8-anilinonaphthalene sulfonate (ANS) fluorescence. The effect of guanidinium in a PSA was studied. PSA provides information on ligand binding volumes. The volume changes from protein–ligand binding are thermodynamically important and could be used in designing compounds with specific volumetric binding properties.

  11. A streptavidin mutant with altered ligand-binding specificity

    OpenAIRE

    Reznik, Gabriel O.; Vajda, Sandor; Sano, Takeshi; Cantor, Charles R.

    1998-01-01

    The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between b...

  12. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    Science.gov (United States)

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  13. The thermodynamic principles of ligand binding in chromatography and biology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2007-01-01

    In chromatography, macromolecules do not adsorb in the traditional sense of the word but bind to ligands that are covalently bonded to the surface of the porous bead. Therefore, the adsorption must be modelled as a process where protein molecules bind to the immobilised ligands. The paper discusses...... it is also observed in chromatography due to protein-protein interactions. Retention measurements on P-lactoglobulin A demonstrate this. A discussion of salt effects on hydrophobic interactions in precipitation and chromatography of proteins concludes the paper. (c) 2007 Elsevier B.V. All rights...... the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model. In the...

  14. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  15. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  16. Specific uranyl binding by macrocyclic ligands attached to resins

    International Nuclear Information System (INIS)

    Macrocyclic polydentates have attracted enormous attention from chemists because of their unique and significant characteristics of the strong and selective binding of a variety of metal ions. The metal binding is governed mostly by the size of the macroring and the nature of heteroatoms involved. The most important role of the macrocyclic structure is, in general, the so-called macrocyclic effect - to increase (making less negative) a large negative entropy change involved in the polydentate chelation. Basic strategy of uranium binding, is to design a ligand of very strong metal binding to take advantage of this macrocyclic effect, where number of chelating heteroatoms and their spatial arrangement is designed to be most appropriate for uranyl (UO22+) binding, since in natural sea water uranium is dissolved mostly in a form of uranyl carbonate. The following macrocylic ligands, hexamine, hexaketone, hexacarboxylic acid, were prepared and tested. The macrocyclic hexacarboxylic ligand was the most promising. The addition of hexacarboxylic acid to a uranyl tricarbonate solution gave a change of visible absorption due to the competitive formation of the uranyl complex. From this competitive binding, a relative formation constant was estimated to be 10-5, giving a log K/sub f/ value of 16.4 at 250C for the uranyl complex. This value is the largest among the hosts ever reported to bind uranyl ion.The selectivity of the macrocyclic hexacarboxylic ligand was also ascertained by testing with other metal cations. Results indicate that uranyl ions can be extracted efficiently from sea water using the hexacarboxylic acid ligands which are attached to a polymer insoluble in water

  17. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  18. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  19. Predicting protein ligand binding motions with the conformation explorer

    Directory of Open Access Journals (Sweden)

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  20. Acetate binding induces fluorescence enhancement in tryptophan ligands

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Arup K.; Sarma, Rupam J., E-mail: rjs@gauhati.ac.in

    2014-03-15

    The anion coordination properties of bis-tryptophan dicarboxamide ligands 1–3 were investigated using fluorescence and {sup 1}H NMR spectroscopy. It was observed that the coordination of acetate anions to these ligands produced emissions at 381 nm with gradual enhancement of fluorescence. In comparison, fluoride produced minor enhancement, the addition of chloride, bromide and nitrate anions caused quenching of ligand fluorescence. {sup 1}H NMR studies revealed that the ligands coordinated to the acetate anions through the indole and amide NH groups. -- Highlights: • We have synthesized and characterized three tryptophan-based diamide ligands 1–3. • We have reported new polymorph of ligand 1 (Crystal structure) in this article. • The role of intramolecular hydrogen bonding (1 vs. 2) in anion binding was investigated. • We were able to identify the role amide/indole NH in anion binding using {sup 1}H NMR. • On the basis of {sup 1}H NMR, we have established role of aromatic CH–anion interactions during anion complexation.

  1. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  2. GluR2 ligand-binding core complexes

    DEFF Research Database (Denmark)

    Kasper, C; Lunn, M-L; Liljefors, T; Gouaux, E; Egebjerg, J; Kastrup, Jette Sandholm Jensen

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  3. Lipid A binding proteins in macrophages detected by ligand blotting

    International Nuclear Information System (INIS)

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with 32P/sub i/ (109 dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with [32P]-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS

  4. Ligand Migration and Binding in Myoglobin Mutant L29W

    Science.gov (United States)

    Nienhaus, G. Ulrich; Waschipky, Robert; Nienhaus, Karin; Minkow, Oleksandr; Ostermann, Andreas; Parak, Fritz G.

    2001-09-01

    Myoglobin, a small globular heme protein that binds gaseous ligands such as O2, CO, and NO reversibly at the heme iron, has for many years been a paradigm for studying the effects of structure and dynamics on protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe structural changes induced by ligand dissociation, we have investigated carbonmonoxy myoglobin (MbCO) mutant L29W using time-resolved infrared spectroscopy in combination with x-ray crystallography. The presence of two distinct infrared stretch bands of the bound CO, AI at 1945 cm-1 and AII at 1955 cm-1, implies that L29W MbCO assumes two different conformations at neutral pH. Low-temperature flash photolysis experiments with monitoring of the absorption changes in the individual CO lines reveal markedly different rebinding properties. While recombination in AII is conceptually simple and well described by a two-state transition involving a distribution of enthalpy barriers, recombination in AI is more complicated: Besides a fast kinetic component, a second, slower kinetic component appears; its population grows with increasing temperature. X-ray crystallography of crystals illuminated below 180 K to photodissociate the CO reveals that the slow component arises from ligands that have migrated from their initial docking site to a remote site within the distal heme pocket. This process occurs in an essentially immobilized, frozen protein. Subsequently, ligands rebind by thermal activation over a barrier that is much higher than the barrier for recombination from the initial docking site. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. The x-ray structure shows a large proportion of ligands in a cavity on

  5. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.;

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of...

  6. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor)

    DEFF Research Database (Denmark)

    Holm, Jan; Bruun, Susanne Wrang; Hansen, Steen I.

    2015-01-01

    folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the...... binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against...

  7. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .;

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give a m...... a more complete description of the dynamics important for ligand binding are then discussed. These methods are illustrated for phospholipase A(2) and lipase, enzymes that both undergo interfacial activation....

  8. SiteComp: a server for ligand binding site analysis in protein structures

    OpenAIRE

    Lin, Yingjie; Yoo, Seungyeul; Sanchez, Roberto

    2012-01-01

    Motivation: Computational characterization of ligand-binding sites in proteins provides preliminary information for functional annotation, protein design and ligand optimization. SiteComp implements binding site analysis for comparison of binding sites, evaluation of residue contribution to binding sites and identification of sub-sites with distinct molecular interaction properties.

  9. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T;

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...... by a simple two step protocol combining ion exchange chromatography and gel filtration. Dissociation constants for binding of oleic acid, arachidonic acid, oleoyl-CoA, lysophosphatidic acid and the peroxisomal proliferator bezafibrate to L-FABP have been determined by titration calorimetry. All ligands were...... bound in a 2:1 stoichiometry, the dissociation constants for the first ligand bound were all in the micro molar range. Oleic acid was bound with the highest affinity and a Kd of 0.26 microM. Furthermore, binding of cholesterol to L-FABP was investigated with the Lipidex assay, a liposome binding assay...

  10. Modeling of ligand binding to dopamine D2 receptor

    Directory of Open Access Journals (Sweden)

    Ostopovici-Halip Liliana

    2014-01-01

    Full Text Available The dopaminic receptors have been for long time the major targets for developing new small molecules with high affinity and selectivity to treat psychiatric disorders, neurodegeneration, drug abuse, and other therapeutic areas. In the absence of a 3D structure for the human D2 dopamine (HDD2 receptor, the efforts for discovery and design of new potential drugs rely on comparative models generation, docking and pharmacophore development studies. To get a better understanding of the HDD2 receptor binding site and the ligand-receptor interactions a homology model of HDD2 receptor based on the X-ray structure of β2-adrenergic receptor has been built and used to dock a set of partial agonists of HDD2 receptor. The main characteristics of the binding mode for the HDD2 partial agonists set are given by the ligand particular folding and a complex network of contacts represented by stacking interactions, salt bridge and hydrogen bond formation. The characterization of the partial agonist binding mode at HDD2 receptor provide the needed information to generate pharmacophore models which represent essential information in the future virtual screening studies in order to identify new potential HDD2 partial agonists.

  11. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    Science.gov (United States)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  12. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  13. Novel peptide ligand with high binding capacity for antibody purification

    DEFF Research Database (Denmark)

    Lund, L. N.; Gustavsson, P. E.; Michael, R.;

    2012-01-01

    commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide...... the interaction is favorable and entropy-driven with an enthalpy penalty. Our results show that the binding of the Fc fragment of IgG is mediated by hydrophobic interactions and that elution at low pH is most likely due to electrostatic repulsion. Furthermore, we have separated aggregated IgG from non...

  14. Ligand Binding to Chlorite Dismutase from Magnetospirillum sp.

    Science.gov (United States)

    De Schutter, Amy; Correia, Hugo D; Freire, Diana M; Rivas, María G; Rizzi, Alberto; Santos-Silva, Teresa; González, Pablo J; Van Doorslaer, Sabine

    2015-10-29

    Chlorite dismutase (Cld) catalyzes the reduction of chlorite to chloride and dioxygen. Here, the ligand binding to Cld of Magnetospirillum sp. (MaCld) is investigated with X-ray crystallography and electron paramagnetic resonance (EPR). EPR reveals a large heterogeneity in the structure of wild-type MaCld, showing a variety of low- and high-spin ferric heme forms. Addition of an axial ligand, such as azide or imidazole, removes this heterogeneity almost entirely. This is in line with the two high resolution crystal structures of MaCld obtained in the presence of azide and thiocyanate that show the coordination of the ligands to the heme iron. The crystal structure of the MaCld-azide complex reveals a single well-defined orientation of the azide molecule in the heme pocket. EPR shows, however, a pH-dependent heme structure, probably due to acid-base transitions of the surrounding amino-acid residues stabilizing azide. For the azide and imidazole complex of MaCld, the hyperfine and nuclear quadrupole interactions with the close-by (14)N and (1)H nuclei are determined using pulsed EPR. These values are compared to the corresponding data for the low-spin forms observed in the ferric wild-type MaCld and to existing EPR data on azide and imidazole complexes of other heme proteins. PMID:26287794

  15. The Movable Type Method Applied to Protein-Ligand Binding

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  16. PoSSuM: a database of similar protein–ligand binding and putative pockets

    OpenAIRE

    Ito, Jun-ichi; Tabei, Yasuo; Shimizu, Kana; Tsuda, Koji; Tomii, Kentaro

    2011-01-01

    Numerous potential ligand-binding sites are available today, along with hundreds of thousands of known binding sites observed in the PDB. Exhaustive similarity search for such vastly numerous binding site pairs is useful to predict protein functions and to enable rapid screening of target proteins for drug design. Existing databases of ligand-binding sites offer databases of limited scale. For example, SitesBase covers only ∼33 000 known binding sites. Inferring protein function and drug disc...

  17. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    International Nuclear Information System (INIS)

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  18. Ligand Binding and Substrate Discrimination by UDP-Galactopyranose Mutase

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Todd D.; Borrok, M. Jack; Westler, William M.; Forest, Katrina T.; Kiessling, Laura L.; (UW)

    2009-07-31

    Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5{prime}-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 {angstrom} resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the

  19. Origin and evolution of the ligand-binding ability of nuclear receptors.

    Science.gov (United States)

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  20. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    Science.gov (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  1. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding.

    Science.gov (United States)

    Xiao, Tianshu; Fan, Jing-Song; Zhou, Hu; Lin, Qingsong; Yang, Daiwen

    2016-06-01

    Fatty acid binding proteins are responsible for the transportation of fatty acids in biology. Despite intensive studies, the molecular mechanism of fatty acid entry to and exit from the protein cavity is still unclear. Here a cap-closed variant of human intestinal fatty acid binding protein was generated by mutagenesis, in which the helical cap is locked to the β-barrel by a disulfide linkage. Structure determination shows that this variant adopts a closed conformation, but still uptakes fatty acids. Stopped-flow experiments indicate that a rate-limiting step exists before the ligand association and this step corresponds to the conversion of the closed form to the open one. NMR relaxation dispersion and H-D exchange data demonstrate the presence of two excited states: one is native-like, but the other adopts a locally unfolded structure. Local unfolding of helix 2 generates an opening for ligands to enter the protein cavity, and thus controls the ligand association rate. PMID:27105780

  2. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    Science.gov (United States)

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  3. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  4. Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

    Science.gov (United States)

    Ribeiro, Teresa; Santos-Silva, Teresa; Alves, Victor D; Dias, Fernando M V; Luís, Ana S; Prates, José A M; Ferreira, Luís M A; Romão, Maria J; Fontes, Carlos M G A

    2010-10-01

    Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities. PMID:20637315

  5. Ligand binding was acquired during evolution of nuclear receptors

    OpenAIRE

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organism...

  6. Mixed-ligand complexes of ruthenium(II) incorporating a diazo ligand: Synthesis, characterization and DNA binding

    Indian Academy of Sciences (India)

    Megha S Deshpande; Avinash S Kumbhar

    2005-03-01

    Mixed-ligand complexes of the type [Ru(N-N)2(dzdf)]Cl2, where N-N is 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 9-diazo-4,5-diazafluorene (dzdf), have been synthesized and characterized by elemental analysis, UV-Vis, IR and NMR spectroscopy. Binding of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectroscopy, steady-state emission spectroscopy and viscosity measurements. The experimental results indicate that the size and shape of the intercalating ligands have marked effect on the binding affinity of the complexes to CT-DNA. The complex [Ru(phen)2(dzdf)]Cl2 binds with CT-DNA through an intercalative binding mode, while the complex [Ru(bpy)2(dzdf)]Cl2 binds electrostatically.

  7. TIM-4 structures identify a Metal Ion-dependent Ligand Binding Site where phosphatidylserine binds

    OpenAIRE

    Santiago, Cesar; Ballesteros, Angela; Martinez-Muñoz, Laura; Mellado, Mario; Kaplan, Gerardo G.; Freeman, Gordon J.; Casasnovas, José M.

    2007-01-01

    The T-cell immunoglobulin and mucin domain (TIM) proteins are important regulators of T cell responses. They have been linked to autoimmunity and cancer. Structures of the murine TIM-4 identified a Metal Ion-dependent Ligand Binding Site (MILIBS) in the immunoglobulin (Ig) domain of the TIM family. The characteristic CC’ loop of the TIM domain and the hydrophobic FG loop shaped a narrow cavity where acidic compounds penetrate and coordinate to a metal ion bound to conserved residues in the TI...

  8. Proton NMR studies of aliphatic ligand binding to human plasminogen kringle 4

    International Nuclear Information System (INIS)

    A detailed 1H NMR analysis of ligand binding to the human plasminogen kringle 4 domain has been carried out at 300 MHz. The ligands that were investigated are Nα-acetyl-L-lysine, L-lysine methyl ester, Nα-acetyl-L-lysine methyl ester, L-lysine hydroxamic acid, trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA), and 4-(aminomethyl)bicyclo[2.2.2]octane-1-carboxylic acid (AMBOC). Specific ligand-binding effects were detected via two-dimensional COSY experiments. The side chains that are the most perturbed by ligand presence are those from Trp62, Phe64, and Trp72. Ligand-kringle saturation transfer (Overhauser) experiments show that the aromatic rings from these three residues are in direct contact with the ligand. These results add support to a previously reported model of the kringle 4 lysine-binding site by which these aromatic groups are assigned a key role in establishing hydrophobic interactions with the ligand molecule. Equilibrium association constants (Ka) and kinetic rate constants (kon, koff) were determined for the binding of the various linear and cyclic ligands to kringle 4. The numerical data are discussed in terms of optimal ligand structure and requirements for fibrin binding in vivo

  9. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules.

    Science.gov (United States)

    Woof, J M; Burton, D R

    1988-07-22

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used. PMID:2840465

  10. Comparison of ligand migration and binding in heme proteins of the globin family

    Science.gov (United States)

    Karin, Nienhaus; Ulrich Nienhaus, G.

    2015-12-01

    The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.

  11. Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain.

    Science.gov (United States)

    Zhang, Yuebin; Liu, Li; Wu, Lei; Li, Shuai; Li, Fei; Li, Zhengqiang

    2013-08-01

    The Nostoc sp (Ns) H-NOX (heme-nitric oxide or OXygen-binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y-shaped tunnel system hosted in the Ns H-NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881-889] recently using x-ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H-NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H-NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H-NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. PMID:23504767

  12. Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding

    CERN Document Server

    Weiß, R Gregor; Dzubiella, Joachim

    2016-01-01

    We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...

  13. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    Science.gov (United States)

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  14. Fe-binding dissolved organic ligands in the oxic and suboxic waters of the Black Sea

    Directory of Open Access Journals (Sweden)

    Loes J.A. Gerringa

    2016-05-01

    Full Text Available In the oxygen-rich layer of the Black Sea, above the permanent halocline, the Fe and nitrate concentrations are low where fluorescence is relatively high , indicating uptake by phytoplankton. In this study we used ligand exchange adsorptive cathodic stripping voltammetry (CLE-aCSV, using 2-(2-Thiazolylazo-p-cresol (TAC as measuring ligand, to investigate the role of Fe-binding dissolved organic ligands in keeping Fe in the dissolved phase and potentially biologically available. The conditional stability constant, logK´, was between 21 and 22 in most samples, which is on average lower than in ocean water. The Fe-binding dissolved organic ligand concentrations varied between 0.35 and 4.81 nEq of M Fe, which was higher than the dissolved concentration of Fe (DFe as found in most samples. At two stations ligands were saturated in the surface. At one station ligands were saturated near the oxycline, where ligand concentrations seemed to increase, indicating that they play a role in keeping Fe in the dissolved phase across the redox gradient. At the fluorescence maximum (between 40 and 50 m, the dissolved organic ligand binding capacity (alphaFeL=K´*[L´] of Fe was at its highest while the concentration DFe was at its lowest. Here, we find a statistically significant, positive relationship between fluorescence and the logarithm of alphaFeL, along with fluorescence and the ratio of the total ligand concentration over DFe. These relationships are best explained by phytoplankton utilizing Fe from Fe-binding organic ligands, resulting in an increase in free Fe-binding ligands.

  15. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  16. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.

    Science.gov (United States)

    Fielding, Lee; Rutherford, Samantha; Fletcher, Dan

    2005-06-01

    The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the specific binding site for L-tryptophan, D-tryptophan, naproxen, ibuprofen, salicylic acid and warfarin. The binding affinities of the same ligands determined by NMR methods are universally weaker (larger KD). This is because the NMR methods are susceptible to interference from additional non-specific binding. The L-tryptophan-BSA and naproxen-BSA systems were the best behaved model systems. PMID:15816062

  17. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.; (NIH)

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  18. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    OpenAIRE

    Schmitt, J.; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a syntheti...

  19. Ligand binding and micro-switches in 7TM receptor structures

    DEFF Research Database (Denmark)

    Nygaard, Rie; Frimurer, Thomas M; Holst, Birgitte; Rosenkilde, Mette M; Schwartz, Thue W

    2009-01-01

    The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid...... domains (i.e. especially TM-VI), which performs the large, global toggle switch movements connecting ligand binding with intracellular signaling....

  20. Ligand Binding Pathways of Clozapine and Haloperidol in the Dopamine D2 and D3 Receptors.

    Science.gov (United States)

    Thomas, Trayder; Fang, Yu; Yuriev, Elizabeth; Chalmers, David K

    2016-02-22

    The binding of a small molecule ligand to its protein target is most often characterized by binding affinity and is typically viewed as an on/off switch. The more complex reality is that binding involves the ligand passing through a series of intermediate states between the solution phase and the fully bound pose. We have performed a set of 29 unbiased molecular dynamics simulations to model the binding pathways of the dopamine receptor antagonists clozapine and haloperidol binding to the D2 and D3 dopamine receptors. Through these simulations we have captured the binding pathways of clozapine and haloperidol from the extracellular vestibule to the orthosteric binding site and thereby, we also predict the bound pose of each ligand. These are the first long time scale simulations of haloperidol or clozapine binding to dopamine receptors. From these simulations, we have identified several important stages in the binding pathway, including the involvement of Tyr7.35 in a "handover" mechanism that transfers the ligand between the extracellular vestibule and Asp3.32. We have also performed interaction and cluster analyses to determine differences in binding pathways between the D2 and D3 receptors and identified metastable states that may be of use in drug design. PMID:26690887

  1. Basis for Half-Site Ligand Binding in Yeast NAD+-Specific Isocitrate Dehydrogenase†

    OpenAIRE

    Lin, An-Ping; McAlister-Henn, Lee

    2011-01-01

    Yeast NAD+-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four heterodimers of a catalytic IDH2 subunit and a regulatory IDH1 subunit. Despite structural predictions that the enzyme would contain eight isocitrate binding sites, four NAD+ binding sites, and four AMP binding sites, only half of the sites for each ligand are measurable in binding assays. Based on a potential interaction between side chains of Cys-150 residues in IDH2 subunits in eac...

  2. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  3. Ligand-induced conformational changes in a thermophilic ribose-binding protein

    Directory of Open Access Journals (Sweden)

    Hellinga Homme W

    2008-11-01

    Full Text Available Abstract Background Members of the periplasmic binding protein (PBP superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements and local (rotamer changes, backbone motion, therefore is not only important for understanding their biological function but also for protein engineering experiments. Results Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP has 39% sequence identity and is considerably more resistant to thermal denaturation (appTm value is 108°C than the mesophilic Escherichia coli homolog (ecRBP (appTm value is 56°C. Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. Conclusion Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of

  4. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-01

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design. PMID:25608737

  5. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    Science.gov (United States)

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  6. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy

    Science.gov (United States)

    Duan, Li L.; Feng, Guo Q.; Zhang, Qing G.

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  7. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Study of ligand-macromolecular interactions by 19F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  8. Stable Isotope Labeling Strategy for Protein-Ligand Binding Analysis in Multi-Component Protein Mixtures

    Science.gov (United States)

    DeArmond, Patrick D.; West, Graham M.; Huang, Hai-Tsang; Fitzgerald, Michael C.

    2011-03-01

    Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H{2/16}O2 and H{2/18}O2 labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the 18O/16O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).

  9. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    Energy Technology Data Exchange (ETDEWEB)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric (NIH)

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  10. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity.

    Science.gov (United States)

    Ayres, Cory M; Scott, Daniel R; Corcelli, Steven A; Baker, Brian M

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  11. Parameterization of an effective potential for protein-ligand binding from host-guest affinity data.

    Science.gov (United States)

    Wickstrom, Lauren; Deng, Nanjie; He, Peng; Mentes, Ahmet; Nguyen, Crystal; Gilson, Michael K; Kurtzman, Tom; Gallicchio, Emilio; Levy, Ronald M

    2016-01-01

    Force field accuracy is still one of the "stalemates" in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein-ligand binding, organic host-guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host-guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein-ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein-ligand systems. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26256816

  12. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    OpenAIRE

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures...

  13. Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis

    CERN Document Server

    Carroll, Jacob; Forsten-Williams, Kimberly; Täuber, Uwe C

    2016-01-01

    Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. We report detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. We extract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation. We find major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of s...

  14. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    Directory of Open Access Journals (Sweden)

    Dong Long

    Full Text Available The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs have been a puzzling question over decades. Liver fatty acid binding protein (LFABP is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques.

  15. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    Science.gov (United States)

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-01-01

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques. PMID:19564911

  16. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael;

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  17. Configurational entropy and cooperativity between ligand binding and dimerization in glycopeptide antibiotics.

    Science.gov (United States)

    Jusuf, Sutjano; Loll, Patrick J; Axelsen, Paul H

    2003-04-01

    Oligomerization and ligand binding are thermodynamically cooperative processes in many biochemical systems, and the mechanisms giving rise to cooperative behavior are generally attributed to changes in structure. In glycopeptide antibiotics, however, these cooperative processes are not accompanied by significant structural changes. To investigate the mechanism by which cooperativity arises in these compounds, fully solvated molecular dynamics simulations and quasiharmonic normal-mode analysis were performed on chloroeremomycin, vancomycin, and dechlorovancomycin. Configurational entropies were derived from the vibrational modes recovered from ligand-free and ligand-bound forms of the monomeric and dimeric species. Results indicate that both ligand binding and dimerization incur an entropic cost as vibrational activity in the central core of the antibiotic is shifted to higher frequencies with lower amplitudes. Nevertheless, ligand binding and dimerization are cooperative because the entropic cost of both processes occurring together is less than the cost of these processes occurring separately. These reductions in configurational entropy are more than sufficient in magnitude to account for the experimentally observed cooperativity between dimerization and ligand binding. We conclude that biochemical cooperativity can be mediated through changes in vibrational activity, irrespective of the presence or absence of concomitant structural change. This may represent a general mechanism of allostery underlying cooperative phenomena in diverse macromolecular systems. PMID:12656635

  18. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, P A [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  19. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.

    Directory of Open Access Journals (Sweden)

    Daniel B Roche

    Full Text Available The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP experiment, utilizing the Matthews Correlation Coefficient (MCC and Binding-site Distance Test (BDT metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall's τ, Spearman's ρ and Pearson's r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC when Receiver Operator Characteristic (ROC analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%, and one of the top manual groups (FN293 tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site

  20. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation

    OpenAIRE

    Gao, Mu; Skolnick, Jeffrey

    2012-01-01

    Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å dis...

  1. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    Science.gov (United States)

    Healy, Eamonn F.

    2007-01-01

    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  2. Novel trisubstituted acridines as human telomeric quadruplex binding ligands

    Czech Academy of Sciences Publication Activity Database

    Ungvarsky, J.; Plšíková, J.; Janovec, J.; Koval, J.; Mikeš, J.; Mikesová, L.; Harvanova, D.; Fedoročko, P.; Kristian, P.; Kašpárková, Jana; Brabec, Viktor

    2014-01-01

    Roč. 57, DEC 2014 (2014), s. 13-29. ISSN 0045-2068 Institutional support: RVO:68081707 Keywords : Braco 19 derivatives * Trisubstituted acridines * DNA binding Subject RIV: BO - Biophysics Impact factor: 2.152, year: 2014

  3. Metal-coordination-driven mixed ligand binding in supramolecular bisporphyrin tweezers.

    Science.gov (United States)

    Ikbal, Sk Asif; Dhamija, Avinash; Rath, Sankar Prasad

    2015-09-25

    Mg(II)bisporphyrin has been used as an efficient host for the selective binding of guest ligands. In the presence of heterogeneous guest pairs, 2-aminopyrimidine/pyrazine and 2-aminopyrimidine/1,4-dioxane, 2-aminopyrimidine is bound selectively inside the bisporphyrin cavity whereas pyrazine/1,4-dioxane is bound outside to produce 1D mixed ligand polymers. UV-vis, (1)H NMR spectra and X-ray structure confirm such a selective and orthogonal binding of the guest ligands. The mixed ligand polymer has been synthesized just by mixing the host and guests in one pot and easily isolated as a solid in nearly quantitative yield due to its high stability. PMID:26256242

  4. Biophysical characterization of G-protein coupled receptor-peptide ligand binding

    OpenAIRE

    Langelaan, David N.; Ngweniform, Pascaline; Rainey, Jan K.

    2011-01-01

    G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular response to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GRCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques which have been successfully employed for structural and biophysical characterization of peptide ligands binding to their...

  5. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  6. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    Science.gov (United States)

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  7. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    Science.gov (United States)

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  8. The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid.

    Science.gov (United States)

    Kang, J H; Hakimov, H; Ruiz, A; Friendship, R M; Buhr, M; Golovan, S P

    2008-11-01

    Sperm-mediated gene transfer (SMGT) might become the most efficient and cost effective technique to generate transgenic animals, which will significantly increase their application in biomedical research and in commercial production. Despite some successes, the technique has remained controversial for almost 20 years and despite number of studies the reasons for poor reproducibility of this promising technology has not been understood. We suggest that the reason for poor reproducibility is the presence of natural defences against exogenous DNA invasion acting in spermatozoa or in embryo. Based on previous reports we have investigated the effect of foreign DNA binding on spermatozoa by monitoring motility, viability and genomic DNA damage. Evaluation of DNA binding in sperm collected from 16 boars demonstrated that 28-45% of the added pEGFP plasmid was bound to spermatozoa with 9-32% being internalized in sperm nucleus. In agreement with previous reports, our results demonstrated that the pEGFP-treated sperm show an average a 2-fold decrease in motility (p<0.05), 5-fold decrease in progressive motility (p<0.05), and 1.4-fold increase in number of sperm with highly damaged DNA (p<0.05) as detected by Comet assay. In contrast with previous reports, we demonstrate that all such changes were associated with the removal of seminal plasma during the washing step and not with foreign DNA binding per se. We suggest that poor reproducibility of SMGT most likely result from selection against DNA-loaded sperm at later stages of fertilization. PMID:18653226

  9. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  10. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, Jan; Sim, Adelene Y.L.; Herschlag, Daniel; Doniach, Sebastian (Stanford)

    2010-09-17

    Riboswitches are gene-regulating RNAs that are usually found in the 5{prime}-untranslated regions of messenger RNA. As the sugar-phosphate backbone of RNA is highly negatively charged, the folding and ligand-binding interactions of riboswitches are strongly dependent on the presence of cations. Using small angle X-ray scattering (SAXS) and hydroxyl radical footprinting, we examined the cation dependence of the different folding stages of the glycine-binding riboswitch from Vibrio cholerae. We found that the partial folding of the tandem aptamer of this riboswitch in the absence of glycine is supported by all tested mono- and divalent ions, suggesting that this transition is mediated by nonspecific electrostatic screening. Poisson-Boltzmann calculations using SAXS-derived low-resolution structural models allowed us to perform an energetic dissection of this process. The results showed that a model with a constant favorable contribution to folding that is opposed by an unfavorable electrostatic term that varies with ion concentration and valency provides a reasonable quantitative description of the observed folding behavior. Glycine binding, on the other hand, requires specific divalent ions binding based on the observation that Mg{sup 2+}, Ca{sup 2+}, and Mn{sup 2+} facilitated glycine binding, whereas other divalent cations did not. The results provide a case study of how ion-dependent electrostatic relaxation, specific ion binding, and ligand binding can be coupled to shape the energetic landscape of a riboswitch and can begin to be quantitatively dissected.

  11. Protein and ligand adaptation in a retinoic acid binding protein.

    OpenAIRE

    Pattanayek, R.; Newcomer, M E

    1999-01-01

    A retinoic acid binding protein isolated from the lumen of the rat epididymis (ERABP) is a member of the lipocalin superfamily. ERABP binds both the all-trans and 9-cis isomers of retinoic acid, as well as the synthetic retinoid (E)-4-[2-(5,6,7,8)-tetrahydro-5,5,8,8-tetramethyl-2 napthalenyl-1 propenyl]-benzoic acid (TTNPB), a structural analog of all-trans retinoic acid. The structure of ERABP with a mixture of all-trans and 9-cis retinoic acid has previously been reported. To elucidate any ...

  12. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B;

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-states...... which are further stabilized by binding of certain anions that do not stabilize the T6-state. It was shown that the thermostability of the resorcinol-stabilized R6-state was significantly higher than that of the T6-state. Further analysis showed that phenol- and m-cresol-stabilized R6-hexamer loses...

  13. Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase

    OpenAIRE

    Mondal, Jagannath; Friesner, Richard A.; Berne, B. J.

    2014-01-01

    Computer simulations are used to determine the free energy landscape for the binding of the anticancer drug Dasatinib to its src kinase receptor and show that before settling into a free energy basin the ligand must surmount a free energy barrier. An analysis based on using both the ligand-pocket separation and the pocket-water occupancy as reaction coordinates shows that the free energy barrier is a result of the free energy cost for almost complete desolvation of the binding pocket. The sim...

  14. The Effects of Exogenous and Endogenous Ligands of the Aryl Hydrocarbon Receptor on the Activation of Autoimmune Diabetes

    OpenAIRE

    Abu-Rizq, Hana'A

    2012-01-01

    The aryl-hydrocarbon receptor (AhR) is an important receptor found in immune cells. Itfunctions as a detector of environmental toxins, naturally occurring dietary products, andendogenous tryptophan derivatives for induction of gene transcription responses. Previousreports have implicated stimulation of AhR by various ligands in promoting T cellactivation or regulatory function, with effects on autoimmune disease models. Also, effectsof Ah toxins or natural products on increasing or suppressin...

  15. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  16. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. PMID:26546516

  17. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data.

    Science.gov (United States)

    Smith, Lorna J; Roby, Ysobel; Allison, Jane R; van Gunsteren, Wilfred F

    2013-07-30

    Experimental studies of barley and maize lipid transfer proteins (LTPs) show that the two proteins bind the ligand palmitate in opposite orientations in their internal cavities. Moreover, maize LTP is reported to bind the ligand caprate in the internal cavity in a mixture of two orientations with approximately equal occupancy. Six 30 ns molecular dynamics (MD) simulations of maize and barley LTP with ligands bound in two orientations (modes M and B) have been used to understand the different ligand binding preferences. The simulations show that both maize and barley LTP could bind palmitate in the orientation observed experimentally for maize LTP (mode M), with the predominant interaction being a salt bridge between the ligand carboxylate headgroup and a conserved arginine side chain. However, the simulation of barley LTP with palmitate in the mode B orientation shows the most favorable protein-ligand interaction energy. In contrast, the simulations of maize LTP with palmitate and with caprate in the mode B orientation show no persistent ligand binding, the ligands leaving the cavity during the simulations. Sequence differences between maize and barley LTP in the AB loop region, in residues at the base of the hydrophobic cavity, and in the helix A region are identified as contributing to the different behavior. The simulations reproduce well the experimentally observed binding preferences for palmitate and suggest that the experimental data for maize LTP with caprate reflect ligand mobility in binding mode M rather than the population of binding modes M and B. PMID:23834513

  18. Structure and Ligand-Binding Mechanism of a Cysteinyl Leukotriene-Binding Protein from a Blood-Feeding Disease Vector.

    Science.gov (United States)

    Jablonka, Willy; Pham, Van; Nardone, Glenn; Gittis, Apostolos; Silva-Cardoso, Lívia; Atella, Georgia C; Ribeiro, José M C; Andersen, John F

    2016-07-15

    Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4), D4 (LTD4), and E4 (LTE4) but not biogenic amines, adenosine diphosphate, or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr114 into close contact with the ligand. LTC4 is cleaved in the complex, leaving free glutathione and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated. PMID:27124118

  19. Computational analysis of protein-ligand binding : from single continuous trajectories to multiple parallel simulations

    OpenAIRE

    Thorsteinsdottir, Holmfridur B.

    2010-01-01

    The interaction of proteins with other proteins or small molecules is essential for biological functions. Understanding the molecular basis of protein-ligand binding is of a vast interest for drug discovery, and computational methods to estimate proteinligand binding are starting to play an increasingly important role. In order to apply atomistic computational methods to the drug discovery process it is necessary to have accurate three-dimensional structures of the target prote...

  20. Implicit ligand theory: Rigorous binding free energies and thermodynamic expectations from molecular docking

    OpenAIRE

    Minh, David D. L.

    2012-01-01

    A rigorous formalism for estimating noncovalent binding free energies and thermodynamic expectations from calculations in which receptor configurations are sampled independently from the ligand is derived. Due to this separation, receptor configurations only need to be sampled once, facilitating the use of binding free energy calculations in virtual screening. Demonstrative calculations on a host-guest system yield good agreement with previous free energy calculations and isothermal titration...

  1. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Mortisugu, Kei [RIKEN, Japan; Njunda, Brigitte [Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR); Smith, Jeremy C [ORNL

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.

  2. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors.

    Science.gov (United States)

    Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-07-15

    Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. PMID:26926593

  3. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    International Nuclear Information System (INIS)

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [3H]5α-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 μM concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost

  4. 2D Kinetics and Forced Dissociation of Selectin-ligand Bindings

    Institute of Scientific and Technical Information of China (English)

    Mian Long

    2004-01-01

    @@ INTRODUCTIONS Cell adhesion is crucial to many pathophysiological processes, such as inflammatory reaction and tumor metastasis. It is mediated by specific interactions between receptors and ligands, and provides the physical linkages among cells. For example, interactions between selectins and glycoconjugate ligands mediate leukocyte initially tethering to and subsequently rolling on vascular surfaces in sites of inflammation or injury, which is determined by their fast kinetic rates. To mediate cell adhesion, the interacting receptors and ligands must anchor to apposing surfaces of two cells or a cell and the substratum, i.e. , the so-called two-dimensional (2D) binding, which differs from interactions in the fluid phase, i.e. , the three-dimensional (3D) binding. How structural variations and surface environments of interacting molecules affect their 2D kinetics, and how external forces manipulate their dissociation has little been known quantitatively, and nowadays attracts more and more attentions.

  5. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  6. Albumin binding ligands and albumin conjugate uptake by cancer cells

    Directory of Open Access Journals (Sweden)

    Frei Eva

    2011-06-01

    Full Text Available Abstract The scope of this short review is to summarise the knowledge gleaned from the fate of drugs transported by albumin upon contact with the target cancer cell or cells in inflamed tissues. The authors expertise covers covalently bound drugs and their cellular uptake and release from albumin. This review therefore aims to deduce what will happen to drugs such as insulin detemir which is considered to bind non-covalently to albumin and may have a fate similar to fatty acids transported by albumin.

  7. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.; Robey, F.A.

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly and...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  8. Albumin binding ligands and albumin conjugate uptake by cancer cells

    OpenAIRE

    Frei Eva

    2011-01-01

    Abstract The scope of this short review is to summarise the knowledge gleaned from the fate of drugs transported by albumin upon contact with the target cancer cell or cells in inflamed tissues. The authors expertise covers covalently bound drugs and their cellular uptake and release from albumin. This review therefore aims to deduce what will happen to drugs such as insulin detemir which is considered to bind non-covalently to albumin and may have a fate similar to fatty acids transported by...

  9. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    Science.gov (United States)

    Martini, Johannes W. R.; Habeck, Michael

    2015-03-01

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

  10. Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, M M

    2010-01-01

    In humans and non-human primates, the 7TM receptor GPR17 exists in two isoforms differing only by the length of the N-terminus. Of these, only the short isoform has previously been characterized. Hence, we investigated gene expression and ligand-binding profiles of both splice variants and furthe...

  11. PBSA_E: A PBSA-Based Free Energy Estimator for Protein-Ligand Binding Affinity.

    Science.gov (United States)

    Liu, Xiao; Liu, Jinfeng; Zhu, Tong; Zhang, Lujia; He, Xiao; Zhang, John Z H

    2016-05-23

    Improving the accuracy of scoring functions for estimating protein-ligand binding affinity is of significant interest as well as practical utility in drug discovery. In this work, PBSA_E, a new free energy estimator based on the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) descriptors, has been developed. This free energy estimator was optimized using high-quality experimental data from a training set consisting of 145 protein-ligand complexes. The method was validated on two separate test sets containing 121 and 130 complexes. Comparison of the binding affinities predicted using the present method with those obtained using three popular scoring functions, i.e., GlideXP, GlideSP, and SYBYL_F, demonstrated that the PBSA_E method is more accurate. This new energy estimator requires a MM/PBSA calculation of the protein-ligand binding energy for a single complex configuration, which is typically obtained by optimizing the crystal structure. The present study shows that PBSA_E has the potential to become a robust tool for more reliable estimation of protein-ligand binding affinity in structure-based drug design. PMID:27088302

  12. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    Science.gov (United States)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  13. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L;

    1991-01-01

    The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal p...

  14. Ligand Binding Kinetics of the Quorum Sensing Regulator PqsR

    DEFF Research Database (Denmark)

    Welch, Martin; Hodgkinson, James T.; Gross, Jeremy;

    2013-01-01

    The Pseudomonas aeruginosa quinolone signal (PQS) is a quorum sensing molecule that plays an important role in regulating the virulence of this organism. We have purified the ligand binding domain of the receptor PqsRLBD for PQS and have used Förster resonance energy transfer fluorimetry and...

  15. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    Science.gov (United States)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  16. Comparison of the kinetics of different Markov models for ligand binding under varying conditions

    International Nuclear Information System (INIS)

    We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest

  17. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  18. Elucidating ligand binding and channel gating mechanisms in pentameric ligand-gated ion channels by atomistic simulations.

    Science.gov (United States)

    Comitani, Federico; Melis, Claudio; Molteni, Carla

    2015-04-01

    Pentameric ligand-gated ion channels (pLGICs) are important biomolecules that mediate fast synaptic transmission. Their malfunctions are linked to serious neuronal disorders and they are major pharmaceutical targets; in invertebrates, they are involved in insecticide resistance. The complexity of pLGICs and the limited crystallographic information available prevent a detailed understanding of how they function. State-of-the-art computational techniques are therefore crucial to build an accurate picture at the atomic level of the mechanisms which drive the activation of pLGICs, complementing the available experimental data. We have used a series of simulation methods, including homology modelling, ligand-protein docking, density functional theory, molecular dynamics and metadynamics, a powerful scheme for accelerating rare events, with the guidance of mutagenesis electrophysiology experiments, to explore ligand-binding mechanisms, the effects of mutations and the potential role of a proline molecular switch for the gating of the ion channels. Results for the insect RDL receptor, the GABAC receptor, the 5-HT3 receptor and the nicotinic acetylcholine receptor will be reviewed. PMID:25849909

  19. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Bultinck, Patrick; Kemmink, Johan; Hilbers, Hans W; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    A general approach in drug design is making ligands more rigid in order to avoid loss in conformational entropy (deltaS(conf)) upon receptor binding. We hypothesized that in the high affinity binding of pYEEI peptide ligands to the p56(lck) SH2 domain this loss in deltaS(conf) might be diminished du

  20. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS. PMID:18820259

  1. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric; Botez, Iuliana; Danober, Laurence; Lestage, Pierre; Pirotte, Bernard; Kastrup, Jette Sandholm Jensen; Olsen, Lars; Oostenbrink, Chris

    2014-01-01

    5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI......Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer's disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3......,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and...

  2. Mass Spectrometry-Based Monitoring of Millisecond Protein-Ligand Binding Dynamics Using an Automated Microfluidic Platform

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.; Orton, Daniel J.; Geng, Tao; Baker, Erin Shammel; Kelly, Ryan T.

    2016-03-24

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  3. Comparison of Different Ranking Methods in Protein-Ligand Binding Site Prediction

    Science.gov (United States)

    Gao, Jun; Liu, Qi; Kang, Hong; Cao, Zhiwei; Zhu, Ruixin

    2012-01-01

    In recent years, although many ligand-binding site prediction methods have been developed, there has still been a great demand to improve the prediction accuracy and compare different prediction algorithms to evaluate their performances. In this work, in order to improve the performance of the protein-ligand binding site prediction method presented in our former study, a comparison of different binding site ranking lists was studied. Four kinds of properties, i.e., pocket size, distance from the protein centroid, sequence conservation and the number of hydrophobic residues, have been chosen as the corresponding ranking criterion respectively. Our studies show that the sequence conservation information helps to rank the real pockets with the most successful accuracy compared to others. At the same time, the pocket size and the distance of binding site from the protein centroid are also found to be helpful. In addition, a multi-view ranking aggregation method, which combines the information among those four properties, was further applied in our study. The results show that a better performance can be achieved by the aggregation of the complementary properties in the prediction of ligand-binding sites. PMID:22942732

  4. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  5. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  6. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  7. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    Science.gov (United States)

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  8. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  9. Exogenous bridging and nonbridging in Cu(II) complexes of Mannich base ligands: Synthesis and physical properties

    Indian Academy of Sciences (India)

    S Sujatha; T M Rajendiran; R Kannappan; R Venkatesan; P Sambasiva Rao

    2000-12-01

    Preparation of pentadentate ligands L1, L2, L3 and L4, where L1=4-chloro-3-methyl-2[(prolin-1-yl)methyl]-6-[N-phenyl piperazin-1-yl)methyl]phenol, L2= 4-ethyl-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol, L3 =4-chloro-3-methyl-2-[(prolin-1-yl)methyl]-6-[N-methyl piperazin-1-yl]methyl phenol, L4 = 4-methoxy-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol is described together with that of the corresponding Cu(II) complexes with various bridging motifs like OH, OAc and NO2. The complexes are characterized by elemental analysis, electrochemical and electron paramagnetic spectral studies. Redox properties of the complexes in acetonitrile are highly quasireversible due to the chemical or/and stereochemical changes subsequent to electron transfer. The complexes show resolved copper hyperfine EPR at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. Strengths of the antiferromagnetic interactions are in the order NO2 > OAc > OH.

  10. Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A.

    Science.gov (United States)

    Haas, W; Banas, J A

    2000-02-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypothesis and to quantitate the ligand-binding specificities of the GbpA GBD, several fusion proteins were generated and tested by affinity electrophoresis or by precipitation of protein-ligand complexes, allowing the determination of binding constants. It was determined that the 16 YG repeats in GbpA comprise its GBD and that GbpA has a greater affinity for dextran (a water-soluble form of glucan) than for mutan (a water-insoluble form of glucan). Placement of the GBD at the carboxyl terminus was necessary for maximum glucan binding, and deletion of as few as two YG repeats from either end of the GBD reduced the affinity for dextran by over 10-fold. Interestingly, the binding constant of GbpA for dextran was 34-fold higher than that calculated for the GBDs of two S. mutans GTFs, one of which catalyzes the synthesis of water-soluble glucan and the other of which catalyzes the synthesis of water-insoluble glucan. PMID:10633107

  11. Active regions' setting of the extracellular ligand-binding domain of human interleukin-6 receptor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reliable three dimensional (3-D) structure of the extracellular ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6R) has been constructed by means of computer-guided homology modeling techniques using the crystal structure of the extracellular ligand-binding region (K52-L251) of human growth hormone receptor (hGHR) as templet. The space location of some key residues which influence the combination ability between the receptor and the ligand has been observed and the effects of point mutagenesis of the four conservative cysteine residues on the space conformation are analyzed. The results show that the space conformation of the side-chain carboxyl of E305 plays a key role in the ligand-binding ability. Furthermore, the space conformation of the side-chain carboxyl of E305 is very important for the electrostatic potential complementarity between hIL-6R and hIL-6 according to the docking method.

  12. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.

    Science.gov (United States)

    Ryde, Ulf; Söderhjelm, Pär

    2016-05-11

    One of the largest challenges of computational chemistry is calculation of accurate free energies for the binding of a small molecule to a biological macromolecule, which has immense implications in drug development. It is well-known that standard molecular-mechanics force fields used in most such calculations have a limited accuracy. Therefore, there has been a great interest in improving the estimates using quantum-mechanical (QM) methods. We review here approaches involving explicit QM energies to calculate binding affinities, with an emphasis on the methods, rather than on specific applications. Many different QM methods have been employed, ranging from semiempirical QM calculations, via density-functional theory, to strict coupled-cluster calculations. Dispersion and other empirical corrections are mandatory for the approximate methods, as well as large basis sets for the stricter methods. QM has been used for the ligand, for a few crucial groups around the ligand, for all the closest atoms (200-1000 atoms), or for the full receptor-ligand complex, but it is likely that with a proper embedding it might be enough to include all groups within ∼6 Å of the ligand. Approaches involving minimized structures, simulations of the end states of the binding reaction, or full free-energy simulations have been tested. PMID:27077817

  13. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  14. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  15. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.

    Science.gov (United States)

    Scott, Daniel J; Rosengren, K Johan; Bathgate, Ross A D

    2012-11-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leucine-rich repeat (LRR)-containing modules. Although relaxin can bind and activate both RXFP1 and RXFP2, INSL3 can only bind and activate RXFP2. To investigate whether this difference is related to the nature of the high-affinity ECD binding site or to differences in secondary binding sites involving the receptor transmembrane (TM) domain, we created a suite of constructs with RXFP1/2 chimeric ECD attached to single TM helices. We show that by changing as little as one LRR, representing four amino acid substitutions, we were able to engineer a high-affinity INSL3-binding site into the ECD of RXFP1. Molecular modeling of the INSL3-RXFP2 interaction based on extensive experimental data highlights the differences in the binding mechanisms of relaxin and INSL3 to the ECD of their cognate receptors. Interestingly, when the engineered RXFP1/2 ECD were introduced into full-length RXFP1 constructs, INSL3 exhibited only low affinity and efficacy on these receptors. These results highlight critical differences both in the ECD binding and in the coordination of the ECD-binding site with the TM domain, and provide new mechanistic insights into the binding and activation events of RXFP1 and RXFP2 by their native hormone ligands. PMID:22973049

  16. New mixed ligand complexes of ruthenium(II) that incorporate a modified phenanthroline ligand: Synthesis, spectral characterization and DNA binding

    Indian Academy of Sciences (India)

    S Murali; C V Sastri; Bhaskar G Maiya

    2002-08-01

    The hexafluorophosphate and chloride salts of two ruthenium(II) complexes, viz. [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+, where ptzo = 1,10-phenanthrolino[5,6-]1,2,4-triazine-3-one (ptzo) - a new modified phenanthroline (phen) ligand, have been synthesised. These complexes have been characterised by infrared, UV-Vis, steady-state emission and 1H NMR spectroscopic methods. Results of absorption and fluorescence titration as well as thermal denaturation studies reveal that both the bis- and tris-complexes of ptzo show moderately strong affinity for binding with calf thymus (CT) DNA with the binding constants being close to 105M-1 in each case. An intercalative mode of DNA binding has been suggested for both the complexes. Emission studies carried out in non-aqueous solvents and in aqueous media without DNA reveal that both [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+ are weakly luminescent under these solution conditions. Successive addition of CT DNA to buffered aqueous solutions containing [Ru(phen)(ptzo)2]2+ results in an enhancement of the emission. These results have been discussed in the light of the dependence of the structure-specific deactivation processes of the MLCT state of the metallointercalator with the characteristic features of its DNA interaction. In doing so, attempts have been made to compare and contrast its properties with those of the analogous phenanthroline-based complexes including the ones reported by us previously.

  17. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding.

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  18. Human circulating monocytes can express receptor activator of nuclear factor-kappaB ligand and differentiate into functional osteoclasts without exogenous stimulation.

    Science.gov (United States)

    Seta, Noriyuki; Okazaki, Yuka; Kuwana, Masataka

    2008-07-01

    Osteoclast formation from mononuclear precursors is believed to require accessory cells expressing receptor activator of nuclear factor-kappaB ligand (RANKL). We recently identified a human cell population originated from circulating CD14(+) monocytes, called monocyte-derived multipotential cells (MOMCs), which can differentiate into several distinct mesenchymal cells, neuron and endothelial cells. This study was undertaken to examine whether MOMCs can differentiate into functional osteoclasts. MOMCs prepared from peripheral blood of healthy volunteers cultured on fibronectin for 7 days at high density (8 x 10(5) cells cm(-2)), but not at regular density (2 x 10(4) cells cm(-2)), resulted in the appearance of tartrate-resistant acid phosphatase-positive giant multi-nucleated cells forming actin ring without exogenous osteoclastogenic factors. A subset of these cells showed bone resorption capacity on dentine slices and expression of genes for cathepsin K and calcitonin receptor, characteristic of functional osteoclasts. Such osteoclast differentiation was not observed in high-density culture of circulating monocytes, macrophages or dendritic cells, or the high-density culture of MOMCs on type I collagen. Among cells of the monocyte lineage, untreated MOMCs exclusively showed gene and protein expression of RANKL. When osteoprotegerin/IgG1 Fc chimera was added to high-density MOMC cultures, osteoclast formation was completely inhibited by neutralizing the endogenous RANKL. These results indicate that human MOMCs derived from circulating monocytes can express RANKL and differentiate into functional osteoclasts without RANKL-expressing accessory cells. PMID:18301383

  19. Calculation of binding constants and concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites

    International Nuclear Information System (INIS)

    A method is presented for the calculation of association constants and the concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites. The Scatchard plot for such a system is curvelinear and the method employs previously established relationships between the parameters of the limiting slopes to such a curve and the above mentioned association constants and concentrations of binding sites. The special case of a system with two different and non-interacting groups of binding sites was solved. The expressions thus obtained were used to characterize the reaction of a polypeptide neurotoxin with its specific binding sites in a membranal preparation from insect central nervous system. Moreover it is evident from these expressions that the widely accepted method to analyze such system, by an intuitive generalization of the method applicable to homogeneous systems, is erroneous and should be avoided. (author)

  20. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.

    Science.gov (United States)

    Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A; Mayerl, Steven J; Lee, Brian H; Weissman, Jonathan S; Conklin, Bruce R; Wells, James A

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  1. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    Science.gov (United States)

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  2. Ligand Binding Sensitivity of the Extracellular Loop Two of the Cannabinoid Receptor 1

    OpenAIRE

    Bertalovitz, Alexander C.; Ahn, Kwang H.; Kendall, Debra A.

    2010-01-01

    The cannabinoid receptor one (CB1) is a class A G-protein-coupled receptor thought to bind ligands primarily within its helical bundle. Evidence suggests, however, that the extracellular domain may also play a role. We have previously shown that the C-terminus of the extracellular loop 2 of CB1 is important in binding some compounds; receptors with mutations in this region (F268W, P269A, H270A, and I271A) bound some agonists with severely reduced affinity relative to the wild-type receptor. I...

  3. Ligand-induced Coupling versus Receptor Pre-association: Cellular automaton simulations of FGF-2 binding

    OpenAIRE

    Gopalakrishnan, Manoj; Forsten-Williams, Kimberly; Tauber, Uwe C.

    2003-01-01

    The binding of basic fibroblast growth factor (FGF-2) to its cell surface receptor (CSR) and subsequent signal transduction is known to be enhanced by Heparan Sulfate Proteoglycans (HSPGs). HSPGs bind FGF-2 with low affinity and likely impact CSR-mediated signaling via stabilization of FGF-2-CSR complexes via association with both the ligand and the receptor. What is unknown is whether HSPG associates with CSR in the absence of FGF-2. In this paper, we determine conditions by which pre-associ...

  4. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: ligand binding properties.

    Science.gov (United States)

    Kainthan, Rajesh Kumar; Mugabe, Clement; Burt, Helen M; Brooks, Donald E

    2008-03-01

    This paper discusses the binding and release properties of hydrophobically modified hyperbranched polyglycerol-polyethylene glycol copolymers that were originally developed as human serum albumin (HSA) substitutes. Their unimolecular micellar nature in aqueous solution has been proven by size measurements and other spectroscopic methods. These polymers aggregate weakly in solution, but the aggregates are broken down by low shear forces or by encapsulating a hydrophobic ligand within the polymer. The small molecule binding properties of these polymers are compared with those of HSA. The preliminary in vitro paclitaxel release studies showed very promising sustained drug release characteristics achieved by these unimolecular micelles. PMID:18247528

  5. The Different Ligand-Binding Modes of Relaxin Family Peptide Receptors RXFP1 and RXFP2

    OpenAIRE

    Scott, Daniel J.; Rosengren, K. Johan; Bathgate, Ross A. D.

    2012-01-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leuci...

  6. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    OpenAIRE

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state l...

  7. Protein interactions and ligand binding: From protein subfamilies to functional specificity

    OpenAIRE

    Rausell, A.; de Juan, D.; Pazos, F; Valencia, A.

    2010-01-01

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as “specificity determining positions” (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating sign...

  8. Microbially produced extracellular poly-saccharidic Pu(IV)- binding ligands

    International Nuclear Information System (INIS)

    Full text of publication follows: The investigation of the Pu-binding properties of ligands for diverse extracellular polysaccharides (EPS) is of relevance for the quantitative understanding of colloidal barriers to radionuclide migration. The EPS isolated for this study were from four different bacteria species: a) two aerobic soil bacteria: Shewanella putrefaciens CN32 and Pseudomonas fluorescens Biovar II; and b) one anaerobic bacterium, Clostridium sp. BC1. EPS from these bacteria were isolated through repeated ethanol precipitations. The neutral monosaccharides in the EPS from Pseudomonas florescens Biovar II that were determined by GC-MS consisted of rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose and glucose. The potentially Pu(IV) binding EPS ligands were mainly composed of carboxylic acids and other minor poly-anionic groups, e.g., sulphates and phosphates. Up to 70 % of total carbohydrates were hydrophilic uronic acids, and total carbohydrates made up 23-31% of organic carbon for P. florescens Biovar II and 9-17% of organic carbon for S. putrefaciens CN32. Besides the neutral and acidic sugars in the EPS, there were also 2-13 % of more hydrophobic proteins among these bacterial EPS. Pu binding to these exo-polymers showed log Kd values of about 5 - 6, with results strongly dependent on procedural details (e.g., removal of colloids in Pu(IV) tracer and reagent solutions). We hypothesize that the relative hydrophobicity of the EPS ligands affects the outcome in ternary sorption studies with colloidal silica. Experiments with varying relative hydrophobicities of EPS will elucidate the different sorption strengths and/or attachment potentials of the Pu-binding ligands to inorganic surfaces. (authors)

  9. A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity

    OpenAIRE

    Hayik, Seth A.; Dunbrack, Roland; Merz, Kenneth M.

    2010-01-01

    Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaini...

  10. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility

    OpenAIRE

    Ravindranath, Pradeep Anand; Forli, Stefano; Goodsell, David S.; Olson, Arthur J.; Sanner, Michel F.

    2015-01-01

    Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; ...

  11. Microbially produced extracellular poly-saccharidic Pu(IV)- binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.C.; Roberts, K.A.; Schwehr, K.A.; Santschi, P.H. [Texas A and M University at Galveston, 5007 Ave U, Galveston, TX 77551 (United States)

    2005-07-01

    Full text of publication follows: The investigation of the Pu-binding properties of ligands for diverse extracellular polysaccharides (EPS) is of relevance for the quantitative understanding of colloidal barriers to radionuclide migration. The EPS isolated for this study were from four different bacteria species: a) two aerobic soil bacteria: Shewanella putrefaciens CN32 and Pseudomonas fluorescens Biovar II; and b) one anaerobic bacterium, Clostridium sp. BC1. EPS from these bacteria were isolated through repeated ethanol precipitations. The neutral monosaccharides in the EPS from Pseudomonas florescens Biovar II that were determined by GC-MS consisted of rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose and glucose. The potentially Pu(IV) binding EPS ligands were mainly composed of carboxylic acids and other minor poly-anionic groups, e.g., sulphates and phosphates. Up to 70 % of total carbohydrates were hydrophilic uronic acids, and total carbohydrates made up 23-31% of organic carbon for P. florescens Biovar II and 9-17% of organic carbon for S. putrefaciens CN32. Besides the neutral and acidic sugars in the EPS, there were also 2-13 % of more hydrophobic proteins among these bacterial EPS. Pu binding to these exo-polymers showed log Kd values of about 5 - 6, with results strongly dependent on procedural details (e.g., removal of colloids in Pu(IV) tracer and reagent solutions). We hypothesize that the relative hydrophobicity of the EPS ligands affects the outcome in ternary sorption studies with colloidal silica. Experiments with varying relative hydrophobicities of EPS will elucidate the different sorption strengths and/or attachment potentials of the Pu-binding ligands to inorganic surfaces. (authors)

  12. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    Science.gov (United States)

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  13. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na+, Cl- and K+ to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na+. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na+ and Cl-, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na+ binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl-. Cl- enhances the transporters affinity for imipramine, as well as for Na+. At concentrations in the range of its KM for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na+-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [3H]imipramine binding and [3H]serotonin transport

  14. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    Science.gov (United States)

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  15. Temperature dependence of estrogen binding: importance of a subzone in the ligand binding domain of a novel piscine estrogen receptor.

    Science.gov (United States)

    Tan, N S; Frecer, V; Lam, T J; Ding, J L

    1999-11-11

    The full length estrogen receptor from Oreochromis aureus (OaER) was cloned and expressed in vitro and in vivo as a functional transcription factor. Amino acid residues involved in the thermal stability of the receptor are located at/near subzones beta1 and beta3, which are highly conserved in other non-piscine species but not in OaER. Hormone binding studies, however, indicate that OaER is thermally stable but exhibited a approximately 3-fold reduced affinity for estrogen at elevated temperatures. Transfection of OaER into various cell lines cultured at different temperatures displayed a significant estrogen dose-response shift compared with that of chicken ER (cER). At 37 degrees C, OaER requires approximately 80-fold more estrogen to achieve half-maximal stimulation of CAT. Lowering of the incubation temperature from 37 degrees C to 25 degrees C or 20 degrees C resulted in a 4-fold increase in its affinity for estrogen. The thermally deficient transactivation of OaER at temperatures above 25 degrees C was fully prevented by high levels of estrogen. Thus, compared to cER, the OaER exhibits reduced affinity for estrogen at elevated temperature as reflected in its deficient transactivation capability. Amino acid replacements of OaER beta3 subzones with corresponding amino acids from cER could partially rescue this temperature sensitivity. The three-dimensional structure of the OaER ligand binding domain (LBD) was modelled based on conformational similarity and sequence homology with human RXRalpha apo, RARgamma holo and ERalpha LBDs. Unliganded and 17beta-estradiol-liganded OaER LBD retained the overall folding pattern of the nuclear receptor LBDs. The residues at/near the subzone beta3 of the LBD constitute the central core of OaER structure. Thus, amino acid alteration at this region potentially alters the structure and consequently its temperature-dependent ligand binding properties. PMID:10559464

  16. Proteins and Their Interacting Partners: An Introduction to Protein–Ligand Binding Site Prediction Methods

    Directory of Open Access Journals (Sweden)

    Daniel Barry Roche

    2015-12-01

    Full Text Available Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP and the Continuous Automated Model EvaluatiOn (CAMEO projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  17. A simple ligand-binding assay for thyroxine-binding globulin on reusable Sephadex columns

    International Nuclear Information System (INIS)

    A method for the assay of thyroxine-binding globulin on reusable Sephadex G-25 columns is described. It depends upon elution by diluted iodothyronine-free serum of protein-bound [125I]thyroxine from the columns under conditions where binding to thyroxine-binding prealbumin and albumin are abolished. It is simple, rapid and precise, and permits determinations inlarge numbers of samples. Values (mg/l; mean +- S.D.) were: normals 31.6+-5.4, hyperthyroid 28.3+-4.8, hypothyroid 40.6+-7.5, oral contraceptives 40.1+-6.8, pregnant 50.3+-5.4, cirrhotics 20.7+-4.3. Concentrations were reduced in serum heated at 56degC, while the uptake of [125I]triiodothyronine was increased. There was a significant negative correlation between thyroxine-binding globulin concentration and triiodothyronine uptake in the heated serum samples and in euthyroid subjects

  18. Competitive ligand - binding assay for thyroxine binding globulin. Comparison with TBG radioimmunoassay and T3 uptake test

    International Nuclear Information System (INIS)

    A simple and reproducible competitive ligand binding assay has been utilized to measure serum TBG concentration. In euthyroid subjects TBG concentration (mean +- SD, mg/l) was 33.7 +- 4; hyperthyroid 24 -+ 6; T3-thyrotoxicosis 20 +- 7; hypothyroid 37 -+ 7; pregnant 67 -+ 18; post-partum period 59.8 -+ 17; oral contraceptives 45 -+ 7. The correlation of CLBA with RIA measurement of TBG was significant (p3 uptake test (p4: TBG ratio according to serum T4 and TBG concentration provided a reliable index in the assessment of thyroid function

  19. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  20. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    Science.gov (United States)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  1. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  2. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-01

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect. PMID:27058988

  3. 金黄色葡萄球菌FnBP配体结合区基因的克隆及其原核表达%Cloning and Prokaryotic Expression of FnBP Ligand Binding Gene of Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    尹荣兰; 杨正涛; 张艳晶; 刘辉; 刘珊; 杨琦; 曹永国; 张乃生

    2008-01-01

    [Objective] The study aimed to clone the FnBP ligand binding gene of Staphylococcus aureus and run prokaryotic expression by constructing a prokaryotic expression vector. [Method] The gene encoding FnBP ligand binding gene was amplified from S.aureus chromosomal DNA by PCR technique. After T-A cloning, plasmid pMD18- FnBP was constructed. pMD18- FnBP and pET28a(+)were digested by BamH Ⅰ and EcoR Ⅰ double enzymes, then the purified FnBP ligand binding gene was subcloned into the expression vector pET28a(+), and the prokaryotic expression vector pET28a-FnBP was thus constructed. The constructed plasmid pET28a-FnBP was transformed into Escherichia coli BL21(DE3) competent cells. The bacterium was induced by IPTG and the expressed products were analyzed by SDS-PAGE and Western blot. [Result] The gene fragment with the length of 370 bp was amplified by PCR approach. One approximately 30 kD exogenous protein was observed in SDS-PAGE analysis. Western blot analysis indicates the protein has antigenicity of S.aureus. [Conclusion] The FnBP ligand binding gene of S.aureus was successfully cloned and expressed in prokaryotic cells.

  4. A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction

    OpenAIRE

    Hoffmann, Brice; Zaslavskiy, Mikhail; Vert, Jean-Philippe; Stoven, Véronique

    2009-01-01

    Motivation: Prediction of ligands for proteins of known 3D structure is important to understand structure-function relationship, predict molecular function, or design new drugs.\\\\ Results: We explore a new approach for ligand prediction in which binding pockets are represented by atom clouds. Each target pocket is compared to an ensemble of pockets of known ligands. Pockets are aligned in 3D space with further use of convolution kernels between clouds of points. Performance of the new method ...

  5. Steroid hormones affect binding of the sigma ligand {sup 11}C-SA4503 in tumour cells and tumour-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Rybczynska, Anna A.; Elsinga, Philip H.; Sijbesma, Jurgen W.; Jong, Johan R. de; Vries, Erik F. de; Dierckx, Rudi A.; Waarde, Aren van [University of Groningen, Nuclear Medicine and Molecular Imaging, University of Groningen Medical Center, Groningen (Netherlands); Ishiwata, Kiichi [Tokyo Metropolitan Institute of Gerontology, Positron Medical Center, Tokyo (Japan)

    2009-07-15

    Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined changes in binding of the sigma-1 agonist {sup 11}C-SA4503 in C6 glioma cells and in living rats after modification of endogenous steroid levels. {sup 11}C-SA4503 binding was assessed in C6 monolayers by gamma counting and in anaesthetized rats by microPET scanning. C6 cells were either repeatedly washed and incubated in steroid-free medium or exposed to five kinds of exogenous steroids (1 h or 5 min before tracer addition, respectively). Tumour-bearing male rats were repeatedly treated with pentobarbital (a condition known to result in reduction of endogenous steroid levels) or injected with progesterone. Binding of {sup 11}C-SA4503 to C6 cells was increased ({proportional_to}50%) upon removal and decreased ({proportional_to}60%) upon addition of steroid hormones (rank order of potency: progesterone > allopregnanolone = testosterone = androstanolone > dehydroepiandrosterone-3-sulphate, IC{sub 50} progesterone 33 nM). Intraperitoneally administered progesterone reduced tumour uptake and tumour-to-muscle contrast (36%). Repeated treatment of animals with pentobarbital increased the PET standardized uptake value of {sup 11}C-SA4503 in tumour (16%) and brain (27%), whereas the kinetics of blood pool radioactivity was unaffected. The binding of {sup 11}C-SA4503 is sensitive to steroid competition. Since not only increases but also decreases of steroid levels affect ligand binding, a considerable fraction of the sigma-1 receptor population in cultured tumour cells or tumour-bearing animals is normally occupied by endogenous steroids. (orig.)

  6. Steroid hormones affect binding of the sigma ligand 11C-SA4503 in tumour cells and tumour-bearing rats

    International Nuclear Information System (INIS)

    Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined changes in binding of the sigma-1 agonist 11C-SA4503 in C6 glioma cells and in living rats after modification of endogenous steroid levels. 11C-SA4503 binding was assessed in C6 monolayers by gamma counting and in anaesthetized rats by microPET scanning. C6 cells were either repeatedly washed and incubated in steroid-free medium or exposed to five kinds of exogenous steroids (1 h or 5 min before tracer addition, respectively). Tumour-bearing male rats were repeatedly treated with pentobarbital (a condition known to result in reduction of endogenous steroid levels) or injected with progesterone. Binding of 11C-SA4503 to C6 cells was increased (∝50%) upon removal and decreased (∝60%) upon addition of steroid hormones (rank order of potency: progesterone > allopregnanolone = testosterone = androstanolone > dehydroepiandrosterone-3-sulphate, IC50 progesterone 33 nM). Intraperitoneally administered progesterone reduced tumour uptake and tumour-to-muscle contrast (36%). Repeated treatment of animals with pentobarbital increased the PET standardized uptake value of 11C-SA4503 in tumour (16%) and brain (27%), whereas the kinetics of blood pool radioactivity was unaffected. The binding of 11C-SA4503 is sensitive to steroid competition. Since not only increases but also decreases of steroid levels affect ligand binding, a considerable fraction of the sigma-1 receptor population in cultured tumour cells or tumour-bearing animals is normally occupied by endogenous steroids. (orig.)

  7. β-lactoglobulin mutation Ala86Gln improves its ligand binding and reduces its immunoreactivity.

    Science.gov (United States)

    Kazem-Farzandi, Najmeh; Taheri-Kafrani, Asghar; Haertlé, Thomas

    2015-11-01

    β-Lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules. β-LG is also one of the major allergens in milk. Despite a lot of researches on decreasing of cow's milk allergenicity, the effects of the mutation of β-LG on its recognition by IgE from cow's milk allergy (CMA) patients have not been investigated. We described here the expression in the yeast Pichia pastoris of a mutant β-LG, in which Alanine 86 was changed into Glutamine (Ala86Gln; a mutation on one of the major epitopes of the protein). The purity and native like folded structure of the recombinant Ala86Gln have been demonstrated using circular dichroism, HPLC, SDS-PAGE and mass spectrometry. The effect of the mutation on the binding of IgE from CMA patients to mutant protein was evaluated by ELISA methods and the results showed that the mutation of Ala-86 was associated with weaker binding of IgE from CMA patients to Ala86Gln mutant protein. Subsequently, the binding of various ligands such as retinol, palmitic acid, resveratrol and serotonin, with native, recombinant wild type and Ala86Gln mutant β-LGs were investigated by fluorescence spectroscopy and an improvement on the binding affinity of the mutated protein to various ligands was observed. PMID:26275462

  8. Improved ligand binding energies derived from molecular dynamics: replicate sampling enhances the search of conformational space.

    Science.gov (United States)

    Adler, Marc; Beroza, Paul

    2013-08-26

    Does a single molecular trajectory provide an adequate sample conformational space? Our calculations indicate that for Molecular Mechanics--Poisson-Boltzmann Surface Area (MM-PBSA) measurement of protein ligand binding, a single molecular dynamics trajectory does not provide a representative sampling of phase space. For a single trajectory, the binding energy obtained by averaging over a number of molecular dynamics frames in an equilibrated system will converge after an adequate simulation time. A separate trajectory with nearly identical starting coordinates (1% randomly perturbed by 0.001 Å), however, can lead to a significantly different calculated binding energy. Thus, even though the calculated energy converges for a single molecular dynamics run, the variation across separate runs implies that a single run inadequately samples the system. The divergence in the trajectories is reflected in the individual energy components, such as the van der Waals and the electrostatics terms. These results indicate that the trajectories sample different conformations that are not in rapid exchange. Extending the length of the dynamics simulation does not resolve the energy differences observed between different trajectories. By averaging over multiple simulations, each with a nearly equivalent starting structure, we find the standard deviation in the calculated binding energy to be ∼1.3 kcal/mol. The work presented here indicates that combining MM-PBSA with multiple samples of the initial starting coordinates will produce more precise and accurate estimates of protein/ligand affinity. PMID:23845109

  9. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. PMID:25296660

  10. Manipulation and measurement of pH sensitive metal-ligand binding using electrochemical proton generation and metal detection.

    Science.gov (United States)

    Read, Tania L; Joseph, Maxim B; Macpherson, Julie V

    2016-01-31

    Generator-detector electrodes can be used to both perturb and monitor pH dependant metal-ligand binding equilibria, in situ. In particular, protons generated at the generator locally influence the speciation of metal (Cu(2+)) in the presence of ligand (triethylenetetraamine), with the detector employed to monitor, in real time, free metal (Cu(2+)) concentrations. PMID:26672981

  11. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  12. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    Science.gov (United States)

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  13. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling

    OpenAIRE

    Rosu, Frédéric; Nguyen, Chi-Hung; De Pauw, Edwin; Gabelica, Valérie

    2007-01-01

    In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and ...

  14. Millisecond Timescale Dynamics of Human Liver Fatty Acid Binding Protein: Testing of Its Relevance to the Ligand Entry Process

    OpenAIRE

    Long, Dong; Yang, Daiwen

    2010-01-01

    For over a decade, scientists have been attempting to know more about the conformational dynamics of fatty acid binding proteins (FABPs), to answer the puzzling question of how ligands could access the internalized binding site(s). Conformational exchange of FABPs on the microsecond to millisecond timescales has been found in many FABPs and offers an important hypothesis for the ligand entry mechanism. Despite the potential significance, the validity of this hypothesis has not been verified y...

  15. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.

    Science.gov (United States)

    Ravindranath, Pradeep Anand; Forli, Stefano; Goodsell, David S; Olson, Arthur J; Sanner, Michel F

    2015-12-01

    Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR-AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 -a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 -a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down

  16. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.

    Directory of Open Access Journals (Sweden)

    Pradeep Anand Ravindranath

    2015-12-01

    Full Text Available Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1 exponential growth of the search space, demanding more efficient search methods; and 2 increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR-AutoDock for Flexible Receptors (ADFR, a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1 SEQ17 -a receptor diversity set containing 17 pairs of apo-holo structures; and 2 CDK2 -a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we

  17. Selectivity of odorant-binding proteins from the southern house mosquito tested against physiologically relevant ligands

    Directory of Open Access Journals (Sweden)

    Jiao eYin

    2015-02-01

    Full Text Available As opposed to humans, insects rely heavily on an acute olfactory system for survival and reproduction. Two major types of olfactory proteins, namely, odorant-binding proteins (OBPs and odorant receptors (ORs, may contribute to the selectivity and sensitivity of the insects’ olfactory system. Here, we aimed at addressing the question whether OBPs highly enriched in the antennae of the southern house mosquito, Culex quinquefasciatus, contribute at least in part to the selective reception of physiologically relevant compounds. Using a fluorescence reporter and a panel of 34 compounds, including oviposition attractants, human-derived attractants, and repellents, we measured binding affinities of CquiOBP1, CquiOBP2, and CquiOBP5. Based on dissociation constants, we surmised that CquiOBP2 is a carrier for the oviposition attractant skatole, whereas CquiOBP1 and CquiOBP5 might transport the oviposition pheromone MOP, a human-derived attractant nonanal, and the insect repellent picardin. Binding of these three ligands to CquiOBP1 was further analyzed by examining the influence of pH on apparent affinity as well as by docking these three ligands into CquiOBP1. Our findings suggest that CquiOBP1 might discriminate MOP from nonanal/picaridin on the basis of the midpoint transition of a pH-dependence conformational change, and that MOP is better accommodated in the binding cavity than the other two ligands. These findings, along with previous experimental evidence suggesting that CquiOBP1 does not detect nonanal in vivo, suggest that OBP selectivity may not be clearly manifested in their dissociation constants.

  18. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Lian, Wen-Jing; Wang, Xin-Tian; Xie, Cheng-Zhi; Tian, He; Song, Xue-Qing; Pan, He-Ting; Qiao, Xin; Xu, Jing-Yuan

    2016-05-31

    Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary

  19. Elucidating the Energetics of Entropically Driven Protein–Ligand Association: Calculations of Absolute Binding Free Energy and Entropy

    Science.gov (United States)

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2014-01-01

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein–ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  20. Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy.

    Science.gov (United States)

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2011-10-20

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein-ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  1. Nucleotide-binding Oligomerization Domain-1 Ligand Induces Inflammation and Attenuates Glucose Uptake in Human Adipocytes

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Ai Li; Yu-ling Song; Yan Li; Hui Zhou

    2012-01-01

    Objective To investigate the effects of stimulant for nucleotide-binding oligomerization domain 1 (NOD1) on secretion of proinflammatory chemokine/cytokines and insulin-dependent glucose uptake in human differentiated adipocytes.Methods Adipose tissues were obtained from patients undergoing liposuction.Stromal vascular cells were extracted and differentiated into adipocytes.A specific ligand for NOD1,was administered to human adipocytes in culture.Nuclear factor-κB transcriptional activity and proinflammatory chemokine/cytokines production were determined by reporter plasmid assay and enzyme-linked immunosorbent assay,respectively.Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[3H]glucose uptake assay.Furthermore,chemokine/cytokine secretion and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD1 upon stimulation of NOD1 ligand were analyzed.Results Nuclear factor-κB transcriptional activity and monocyte chemoattractant protein-1 (MCP-1),interleukin (IL)-6,and IL-8 secretion in human adipocytes were markedly increased stimulated with NOD1 ligand (all P<0.01).Insulin-induced glucose uptake was decreased upon the activation of NOD1 (P<0.05).NOD1 gene silencing by siRNA reduced NOD1 ligand-induced MCP-1,IL-6,and IL-8 release and increased insulin-induced glucose uptake (all P<0.05).Conclusion NOD1 activation in adipocytes might be implicated in the onset of insulin resistance.

  2. Structure of the ligand-binding domain of the EphB2 receptor at 2 Å resolution

    International Nuclear Information System (INIS)

    The crystal structure of the ligand-binding domain of a receptor tyrosine kinase EphB2, an important mediator of cell-cell communication, has been determined at a resolution of 2 Å. The structure confirms the induced-fit mechanism for the binding of ligands to EphB receptors. Eph tyrosine kinase receptors, the largest group of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell–cell communication regulating cell attachment, shape and mobility. Recently, several Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Structural and biophysical studies have established detailed information on the binding and recognition of Eph receptors and ephrins. The initial high-affinity binding of Eph receptors to ephrin occurs through the penetration of an extended G–H loop of the ligand into a hydrophobic channel on the surface of the receptor. Consequently, the G–H loop-binding channel of Eph receptors is the main target in the search for Eph antagonists that could be used in the development of anticancer drugs and several peptides have been shown to specifically bind Eph receptors and compete with the cognate ephrin ligands. However, the molecular details of the conformational changes upon Eph/ephrin binding have remained speculative, since two of the loops were unstructured in the original model of the free EphB2 structure and their conformational changes upon ligand binding could consequently not be analyzed in detail. In this study, the X-ray structure of unbound EphB2 is reported at a considerably higher 2 Å resolution, the conformational changes that the important receptor loops undergo upon ligand binding are described and the consequences that these findings have for the development of Eph antagonists are discussed

  3. Binding of endogenous and exogenous cadmium to glutelin in rice grains as studied by HPLC/ICP-MS with use of a stable isotope

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.T. [Chiba Univ. (Japan). Faculty of Pharmaceutical Sciences; Sasakura, C.; Ohmichi, M. [Chiba City Inst. of Health and Environment Saiwai (Japan)

    1997-12-31

    Cadmium (Cd) in polished rice grains was extracted under various conditions and the chemical forms of the metal in soluble fractions were determined together with copper, zinc and other metals by HPLC with on-line detection by inductively coupled argon plasma (ICP) - mass spectrometry (MS). Cd (753 ng/g) in rice grains grown in Cd-contaminated rice fields was mostly bound to glutelin in soluble fractions. Binding of Cd in vitro to constituents in rice grains was examinated by incubating CdCl{sub 2} enriched with {sup 113}Cd in the soluble fraction of Cd-contaminated rice grains was identical with that of endogenous Cd on a size-exclusion column, and the metal was shown to bind to glutelin up to 5.0 {mu}g/g in the control rice gains, indicating that exogenous Cd can be bound to glutelin up to this capacity. Simultaneous specification of exogenous {sup 113}Cd and endogenous {sup 111}Cd was demonstrated to be highly effective for comparing the binding of Cd of natural and artificial origins. (orig.)

  4. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography

    International Nuclear Information System (INIS)

    Two substituted benzamides, FLB 524 and raclopride, were labeled with 11C and examined for their possible use as ligands for positron emission tomography (PET) scan studies on dopamine-2 (D-2) receptors in the brains of monkeys and healthy human subjects. Both ligands allowed the in vivo visualization of D-2 receptor binding in the corpus striatum caudate nucleus/putamen complex in PET-scan images. [11C]Raclopride showed a high ratio of specific striatal to nonspecific cerebellar binding, and the kinetics of binding of this ligand made it optimal for PET studies. The in vivo binding of [11C]raclopride in the striatum of cynomolgus monkeys was markedly reduced by displacement with haloperidol. In healthy human subjects, [11C]raclopride binding in the caudate nucleus/putamen was 4- to 5-fold greater than nonspecific binding in the cerebellum. In comparison with previously available ligands for PET-scan studies on central dopamine receptors in man, [11C]raclopride appears to be advantageous with regard to (i) specificity of binding to D-2 receptors, (ii) the high ratio between binding in dopamine-rich (caudate, putamen) and dopamine-poor (cerebellum) human brain regions, and (iii) rapid association and reversibility of specific binding

  5. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  6. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus.

    Science.gov (United States)

    Pagliai, Fernando A; Gonzalez, Claudio F; Lorca, Graciela L

    2015-01-01

    LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity. PMID:26635775

  7. The impact of a ligand binding on strand migration in the SAM-I riboswitch.

    Directory of Open Access Journals (Sweden)

    Wei Huang

    Full Text Available Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD, we simulated an extended (three microseconds MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.

  8. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  9. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design

    Science.gov (United States)

    Larsson, Andreas; Nordlund, Paer; Jansson, Anna; Anand, Ganesh S.

    2016-01-01

    A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower). Amide hydrogen deuterium Exchange mass spectrometry (HDXMS) is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM) and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD). PMID:27253209

  10. Predicting Allosteric Effects from Orthosteric Binding in Hsp90-Ligand Interactions: Implications for Fragment-Based Drug Design.

    Directory of Open Access Journals (Sweden)

    Arun Chandramohan

    2016-06-01

    Full Text Available A key question in mapping dynamics of protein-ligand interactions is to distinguish changes at binding sites from those associated with long range conformational changes upon binding at distal sites. This assumes a greater challenge when considering the interactions of low affinity ligands (dissociation constants, KD, in the μM range or lower. Amide hydrogen deuterium Exchange mass spectrometry (HDXMS is a robust method that can provide both structural insights and dynamics information on both high affinity and transient protein-ligand interactions. In this study, an application of HDXMS for probing the dynamics of low affinity ligands to proteins is described using the N-terminal ATPase domain of Hsp90. Comparison of Hsp90 dynamics between high affinity natural inhibitors (KD ~ nM and fragment compounds reveal that HDXMS is highly sensitive in mapping the interactions of both high and low affinity ligands. HDXMS reports on changes that reflect both orthosteric effects and allosteric changes accompanying binding. Orthosteric sites can be identified by overlaying HDXMS onto structural information of protein-ligand complexes. Regions distal to orthosteric sites indicate long range conformational changes with implications for allostery. HDXMS, thus finds powerful utility as a high throughput method for compound library screening to identify binding sites and describe allostery with important implications for fragment-based ligand discovery (FBLD.

  11. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    International Nuclear Information System (INIS)

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  12. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud; Lundstrom, Kenneth; Vogel, Horst

    2003-01-01

    of receptor function and in turn for the design and development of novel therapeutic compound. Here we show how ligand-receptor interaction can be investigated in situ with high sensitivity on sensor surfaces by total internal reflection fluorescence (TIRF) measurements. A generally applicable method...... streptavidin. TIRF measurements showed that a fluorescent agonist binds to the receptor on the sensor surface with similar affinity as to the receptor in live cells. This approach offers the possibility to investigate minute amounts of membrane protein in an active form and in its native environment without...

  13. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    Science.gov (United States)

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  14. Ligand binding to anti-cancer target CD44 investigated by molecular simulations.

    Science.gov (United States)

    Nguyen, Tin Trung; Tran, Duy Phuoc; Pham Dinh Quoc Huy; Hoang, Zung; Carloni, Paolo; Van Pham, Phuc; Nguyen, Chuong; Li, Mai Suan

    2016-07-01

    CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer. PMID:27342250

  15. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . This result shows that in addition to D1, which has an established function in ligand binding (Behrendt, N., Ploug, M., Patthy, L., Houen, G., Blasi, F., and Dano, K. (1991) J. Biol. Chem. 266, 7842-7847), D3 has an important role in governing a high affinity in the intact receptor. Real-time biomolecular...

  16. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu;

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-r...

  17. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins.

    Science.gov (United States)

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E

    2011-03-01

    Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  18. Crystal structures of the ligand-binding region of uPARAP: effect of calcium ion binding.

    Science.gov (United States)

    Yuan, Cai; Jürgensen, Henrik J; Engelholm, Lars H; Li, Rui; Liu, Min; Jiang, Longguang; Luo, Zhipu; Behrendt, Niels; Huang, Mingdong

    2016-08-01

    The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain (cysteine-rich or CysR domain) folds into a new and unique conformation different from the β-trefoil fold of typical CysR domains. The so-called long loop regions (LLRs) of the C-type lectin-like domain (CTLD) 1 and 2 (the third and fourth domain) mediate the direct contacts between these domains. These LLRs undergo a Ca(2+)-dependent conformational change, and this is likely to be the key structural determinant affecting the overall conformation of uPARAP. Our results provide a molecular mechanism to support the structural flexibility of uPARAP, and shed light on the structural flexibility of other members of the MR family. PMID:27247422

  19. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  20. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  1. Evolution of off-lattice model proteins under ligand binding constraints

    Science.gov (United States)

    Nelson, Erik D.; Grishin, Nick V.

    2016-08-01

    We investigate protein evolution using an off-lattice polymer model evolved to imitate the behavior of small enzymes. Model proteins evolve through mutations to nucleotide sequences (including insertions and deletions) and are selected to fold and maintain a specific binding site compatible with a model ligand. We show that this requirement is, in itself, sufficient to maintain an ordered folding domain, and we compare it to the requirement of folding an ordered (but otherwise unrestricted) domain. We measure rates of amino acid change as a function of local environment properties such as solvent exposure, packing density, and distance from the active site, as well as overall rates of sequence and structure change, both along and among model lineages in star phylogenies. The model recapitulates essentially all of the behavior found in protein phylogenetic analyses, and predicts that amino acid substitution rates vary linearly with distance from the binding site.

  2. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics.

    Science.gov (United States)

    Vuong, Quan Van; Nguyen, Tin Trung; Li, Mai Suan

    2015-12-28

    In this paper we present a new method for finding the optimal path for pulling a ligand from the binding pocket using steered molecular dynamics (SMD). Scoring function is defined as the steric hindrance caused by a receptor to ligand movement. Then the optimal path corresponds to the minimum of this scoring function. We call the new method MSH (Minimal Steric Hindrance). Contrary to existing navigation methods, our approach takes into account the geometry of the ligand while other methods including CAVER only consider the ligand as a sphere with a given radius. Using three different target + receptor sets, we have shown that the rupture force Fmax and nonequilibrium work Wpull obtained based on the MSH method show a much higher correlation with experimental data on binding free energies compared to CAVER. Furthermore, Wpull was found to be a better indicator for binding affinity than Fmax. Thus, the new MSH method is a reliable tool for obtaining the best direction for ligand exiting from the binding site. Its combination with the standard SMD technique can provide reasonable results for ranking binding affinities using Wpull as a scoring function. PMID:26595261

  3. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  4. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    Science.gov (United States)

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site. PMID:26777298

  5. Searching the protein structure database for ligand-binding site similarities using CPASS v.2

    Directory of Open Access Journals (Sweden)

    Caprez Adam

    2011-01-01

    Full Text Available Abstract Background A recent analysis of protein sequences deposited in the NCBI RefSeq database indicates that ~8.5 million protein sequences are encoded in prokaryotic and eukaryotic genomes, where ~30% are explicitly annotated as "hypothetical" or "uncharacterized" protein. Our Comparison of Protein Active-Site Structures (CPASS v.2 database and software compares the sequence and structural characteristics of experimentally determined ligand binding sites to infer a functional relationship in the absence of global sequence or structure similarity. CPASS is an important component of our Functional Annotation Screening Technology by NMR (FAST-NMR protocol and has been successfully applied to aid the annotation of a number of proteins of unknown function. Findings We report a major upgrade to our CPASS software and database that significantly improves its broad utility. CPASS v.2 is designed with a layered architecture to increase flexibility and portability that also enables job distribution over the Open Science Grid (OSG to increase speed. Similarly, the CPASS interface was enhanced to provide more user flexibility in submitting a CPASS query. CPASS v.2 now allows for both automatic and manual definition of ligand-binding sites and permits pair-wise, one versus all, one versus list, or list versus list comparisons. Solvent accessible surface area, ligand root-mean square difference, and Cβ distances have been incorporated into the CPASS similarity function to improve the quality of the results. The CPASS database has also been updated. Conclusions CPASS v.2 is more than an order of magnitude faster than the original implementation, and allows for multiple simultaneous job submissions. Similarly, the CPASS database of ligand-defined binding sites has increased in size by ~ 38%, dramatically increasing the likelihood of a positive search result. The modification to the CPASS similarity function is effective in reducing CPASS similarity scores

  6. Computational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of protein-lipid complexes

    OpenAIRE

    Fernandez Pacios, Luis; Gomez Casado, Cristina; Tordesillas Villuendas, Leticia; Palacín Gómez, Aranzazu; Sanchez-Monge Laguna De Rins, Maria Rosa; Díaz Perales, Araceli

    2012-01-01

    Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a co...

  7. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation

    Directory of Open Access Journals (Sweden)

    Schroeder Michael

    2006-09-01

    Full Text Available Abstract Background Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results We present LIGSITEcsc, an extension and implementation of the LIGSITE algorithm. LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITEcsc performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.

  8. Fabrication and characteristics of microcantilever-based biosensor for detection of the protein-ligand binding

    International Nuclear Information System (INIS)

    This paper describes a proposal for a microcantilever-based biosensor that can be used in investigating the adsorption characteristics of protein-ligand binding on a silicon nitride/gold coated surface. We have detected streptavidin-ligand binding using this microcantilever detection system. The microcantilevers can be mass-produced by a conventional surface micromachining technique. This technique has advantages of cost efficiency, simplicity, and the ability to be fabricated in an array. A transparent fluid cell system, where a gold coated microcantilever was mounted for the injection of bio-molecular solution, was fabricated using polydimethylsiloxane (PDMS) and fused silica glass. The microcantilever was deflected as a result of the difference of surface stress caused by the formation of the self-assembly monolayers (SAMs) of biomolecules on the gold coated side of the microcantilever. The sequential specific interactions of cystamine dihydrochloride/ glutaraldehyde/streptavidin were detected by both optical and electrical methods. We confirmed that the deflections were induced by biomolecular adsorption on the gold coated microcantilever. This study proved to be applicable to real-time monitoring of biological interactions such as specific DNA sequences, proteins, and so on

  9. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  10. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.

    Science.gov (United States)

    Liu, Jinfeng; He, Xiao; Zhang, John Z H

    2013-06-24

    Docking programs that use scoring functions to estimate binding affinities of small molecules to biological targets are widely applied in drug design and drug screening with partial success. But accurate and efficient scoring functions for protein-ligand binding affinity still present a grand challenge to computational chemists. In this study, the polarized protein-specific charge model (PPC) is incorporated into the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method to rescore the binding poses of some protein-ligand complexes, for which docking programs, such as Autodock, could not predict their binding modes correctly. Different sampling techniques (single minimized conformation and multiple molecular dynamics (MD) snapshots) are used to test the performance of MM/PBSA combined with the PPC model. Our results show the availability and effectiveness of this approach in correctly ranking the binding poses. More importantly, the bridging water molecules are found to play an important role in correctly determining the protein-ligand binding modes. Explicitly including these bridging water molecules in MM/PBSA calculations improves the prediction accuracy significantly. Our study sheds light on the importance of both bridging water molecules and the electronic polarization in the development of more reliable scoring functions for predicting molecular docking and protein-ligand binding affinity. PMID:23651068

  11. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins.

    Science.gov (United States)

    Gomez-Diaz, Carolina; Reina, Jaime H; Cambillau, Christian; Benton, Richard

    2013-01-01

    Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors. PMID:23637570

  12. Structural and Biochemical Determinants of Ligand Binding by the c-di-GMP Riboswitch

    International Nuclear Information System (INIS)

    The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that the most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high-resolution (2.3 (angstrom)) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3(prime)-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation.

  13. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Science.gov (United States)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  14. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.

    Science.gov (United States)

    Yang, Yuedong; Zhan, Jian; Zhou, Yaoqi

    2016-07-01

    Structure-based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this "ab initio" approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT-Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD-E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding-homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org. © 2016 Wiley Periodicals, Inc. PMID:27074979

  15. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity

  16. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xueqing; Chang, Bianca W. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Mans, Ben J. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Agricultural Research Council, Onderstepoort 0110 (South Africa); Ribeiro, Jose M. C.; Andersen, John F., E-mail: jandersen@niaid.nih.gov [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States)

    2013-01-01

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.

  17. Synthesis and binding characteristics of [(3)H]neuromedin N, a NTS2 receptor ligand.

    Science.gov (United States)

    Tóth, Fanni; Mallareddy, Jayapal Reddy; Tourwé, Dirk; Lipkowski, Andrzej W; Bujalska-Zadrozny, Magdalena; Benyhe, Sándor; Ballet, Steven; Tóth, Géza; Kleczkowska, Patrycja

    2016-06-01

    Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes. PMID:26707235

  18. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3

    Directory of Open Access Journals (Sweden)

    Sophia Böcker

    2015-07-01

    Full Text Available Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  19. Molecular simulation of ligand binding with DNA: implications for new radiopharmaceutical design

    International Nuclear Information System (INIS)

    We have been using computer-assisted molecular modeling software to assess the effects of structural modification on the interaction of DNA-binding iodine-125 (125I)-labeled Hoechst ligands with DNA and to predict DNA double-strand break (DSB) formation post 125I decay. To ascertain the robustness of the approach, the Lamarckian genetic algorithm (AutoDock 3.0) was first used to model the interaction/binding between DNA and m-iodo-p-methoxyHoechst (IMH), a ligand whose binding to the minor groove of DNA had been demonstrated (crystal structure) and which is available in the Protein Data Bank. m-Iodo-p- ethoxyHoechst (IEH), a radioligand that we had previously synthesized and characterized, was then docked onto DNA, the IEH-DNA complex minimized, and the free binding energy and inhibition constant (K i ) were estimated and compared with those obtained for IMH-DNA. Finally, Insight II was used to measure the distances between any atom (e.g. 125I) and the central axis of the targeted DNA and these were correlated with the DSB yield when these agents are bound to DNA. The data demonstrate that the docking of IMH onto DNA leads to a ligand-DNA complex that is only about 1Angstroms RMSD (root mean square deviation) from the crystal-structure position reported. The docking of IEH (a close analog of IMH) onto DNA also results in a very small RMSD (1.27Angstroms). These software programs allow the estimation of radionuclide-to-DNA molecular distances and thus can guide us in the selection of radiolabeled molecules to be synthesized and used to deposit DNA-breaking radiation doses in mammalian cell DNA. Compared with traditional/current radiopharmaceutical development approaches, the method greatly saves time and money, especially since the reactivity of newly designed radiolabeled compounds with their targeted DNA molecules can be predicted by means of molecular modeling prior to chemical synthesis

  20. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.

    Directory of Open Access Journals (Sweden)

    Janarthanan Krishnamoorthy

    Full Text Available BACKGROUND: Nuclear Magnetic Resonance (NMR spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQCexperiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS: We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4 calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4. Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker

  1. Protein-Ligand Binding Potential of Mean Force Calculations with Hamiltonian Replica Exchange on Alchemical Interaction Grids

    CERN Document Server

    Minh, David D L

    2015-01-01

    A binding potential of mean force (BPMF) is a free energy of noncovalent association in which one binding partner is flexible and the other is rigid. I have developed a method to calculate BPMFs for protein-ligand systems. The method is based on replica exchange sampling from multiple thermodynamic states at different temperatures and protein-ligand interaction strengths. Protein-ligand interactions are represented by interpolating precomputed electrostatic and van der Waals grids. Using a simple estimator for thermodynamic length, thermodynamic states are initialized at approximately equal intervals. The method is demonstrated on the Astex diverse set, a database of 85 protein-ligand complexes relevant to pharmacy or agriculture. Fifteen independent simulations of each complex were started using poses from crystallography, docking, or the lowest-energy pose observed in the other simulations. Benchmark simulations completed within three days on a single processor. Overall, protocols initialized using the ther...

  2. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    OpenAIRE

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of ef...

  3. Probing organic ligands and their binding schemes on nanocrystals by mass spectrometric and FT-IR spectroscopic imaging

    Science.gov (United States)

    Son, Jin Gyeong; Choi, Eunjin; Piao, Yuanzhe; Han, Sang Woo; Lee, Tae Geol

    2016-02-01

    We report an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Because the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveal the OPA ligands' binding state as bidentate complexes.We report an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Because the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveal the OPA ligands' binding state as bidentate complexes. Electronic supplementary information (ESI) available: Additional data (Fig. S1-S5). See DOI: 10.1039/c5nr07592k

  4. Differentiating a Ligand's Chemical Requirements for Allosteric Interactions from Those for Protein Binding. Phenylalanine Inhibition of Pyruvate Kinase

    International Nuclear Information System (INIS)

    The isoform of pyruvate kinase from brain and muscle of mammals (M1-PYK) is allosterically inhibited by phenylalanine. Initial observations in this model allosteric system indicate that Ala binds competitively with Phe, but elicits a minimal allosteric response. Thus, the allosteric ligand of this system must have requirements for eliciting an allosteric response in addition to the requirements for binding. Phe analogues have been used to dissect what chemical properties of Phe are responsible for eliciting the allosteric response. We first demonstrate that the L-2-aminopropanaldehyde substructure of the amino acid ligand is primarily responsible for binding to M1-PYK. Since the allosteric response to Ala is minimal and linear addition of methyl groups beyond the -carbon increase the magnitude of the allosteric response, we conclude that moieties beyond the -carbon are primarily responsible for allostery. Instead of an all-or-none mechanism of allostery, these findings support the idea that the bulk of the hydrophobic side chain, but not the aromatic nature, is the primary determinant of the magnitude of the observed allosteric inhibition. The use of these results to direct structural studies has resulted in a 1.65 Angstroms structure of M1-PYK with Ala bound. The coordination of Ala in the allosteric amino acid binding site confirms the binding role of the L-2-aminopropanaldehyde substructure of the ligand. Collectively, this study confirms that a ligand can have chemical regions specific for eliciting the allosteric signal in addition to the chemical regions necessary for binding

  5. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.

    Science.gov (United States)

    Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-04-01

    Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1. PMID:26767372

  6. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Tang Baozhen

    2012-10-01

    Full Text Available Abstract Background The diamondback moth, Plutella xylostella (L. (Lepidoptera: Plutellidae, is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM. In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists to their targets (ecdysone receptors leads to an adaptive response (resistance, is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.

  7. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  8. K, Ca complexes with a sulfonic ligand: Structure and DNA-binding properties

    Science.gov (United States)

    Luo, Jiahe; Ma, Zhaorong; Liang, Huang; Chen, Jiwen; Zeng, Zhengzhi

    2012-05-01

    A novel 4-(2,4-dihydroxybenzylideneamino)benzenesulfonic acid (HL), and its kalium(I), calcium(II) complexes [M(L)n]·2nH2O·Cln (M = K(1) n = 1, M = Ca(2) n = 2), have been prepared and characterized. The crystal and molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The interaction of 1, 2 and ligand (L) with calf thymus DNA was investigated by UV-visible (UV-vis), fluorescence and viscosity measurements. Experimental results indicate that 1, 2 and L could bind to DNA via the intercalation mode, and the binding affinity of 1 is stronger than that of 2 and L. The intrinsic binding constants of 1, 2 and L were 5.60 × 105, 6.53 × 105 and 1.44 × 105 M-1, respectively. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The results indicated that 1 and 2 could cleave pBR322 DNA.

  9. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.

    Science.gov (United States)

    Reddy, M Rami; Reddy, C Ravikumar; Rathore, R S; Erion, Mark D; Aparoy, P; Reddy, R Nageswara; Reddanna, P

    2014-01-01

    Post-genomic era has led to the discovery of several new targets posing challenges for structure-based drug design efforts to identify lead compounds. Multiple computational methodologies exist to predict the high ranking hit/lead compounds. Among them, free energy methods provide the most accurate estimate of predicted binding affinity. Pathway-based Free Energy Perturbation (FEP), Thermodynamic Integration (TI) and Slow Growth (SG) as well as less rigorous end-point methods such as Linear interaction energy (LIE), Molecular Mechanics-Poisson Boltzmann./Generalized Born Surface Area (MM-PBSA/GBSA) and λ-dynamics have been applied to a variety of biologically relevant problems. The recent advances in free energy methods and their applications including the prediction of protein-ligand binding affinity for some of the important drug targets have been elaborated. Results using a recently developed Quantum Mechanics (QM)/Molecular Mechanics (MM) based Free Energy Perturbation (FEP) method, which has the potential to provide a very accurate estimation of binding affinities to date has been discussed. A case study for the optimization of inhibitors for the fructose 1,6- bisphosphatase inhibitors has been described. PMID:23947646

  10. A method for measuring binding constants using unpurified in vivo biotinylated ligands.

    Science.gov (United States)

    Pogoutse, Anastassia K; Lai, Christine Chieh-Lin; Ostan, Nicholas; Yu, Rong-Hua; Schryvers, Anthony B; Moraes, Trevor F

    2016-05-15

    Obtaining accurate kinetics and steady-state binding constants for biomolecular interactions normally requires pure and homogeneous protein preparations. Furthermore, in many cases, one of the ligands must be labeled. Over the past decade, several technologies have been introduced that allow for the measurement of kinetics constants for multiple different interactions in parallel. One such technology is bio-layer interferometry (BLI), which has been used to develop systems that can measure up to 96 biomolecular interactions simultaneously. However, despite the ever-increasing throughput of the tools available for measuring protein-protein interactions, the preparation of pure protein still remains a bottleneck in the process of producing high-quality kinetics data. Here, we show that high-quality binding data can be obtained using soluble lysate fractions containing protein that has been biotinylated in vivo using BirA and then applied to BLI sensors without further purification. Furthermore, we show that BirA ligase does not necessarily need to be co-overexpressed with the protein of interest for biotinylation of the biotin acceptor peptide to occur, suggesting that the activity of endogenous BirA in Escherichia coli is sufficient for producing enough biotinylated protein for a binding experiment. PMID:26898305

  11. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Lipchock, S; Ames, T; Wang, J; Breaker, R; Strobel, S

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.

  12. Structural basis of ligand binding by a c-di-GMP riboswitch.

    Science.gov (United States)

    Smith, Kathryn D; Lipchock, Sarah V; Ames, Tyler D; Wang, Jimin; Breaker, Ronald R; Strobel, Scott A

    2009-12-01

    The second messenger signaling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 A resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling. PMID:19898477

  13. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    Science.gov (United States)

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p stress produces a decrease in BZD receptor binding sites. PMID:8385464

  14. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells.

    OpenAIRE

    Bamezai, A; Rock, K L

    1995-01-01

    The Ly-6 locus encodes several cell surface proteins whose functions are unknown. Although it is hypothesized that these proteins may be receptors, there is no direct evidence that they bind a ligand. Herein we present evidence that Ly-6A.2, a Ly-6 protein expressed on T lymphocytes, binds a ligand expressed on normal thymocytes and splenic B and T cells. We find that transgenic thymocytes that overexpress Ly-6A.2 spontaneously aggregate in culture. This homotypic adhesion requires the overex...

  15. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  16. Renormalization of myoglobin-ligand binding energetics by quantum many-body effects

    CERN Document Server

    Weber, Cedric; O'Regan, David D; Payne, Mike C

    2014-01-01

    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a st...

  17. Relationships between ligand binding sites, protein architecture and correlated paths of energy and conformational fluctuations

    International Nuclear Information System (INIS)

    The statistical thermodynamics basis of energy and residue position fluctuations is explained for native proteins. The protein and its surroundings are treated as a canonical system with emphasis on the effects of energy exchange between the two. Fluctuations of the energy are related to fluctuations of residue positions, which in turn are related to the connectivity matrix of the protein, thus establishing a connection between energy fluctuation pathways and protein architecture. The model gives the locations of hotspots for ligand binding and identifies the pathways of energy conduction within the protein. Results are discussed in terms of two sets of models, the BPTI and 12 proteins that contain the PDZ domain. A possible use of the model for determining functionally similar domains in a diverse set of proteins is pointed out

  18. Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases

    International Nuclear Information System (INIS)

    A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand α,ω-di[(3' or 2')-O-(N-methyl-anthraniloyl)adenosine-5'] pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 x 10-9 to 5 x 10-2 M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors is proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity

  19. Electrostatically induced recruitment of membrane peptides into clusters requires ligand binding at both interfaces.

    Directory of Open Access Journals (Sweden)

    Yuri N Antonenko

    Full Text Available Protein recruitment to specific membrane locations may be governed or facilitated by electrostatic attraction, which originates from a multivalent ligand. Here we explored the energetics of a model system in which this simple electrostatic recruitment mechanism failed. That is, basic poly-L-lysine binding to one leaflet of a planar lipid bilayer did not recruit the triply-charged peptide (O-Pyromellitylgramicidin. Clustering was only observed in cases where PLL was bound to both channel ends. Clustering was indicated (i by the decreased diffusional PLL mobility D(PLL and (ii by an increased lifetime τ(PLL of the clustered channels. In contrast, if PLL was bound to only one leaflet, neither D(PLL nor τ(P changed. Simple calculations suggest that electrostatic repulsion of the unbound ends prevented neighboring OPg dimers from approaching each other. We believe that a similar mechanism may also operate in cell signaling and that it may e.g. contribute to the controversial results obtained for the ligand driven dimerization of G protein-coupled receptors.

  20. Globin-like proteins in Caenorhabditis elegans: in vivo localization, ligand binding and structural properties

    Directory of Open Access Journals (Sweden)

    Van Doorslaer Sabine

    2010-04-01

    Full Text Available Abstract Background The genome of the nematode Caenorhabditis elegans contains more than 30 putative globin genes that all are transcribed. Although their translated amino acid sequences fit the globin fold, a variety of amino-acid substitutions and extensions generate a wide structural diversity among the putative globins. No information is available on the physicochemical properties and the in vivo expression. Results We expressed the globins in a bacterial system, characterized the purified proteins by optical and resonance Raman spectroscopy, measured the kinetics and equilibria of O2 binding and determined the crystal structure of GLB-1* (CysGH2 → Ser mutant. Furthermore, we studied the expression patterns of glb-1 (ZK637.13 and glb-26 (T22C1.2 in the worms using green fluorescent protein technology and measured alterations of their transcript abundances under hypoxic conditions.GLB-1* displays the classical three-over-three α-helical sandwich of vertebrate globins, assembled in a homodimer associated through facing E- and F-helices. Within the heme pocket the dioxygen molecule is stabilized by a hydrogen bonded network including TyrB10 and GlnE7.GLB-1 exhibits high ligand affinity, which is, however, lower than in other globins with the same distal TyrB10-GlnE7 amino-acid pair. In the absence of external ligands, the heme ferrous iron of GLB-26 is strongly hexacoordinated with HisE7, which could explain its extremely low affinity for CO. This globin oxidizes instantly to the ferric form in the presence of oxygen and is therefore incapable of reversible oxygen binding. Conclusion The presented data indicate that GLB-1 and GLB-26 belong to two functionally-different globin classes.

  1. Solution structure of human intestinal fatty acid binding protein: Implications for ligand entry and exit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fengli [Boston University School of Medicine, Department of Biophysics (United States); Luecke, Christian [Johann Wolfgang Goethe-Universitaet (Germany); Baier, Leslie J. [NIDDK, NIH, Phoenix Epidemiology and Clinical Research Branch (United States); Sacchettini, James C. [Texas A and M University, Department of Biochemistry and Biophysics (United States); Hamilton, James A. [Boston University School of Medicine, Department of Biophysics (United States)

    1997-04-15

    The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) protein which binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanine to threonine substitution at position 54 in I-FABP has been identified which affects fatty acid binding and transport, and is associated with the development of insulin resistance in several populations including Mexican-Americans and Pima Indians. To investigate the molecular basis of the binding properties of I-FABP, the 3D solution structure of the more common form of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed by using 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP was calculated by using the distance geometry program DIANA based on 2519 distance constraints obtained from the NMR data. Subsequent energy minimization was carried out by using the program SYBYL in the presence of distance constraints. The conformation of human I-FABP consists of 10 antiparallel {beta}-strands which form two nearly orthogonal {beta}-sheets of five strands each, and two short {alpha}-helices that connect the {beta}-strands A and B. The interior of the protein consists of a water-filled cavity between the two {beta}-sheets. The NMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segments around the postulated portal region for the entry and exit of fatty acid ligand.

  2. Mapping the Anopheles gambiae odorant binding protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays.

    Science.gov (United States)

    Rusconi, B; Maranhao, A C; Fuhrer, J P; Krotee, P; Choi, S H; Grun, F; Thireou, T; Dimitratos, S D; Woods, D F; Marinotti, O; Walter, M F; Eliopoulos, E

    2012-08-01

    The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues containing single point mutations of interest. Circular dichroism (CD) and ligand-binding assays provided data necessary to probe the effects of the point mutations on ligand binding and the overall structure of AgamOBP1. Far-UV CD spectra of mutated AgamOBP1 variants displayed both substantial decreases to ordered α-helix structure (up to22%) and increases to disordered α-helix structure(up to 15%) with only minimal changes in random coil (unordered) structure. In mutations Y54A, Y122A and W114Q, aromatic side chain removal from the binding site significantly reduced N-phenyl-1-naphthylamine binding. Several non-aromatic mutations (L15T, L19T, L58T, L58Y, M84Q, M84K, H111A, Y122A and L124T) elicited changes to protein conformation with subsequent effects on ligand binding. This study provides empirical evidence for the in silico predicted functions of specific amino acids in AgamOBP1 folding and ligand binding characteristics. PMID:22564768

  3. Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes

    OpenAIRE

    Kovak, Matthew R.; Saraswati, Sarika; Goddard, Sabrina; Diekman, Alan B.

    2013-01-01

    Galectin-3 is a multi-functional carbohydrate binding protein that was previously characterized as a proteolytic substrate for prostate specific antigen (PSA) and was shown to be associated with prostasomes in human semen. Prostasomes are exosome-like vesicles that are secreted by the prostatic epithelium and have multiple proposed functions in normal reproduction and prostate cancer. In the current study, galectin-3 binding ligands in human prostasomes were identified and characterized with ...

  4. Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP

    DEFF Research Database (Denmark)

    Nielsen, Bettina B; Pickering, Darryl S; Greenwood, Jeremy R;

    2005-01-01

    The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct and of...

  5. Estimation of statistical binding properties of ligand population during in vitro selection based on population dynamics theory.

    Science.gov (United States)

    Aita, Takuyo; Nishigaki, Koichi; Husimi, Yuzuru

    2014-01-01

    During in vitro selection process, it is very valuable to monitor the binding properties of the ligand population in real time, particularly the population average of the association constant in the population. If this monitoring can be realized, the selection process can be controlled in a rational way. In this paper, we present a simple method to estimate the binding properties of the ligand population during in vitro selection. The framework of the method is as follows. First, the number of all the collected ligand molecules, which are eluted after incubation and washing, is measured. Ideally, this number corresponds to the number of all the ligand molecules bound with the target-receptor or other materials in a test tube. This measurement is performed through several successive rounds of selection. Second, the measured numbers of molecules are subjected to a theoretical analysis, based on the mathematical theory of population dynamics in the selection process. Then, we can estimate the probability density of the binding free energy in the ligand population. The validity of our method was confirmed by several computer simulations based on a physicochemical model. PMID:24239675

  6. Macrophage Membrane Potential Changes Associated with γ 2b/γ 1 Fc Receptor-Ligand Binding

    Science.gov (United States)

    Young, John Ding-E; Unkeless, Jay C.; Kaback, H. Ronald; Cohn, Zanvil A.

    1983-03-01

    We have studied the effects of specific ligands of the receptor for the IgG Fc fragment (FcR) on the membrane potential (Δ Psi ) of the macrophage cell line J774 by the [3H]tetraphenylphosphonium ion equilibration technique. We observe a membrane depolarization with binding of FcR ligands that is dependent on the degree of receptor crosslinking. Binding of the FcR by monovalent ligands is not sufficient to induce a significant drop in Δ Psi , but a sustained depolarization lasting ≈ 20 min occurs with insoluble multivalent ligands. This FcR-mediated depolarization can be inhibited by substitution of Na+ from the cell incubation medium with monovalent choline cation, indicating that depolarization is due to Na+ influx into the cell. The extracellular Ca2+ does not play a significant role in membrane depolarization. The depolarization response is not triggered by monoclonal antibodies directed against three other major macrophage surface antigens. The cell depolarization mediated by FcR ligands is followed by a prolonged hyperpolarization that can be partially blocked by ouabain and quinine, indicating that the hyperpolarization response is a result of a combination of a Na+, K+-ATPase activity and a Ca2+-activated K+ conductance. These data support our hypothesis that the mouse macrophage IgG FcR is a ligand-dependent ion channel.

  7. Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site.

    Directory of Open Access Journals (Sweden)

    Kanchan Anand

    Full Text Available BACKGROUND: Pleckstrin homology (PH domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs. PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i a canonical binding site delimited by the β1-β2 and β3-β4loops and ii a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner. PRINCIPAL FINDINGS: To study the structural basis for the Slm1-PH domain (Slm1-PH specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4P, and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P. We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site. CONCLUSIONS: Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P.

  8. Host-guest complexation. 18. Effects on cation binding of convergent ligand sites appended to macrocyclic polyethers

    International Nuclear Information System (INIS)

    Syntheses are reported for 16 new macrocyclic polyether ligand systems which contain potentially convergent side chains containing additional binding sites. The free energies of association of these systems in CDCl3 at 250C with Li+, Na+, K+, Rb+, Cs+, NH4+, CH3NH3+, and t-BuNH3+ picrates were determined

  9. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin Holst Friborg; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  10. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  11. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties. PMID:27444879

  12. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.

    Science.gov (United States)

    Aboul-ela, Fareed; Huang, Wei; Abd Elrahman, Maaly; Boyapati, Vamsi; Li, Pan

    2015-01-01

    The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, although overlapping with, the aptamer. Early biophysical studies of riboswitches focused on recognition of the ligand by the aptamer-an important consideration for drug design. A mechanistic understanding of ligand-induced riboswitch RNA folding can further enhance riboswitch ligand design, and inform efforts to tune and engineer riboswitches with novel properties. X-ray structures of aptamer/ligand complexes point to mechanisms through which the ligand brings together distal strand segments to form a P1 helix. Transcriptional riboswitches must detect the ligand and form this P1 helix within the timescale of transcription. Depending on the cell's metabolic state and cellular environmental conditions, the folding and genetic outcome may therefore be affected by kinetics of ligand binding, RNA folding, and transcriptional pausing, among other factors. Although some studies of isolated riboswitch aptamers found homogeneous, prefolded conformations, experimental, and theoretical studies point to functional and structural heterogeneity for nascent transcripts. Recently it has been shown that some riboswitch segments, containing the aptamer and partial expression platforms, can form binding-competent conformers that incorporate an incomplete aptamer secondary structure. Consideration of the free energy landscape for riboswitch RNA folding suggests models for how these conformers may act as transition states-facilitating rapid, ligand-mediated aptamer folding. PMID:26361734

  13. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands.

    Science.gov (United States)

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(1)), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(2)), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(3)), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. PMID:27612830

  14. Specific binding of a ligand of σ-opioid receptors - N-allylnormetazocine (SKF 10047) - with liver membranes

    International Nuclear Information System (INIS)

    A ligand of the σ-opioid receptors - N-allylnormetazocine (SKF 10047) -binds specifically and reversible with rat liver membranes. In relation to a number of properties, the sites binding SKF 10047 in the liver are similar to the σ-opioid receptors of the central nervous system. They do not interact with classical opiates (morphine, naloxone) and with opioid peptides, but bind well benzomorphans (bremazocine, SKF 10047) and a number of compounds of different chemical structures with a pronounced psychtropic action (haloperidol, imipramine, phencyclidine, etc.)

  15. Specific binding of a ligand of sigma-opioid receptors - N-allylnormetazocine (SKF 10047) - with liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Samovilova, N.N.; Yarygin, K.N.; Vinogradov, V.A.

    1986-08-01

    A ligand of the sigma-opioid receptors - N-allylnormetazocine (SKF 10047) -binds specifically and reversible with rat liver membranes. In relation to a number of properties, the sites binding SKF 10047 in the liver are similar to the sigma-opioid receptors of the central nervous system. They do not interact with classical opiates (morphine, naloxone) and with opioid peptides, but bind well benzomorphans (bremazocine, SKF 10047) and a number of compounds of different chemical structures with a pronounced psychtropic action (haloperidol, imipramine, phencyclidine, etc.).

  16. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus.

    Science.gov (United States)

    Rey-Burusco, M Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R; Roe, Andrew J; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W; Córsico, Betina; Smith, Brian O

    2015-11-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  17. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications

    OpenAIRE

    Mizwicki, Mathew T; Menegaz, Danusa; Yaghmaei, Sepideh; Henry, Helen L.; Norman, Anthony W.

    2010-01-01

    Molecular modeling results indicate that the VDR contains two overlapping ligand binding pockets (LBP). Differential ligand stability and fractional occupancy of the two LBP has been physiochemically linked to the regulation of VDR-dependent genomic and non-genomic cellular responses. The purpose of this report is to develop an unbiased molecular modeling protocol that serves as a good starting point in simulating the dynamic interaction between 1α,25(OH)2-vitamin D3 (1,25D3) and the VDR LBP....

  18. Synthesis, Crystal Structure, and DNA-Binding Studies of a Nickel(II Complex with the Bis(2-benzimidazolymethylamine Ligand

    Directory of Open Access Journals (Sweden)

    Huilu Wu

    2012-01-01

    Full Text Available A V-shaped ligand Bis(2-benzimidazolymethylamine (bba and its nickel(II picrate (pic complex, with composition [Ni(bba2](pic2⋅3MeOH, have been synthesized and characterized on the basis of elemental analyses, molar conductivities, IR spectra, and UV/vis measurements. In the complex, the Ni(II ion is six-coordinated with a N2O4 ligand set, resulting in a distorted octahedron coordination geometry. In addition, the DNA-binding properties of the Ni(II complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The experimental results suggest that the nickel(II complex binds to DNA by partial intercalation binding mode.

  19. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    Science.gov (United States)

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. PMID:26954998

  20. Investigations into the bovine serum albumin binding and fluorescence properties of Tb (III) complex of a novel 8-hydroxyquinoline ligand

    Science.gov (United States)

    Zhao, Mingming; Tang, Ruiren; Xu, Shuai

    2015-01-01

    A novel ligand, 2-methyl-6-(8-quinolinyl)-dicarboxylate pyridine (L), and its corresponding Tb (III) complex, Na4Tb(L)2Cl4·3H2O, were successfully prepared and characterized. The luminescence spectra showed that the ligand L was an efficient sensitizer for Tb (III) luminescence. The interaction of the complex with bovine serum albumin (BSA) was investigated through fluorescence spectroscopy under physiological conditions. The Stern-Volmer analysis indicated that the fluorescence quenching was resulted from static mechanism. The binding sites (n) approximated 1.0 and this meant that interaction of Na4Tb(L)2Cl4·3H2O with BSA had single binding site. The results showed van der Waals interactions and hydrogen bonds played major roles in the binding reaction. Furthermore, circular dichroism (CD) spectra indicated that the conformation of BSA was changed.

  1. DISTINCT ROLES OF β1 MIDAS, ADMIDAS AND LIMBS CATION-BINDING SITES IN LIGAND RECOGNITION BY INTEGRIN α2β1*

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J.; Mould, A. Paul

    2012-01-01

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as α2β1, ligand recognition takes place exclusively at the α subunit I domain. However, activation of the αI domain depends on its interaction with a structurally similar domain in the β subunit known as the I-like or βI domain. The top face of the βI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS) and LIMBS (ligand-associated metal binding site). The role of these sites in controlling ligand binding to the αI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to α2β1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating mAb TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between αI and βI whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of βI. An activating mutation in the α2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca2+, Mg2+ and Mn2+ on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn2+ stimulates ligand binding, whereas the LIMBS is a stimulatory Ca2+-binding site, occupancy of which increases the affinity of Mg2+ for the MIDAS. PMID:18820259

  2. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  3. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    Science.gov (United States)

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. PMID:23420697

  4. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    Science.gov (United States)

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  5. Characterization of the ligand binding site of the bovine IgA Fc receptor (bFc alpha R).

    Science.gov (United States)

    Morton, H Craig; Pleass, Richard J; Woof, Jenny M; Brandtzaeg, Per

    2004-12-24

    Recently, we identified a bovine IgA Fc receptor (bFc alpha R), which shows high homology to the human myeloid Fc alpha R, CD89. IgA binding has previously been shown to depend on several specific residues located in the B-C and F-G loops of the membrane-distal extracellular domain 1 of CD89. To compare the ligand binding properties of these two Fc alpha Rs, we have mapped the IgA binding site of bFc alpha R. We show that, in common with CD89, Tyr-35 in the B-C loop is essential for IgA binding. However, in contrast to earlier observations on CD89, mutation of residues in the F-G loop did not significantly inhibit IgA binding. PMID:15485844

  6. Data quality in drug discovery: the role of analytical performance in ligand binding assays.

    Science.gov (United States)

    Wätzig, Hermann; Oltmann-Norden, Imke; Steinicke, Franziska; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Albishri, Hassan M; Baumann, Knut; Exner, Thomas; Böckler, Frank M; El Deeb, Sami

    2015-09-01

    Despite its importance and all the considerable efforts made, the progress in drug discovery is limited. One main reason for this is the partly questionable data quality. Models relating biological activity and structures and in silico predictions rely on precisely and accurately measured binding data. However, these data vary so strongly, such that only variations by orders of magnitude are considered as unreliable. This can certainly be improved considering the high analytical performance in pharmaceutical quality control. Thus the principles, properties and performances of biochemical and cell-based assays are revisited and evaluated. In the part of biochemical assays immunoassays, fluorescence assays, surface plasmon resonance, isothermal calorimetry, nuclear magnetic resonance and affinity capillary electrophoresis are discussed in details, in addition radiation-based ligand binding assays, mass spectrometry, atomic force microscopy and microscale thermophoresis are briefly evaluated. In addition, general sources of error, such as solvent, dilution, sample pretreatment and the quality of reagents and reference materials are discussed. Biochemical assays can be optimized to provide good accuracy and precision (e.g. percental relative standard deviation <10 %). Cell-based assays are often considered superior related to the biological significance, however, typically they cannot still be considered as really quantitative, in particular when results are compared over longer periods of time or between laboratories. A very careful choice of assays is therefore recommended. Strategies to further optimize assays are outlined, considering the evaluation and the decrease of the relevant error sources. Analytical performance and data quality are still advancing and will further advance the progress in drug development. PMID:26070362

  7. Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein.

    Science.gov (United States)

    He, Yan; Yang, Xiaomin; Wang, Hsin; Estephan, Rima; Francis, Fouad; Kodukula, Sarala; Storch, Judith; Stark, Ruth E

    2007-11-01

    Rat liver fatty acid-binding protein (LFABP) is distinctive among intracellular lipid-binding proteins (iLBPs): more than one molecule of long-chain fatty acid and a variety of diverse ligands can be bound within its large cavity, and in vitro lipid transfer to model membranes follows a mechanism that is diffusion-controlled rather than mediated by protein-membrane collisions. Because the apoprotein has proven resistant to crystallization, nuclear magnetic resonance spectroscopy offers a unique route to functionally informative comparisons of molecular structure and dynamics for LFABP in free (apo) and liganded (holo) forms. We report herein the solution-state structures determined for apo-LFABP at pH 6.0 and for holoprotein liganded to two oleates at pH 7.0, as well as the structure of the complex including locations of the ligands. 1H, 13C, and 15N resonance assignments revealed very similar types and locations of secondary structural elements for apo- and holo-LFABP as judged from chemical shift indices. The solution-state tertiary structures of the proteins were derived with the CNS/ARIA computational protocol, using distance and angular restraints based on 1H-1H nuclear Overhauser effects (NOEs), hydrogen-bonding networks, 3J(HNHA) coupling constants, intermolecular NOEs, and residual dipolar (NH) couplings. The holo-LFABP solution-state conformation is in substantial agreement with a previously reported X-ray structure [Thompson, J., Winter, N., Terwey, D., Bratt, J., and Banaszak, L. (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates, J. Biol. Chem. 272, 7140-7150], including the typical beta-barrel capped by a helix-turn-helix portal. In the solution state, the internally bound oleate has the expected U-shaped conformation and is tethered electrostatically, but the extended portal ligand can adopt a range of conformations based on the computationally refined structures, in contrast to the single

  8. Characterization of (3H)-nicotine binding in rodent brain and comparison with the binding of other labelled nicotinic ligands

    International Nuclear Information System (INIS)

    In an investigation of the receptor through which nicotine exerts its central actions, radioactively labelled nicotine was used in biochemical in vitro binding studies. Tritium-labelled nicotine (tritium-NIC) binding to mouse hippocampus was studied and the effect of temperature on the binding was analyzed by saturation-binding experiments. The specific tritium-NIC binding was found to be approximately four times higher at 4 C than at 25 C

  9. The utility of geometrical and chemical restraint information extracted from predicted ligand-binding sites in protein structure refinement.

    Science.gov (United States)

    Brylinski, Michal; Lee, Seung Yup; Zhou, Hongyi; Skolnick, Jeffrey

    2011-03-01

    Exhaustive exploration of molecular interactions at the level of complete proteomes requires efficient and reliable computational approaches to protein function inference. Ligand docking and ranking techniques show considerable promise in their ability to quantify the interactions between proteins and small molecules. Despite the advances in the development of docking approaches and scoring functions, the genome-wide application of many ligand docking/screening algorithms is limited by the quality of the binding sites in theoretical receptor models constructed by protein structure prediction. In this study, we describe a new template-based method for the local refinement of ligand-binding regions in protein models using remotely related templates identified by threading. We designed a Support Vector Regression (SVR) model that selects correct binding site geometries in a large ensemble of multiple receptor conformations. The SVR model employs several scoring functions that impose geometrical restraints on the Cα positions, account for the specific chemical environment within a binding site and optimize the interactions with putative ligands. The SVR score is well correlated with the RMSD from the native structure; in 47% (70%) of the cases, the Pearson's correlation coefficient is >0.5 (>0.3). When applied to weakly homologous models, the average heavy atom, local RMSD from the native structure of the top-ranked (best of top five) binding site geometries is 3.1Å (2.9Å) for roughly half of the targets; this represents a 0.1 (0.3)Å average improvement over the original predicted structure. Focusing on the subset of strongly conserved residues, the average heavy atom RMSD is 2.6Å (2.3Å). Furthermore, we estimate the upper bound of template-based binding site refinement using only weakly related proteins to be ∼2.6Å RMSD. This value also corresponds to the plasticity of the ligand-binding regions in distant homologues. The Binding Site Refinement (BSR

  10. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding.

    Science.gov (United States)

    Park, Jiho; Czapla, Luke; Amaro, Rommie E

    2013-08-26

    CYP19A1, also known as aromatase or estrogen synthetase, is the rate-limiting enzyme in the biosynthesis of estrogens from their corresponding androgens. Several clinically used breast cancer therapies target aromatase. In this work, explicitly solvated all-atom molecular dynamics simulations of aromatase with a model of the lipid bilayer and the transmembrane helix are performed. The dynamics of aromatase and the role of titration of an important amino acid residue involved in aromatization of androgens are investigated via two 250-ns long simulations. One simulation treats the protonated form of the catalytic aspartate 309, which appears more consistent with crystallographic data for the active site, while the simulation of the deprotonated form shows some notable conformational shifts. Ensemble-based computational solvent mapping experiments indicate possible novel druggable binding sites that could be utilized by next-generation inhibitors. In addition, the effects of protonation on the ligand positioning and channel dynamics are investigated using geometrical models that estimate the opening width of critical channels. Significant differences in channel dynamics between the protonated and deprotonated trajectories are exhibited, suggesting that the mechanism for substrate and product entry and the aromatization process may be coupled to a "locking" mechanism and channel opening. Our results may be particularly relevant in the design of novel drugs, which may be useful therapeutic treatments of cancers such as those of the breast and prostate. PMID:23927370

  11. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Beilei Chen

    2015-01-01

    Full Text Available Background. Calreticulin (CRT can bind to Fas ligand (FasL and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI. Methods. Mice underwent middle cerebral artery occlusion (MCAO and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI.

  12. Ligand-binding assays: risk of using a platform supported by a single vendor.

    Science.gov (United States)

    Yohrling, Jennifer

    2009-06-01

    The use of biological reagents in ligand-binding assays (LBAs) presents inherent challenges when measuring the concentration of large molecules in complex matrices. As a result, there are relatively few platforms that provide the accuracy, precision and robustness needed to determine the concentration of macromolecular therapies and biomarkers, and demonstrate the presence or absence of an immune response. Some bioanalytical laboratories use only one LBA platform to reduce costs, increase efficiency and maintain optimal assay performance. However, the business and regulatory risks of using a single platform supported by only one vendor should be considered. This article summarizes the immunological methods used to support bioanalysis for large molecules that are supported by a single vendor, the benefits of being dedicated to a single platform for bioanalysis used for regulatory filings, the costs associated with restructuring if an immunoassay platform is discontinued and recommendations to mitigate risk when using LBAs in drug development. The experience with the recent discontinuation of the BioVeris™ electrochemiluminescent-based platform is discussed. PMID:21083158

  13. Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis.

    Science.gov (United States)

    Li, Jianling; Huang, Rongjie; Liao, Weiyong; Chen, Zhaoni; Zhang, Shijun; Huang, Renbin

    2012-02-24

    Dengue virus (DENV) capsid (C) proteins are the major structural component of virus particles. This study aimed to identify the host interacting partners of DENV C protein that could contribute to viral pathogenesis. DENV C protein was screened against human liver cDNA yeast two-hybrid library. We identified calcium modulating cyclophilin-binding ligand (CAML) as a novel interacting partner of DENV C protein. We report for the first time that CAML influenced DENV production. DENV production was significantly attenuated in CAML knock-down cells at 36h post-infection. CAML did not influence DENV entry, genome uncoating, viral transcription, viral translation and virus secretion. Our study pinpointed that CAML influenced the process of apoptosis by altering mitochondrial membrane potential and caspase-3 activation from 36h post-infection. Over-expression of CAML protected Huh7 cells from apoptosis and knock down of CAML favoured apoptosis following infection with DENV. We also showed that CAML expression was up-regulated during DENV infection. Increased CAML levels protected DENV-infected cells from undergoing apoptosis by preventing mitochondrial damage and caspase-3 activation which in turn favoured DENV production from 36h post-infection. Overall, this study demonstrated that DENV manipulated the levels of CAML to subvert the apoptotic process which in turn favoured efficient virus production. PMID:22281498

  14. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    Science.gov (United States)

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. PMID:27100851

  15. Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.

    Science.gov (United States)

    Schulte, Carsten; Ferraris, Gian Maria Sarra; Oldani, Amanda; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; de Lorenzi, Valentina; Lenardi, Cristina; Milani, Paolo; Sidenius, Nicolai

    2016-01-01

    The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required. PMID:26616200

  16. Trypsin pretreatment dissociates the effect of GTP and Na+ on ligand binding to human platelet α2-adrenoreceptors

    International Nuclear Information System (INIS)

    The authors recently showed that maximal concentration of trypsin (TR) inactivated only 70-80% of specific [3H]yohimbine (3H-Y) binding to human platelet α2-adrenoreceptors (α2-AR). The effect of TR on the interaction between the agonist, epinephrine, and GTP or Na+ on 3H-Y binding to α2-AR of human platelets was investigated in the present study. Partially purified α2-AR protein was pretreated with 500 μg TR for 3 min at 350C, the proteolytic action was terminated by specific TR-inhibitor, and the membranes were washed twice prior to specific ligand binding studies. Under these conditions, TR produced a 40-50% reduction of specific 3H-Y binding. Further characterization of the specific ligand binding by Scatchard plots showed that TR did not modify the affinity of the α2-AR to the agonist or the antagonist or the antagonists. However, in the TR-pretreated membranes, the ability of GTP to reduce the receptor affinity for epinephrine was lost. The effect of Na+, on the other hand, remained intact under these conditions. Thus, TR can selectively destroy the GTP-α2-AR but not Na+-α2-AR interaction suggesting that the GTP- and Na+-binding proteins are distinct

  17. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. PMID:22658682

  18. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding

    Science.gov (United States)

    Çetinkol, Özgül Persil; Hud, Nicholas V.

    2009-01-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells. PMID:19073699

  19. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A; Buus, S; Tschinke, V

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... interactions were found to contribute the most to HLA-A0201-peptide interactions, whereas H-bonding predominates in H-2K(k) recognition. Both cross-validated models were afterward used to predict the binding affinity of a test set of 26 peptides to HLA-A0204 (an HLA allele closely related to HLA-A0201) and of...

  20. Analysis of unconventional approaches for the rapid detection of surface lectin binding ligands on human cell lines.

    Science.gov (United States)

    Welty, Lily Anne Y; Heinrich, Eileen L; Garcia, Karina; Banner, Lisa R; Summers, Michael L; Baresi, Larry; Metzenberg, Stan; Coyle-Thompson, Cathy; Oppenheimer, Steven B

    2006-01-01

    For over a decade our laboratory has developed and used a novel histochemical assay using derivatized agarose beads to examine the surface properties of various cell types. Most recently, we have used this assay to examine lectin binding ligands on two human cell types, CCL-220, a colon cancer cell line, and CRL-1459, a non-cancer colon cell line. We found that CCL-220 cells bound specific lectins better than CRL-1459, and this information was used to test for possible differential toxicity of these lectins in culture, as a possible approach in the design of more specific anti-cancer drugs. Although we have examined the validity of the bead-binding assay in sea urchin cell systems, we have not previously validated this technique for mammalian cells. Here the binding results of the bead assay are compared with conventional fluorescence assays, using lectins from three species (Triticum vulgaris, Phaseolus vulgaris, and Lens culinaris) on the two colon cell lines. These lectins were chosen because they seemed to interact with the two cell lines differently. Binding results obtained using both assays were compared for frozen, thawed and fixed; cultured and fixed; and live cells. Both qualitative and quantitative fluorescence results generally correlated with those using the bead assay. Similar results were also obtained with all of the three different cell preparation protocols. The fluorescence assay was able to detect lower lectin binding ligand levels than the bead assay, while the bead assay, because it can so rapidly detect cells with large numbers of lectin binding ligands, is ideal for initial screening studies that seek to identify cells that are rich in surface binders for specific molecules. The direct use of frozen, thawed and fixed cells allows rapid mass screening for surface molecules, without the requirement for costly and time consuming cell culture. PMID:16414103

  1. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  2. Geometrical Preferences of the Hydrogen Bonds on Protein-Ligand Binding Interface Derived from Statistical Surveys and Quantum Mechanics Calculations.

    Science.gov (United States)

    Liu, Zhiguo; Wang, Guitao; Li, Zhanting; Wang, Renxiao

    2008-11-11

    We have conducted potential of mean force (PMF) analyses to derive the geometrical parameters of various types of hydrogen bonds on protein-ligand binding interface. Our PMF analyses are based on a set of 4535 high-quality protein-ligand complex structures, which are compiled through a systematic mining of the entire Protein Data Bank. Hydrogen bond donor and acceptor atoms are classified into several basic types. Both distance- and angle-dependent statistical potentials are derived for each donor-acceptor pair, from which distance and angle cutoffs are obtained in an objective, unambiguous manner. These donor-acceptor pairs are also studied by quantum mechanics (QM) calculations at the MP2/6-311++G** level on model molecules. Comparison of the outcomes of PMF analyses and QM calculations suggests that QM calculation may serve as an alternative approach for characterizing hydrogen bond geometry. Both of our PMF analyses and QM calculations indicate that C-H···O hydrogen bonds are relatively weak as compared to common hydrogen bonds formed between nitrogen and oxygen atoms. A survey on the protein-ligand complex structures in our data set has revealed that Cα-H···O hydrogen bonds observed in protein-ligand binding are frequently accompanied by bifurcate N-H···O hydrogen bonds. Thus, the Cα-H···O hydrogen bonds in such cases would better be interpreted as secondary interactions. PMID:26620338

  3. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen;

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set...... includes both substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 k...

  4. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling*

    OpenAIRE

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-01-01

    Background: A multiprotein complex designated as lipolysome degrades intracellular triglycerides and contains proteins such as adipose triglyceride lipase (Atgl) and its co-activator Cgi-58. Results: Cgi-58 interacts with fatty acid-binding proteins (Fabps), which impact Atgl-mediated lipolysis and lipid signaling. Conclusion: Fabps modulate Atgl-mediated TG hydrolysis and link lipolysis with intracellular lipid ligand shuttling. Significance: Novel mechanistic insights into the regulation of...

  5. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins

    OpenAIRE

    Meireles, Lidio; Gur, Mert; Bakan, Ahmet; Bahar, Ivet

    2011-01-01

    Modeling protein flexibility constitutes a major challenge in accurate prediction of protein–ligand and protein–protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibilit...

  6. Probing the structure and function of the estrogen receptor ligand binding domain by analysis of mutants with altered transactivation characteristics.

    OpenAIRE

    Eng, F C; Lee, H.S.; Ferrara, J; Willson, T M; White, J H

    1997-01-01

    We have developed a genetic screen for the yeast Saccharomyces cerevisiae to isolate estrogen receptor (ER) mutants with altered transactivation characteristics. Use of a "reverse" ER, in which the mutagenized ligand binding domain was placed at the N terminus of the receptor, eliminated the isolation of truncated constitutively active mutants. A library was screened with a low-affinity estrogen, 2-methoxyestrone (2ME), at concentrations 50-fold lower than those required for activation of the...

  7. Non-synonymous polymorphisms in the FCN1 gene determine ligand-binding ability and serum levels of M-ficolin.

    Directory of Open Access Journals (Sweden)

    Christian Gytz Ammitzbøll

    Full Text Available BACKGROUND: The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the lectin pathway. The lectin pathway is multifaceted with activities spanning from complement activation to coagulation, autoimmunity, ischemia-reperfusion injury and embryogenesis. Our aim was to explore associations between SNPs in FCN1, encoding M-ficolin and corresponding protein concentrations, and the impact of non-synonymous SNPs on protein function. PRINCIPAL FINDINGS: We genotyped 26 polymorphisms in the FCN1 gene and found 8 of these to be associated with M-ficolin levels in a cohort of 346 blood donors. Four of those polymorphisms were located in the promoter region and exon 1 and were in high linkage disequilibrium (r(2≥0.91. The most significant of those were the AA genotype of -144C>A (rs10117466, which was associated with an increase in M-ficolin concentration of 26% compared to the CC genotype. We created recombinant proteins corresponding to the five non-synonymous mutations encountered and found that the Ser268Pro (rs150625869 mutation lead to loss of M-ficolin production. This was backed up by clinical observations, indicating that an individual homozygote of Ser268Pro would be completely M-ficolin deficient. Furthermore, the Ala218Thr (rs148649884 and Asn289Ser (rs138055828 were both associated with low M-ficolin levels, and the mutations crippled the ligand-binding capability of the recombinant M-ficolin, as indicated by the low binding to Group B Streptococcus. SIGNIFICANCE: Overall, our study interlinks the genotype and phenotype relationship concerning polymorphisms in FCN1 and corresponding concentrations and biological functions of M-ficolin. The elucidations of these associations provide information for future genetic

  8. Exogenous Ochronosis

    Directory of Open Access Journals (Sweden)

    Prachi A Bhattar

    2015-01-01

    Full Text Available Exogenous ochronosis (EO is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options.

  9. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium.

    Science.gov (United States)

    Irjala, H; Johansson, E L; Grenman, R; Alanen, K; Salmi, M; Jalkanen, S

    2001-10-15

    Continuous lymphocyte recirculation between blood and lymphoid tissues forms a basis for the function of the immune system. Lymphocyte entrance from the blood into the tissues has been thoroughly characterized, but mechanisms controlling lymphocyte exit from the lymphoid tissues via efferent lymphatics have remained virtually unknown. In this work we have identified mannose receptor (MR) on human lymphatic endothelium and demonstrate its involvement in binding of lymphocytes to lymphatic vessels. We also show that the binding requires L-selectin, and L-selectin and MR form a receptor-ligand pair. On the other hand, L-selectin binds to peripheral lymph node addressins (PNAds) on high endothelial venules (HEVs) that are sites where lymphocytes enter the lymphatic organs. Interestingly, MR is absent from HEVs and PNAds from lymphatic endothelium. Thus, lymphocyte L-selectin uses distinct ligand molecules to mediate binding at sites of lymphocyte entrance and exit within lymph nodes. Taken together, interaction between L-selectin and MR is the first molecularly defined mechanism mediating lymphocyte binding to lymphatic endothelium. PMID:11602634

  10. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    Science.gov (United States)

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  11. Ligand binding studies in the mouse olfactory bulb: identification and characterisation of a L-[3H]carnosine binding site

    International Nuclear Information System (INIS)

    Binding sites for the dipeptide L-carnosine (β-alanyl-t-histidine) have been detected in membranes prepared from mouse olfactory bulbs. The binding of L-[3H]- carnosine was saturable, reversible and stereospecific and had a Ksub(d) of about 770 nM. The stereospecific binding of L-carnosine represented about 30% of the totoal binding at pH 6.8, and decreased markedly with increasing pH. Binding was stimulated by calcium, unaffected by zinc, magnesium or manganese and inhibted by sodium and potassium. Carnosine binding was sensitive to trypsin and phospholipases A and C, but not to neuraminidase. Nystatin and filipin, which interact with membrane lipids, also interfered with binding. Some peptide analogues of carnosine were potent inhibitors of binding, but a variety of drugs serving as potent inhibitors in other binding systems had no effect on carnosine binding. Carnosine binding to mouse olfactory bulb membranes was 15-fold higher than that seen in membranes prepared from cerebral hemispheres, 5-fold higher than in cerebellum membranes and 3-fold higher than in membranes from spinal medulla and the olfactory tubercle-lateral olfactory tract area. (Auth.)

  12. The clathrin-binding motif and the J-domain of Drosophila Auxilin are essential for facilitating Notch ligand endocytosis

    Directory of Open Access Journals (Sweden)

    Chang Henry C

    2008-05-01

    Full Text Available Abstract Background Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux, a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood. Results To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several point mutations affecting specific domains of dAux. In agreement with previous work, analysis using these stronger dAux alleles shows that dAux is required for several Notch-dependent processes, and its function during Notch signaling is required in the signaling cells. In support of the genetic evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive structures. Conclusion Our data suggest that dAux mutations inhibit Notch ligand internalization at an early step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles. Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling by facilitating ligand internalization.

  13. Evidence for clustered mannose as a new ligand for hyaluronan-binding protein (HABP1) from human fibroblasts

    Indian Academy of Sciences (India)

    Rajeev Kumar; Nirupam Roy Choudhury; Dinakar M Salunke; K Datta

    2001-09-01

    We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.

  14. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins. PMID:18840687

  15. Molecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2013-01-01

    Full Text Available Background & objectives: Trypanothione reductase (TR is a member of FAD-dependent NADPH oxidoreductase protein family and it is a key enzyme which connects the NADPH and the thiol-based redox system. Inhibition studies indicate that TR is an essential enzyme for parasite survival. Therefore, it is an attractive target enzyme for novel drug candidates. There is no structural model for TR of Leishmania mexicana (LmTR in the protein databases. In this work, 3D structure of TR from L. mexicana was identified by template-based in silico homology modeling method, resultant model was validated, structurally analyzed and possible ligand binding pockets were identified. Methods: For computational molecular modeling study, firstly, template was identified by BLAST search against PDB database. Multiple alignments were achieved by ClustalW2. Molecular modeling of LmTR was done and possible drug targeting sites were identified. Refinement of the model was done by performing local energy minimization for backbone, hydrogen and side chains. Model was validated by web-based servers. Results: A reliable 3D model for TR from L. mexicana was modeled by using L. infantum trypanothione reductase (LiTR as a template. RMSD results according to C-alpha, visible atoms and backbone were 0.809 Å, 0.732 Å and 0.728 Å respectively. Ramachandran plot indicates that model shows an acceptable stereochemistry. Conclusion: Modeled structure of LmTR shows high similarity with LiTR based on overall structural features like domains and folding patterns. Predicted structure will provide a source for the further docking studies of various peptide-based inhibitors.

  16. The structure of the ankyrin-binding site of [beta]-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties

    Energy Technology Data Exchange (ETDEWEB)

    Stabach, Paul R.; Simonovic, Ivana; Ranieri, Miranda A.; Aboodi, Michael S.; Steitz, Thomas A.; Simonovic, Miljan; Morrow, Jon S.; (Yale); (HHMI)

    2009-09-02

    Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of {beta}I-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the {beta}I-spectrin 14,15 di-repeat unit to 2.1 {angstrom} resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64{sup o}) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.

  17. Crystallization and preliminary X-ray analysis of the human androgen receptor ligand-binding domain with a coactivator-like peptide and selective androgen receptor modulators

    International Nuclear Information System (INIS)

    The human androgen receptor ligand-binding domain has been crystallized as a ternary complex with a coactivator-like undecapeptide and two different synthetic ligands. The ligand-binding domain of the human androgen receptor has been cloned, overproduced and crystallized in the presence of a coactivator-like 11-mer peptide and two different nonsteroidal ligands. The crystals of the two ternary complexes were isomorphous and belonged to space group P212121, with one molecule in the asymmetric unit. They diffracted to 1.7 and 1.95 Å resolution, respectively. Structure determination of these two complexes will help in understanding the mode of binding of selective nonsteroidal androgens versus endogenous steroidal ligands and possibly the origin of their tissue selectivity

  18. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  19. Binding capability of the enediyne-associated apoprotein to human tumors and constitution of a ligand oligopeptide-integrated protein.

    Science.gov (United States)

    Cai, Lin; Chen, Hongxia; Miao, Qingfang; Wu, Shuying; Shang, Yue; Zhen, Yongsu

    2009-10-26

    The molecule of lidamycin that belongs to the chromoprotein family of antitumor antibiotics is composed of an apoprotein (LDP) and an enediyne chromophore. The enediyne moiety of the molecule is responsible for the potent cytotoxicity; however, the biological function of the apoprotein moiety, particularly its interaction with cancer cells, remains unclear. In present study, the binding capability of LDP to human tumors was detected for the first time by tissue microarray. LDP bound to various human tumors with significant difference from the corresponding normal tissues. Positive correlation between binding activity and the overexpression of VEGF and EGFR was confirmed by lung carcinoma tissue microarray. A fusion protein LG-LDP that consists of LDP and a ligand oligopeptide to EGFR was constructed by DNA recombination. LG-LDP showed augmented binding to EGFR-overexpressing cancer cells. Furthermore, an energized fusion protein LG-LDP-AE was prepared by integrating the active enediyne (AE) into LG-LDP molecule. By MTT assay, LG-LDP-AE displayed extremely potent cytotoxicity to cancer cells with IC50 approximate to 0.01nM. The results indicate that LDP binds to various human tumors and it might serve as a delivery carrier by integration of ligand oligopeptide to manufacture motif-based, targeted fusion proteins for cancer. PMID:19737585

  20. Loss of surface CXCR3 expression in the RA synovial CD3 cells as a result of ligand binding suggests the mechanism for increased Th1 cell infiltration

    Czech Academy of Sciences Publication Activity Database

    Kryštůfková, O.; Niederlová, J.; Růžičková, S.; Šinkora, Jiří; Řeháková, Zuzana; Horváth, Ondřej; Vencovský, J.

    Leiden : European Worcshop for Rheumatology Research, 2002. s. 4. [European Workshop for Rheumatology Research /22./. 28.02.2002-03.03.2002, Leiden] R&D Projects: GA MZd NI6459 Keywords : ligand * binding * suggests Subject RIV: EE - Microbiology, Virology

  1. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus

    OpenAIRE

    Tocchini-Valentini, Guiseppe D.; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-01

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalo...

  2. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid-Base and Ligand Binding Equilibria of Aquacobalamin.

    Science.gov (United States)

    Johnston, Ryne C; Zhou, Jing; Smith, Jeremy C; Parks, Jerry M

    2016-08-01

    Redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. A major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co-ligand binding equilibrium constants (Kon/off), pKas, and reduction potentials for models of aquacobalamin in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co(III), Co(II), and Co(I) species, respectively, and the second model features saturation of each vacant axial coordination site on Co(II) and Co(I) species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co-axial ligand binding, leading to substantial errors in predicted pKas and

  3. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    Science.gov (United States)

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350

  4. Functional glass slides for in vitro evaluation of interactions between osteosarcoma TE85 cells and mineral-binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Chen, Julia; Klapperich, Catherine M.; Eng, Vincent; Bertozzi, Carolyn R.

    2004-07-20

    Primary amine-functionalized glass slides obtained through a multi-step plasma treatment were conjugated with anionic amino acids that are frequently found as mineral binding elements in acidic extracellular matrix components of natural bone. The modified glass surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Human osteosarcoma TE85 cells were cultured on these functionalized slides and analyses on both protein and gene expression levels were performed to probe the ''biocompatibility'' of the surface ligands. Cell attachment and proliferation on anionic surfaces were either better than or comparable to those of cells cultured on tissue culture polystyrene (TCPS). The modified glass surfaces promoted the expression of osteocalcin, alkaline phosphatase activity and ECM proteins such as fibronectin and vitronectin under differentiation culture conditions. Transcript analysis using gene chip microarrays confirmed that culturing TE85 cells on anionic surfaces did not activate apoptotic pathways. Collectively, these results suggest that the potential mineral-binding anionic ligands examined here do not exert significant adverse effects on the expression of important osteogenic markers of TE85 cells. This work paves the way for the incorporation of these ligands into 3-dimensional artificial bone-like scaffolds.

  5. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  6. Ligand-Binding Properties of the Carboxyl-Terminal Repeat Domain of Streptococcus mutans Glucan-Binding Protein A

    OpenAIRE

    Haas, Wolfgang; Banas, Jeffrey A.

    2000-01-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypot...

  7. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  8. Co(III and Ni(II Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    Directory of Open Access Journals (Sweden)

    M. C. Prabhakara

    2007-02-01

    Full Text Available DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy2qbdp](PF6n⋅xH2O (where M=Co(III or Ni(II, bpy=2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n=3 or 2 and x=5 or 2 have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III and Ni(II complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3×106 and 3.1×105 M-1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease.

  9. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    Science.gov (United States)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  10. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    International Nuclear Information System (INIS)

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2 = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2 = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables prediction of both

  11. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Regina [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  12. Synthesis and Evaluation of Quinazolone Derivatives as a New Class of c-KIT G-Quadruplex Binding Ligands.

    Science.gov (United States)

    Wang, Xiaoxiao; Zhou, Chen-Xi; Yan, Jin-Wu; Hou, Jin-Qiang; Chen, Shuo-Bin; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2013-10-10

    The c-KIT G-quadruplex structures are a novel class of attractive targets for the treatment of gastrointestinal stromal tumor (GIST). Herein, a series of new quinazolone derivatives with the expansion of unfused aromatic ring system were designed and synthesized. Subsequent biophysical studies demonstrated that the derivatives with adaptive scaffold could effectively bind to and stabilize c-KIT G-quadruplexes with good selectivity against duplex DNA. More importantly, these ligands further inhibited the transcription and expression of c-KIT gene and exhibited significant cytotoxicity on the GIST cell line HGC-27. Overall, these quinazolone derivatives represent a new class of promising c-KIT G-quadruplex ligands. The experimental results have also reinforced the idea of inhibition of c-KIT expression through targeting c-KIT G-quadruplex DNA. PMID:24900584

  13. Protein-ligand binding affinities from large-scale quantum mechanical simulations

    OpenAIRE

    Fox, Stephen J.

    2012-01-01

    The accurate prediction of protein-drug binding affinities is a major aim of computational drug optimisation and development. A quantitative measure of binding affinity is provided by the free energy of binding, and such calculations typically require extensive configurational sampling of entities such as proteins with thousands of atoms. Current binding free energy methods use force fields to perform the configurational sampling and to compute interaction energies. Due to the empirical natur...

  14. Deciphering Ligand Specificity of a Clostridium thermocellum Family 35 Carbohydrate Binding Module (CtCBM35) for Gluco- and Galacto- Substituted Mannans and Its Calcium Induced Stability

    OpenAIRE

    Ghosh, Arabinda; Luís, Ana Sofia; Brás, Joana L. A.; Pathaw, Neeta; Nikhil K. Chrungoo; Fontes, Carlos M. G. A.; Goyal, Arun

    2013-01-01

    This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displ...

  15. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    OpenAIRE

    Lin-Yan Wan; Yan-Qiong Zhang; Meng-Di Chen; You-Qin Du; Chang-Bai Liu; Jiang-Feng Wu

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket...

  16. Down-regulation of protein kinase Ceta potentiates the cytotoxic effects of exogenous tumor necrosis factor-related apoptosis-inducing ligand in PC-3 prostate cancer cells.

    Science.gov (United States)

    Sonnemann, Jürgen; Gekeler, Volker; Sagrauske, Antje; Müller, Cornelia; Hofmann, Hans-Peter; Beck, James F

    2004-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a highly promising candidate for the treatment of cancer because it elicits cell death in the majority of tumor cells while sparing most normal cells. Some cancers, however, display resistance to TRAIL, suggesting that treatment with TRAIL alone may be insufficient for cancer therapy. In the present study, we explored whether the apoptotic responsiveness of PC-3 prostate cancer cells to TRAIL could be enhanced by targeting the novel protein kinase C (PKC) isoform eta. Transfection of PC-3 cells with second-generation chimeric antisense oligonucleotides against PKCeta caused a time- and dose-dependent knockdown of PKCeta, as revealed by real-time RT-PCR and Western blot analyses. Knockdown of PKCeta resulted in a marked amplification of TRAIL's cytotoxic activity. Cell killing could be substantially prevented by the pan-caspase inhibitor z-VAD-fmk. In addition, PKCeta knockdown and administration of TRAIL significantly synergized in activation of caspase-3 and internucleosomal DNA fragmentation. Knockdown of PKCeta augmented TRAIL-induced dissipation of the mitochondrial transmembrane potential and release of cytochrome c from mitochondria into the cytosol, indicating that PKCeta acts upstream of mitochondria. We conclude that PKCeta represents a considerable resistance factor with respect to TRAIL and a promising target to exploit the therapeutic potential of TRAIL. PMID:15252138

  17. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics

    International Nuclear Information System (INIS)

    The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature

  18. Carbamoylphosphine oxide complexes of trivalent lanthanide cations: role of counterions, ligand binding mode, and protonation investigated by quantum mechanical calculations.

    Science.gov (United States)

    Boehme, C; Wipff, G

    2002-02-25

    We present a quantum mechanical study of carbamoylphosphine oxide (CMPO) complexes of MX(3) (M(3+) = La(3+), Eu(3+), Yb(3+); X(-) = Cl(-), NO(3)(-)) with a systematic comparison of monodentate vs bidentate binding modes of CMPO. The per ligand interaction energies Delta E increase from La(3+) to Yb(3+) and are higher with Cl(-) than with NO(3)(-) as counterions, as a result of steric strain in the first coordination sphere with the bidentate anions. The energy difference between monodentate (via phosphoryl oxygen) and bidentate CMPO complexes is surprisingly small, compared to Delta E or to the binding energy of one solvent molecule. Protonation of uncomplexed CMPO takes place preferably at the phosphoryl oxygen O(P), while in the Eu(NO(3))(3)CMPOH(+) complex carbonyl (O(C)) protonation is preferred and O(P) is bonded to the metal. A comparison of uranyl and lanthanide nitrate complexes of CMPO shows that the interaction energies Delta E of the former are lower. Finally, the effect of grafting CMPO arms at the wide rim of a calix[4]arene platform is described. The results are important for our understanding of cation binding and extraction by potentially bidentate CMPO, diamide, and diphosphoryl types of ligands. PMID:11849072

  19. Crystallization and preliminary X-ray diffraction analysis of kanamycin-binding β-lactamase in complex with its ligand

    International Nuclear Information System (INIS)

    Recombinant BlaKr has been cocrystallized with kanamycin. A complete data set has been collected to 1.67 Å resolution using synchrotron radiation. TEM-1 β-lactamase is a highly efficient enzyme that is involved in bacterial resistance against β-lactam antibiotics such as penicillin. It is also a robust scaffold protein which can be engineered by molecular-evolution techniques to bind a variety of targets. One such β-lactamase variant (BlaKr) has been constructed to bind kanamycin (kan) and other aminoglycoside antibiotics, which are neither substrates nor ligands of native β-lactamases. In addition to recognizing kan, BlaKr activity is up-regulated by its binding via an activation mechanism which is not yet understood at the molecular level. In order to fill this gap, determination of the structure of the BlaKr–kan complex was embarked upon. A crystallization condition for BlaKr–kan was identified using high-throughput screening, and crystal growth was further optimized using streak-seeding and hanging-drop methods. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 47.01, b = 72.33, c = 74.62 Å, and diffracted to 1.67 Å resolution using synchrotron radiation. The X-ray structure of BlaKr with its ligand kanamycin should provide the molecular-level details necessary for understanding the activation mechanism of the engineered enzyme

  20. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding

    DEFF Research Database (Denmark)

    Kristiansen, M; Kozyraki, R; Jacobsen, Christian; Nexø, E; Verroust, P J; Moestrup, S K

    1999-01-01

    addition to binding the vitamin B12-carrier complex, cubilin also binds receptor-associated protein. To delineate the structures for membrane association and ligand binding we established a panel of stable transfected Chinese hamster ovary cells expressing overlapping segments of rat cubilin. Analysis of......Cubilin, the receptor for intrinsic factor-vitamin B12, is a novel type of high molecular weight receptor consisting of a 27 CUB (complement components C1r/C1s, Uegf, and bone morphogenic protein-1) domain cluster preceded by 8 epidermal growth factor repeats and a short N-terminal sequence. In...... and surface plasmon resonance analysis of the secreted cubilin fragments showed ligand binding in the CUB domain region. Further dissection of binding-active fragments localized the binding site for intrinsic factor-vitamin B12 to CUB domains 5-8 and a receptor-associated protein-binding site to CUB...

  1. Improving the performance of the PLB index for ligand-binding site prediction using dihedral angles and the solvent-accessible surface area.

    Science.gov (United States)

    Cao, Chen; Xu, Shutan

    2016-01-01

    Protein ligand-binding site prediction is highly important for protein function determination and structure-based drug design. Over the past twenty years, dozens of computational methods have been developed to address this problem. Soga et al. identified ligand cavities based on the preferences of amino acids for the ligand-binding site (RA) and proposed the propensity for ligand binding (PLB) index to rank the cavities on the protein surface. However, we found that residues exhibit different RAs in response to changes in solvent exposure. Furthermore, previous studies have suggested that some dihedral angles of amino acids in specific regions of the Ramachandran plot are preferred at the functional sites of proteins. Based on these discoveries, the amino acid solvent-accessible surface area and dihedral angles were combined with the RA and PLB to obtain two new indexes, multi-factor RA (MF-RA) and multi-factor PLB (MF-PLB). MF-PLB, PLB and other methods were tested using two benchmark databases and two particular ligand-binding sites. The results show that MF-PLB can improve the success rate of PLB for both ligand-bound and ligand-unbound structures, particularly for top choice prediction. PMID:27619067

  2. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers.

    Science.gov (United States)

    Lensing, Cody J; Freeman, Katie T; Schnell, Sathya M; Adank, Danielle N; Speth, Robert C; Haskell-Luevano, Carrie

    2016-04-14

    Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects. PMID:26959173

  3. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  4. Murine interleukin 1 receptor. Direct identification by ligand blotting and purification to homogeneity of an interleukin 1-binding glycoprotein

    International Nuclear Information System (INIS)

    Functional receptors (IL1-R) for the proinflammatory cytokine interleukin 1 (IL1) were solubilized from plasma membranes of the NOB-1 subclone of murine EL4 6.1 thymoma cells using the zwitterionic detergent 3[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Membrane extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and ligand blotted with 125I-labeled recombinant human IL1 alpha in order to reveal proteins capable of specifically binding IL1. A single polydisperse polypeptide of Mr approximately equal to 80,000 was identified in this way, which bound IL1 alpha and IL1 beta with the same affinity as the IL1-R on intact NOB-1 cells (approximately equal to 10(-10) M). The IL1-binding polypeptide was only seen in membranes from IL1-R-bearing cells and did not react with interleukin 2, tumor necrosis factor alpha, or interferon. IL1-R was purified to apparent homogeneity from solubilized NOB-1 membranes by affinity chromatography on wheat germ agglutinin-Sepharose and IL1 alpha-Sepharose. Gel electrophoresis and silver staining of purified preparations revealed a single protein of Mr approximately equal to 80,000 which reacted positively in the ligand-blotting procedure and which we identify as the ligand-binding moiety of the murine IL1-R. Purified IL1-R exhibited the same affinity and specificity as the receptor on intact cells. The relationship of this protein to proteins identified by covalent cross-linking studies is discussed

  5. Analysis of Unconventional Approaches for the Rapid Detection of Surface Lectin Binding Ligands on Human Cell Lines

    OpenAIRE

    Welty, Lily Anne Y.; Heinrich, Eileen L.; Garcia, Karina; Banner, Lisa R.; Summers, Michael L.; Baresi, Larry; Metzenberg, Stan; Coyle-Thompson, Cathy; Oppenheimer, Steven B.

    2006-01-01

    This laboratory has developed and used a novel histochemical assay using derivatized agarose beads for over a decade to examine the surface properties of various cell types. Most recently we have used this assay to examine lectin binding ligands on two human cell types, CCL-220, a colon cancer cell line, and CRL-1459, a non-cancer colon cell line. We found that CCL-220 cells bound specific lectins better than CRL-1459, and this information was used to test for possible differential toxicity o...

  6. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs.

    Science.gov (United States)

    Favretto, Filippo; Ceccon, Alberto; Zanzoni, Serena; D'Onofrio, Mariapina; Ragona, Laura; Molinari, Henriette; Assfalg, Michael

    2015-04-01

    Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking. PMID:25468388

  7. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  8. Synthesis, structure, DFT calculations, electrochemistry, fluorescence, DNA binding and molecular docking aspects of a novel oxime based ligand and its palladium(II) complex.

    Science.gov (United States)

    Bandyopadhyay, Nirmalya; Pradhan, Ankur Bikash; Das, Suman; Lu, Liping; Zhu, Miaoli; Chowdhury, Shubhamoy; Naskar, Jnan Prakash

    2016-07-01

    A novel oxime based ligand, phenyl-(pyridine-2-yl-hydrazono)-acetaldehyde oxime (LH), and its palladium(II) complex (1) have been synthesised and spectroscopically characterised. The ligand crystallizes in the monoclinic space group (P21/c). The X-ray crystal structure of the ligand shows that it forms a hydrogen bonded helical network. The ligand has been characterised by C, H and N microanalyses, (1)H and (13)C NMR, ESI-MS, FT-IR and UV-Vis spectral measurements. Geometry optimizations at the level of DFT show that the Pd(II) centre is nested in a square-planar 'N3Cl' coordination chromophore. The diamagnetic palladium complex has been characterised by C, H and N microanalyses, FAB-MS, FT-IR, UV-Vis spectra and molar electrical conductivity measurements. The observed electronic spectrum of 1 correlates with our theoretical findings as evaluated through TD-DFT. 1 displays quasi-reversible Pd(II)/Pd(III) and Pd(III)/Pd(IV) redox couples in its CV in acetonitrile. 1 is nine-fold more emissive with respect to the binding ligand. Biophysical studies have been carried out to show the DNA binding aspects of both the ligand and complex. The binding constants for the ligand and complex were found to be 3.93×10(4) and 1.38×10(3)M(-1) respectively. To have an insight into the mode of binding of LH and 1 with CT DNA a hydrodynamic study was also undertaken. The mode of binding has also been substantiated through molecular docking. A promising groove binding efficacy has been revealed for the ligand. PMID:27179300

  9. Ligand selectivity of 105 kDa and 130 kDa lipoprotein-binding proteins in vascular-smooth-muscle-cell membranes is unique.

    Science.gov (United States)

    Bochkov, V N; Tkachuk, V A; Philippova, M P; Stambolsky, D V; Bühler, F R; Resink, T J

    1996-07-01

    Using ligand blotting techniques, with low-density lipoprotein (LDL) as ligand, we have previously described the existence of atypical lipoprotein-binding proteins (105 kDa and 130 kDa) in membranes from human aortic medical tissue. The present study demonstrates that these proteins are also present in membranes from cultured human (aortic and mesenteric) and rat (aortic) vascular smooth-muscle cells (VSMCs). To assess the relationship of 105 and 130 kDa lipoprotein-binding proteins to known lipoprotein receptors, ligand binding specificity was studied. We tested effects of substances known to antagonize ligand binding to either the LDL [apolipoprotein B,E (apo B,E)] receptor (dextran sulphate, heparin, pentosan polysulphate, protamine, spermine, histone), the scavenger receptor (dextran sulphate, fucoidin), the very-low-density-lipoprotein (VLDL) receptor [receptor-associated protein (RAP)], or LDL receptor-related protein (RAP, alpha 2-macroglobulin, lipoprotein lipase, exotoxin-A). None of these substances, with the exception of dextran sulphate, influenced binding of LDL to either 105 or 130 kDa proteins. Sodium oleate or oleic acid, known stimuli for the lipoprotein binding activity of the lipolysis-stimulated receptor, were also without effect. LDL binding to 105 and 130 kDa proteins was inhibited by anti-LDL (apo B) antibodies. LDL and VLDL bound to 105 and 130 kDa proteins with similar affinities (approximately 50 micrograms/ml). The unique ligand selectivity of 105 and 130 kDa proteins supports the existence of a novel lipoprotein-binding protein that is distinct from all other currently identified LDL receptor family members. The similar ligand selectivity of 105 and 130 kDa proteins suggests that they may represent variant forms of an atypical lipoprotein-binding protein. PMID:8694779

  10. Effect of Common Buffers and Heterocyclic Ligands on the Binding of Cu(II at the Multimetal Binding Site in Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Magdalena Sokołowska

    2010-01-01

    Full Text Available Visible-range circular dichroism titrations were used to study Cu(II binding properties of Multimetal Binding Site (MBS of Human Serum Albumin (HSA. The formation of ternary MBS-Cu(II-Buffer complexes at pH 7.4 was positively verified for sodium phosphate, Tris, and Hepes, the three most common biochemical buffers. The phosphate > Hepes > Tris order of affinities, together with strong spectral changes induced specifically by Tris, indicates the presence of both Buffer-Cu(II and Buffer-HSA interactions. All complexes are strong enough to yield a nearly 100% ternary complex formation in 0.5 mM HSA dissolved in 100 mM solutions of respective buffers. The effects of warfarin and ibuprofen, specific ligands of hydrophobic pockets I and II in HSA on the Cu(II binding to MBS were also investigated. The effects of ibuprofen were negligible, but warfarin diminished the MBS affinity for Cu(II by a factor of 20, as a result of indirect conformational effects. These results indicate that metal binding properties of MBS can be modulated directly and indirectly by small molecules.

  11. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Arthur G.,Roberts; M. Dolores,Díaz; Jed N.,Lampe; Laura M.,Shireman; Jeffrey S.,Grinstead; Michael J.,Dabrowski; Josh T.,Pearson; Michael K.,Bowman; William M.,Atkins; A. Patricia,Campbell

    2006-02-01

    Cytochrome P450's (P450's) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450's demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS = 4 and 200 μM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hill-equation-derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands ''contact'' the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the low-affinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is

  12. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Arthur G.; Diaz, Maria D.; Lampe, Jed N.; Shireman, Laura; Grinstead, Jeffrey S.; Dabrowski, Michael J.; Pearson, Josh T.; Bowman, Michael K.; Atkins, William M.; Campbell, Ann P.

    2006-02-14

    Cytochrome P450’s (P450’s) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450’s demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS ) 4 and 200 íM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hillequation- derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands “contact” the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the lowaffinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is presented that combines the energetics and structural aspects of 9-AP and TST binding derived from these observations.

  13. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization

    Institute of Scientific and Technical Information of China (English)

    Anne BENZINGER; Grzegorz M. POPOWICZ; Joma K. JOY; Sudipta MAJUMDAR; Tad A. HOLAK; Heiko HERMEKING

    2005-01-01

    Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It is unclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in the presence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structural differences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolution of 2.8 A and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ fold is similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shaped dimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, which mediates the binding to phosphorylated consensus motifs in 14-3-3-1igands. Another specificity determining region is localized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σ molecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligand interaction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues are located at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homoand hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumably contribute to isoform-specific interactions and functions.

  14. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  15. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay

    Science.gov (United States)

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E.

    2014-01-01

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1 °C for (dT)5 to a maximum of 9 °C with oligomers ≥10 nucleotides, with an apparent Kd of <1 µM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9 °C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. PMID:25449284

  16. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.

    Science.gov (United States)

    Yu, Dong-Jun; Hu, Jun; Li, Qian-Mu; Tang, Zhen-Min; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    We are facing an era with annotated biological data rapidly and continuously generated. How to effectively incorporate new annotated data into the learning step is crucial for enhancing the performance of a bioinformatics prediction model. Although machine-learning-based methods have been extensively used for dealing with various biological problems, existing approaches usually train static prediction models based on fixed training datasets. The static approaches are found having several disadvantages such as low scalability and impractical when training dataset is huge. In view of this, we propose a dynamic learning framework for constructing query-driven prediction models. The key difference between the proposed framework and the existing approaches is that the training set for the machine learning algorithm of the proposed framework is dynamically generated according to the query input, as opposed to training a general model regardless of queries in traditional static methods. Accordingly, a query-driven predictor based on the smaller set of data specifically selected from the entire annotated base dataset will be applied on the query. The new way for constructing the dynamic model enables us capable of updating the annotated base dataset flexibly and using the most relevant core subset as the training set makes the constructed model having better generalization ability on the query, showing "part could be better than all" phenomenon. According to the new framework, we have implemented a dynamic protein-ligand binding sites predictor called OSML (On-site model for ligand binding sites prediction). Computer experiments on 10 different ligand types of three hierarchically organized levels show that OSML outperforms most existing predictors. The results indicate that the current dynamic framework is a promising future direction for bridging the gap between the rapidly accumulated annotated biological data and the effective machine-learning-based predictors. OSML

  17. BDflex: A method for efficient treatment of molecular flexibility in calculating protein-ligand binding rate constants from Brownian dynamics simulations

    Science.gov (United States)

    Greives, Nicholas; Zhou, Huan-Xiang

    2012-10-01

    A method developed by Northrup et al. [J. Chem. Phys. 80, 1517 (1984)], 10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and bar η _d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. bar η _d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of bar η _d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid.

  18. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus.

    Science.gov (United States)

    Tocchini-Valentini, Giuseppe D; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-16

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalochordate amphioxus (Branchiostoma floridae), an invertebrate chordate that predates the genome duplication that produced the three vertebrates RXRs (alpha, beta, and gamma). Here we report the crystal structure of a novel apotetramer conformation of the AmphiRXR ligand-binding domain, which shows some similarity with the structures of the arthropods RXR/USPs. AmphiRXR adopts an apo antagonist conformation with a peculiar conformation of helix H11 filling the binding pocket. In contrast to the arthropods RXR/USPs, which cannot be activated by any RXR ligands, our functional data show that AmphiRXR, like the vertebrates/mollusk RXRs, is able to bind and be activated by RXR ligands but less efficiently than vertebrate RXRs. Our data suggest that amphioxus RXR is, functionally, an intermediate between arthropods RXR/USPs and vertebrate RXRs. PMID:18986992

  19. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol.

    Science.gov (United States)

    Fili, S; Valmas, A; Norrman, M; Schluckebier, G; Beckers, D; Degen, T; Wright, J; Fitch, A; Gozzo, F; Giannopoulou, A E; Karavassili, F; Margiolaki, I

    2015-09-01

    This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50-8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF) and the Swiss Light Source (SLS). Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs. PMID:26306195

  20. Human insulin polymorphism upon ligand binding and pH variation: the case of 4-ethylresorcinol

    Directory of Open Access Journals (Sweden)

    S. Fili

    2015-09-01

    Full Text Available This study focuses on the effects of the organic ligand 4-ethylresorcinol on the crystal structure of human insulin using powder X-ray crystallography. For this purpose, systematic crystallization experiments have been conducted in the presence of the organic ligand and zinc ions within the pH range 4.50–8.20, while observing crystallization behaviour around the isoelectric point of insulin. High-throughput crystal screening was performed using a laboratory X-ray diffraction system. The most representative samples were selected for synchrotron X-ray diffraction measurements, which took place at the European Synchrotron Radiation Facility (ESRF and the Swiss Light Source (SLS. Four different crystalline polymorphs have been identified. Among these, two new phases with monoclinic symmetry have been found, which are targets for the future development of microcrystalline insulin drugs.

  1. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine;

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant...... library based on the entire var2csa coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected...

  2. Characterization of human platelet binding of recombinant T cell receptor ligand

    OpenAIRE

    Meza-Romero Roberto; Patel Ishan A; White-Adams Tara C; Sinha Sushmita; Aslan Joseph E; Itakura Asako; Vandenbark Arthur A; Burrows Gregory G; Offner Halina; McCarty Owen JT

    2010-01-01

    Abstract Background Recombinant T cell receptor ligands (RTLs) are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS). RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE). The mechanisms by which RTLs impede loca...

  3. Examination of the ligand-binding and enzymatic properties of a bilin-binding protein from the poisonous caterpillar Lonomia obliqua.

    Directory of Open Access Journals (Sweden)

    Ana B G Veiga

    Full Text Available The bilin-binding proteins (BBP from lepidopteran insects are members of the lipocalin family of proteins and play a special role in pigmentation through the binding of biliverdin IXγ. Lopap, a BBP-like protein from the venom of the toxic caterpillar Lonomia obliqua has been reported to act as a serine protease that activates the coagulation proenzyme prothrombin. Here we show that BBPLo, a variant of lopap from the same organism binds biliverdin IXγ, forming a complex that is spectrally identical with previously described BBP proteins. Although BBPLo is nearly identical in sequence to lopap, no prothrombinase activity was detected in our recombinant preparations using reconstituted systems containing coagulation factors Xa and Va, as well as anionic phospholipids. In addition to biliverdin, BBPLo was found to form a 1:1 complex with heme prompting us to examine whether the unusual biliverdin IXγ ligand of BBPs forms as a result of oxidation of bound heme in situ rather than by a conventional heme oxygenase. Using ascorbate or a NADPH(+-ferredoxin reductase-ferredoxin system as a source of reducing equivalents, spectral changes are seen that suggest an initial reduction of heme to the Fe(II state and formation of an oxyferrous complex. The complex then disappears and a product identified as a 5-coordinate carbonyl complex of verdoheme, an intermediate in the biosynthesis of biliverdin, is formed. However, further reaction to form biliverdin was not observed, making it unlikely that biliverdin IXγ is formed by this pathway.

  4. DETERMINANTS OF LIGAND BINDING AFFINITY AND COOPERATIVITY AT THE GLUT1 ENDOFACIAL SITE

    OpenAIRE

    Robichaud, Trista; Appleyard, Antony N.; Herbert, Richard B.; Henderson, Peter J. F.; Carruthers, Anthony

    2011-01-01

    Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport (Cloherty, E. K., Levine, K. B., & Carruthers, A. (2001). The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry, 40(51), 15549–15561). This result is consistent with t...

  5. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design.

    Science.gov (United States)

    Neshich, Izabella Agostinho Pena; Nishimura, Leticia; de Moraes, Fabio Rogerio; Salim, Jose Augusto; Villalta-Romero, Fabian; Borro, Luiz; Yano, Inacio Henrique; Mazoni, Ivan; Tasic, Ljubica; Jardine, Jose Gilberto; Neshich, Goran

    2015-01-01

    The term "agrochemicals" is used in its generic form to represent a spectrum of pesticides, such as insecticides, fungicides or bactericides. They contain active components designed for optimized pest management and control, therefore allowing for economically sound and labor efficient agricultural production. A "drug" on the other side is a term that is used for compounds designed for controlling human diseases. Although drugs are subjected to much more severe testing and regulation procedures before reaching the market, they might contain exactly the same active ingredient as certain agrochemicals, what is the case described in present work, showing how a small chemical compound might be used to control pathogenicity of Gram negative bacteria Xylella fastidiosa which devastates citrus plantations, as well as for control of, for example, meningitis in humans. It is also clear that so far the production of new agrochemicals is not benefiting as much from the in silico new chemical compound identification/discovery as pharmaceutical production. Rational drug design crucially depends on detailed knowledge of structural information about the receptor (target protein) and the ligand (drug/agrochemical). The interaction between the two molecules is the subject of analysis that aims to understand relationship between structure and function, mainly deciphering some fundamental elements of the nanoenvironment where the interaction occurs. In this work we will emphasize the role of understanding nanoenvironmental factors that guide recognition and interaction of target protein and its function modifier, an agrochemical or a drug. The repertoire of nanoenvironment descriptors is used for two selected and specific cases we have approached in order to offer a technological solution for some very important problems that needs special attention in agriculture: elimination of pathogenicity of a bacterium which is attacking citrus plants and formulation of a new fungicide. Finally

  6. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  7. A critical look at the calculation of the binding characteristics and concentration of iron complexing ligands in seawater with suggested improvements

    OpenAIRE

    Gerringa, L.J A; Rijkenberg, M. J. A.; Thuróczy, C.-E.; Maas, L. R. M.

    2014-01-01

    Environmental contextThe low concentration of iron in the oceans limits growth of phytoplankton. Dissolved organic molecules, called ligands, naturally present in seawater, bind iron thereby increasing its solubility and, consequently, its availability for biological uptake by phytoplankton. The characteristics of these ligands are determined indirectly with various mathematical solutions; we critically evaluate the underlying method and calculations used in these determinations.The determina...

  8. Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa

    OpenAIRE

    Koveal, Dorothy; Clarkson, Michael W.; Wood, Thomas K.; Page, Rebecca; Peti, Wolfgang

    2013-01-01

    TpbA is a periplasmic dual specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium, Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA ad...

  9. The high affinity ligand binding conformation of the nuclear 1,25-dihydroxyvitamin D3 receptor is functionally linked to the transactivation domain 2 (AF-2).

    OpenAIRE

    Nayeri, S; Kahlen, J P; Carlberg, C

    1996-01-01

    The nuclear receptor for 1,25-dihydroxyvitamin D3 (VD), VDR, is a transcription factor that mediates all genomic actions of the hormone. The activation of VDR by ligand induces a conformational change within its ligand binding domain (LBD). Due to the lack of a crystal structure analysis, biochemical methods have to be applied in order to investigate the details of this receptor-ligand interaction. The limited protease digestion assay can be used as a tool for the determination of a functiona...

  10. Induced-fit upon ligand binding revealed by crystal structures of the hot-dog fold thioesterase in dynemicin biosynthesis.

    Science.gov (United States)

    Liew, Chong Wai; Sharff, Andrew; Kotaka, Masayo; Kong, Rong; Sun, Huihua; Qureshi, Insaf; Bricogne, Gérard; Liang, Zhao-Xun; Lescar, Julien

    2010-11-26

    Dynemicins are structurally related 10-membered enediyne natural products isolated from Micromonospora chernisa with potent antitumor and antibiotic activity. The early biosynthetic steps of the enediyne moiety of dynemicins are catalyzed by an iterative polyketide synthase (DynE8) and a thioesterase (DynE7). Recent studies indicate that the function of DynE7 is to off-load the linear biosynthetic intermediate assembled on DynE8. Here, we report crystal structures of DynE7 in its free form at 2.7 Å resolution and of DynE7 in complex with the DynE8-produced all-trans pentadecen-2-one at 2.1 Å resolution. These crystal structures reveal that upon ligand binding, significant conformational changes throughout the substrate-binding tunnel result in an expanded tunnel that traverses an entire monomer of the tetrameric DynE7 protein. The enlarged inner segment of the channel binds the carbonyl-conjugated polyene mainly through hydrophobic interactions, whereas the putative catalytic residues are located in the outer segment of the channel. The crystallographic information reinforces an unusual catalytic mechanism that involves a strictly conserved arginine residue for this subfamily of hot-dog fold thioesterases, distinct from the typical mechanism for hot-dog fold thioesterases that utilizes an acidic residue for catalysis. PMID:20888341

  11. Expression cloning of a cDNA encoding the murine interleukin 4 receptor based on ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Harada, N.; Castle, B.E.; Gorman, D.M.; Itoh, A.; Schreurs, J.; Barrett, R.L.; Howard, M.; Miyajima, A. (DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA (USA))

    1990-02-01

    Interleukin 4 (IL-4) is a potent mediator of growth and differentiation for various lymphoid and myeloid cells. To isolate a cDNA encoding the murine IL-4 receptor, the authors have developed an expression cloning method that uses biotinylated ligand as a probe and that may be generally applicable to cloning of receptor genes. COS-7 cells transiently transfected with the cloned full-length cDNA bind murine IL-4 specifically with a K{sub d} = 165 pM. Crosslinking of {sup 125}I-labeled IL-4 to COS-7 cells transfected with the cDNA reveals binding to proteins of 120-140 kDa. IL-4-responsive cells also express IL-4-binding proteins of 120-140 kDa but show additional bands at 60-70 kDa; the relationship of the smaller proteins to the larger ones is unclear. The nucleotide sequence indicates that the full-length cDNA encodes 810 amino acids including the signal sequence. While no consensus sequence for protein kinases is present in the cytoplasmic domain, a sequence comparison with the erythropoietin receptor, the IL-6 receptor, and the {beta} chain of the IL-2 receptor reveals a significant homology in the extracellular domain, indicating that the IL-4 receptor is a member of a cytokine receptor family.

  12. A Self-Adaptive Steered Molecular Dynamics Method Based on Minimization of Stretching Force Reveals the Binding Affinity of Protein–Ligand Complexes

    Directory of Open Access Journals (Sweden)

    Junfeng Gu

    2015-10-01

    Full Text Available Binding affinity prediction of protein–ligand complexes has attracted widespread interest. In this study, a self-adaptive steered molecular dynamics (SMD method is proposed to reveal the binding affinity of protein–ligand complexes. The SMD method is executed through adjusting pulling direction to find an optimum trajectory of ligand dissociation, which is realized by minimizing the stretching force automatically. The SMD method is then used to simulate the dissociations of 19 common protein–ligand complexes which are derived from two homology families, and the binding free energy values are gained through experimental techniques. Results show that the proposed SMD method follows a different dissociation pathway with lower a rupture force and energy barrier when compared with the conventional SMD method, and further analysis indicates the rupture forces of the complexes in the same protein family correlate well with their binding free energy, which reveals the possibility of using the proposed SMD method to identify the active ligand.

  13. Polyfluorinated bis-styrylbenzenes as amyloid-β plaque binding ligands.

    Science.gov (United States)

    Nabuurs, Rob J A; Kapoerchan, Varsha V; Metaxas, Athanasios; de Jongh, Sanne; de Backer, Maaike; Welling, Mick M; Jiskoot, Wim; Windhorst, Albert D; Overkleeft, Hermen S; van Buchem, Mark A; Overhand, Mark; van der Weerd, Louise

    2014-04-15

    Detection of cerebral β-amyloid (Aβ) by targeted contrast agents remains of great interest to aid the in vivo diagnosis of Alzheimer's disease (AD). Bis-styrylbenzenes have been previously reported as potential Aβ imaging agents. To further explore their potency as (19)F MRI contrast agents we synthetized several novel fluorinated bis-styrylbenzenes and studied their fluorescent properties and amyloid-β binding characteristics. The compounds showed a high affinity for Aβ plaques on murine and human brain sections. Interestingly, competitive binding experiments demonstrated that they bound to a different binding site than chrysamine G. Despite their high logP values, many bis-styrylbenzenes were able to enter the brain and label murine amyloid in vivo. Unfortunately initial post-mortem (19)F NMR studies showed that these compounds as yet do not warrant further MRI studies due to the reduction of the (19)F signal in the environment of the brain. PMID:24657049

  14. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant α1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker

    International Nuclear Information System (INIS)

    The peripheral benzodiazepine receptor ligand PK11195 has been used as an in vivo marker of neuroinflammation in positron emission tomography studies in man. One of the methodological issues surrounding the use of the ligand in these studies is the highly variable kinetic behavior of [11C]PK11195 in plasma. We therefore undertook a study to measure the binding of [3H]PK11195 to whole human blood and found a low level of binding to blood cells but extensive binding to plasma proteins. Binding assays using [3H]PK11195 and purified human plasma proteins demonstrated a strong binding to α1-acid glycoprotein (AGP) and a much weaker interaction with albumin. Immunodepletion of AGP from plasma resulted in the loss of plasma [3H]PK11195 binding demonstrating: (i) the specificity of the interaction and (ii) that AGP is the major plasma protein to which PK11195 binds with high affinity. PK11195 was able to displace fluorescein-dexamethasone from AGP with IC50 of 11C]PK11195 to the brain parenchyma in diseases with blood brain barrier breakdown. Finally, local synthesis of AGP at the site of brain injury may contribute the pattern of [11C]PK11195 binding observed in neuroinflammatory diseases

  15. Synthesis and receptor binding affinity of new selective GluR5 ligands

    DEFF Research Database (Denmark)

    Bunch, L; Johansen, T H; Bräuner-Osborne, Hans;

    2001-01-01

    Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropi.......0 and 2.0 microM. respectively. Their affinities in the [3H]AMPA binding assay on native cortical receptors were shown to correlate with their GluR2 affinity rather than their GluR5 affinity. No affinity for GluR6 was detected (IC50 > 100 microM)....

  16. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay

    OpenAIRE

    Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E.

    2014-01-01

    We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1 °C f...

  17. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    DEFF Research Database (Denmark)

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert;

    2010-01-01

    2D6. Assuming a single binding-site model, the increased [(3)H]raclopride binding indicated doubling of the apparent equilibrium dissociation constant in vivo (K(app) (d)), revealing a 2-fold increase in competition from endogenous dopamine at [(3)H]raclopride binding sites. The results favor......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  18. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove;

    2008-01-01

    [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  19. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Science.gov (United States)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  20. Heptapeptide ligands against receptor-binding sites of influenza hemagglutinin toward anti-influenza therapy.

    Science.gov (United States)

    Matsubara, Teruhiko; Onishi, Ai; Yamaguchi, Daisuke; Sato, Toshinori

    2016-03-01

    The initial attachment of influenza virus to cells is the binding of hemagglutinin (HA) to the sialyloligosaccharide receptor; therefore, the small molecules that inhibit the sugar-protein interaction are promising as HA inhibitors to prevent the infection. We herein demonstrate that sialic acid-mimic heptapeptides are identified through a selection from a primary library against influenza virus HA. In order to obtain lead peptides, an affinity selection from a phage-displayed random heptapeptide library was performed with the HAs of the H1 and H3 strains, and two kinds of the HA-binding peptides were identified. The binding of the peptides to HAs was inhibited in the presence of sialic acid, and plaque assays indicated that the corresponding N-stearoyl peptide strongly inhibited infections by the A/Aichi/2/68 (H3N2) strain of the virus. Alanine scanning of the peptides indicated that arginine and proline were responsible for binding. The affinities of several mutant peptides with single-amino-acid substitutions against H3 HA were determined, and corresponding docking studies were performed. A Spearman analysis revealed a correlation between the affinity of the peptides and the docking study. These results provide a practicable method to design of peptide-based HA inhibitors that are promising as anti-influenza drugs. PMID:26833245

  1. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, A.

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a {sup 13}C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  2. 'Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas.

    Science.gov (United States)

    Kille, P; Morgan, A J; Powell, K; Mosselmans, J F W; Hart, D; Gunning, P; Hayes, A; Scarborough, D; McDonald, I; Charnock, J M

    2016-03-01

    Woodlice efficiently sequester copper (Cu) in 'cuprosomes' within hepatopancreatic 'S' cells. Binuclear 'B' cells in the hepatopancreas form iron (Fe) deposits; these cells apparently undergo an apocrine secretory diurnal cycle linked to nocturnal feeding. Synchrotron-based µ-focus X-ray spectroscopy undertaken on thin sections was used to characterize the ligands binding Cu and Fe in S and B cells of Oniscus asellus (Isopoda). Main findings were: (i) morphometry confirmed a diurnal B-cell apocrine cycle; (ii) X-ray fluorescence (XRF) mapping indicated that Cu was co-distributed with sulfur (mainly in S cells), and Fe was co-distributed with phosphate (mainly in B cells); (iii) XRF mapping revealed an intimate morphological relationship between the basal regions of adjacent S and B cells; (iv) molecular modelling and Fourier transform analyses indicated that Cu in the reduced Cu(+) state is mainly coordinated to thiol-rich ligands (Cu-S bond length 2.3 Å) in both cell types, while Fe in the oxidized Fe(3+) state is predominantly oxygen coordinated (estimated Fe-O bond length of approx. 2 Å), with an outer shell of Fe scatterers at approximately 3.05 Å; and (v) no significant differences occur in Cu or Fe speciation at key nodes in the apocrine cycle. Findings imply that S and B cells form integrated unit-pairs; a functional role for secretions from these cellular units in the digestion of recalcitrant dietary components is hypothesized. PMID:26935951

  3. Recombinant norovirus-specific scFv inhibit virus-like particle binding to cellular ligands

    Directory of Open Access Journals (Sweden)

    Hardy Michele E

    2008-01-01

    Full Text Available Abstract Background Noroviruses cause epidemic outbreaks of gastrointestinal illness in all age-groups. The rapid onset and ease of person-to-person transmission suggest that inhibitors of the initial steps of virus binding to susceptible cells have value in limiting spread and outbreak persistence. We previously generated a monoclonal antibody (mAb 54.6 that blocks binding of recombinant norovirus-like particles (VLP to Caco-2 intestinal cells and inhibits VLP-mediated hemagglutination. In this study, we engineered the antigen binding domains of mAb 54.6 into a single chain variable fragment (scFv and tested whether these scFv could function as cell binding inhibitors, similar to the parent mAb. Results The scFv54.6 construct was engineered to encode the light (VL and heavy (VH variable domains of mAb 54.6 separated by a flexible peptide linker, and this recombinant protein was expressed in Pichia pastoris. Purified scFv54.6 recognized native VLPs by immunoblot, inhibited VLP-mediated hemagglutination, and blocked VLP binding to H carbohydrate antigen expressed on the surface of a CHO cell line stably transfected to express α 1,2-fucosyltransferase. Conclusion scFv54.6 retained the functional properties of the parent mAb with respect to inhibiting norovirus particle interactions with cells. With further engineering into a form deliverable to the gut mucosa, norovirus neutralizing antibodies represent a prophylactic strategy that would be valuable in outbreak settings.

  4. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping.

    Science.gov (United States)

    Yamanaka, Masaru; Nagao, Satoshi; Komori, Hirofumi; Higuchi, Yoshiki; Hirota, Shun

    2015-03-01

    Cytochrome c555 from hyperthermophilic bacteria Aquifex aeolicus (AA cyt c555 ) is a hyperstable protein belonging to the cyt c protein family, which possesses a unique long 310 -α-310 helix containing the heme-ligating Met61. Herein, we show that AA cyt c555 forms dimers by swapping the region containing the extra 310 -α-310 helix and C-terminal α-helix. The asymmetric unit of the crystal of dimeric AA cyt c555 contained two dimer structures, where the structure of the hinge region (Val53-Lys57) was different among all four protomers. Dimeric AA cyt c555 dissociated to monomers at 92 ± 1°C according to DSC measurements, showing that the dimer was thermostable. According to CD measurements, the secondary structures of dimeric AA cyt c555 were maintained at pH 2.2-11.0. CN(-) and CO bound to dimeric AA cyt c555 in the ferric and ferrous states, respectively, owing to the flexibility of the hinge region close to Met61 in the dimer, whereas these ligands did not bind to the monomer under the same conditions. In addition, CN(-) and CO bound to the oxidized and reduced dimer at neutral pH and a wide range of pH (pH 2.2-11.0), respectively, in a wide range of temperature (25-85°C), owing to the thermostability and pH tolerance of the dimer. These results show that the ligand binding character of hyperstable AA cyt c555 changes upon dimerization by domain swapping. PMID:25586341

  5. Effect of anion and solvent in extractions of cations with neutral cation binding ligands

    International Nuclear Information System (INIS)

    Mechanism of extraction of M3+ ions by neutral ligands L from acidic media is presented. This is based on the ion pair extraction model and the occurrence of maxima of dependence of D(M3+) on cH is accounted for. The extraction constants of HLX, where L is selected malonamide, into isopropylbenzene for four inorganic anions (Cl-, NO3-, ClO4-, and dicarbollide anion [(C2B9H11)2Co]-) well correlate with individual extraction constants of the anions in the system water-nitrobenzene Ki and it is proposed to use Ki values as a parameter also for the systems where ion association is prevailing. (authors)

  6. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials

    Directory of Open Access Journals (Sweden)

    Katiuscia Pagano

    2013-03-01

    Full Text Available During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.

  7. Methotrexate concentrations in biological fluids: Comparison of results obtained by radioimmunoassay and direct ligand binding radioassay

    International Nuclear Information System (INIS)

    A sensitive (sensitivity 2.2 x 10-9 mol/l) and specific (practically no cross-reaction with circulating folates) radioimmunoassay for the determination of methotrexate concentrations in biological fluids is described and compared with a commercial competitive protein binding assay. Antiserum with high titer was produced in rabbits immunized with MTX-human serum albumin conjugate. Fitness for use in pharmacokinetic drug level determinations was shown in three patients, who received both low doses and high dose therapy combined with citrovorum factor rescue. An excellent correlation was found between plasma and urine MTX concentrations obtained by RIA and competitive protein binding assay. A two-compartment pharmacokinetic model was found adequately describing the serum decay curves, but there was a great interindividual variability in the calculated pharmacokinetic parameters. (author)

  8. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  9. Protein contacts and ligand binding in the inward-facing model of human P-glycoprotein.

    Science.gov (United States)

    Pajeva, Ilza K; Hanl, Markus; Wiese, Michael

    2013-05-01

    The primary aim of this work was to analyze the contacts between residues in the nucleotide binding domains (NBDs) and at the interface between the transmembrane domains (TMDs) and the NBDs in the inward-open homology model of human P-glycoprotein (P-gp). The analysis revealed communication nets through hydrogen bonding in the NBD and at the NBD-TMD interface of each half involving residues from the adenosine triphosphate (ATP) motifs and the coupling helices of the intracellular loops. Similar networks have been identified in P-gp conformations generated by molecular dynamics simulation. Differences have been recorded in the networking between both halves of P-gp. Many of the residue contacts have also been observed in the X-ray crystal structures of other ATP binding cassette (ABC) transporters, which confirms their validity. Next, possible binding pockets involving residues of importance for the TMD-NBD communication were identified. By studying these pockets, binding sites were suggested for rhodamine 123 (R-site) and prazosin (regulatory site) at the NBD-TMD interface that agreed with the experimental data on their location. Additionally, one more R-site in the protein cavity was proposed, in accordance with the available biochemical data. Together with the previously suggested Hoechst 33342 site (H-site), all sites were interpreted with respect to their effects on the protein ATPase activity, in correspondence with the experimental observations. Several residues involved in key contacts in the P-gp NBDs were proposed for further targeted mutagenesis experiments. PMID:23564544

  10. Entropic and enthalpic contributions to stereospecific ligand binding from enhanced sampling methods

    OpenAIRE

    Lai, Balder; Nagy, Gabor; Garate, Jose Antonio; Oostenbrink, Chris

    2013-01-01

    The stereoselective binding of R- and S-propranolol to the metabolic enzyme cytochrome P450 2D6 and its mutant F483A was studied using various computational approaches. Previously reported free-energy differences from Hamiltonian replica exchange simulations, combined with thermodynamic integration, are compared to the one-step perturbation approach, combined with local-elevation enhanced sampling, and an excellent agreement between methods was obtained. Further, the free-energy differences a...

  11. Liver fatty acid binding protein: species variation and the accommodation of different ligands.

    Science.gov (United States)

    Thompson, J; Reese-Wagoner, A; Banaszak, L

    1999-11-23

    The crystal structure of rat liver fatty acid binding protein (LFABP) and an alignment of amino acid sequences of all known species have been used to demonstrate two groups or sub-classes. Based on estimates at neutral pH and the electrostatic field calculated using the crystal coordinates, some evidence of changes that occur in going from holo- to apo-forms has been obtained. LFABP belongs to a large family frequently referred to as the intracellular lipid binding proteins or iLBPs. LFABP, unlike other family members, has two fatty acid binding sites. The two cavity sites have been reviewed and arguments for interactions between the sites are presented. Based on the crystal structure of rat LFABP, differences between the A and B groups have been postulated. Last of all, hypothetical models have been built of complexes of LFABP and heme, and LFABP and oleoyl CoA. In both cases, the stoichiometry is one to one and the models show why this is likely. PMID:10570240

  12. Modifications of the 7-Hydroxyl Group of the Transthyretin Ligand Luteolin Provide Mechanistic Insights into Its Binding Properties and High Plasma Specificity

    OpenAIRE

    Nilsson, Lina; Larsson, Andreas; Begum, Afshan; Iakovleva, Irina; Carlsson, Marcus; Brännström, Kristoffer; Sauer-Eriksson, A. Elisabeth; Olofsson, Anders

    2016-01-01

    Amyloid formation of the plasma protein transthyretin (TTR) has been linked to familial amyloid polyneuropathy and senile systemic amyloidosis. Binding of ligands within its natural hormone binding site can stabilize the tetrameric structure and impair amyloid formation. We have recently shown that the flavonoid luteolin stabilizes TTR in human plasma with a very high selectivity. Luteolin, however, is inactivated in vivo via glucuronidation for which the preferred site is the hydroxy group a...

  13. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L. (GSKNC); (GSK)

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  14. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.

  15. First-Passage Time to Clear the Way for Receptor-Ligand Binding in a Crowded Environment

    Science.gov (United States)

    Newby, Jay; Allard, Jun

    2016-03-01

    Certain biological reactions, such as receptor-ligand binding at cell-cell interfaces and macromolecules binding to biopolymers, require many smaller molecules crowding a reaction site to be cleared. Examples include the T-cell interface, a key player in immunological information processing. Diffusion sets a limit for such cavitation to occur spontaneously, thereby defining a time scale below which active mechanisms must take over. We consider N independent diffusing particles in a closed domain, containing a subregion with N0 particles, on average. We investigate the time until the subregion is empty, allowing a subsequent reaction to proceed. The first-passage time is computed using an efficient exact simulation algorithm and an asymptotic approximation in the limit that cavitation is rare. In this limit, we find that the mean first-passage time is subexponential, T ∝eN0/N02. For the case of T-cell receptors, we find that stochastic cavitation is exceedingly slow, 109 s at physiological densities; however, it can be accelerated to occur within 5 s with only a fourfold dilution.

  16. Three-dimensional structure and function study on the active region in the extracellular ligand-binding domain of human IL-6 receptor

    Institute of Scientific and Technical Information of China (English)

    任蕴芳; 冯健男; 曲红; 李松; 沈倍奋

    2000-01-01

    In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hlL-6 R) was constructed by computer-guided ho-mology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hlL-6R with the ligand (hlL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hlL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cyst 21, Cys132, Cys165, Cys1

  17. Oxygen equilibria and ligand binding kinetics of erythrocruorins from two burrowing polychaetes of different modes of life, Marphysa sanguinea and Diopatra cuprea

    DEFF Research Database (Denmark)

    Weber, Roy E.; Bonaventura, J.; Sullivan, B.;

    1978-01-01

    Oxygen equilibria, ligand-binding kinetics and some other physicochemical properties are reported for erythrocruorins of two intertidal polychaetes:Marphysa sanguinea, which inhabits simple, relatively stagnant burrows, andDiopatra cuprea, which inhabits impermeable, parchment-like tubes that are...

  18. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby;

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...

  19. DNA binding, anti-inflammatory and analgesic evaluation of metal complexes of N/S/O donor ligands; Synthesis, spectral characterization

    Science.gov (United States)

    Kumar Naik, K. H.; Ashok, B.; Naik, Nagaraja; Mulla, Jameel Ahmed S.; Prakasha, Avinash

    2015-04-01

    Transition metal complexes containing tri-dentate NSN donor ligands i.e., 5-((1(aminomethyl)cyclohexyl)methyl)-1,3,4-thiadiazol-2-amine (AMTA) (2) and 5-(2-aminophenyl)-1,3,4-thiadiazol-2-amine (ATA) (4i-ii) have been synthesized. The newly synthesized ligands and their respective complexes were characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, and NMR (for ligands only)]. Metal complexes are like [M(AMTA)2], [M(ATA)2] type, where M = Mn(II), Co(II) and Cu(II). The proposed geometries of the complexes are octahedral in nature. The synthesized ligands and their complexes were exhibits effective anti-inflammatory, analgesic and DNA binding activities. All the tested compounds exhibited significant analgesic activity, whereas the compound 4i, 4(ia) and 4(iib) is equipotent with Diclofenac sodium.

  20. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    'Reconstructed' gill epithelia on filter supports were grown in primary culture from dispersed gill cells of freshwater rainbow trout (Oncorhynchus mykiss). This preparation contains both pavement cells and chloride cells, and after 7-9 days in culture, permits exposure of the apical surface to true freshwater while maintaining blood-like culture media on the basolateral surface, and exhibits a stable transepithelial resistance (TER) and transepithelial potential (TEP) under these conditions. These epithelia were used to develop a possible in vitro version of the biotic ligand model (BLM) for silver; the in vivo BLM uses short-term gill binding of the metal to predict acute silver toxicity as a function of freshwater chemistry. Radio-labeled silver (110mAg as AgNO3) was placed on the apical side (freshwater), and the appearance of 110mAg in the epithelia (binding) and in the basolateral media (flux) over 3 h were monitored. Silver binding (greater than the approximate range 0-100 μg l-1) and silver flux were concentration-dependent with a 50% saturation point (apparent Kd) value of about 10 μg l-1 or 10-7 M, very close to the 96-h LC50 in vivo in the same water chemistry. There were no adverse effects of silver on TER, TEP, or Na+, K+-ATPase activity, though the latter declined over longer exposures, as in vivo. Silver flux over 3 h was small (+ and dissolved organic carbon (humic acid) concentrations, increased by elevations in freshwater Cl- and reductions in pH, and insensitive to elevations in Ca2+. With the exception of the pH response, these effects were qualitatively and quantitatively similar to in vivo BLM responses. The results suggest that an in vitro BLM approach may provide a simple and cost-effective way for evaluating the protective effects of site-specific waters

  1. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  2. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  3. Mechanistic Inferences from the Binding of Ligands to LpxC, A Metal-Dependent Deacetylase

    International Nuclear Information System (INIS)

    The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 Angstroms resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 Angstroms resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A

  4. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding

    OpenAIRE

    Çetinkol, Özgül Persil; Hud, Nicholas V.

    2008-01-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T m ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K a >107 M−1), and that the crescent shape of cora...

  5. A minimal ligand binding pocket within a network of correlated mutations identified by multiple sequence and structural analysis of G protein coupled receptors

    International Nuclear Information System (INIS)

    G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function as signal transducers. They bind ligands in their extracellular and transmembrane regions and activate cognate G proteins at their intracellular surface at the other side of the membrane. The relay of allosteric communication between the ligand binding site and the distant G protein binding site is poorly understood. In this study, GREMLIN, a recently developed method that identifies networks of co-evolving residues from multiple sequence alignments, was used to identify those that may be involved in communicating the activation signal across the membrane. The GREMLIN-predicted long-range interactions between amino acids were analyzed with respect to the seven GPCR structures that have been crystallized at the time this study was undertaken. We demonstrate the use of GREMLIN to reveal a network of statistically correlated and functionally important residues in class A GPCRs. GREMLIN identified that ligand binding pocket residues are extensively correlated with distal residues. An analysis of the GREMLIN edges across multiple structures suggests that there may be a minimal binding pocket common to the seven known GPCRs. Further, the activation of rhodopsin involves these long-range interactions between extracellular and intracellular domain residues mediated by the retinal domain.

  6. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  7. An Extended Surface Loop on Toxoplasma gondii Apical Membrane Antigen 1 (AMA1 Governs Ligand Binding Selectivity.

    Directory of Open Access Journals (Sweden)

    Michelle L Parker

    Full Text Available Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs on the parasite surface and rhoptry neck 2 (RON2 proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop. Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2 peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON

  8. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

    Directory of Open Access Journals (Sweden)

    Oula Penate Medina

    2011-01-01

    Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

  9. NMR Structure and Dynamics of the Engineered Fluorescein-Binding Lipocalin FluA Reveals Rigidification of β-Barrel and Variable Loops upon Enthalpy-Driven Ligand Binding

    Science.gov (United States)

    Mills, Jeffrey L.; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas

    2010-01-01

    The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel β-strands forming a β-barrel with an α-helix attached to its side. Comparison of the NMR structure of the free FluA with the X-ray structures of BBP•biliverdin IXγ and FluA•fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the β-barrel as well as adjoining β-strand segments. An ‘induced fit’ became apparent for the side-chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse 15N backbone spin relaxation times in the rotating frame for the free FluA and also the FluA•fluorescein complex. A reduction of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy driven, thus overcompensating negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction does not only provide insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but will also support the future design of corresponding binding proteins with novel specificities, so-called “anticalins”. PMID:19603796

  10. A highly predictive 3D-QSAR model for binding to the voltage-gated sodium channel: design of potent new ligands.

    Science.gov (United States)

    Zha, Congxiang; Brown, George B; Brouillette, Wayne J

    2014-01-01

    A comprehensive comparative molecular field analysis (CoMFA) model for the binding of ligands to the neuronal voltage-gated sodium channel was generated based on 67 diverse compounds. Earlier published CoMFA models for this target provided μM ligands, but the improved model described here provided structurally novel compounds with low nM IC₅₀. For example, new compounds 94 and 95 had IC₅₀ values of 129 and 119 nM, respectively. PMID:24332655

  11. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Gajhede, Michael; Bunch, Lennart; Pickering, Darryl S; Kastrup, Jette Sandholm

    2011-01-01

    present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in......Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1-5). Several crystal...

  12. The ligand binding domain of GCNF is not required for repression of pluripotency genes in mouse fetal ovarian germ cells.

    Directory of Open Access Journals (Sweden)

    Leah M Okumura

    Full Text Available In mice, successful development and reproduction require that all cells, including germ cells, transition from a pluripotent to a differentiated state. This transition is associated with silencing of the pluripotency genes Oct4 and Nanog. Interestingly, these genes are repressed at different developmental timepoints in germ and somatic cells. Ovarian germ cells maintain their expression until about embryonic day (E 14.5, whereas somatic cells silence them much earlier, at about E8.0. In both somatic cells and embryonic stem cells, silencing of Oct4 and Nanog requires the nuclear receptor GCNF. However, expression of the Gcnf gene has not been investigated in fetal ovarian germ cells, and whether it is required for silencing Oct4 and Nanog in that context is not known. Here we demonstrate that Gcnf is expressed in fetal ovarian germ cells, peaking at E14.5, when Oct4 and Nanog are silenced. However, conditional ablation of the ligand-binding domain of Gcnf using a ubiquitous, tamoxifen-inducible Cre indicates that Gcnf is not required for the down-regulation of pluripotency genes in fetal ovarian germ cells, nor is it required for initiation of meiosis and oogenesis. These results suggest that the silencing of Oct4 and Nanog in germ cells occurs via a different mechanism from that operating in somatic cells during gastrulation.

  13. Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand Binding Assays in Drug Development.

    Science.gov (United States)

    Jani, Darshana; Allinson, John; Berisha, Flora; Cowan, Kyra J; Devanarayan, Viswanath; Gleason, Carol; Jeromin, Andreas; Keller, Steve; Khan, Masood U; Nowatzke, Bill; Rhyne, Paul; Stephen, Laurie

    2016-01-01

    Multiplex ligand binding assays (LBAs) are increasingly being used to support many stages of drug development. The complexity of multiplex assays creates many unique challenges in comparison to single-plexed assays leading to various adjustments for validation and potentially during sample analysis to accommodate all of the analytes being measured. This often requires a compromise in decision making with respect to choosing final assay conditions and acceptance criteria of some key assay parameters, depending on the intended use of the assay. The critical parameters that are impacted due to the added challenges associated with multiplexing include the minimum required dilution (MRD), quality control samples that span the range of all analytes being measured, quantitative ranges which can be compromised for certain targets, achieving parallelism for all analytes of interest, cross-talk across assays, freeze-thaw stability across analytes, among many others. Thus, these challenges also increase the complexity of validating the performance of the assay for its intended use. This paper describes the challenges encountered with multiplex LBAs, discusses the underlying causes, and provides solutions to help overcome these challenges. Finally, we provide recommendations on how to perform a fit-for-purpose-based validation, emphasizing issues that are unique to multiplex kit assays. PMID:26377333

  14. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels. PMID:24830141

  15. Crystallographic analysis of murine constitutive androstane receptor ligand-binding domain complexed with 5α-androst-16-en-3α-ol

    International Nuclear Information System (INIS)

    The purification and structure determination of the murine constitutive androstane receptor bound to its inverse agonist/antagonist androstenol is described. The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. In contrast to classical nuclear receptors, which possess small-molecule ligand-inducible activity, CAR exhibits constitutive transcriptional activity in the apparent absence of ligand. CAR is among the most important transcription factors; it coordinately regulates the expression of microsomal cytochrome P450 genes and other drug-metabolizing enzymes. The murine CAR ligand-binding domain (LBD) was coexpressed with the steroid receptor coactivator protein (SRC-1) receptor-interacting domain (RID) in Escherichia coli. The mCAR LBD subunit was purified away from SRC-1 by affinity, anion-exchange and size-exclusion chromatography, crystallized with androstenol and the structure of the complex determined by molecular replacement

  16. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu

    2014-10-16

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film

  17. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  18. The Binding Mode Prediction and Similar Ligand Potency in the Active Site of Vitamin D Receptor with QM/MM Interaction, MESP, and MD Simulation.

    Science.gov (United States)

    Selvaraman, Nagamani; Selvam, Saravana Kumar; Muthusamy, Karthikeyan

    2016-08-01

    Non-secosteroidal ligands are well-known vitamin D receptor (VDR) agonists. In this study, we described a combined QM/MM to define the protein-ligand interaction energy a strong positive correlation in both QM-MM interaction energy and binding free energy against the biological activity. The molecular dynamics simulation study was performed, and specific interactions were extensively studied. The molecular docking results and surface analysis shed light on steric and electrostatic complementarities of these non-secosteroidal ligands to VDR. Finally, the drug likeness properties were also calculated and found within the acceptable range. The results show that bulky group substitutions in side chain decrease the VDR activity, whereas a small substitution increased it. Functional analyses of H393A and H301A mutations substantiate their roles in the VDR agonistic and antagonistic activities. Apart from the His393 and His301, two other amino acids in the hinge region viz. Ser233 and Arg270 acted as an electron donor/acceptor specific to the agonist in the distinct ligand potency. The results from this study disclose the binding mechanism of VDR agonists and structural modifications required to improve the selectivity. PMID:26945790

  19. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Saleem, Kishwar; Wesselinova, Diana

    2013-02-01

    A new multidentate ligand (L) has been synthesized by the controlled condensation of L-glutamic acid with formaldehyde and ethylenediamine. Cu(II) and Ru(III) metal ion complexes of the synthesized ligand have also been prepared. The ligand and the metal complexes were purified by chromatography and characterized by spectroscopy and other techniques. Molar conductance measurements suggested ionic nature of the complexes. The ligand and the complexes are soluble in water with quite good stabilities; essential requirements for effective anticancer drugs. DNA binding constants (Kbs) for copper and ruthenium complexes were 1.8 x 103 and 2.6 x 103 M-1 while their Ksv values were 7.9 x 103, and 7.3 x 103; revealing strong binding of these complexes with DNA. Hemolytic assays of the reported compounds indicated their significantly less toxicity to RBCs than the standard anticancer drug letrazole. Anticancer profiles of all the compounds were determined on HepG2, HT-29, MDA-MB-231 and HeLa human cancer cell lines. All the compounds have quite good activities on HeLa cell lines but the best results were of CuL on HepG2, HT-29 and MDA-MB-231 cell lines. PMID:22741786

  20. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    Directory of Open Access Journals (Sweden)

    Lin-Yan Wan

    2015-11-01

    Full Text Available Vitamin D Receptor (VDR belongs to the nuclear receptor (NR superfamily. Whereas the structure of the ligand binding domain (LBD of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D3 signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA, corepressor (CoR, and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains.

  1. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling.

    Science.gov (United States)

    Wan, Lin-Yan; Zhang, Yan-Qiong; Chen, Meng-Di; Du, You-Qin; Liu, Chang-Bai; Wu, Jiang-Feng

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP) and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D₃ signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA), corepressor (CoR), and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains. PMID:26593892

  2. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209

    DEFF Research Database (Denmark)

    Kasper, Christina; Pickering, Darryl S; Mirza, Osman;

    2006-01-01

    of this novel class of antagonists. We present here the first X-ray structure of a mixed GluR2 ligand-binding core dimer, with the high-affinity antagonist (S)-8-methyl-5-(4-(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2,3-dione-3-O-(4-hydroxybutyrate-2-yl...

  3. Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1α,25(OH)2-vitamin D3 signaling

    OpenAIRE

    Mizwicki, Mathew T; Keidel, Don; Bula, Craig M.; Bishop, June. E.; Zanello, Laura P; Wurtz, Jean-Marie; Moras, Dino; Norman, Anthony W.

    2004-01-01

    Structural and molecular studies have shown that the vitamin D receptor (VDR) mediates 1α,25(OH)2-vitamin D3 gene transactivation. Recent evidence indicates that both VDR and the estrogen receptor are localized to plasma membrane caveolae and are required for initiation of nongenomic (NG) responses. Computer docking of the NG-specific 1α,25(OH)2-lumisterol to the VDR resulted in identification of an alternative ligand-binding pocket that partially overlaps the genomic pocket described in the ...

  4. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W. (Eli Lilly and Co., Indianapolis, IN (USA))

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.

  5. Quantitative autoradiography of the binding sites for [125I] iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    International Nuclear Information System (INIS)

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with [125I]iodoglyburide (N-[2-[[[(cyclohexylamino)carbonyl]amino]sulfonyl]ethyl]-5-125I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific [125I]iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of [125I]iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels

  6. Formation of Mixed-Ligand Complexes of Pd2+ with Nucleoside 5'-Monophosphates and Some Metal-Ion-Binding Nucleoside Surrogates

    Directory of Open Access Journals (Sweden)

    Oleg Golubev

    2014-10-01

    Full Text Available Formation of mixed-ligand Pd2+ complexes between canonical nucleoside 5'-monophosphates and five metal-ion-binding nucleoside analogs has been studied by 1H-NMR spectroscopy to test the ability of these nucleoside surrogates to discriminate between unmodified nucleobases by Pd2+-mediated base pairing. The nucleoside analogs studied included 2,6-bis(3,5-dimethylpyrazol-1-yl-, 2,6-bis(1-methylhydrazinyl- and 6-(3,5-dimethylpyrazol-1-yl-substituted 9-(β-d-ribofuranosylpurines 1–3, and 2,4-bis(3,5-dimethylpyrazol-1-yl- and 2,4-bis(1-methylhydrazinyl-substituted 5-(β-d-ribofuranosyl-pyrimidines 4–5. Among these, the purine derivatives 1-3 bound Pd2+ much more tightly than the pyrimidine derivatives 4, 5 despite apparently similar structures of the potential coordination sites. Compounds 1 and 2 formed markedly stable mixed-ligand Pd2+ complexes with UMP and GMP, UMP binding favored by 1 and GMP by 2. With 3, formation of mixed-ligand complexes was retarded by binding of two molecules of 3 to Pd2+.

  7. Three-dimensional structure and function study on the active region in the extracellular ligand-binding domain of human IL-6 receptor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.

  8. SILAC-Pulse Proteolysis: A Mass Spectrometry-Based Method for Discovery and Cross-Validation in Proteome-Wide Studies of Ligand Binding

    Science.gov (United States)

    Adhikari, Jagat; Fitzgerald, Michael C.

    2014-12-01

    Reported here is the use of stable isotope labeling with amino acids in cell culture (SILAC) and pulse proteolysis (PP) for detection and quantitation of protein-ligand binding interactions on the proteomic scale. The incorporation of SILAC into PP enables the PP technique to be used for the unbiased detection and quantitation of protein-ligand binding interactions in complex biological mixtures (e.g., cell lysates) without the need for prefractionation. The SILAC-PP technique is demonstrated in two proof-of-principle experiments using proteins in a yeast cell lysate and two test ligands including a well-characterized drug, cyclosporine A (CsA), and a non-hydrolyzable adenosine triphosphate (ATP) analogue, adenylyl imidodiphosphate (AMP-PNP). The well-known tight-binding interaction between CsA and cyclophilin A was successfully detected and quantified in replicate analyses, and a total of 33 proteins from a yeast cell lysate were found to have AMP-PNP-induced stability changes. In control experiments, the method's false positive rate of protein target discovery was found to be in the range of 2.1% to 3.6%. SILAC-PP and the previously reported stability of protein from rates of oxidation (SPROX) technique both report on the same thermodynamic properties of proteins and protein-ligand complexes. However, they employ different probes and mass spectrometry-based readouts. This creates the opportunity to cross-validate SPROX results with SILAC-PP results, and vice-versa. As part of this work, the SILAC-PP results obtained here were cross-validated with previously reported SPROX results on the same model systems to help differentiate true positives from false positives in the two experiments.

  9. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, T.; Andersen, A.S.; Wiberg, F.C.; Rasmussen, J.S.; Schaeffer, L.; Balschmidt, P.; Moller, K.B.; Moller, N.P.H. (Novo Nordisk, Bagsvaerd (Denmark))

    1991-05-15

    To identify the region(s) of the insulin receptor and the insulin-like growth factor I (IGF-I) receptor responsible for ligand specificity (high-affinity binding), expression vectors encoding soluble chimeric insulin/IGF-I receptors were prepared. The chimeric receptors were expressed in mammalian cells and partially purified. Binding studies revealed that a construct comprising an IGF-I receptor in which the 68 N-terminal amino acids of the insulin receptor {alpha}-subunit had replaced the equivalent IGF-I receptor segment displayed a markedly increased affinity for insulin. In contrast, the corresponding IGF-I receptor sequence is not critical for high-affinity IGF-I binding. It is shown that part of the cysteine-rich domain determines IGF-I specificity. The authors have previously shown that exchanging exons 1, 2, and 3 of the insulin receptor with the corresponding IGF-I receptor sequence results in loss of high affinity for insulin and gain of high affinity for IGF-I. Consequently, it is suggested that the ligand specificities of the two receptors (i.e., the sequences that discriminate between insulin and IGF-I) reside in different regions of a binding site with common features present in both receptors.

  10. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J

    2014-01-01

    BACKGROUND AND PURPOSE: The cyclopentapeptide FC131 (cyclo(-L-Arg(1) -L-Arg(2) -L-2-Nal(3) -Gly(4) -D-Tyr(5) -)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4...... activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. KEY RESULTS: The Arg(2) and 2-Nal(3) side chains of FC131 interact with residues in TM-3 (His(113) , Asp(171) ) and TM-5 (hydrophobic......-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. CONCLUSIONS AND IMPLICATIONS: Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding...

  11. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography

    DEFF Research Database (Denmark)

    Arent, Susan; Kadziola, Anders; Larsen, Sine;

    2006-01-01

    and reaction kinetics as a function of pH with xanthine, hypoxanthine, and guanine as substrates. The crystal structure of the dimeric XPRTase-GMP complex was determined to 2.05 Å resolution. In a sequential reaction mechanism XPRTase binds first PRPP, stabilizing its active dimeric form, and...... respect to sequence, PRPP binding motif, and oligomeric structure. They are more related with the PurR repressor of Gram-positive bacteria, the adenine PRTase, and orotate PRTase. The catalytic function and high specificity for xanthine of B. subtilis XPRTase were investigated by ligand binding studies...... subsequently xanthine. The XPRTase is able also to react with guanine and hypoxanthine albeit at much lower (10-4-fold) catalytic efficiency. Different pKa values for the bases and variations in their electrostatic potential can account for these catalytic differences. The unique base specificity of XPRTase...

  12. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    International Nuclear Information System (INIS)

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  13. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies

    International Nuclear Information System (INIS)

    The purified dihydropyridine-sensitive calcium channel from skeletal muscle transverse tubules consists of several subunits, termed alpha 1, alpha 2, beta, gamma and delta. From its associated drug receptors, those for 1,4-dihydropyridines and phenylalkylamines have been shown previously by photoaffinity labeling to reside on the alpha 1 subunit. In the present study the arylazide photo-affinity ligand, (+)-cis-azidodiltiazem ((+)-cis-(2S,3S)-5-[2-(4- azidobenzoyl)aminoethyl]-2,3,4,5-tetrahydro-3-hydroxy-2-(4-methoxyphenyl )-4- oxo-1,5-benzothiazepine), and the respective tritiated derivative, (+)-cis-[3H]azidodiltiazem (45 Ci/mmol), were developed to identify directly the benzothiazepine binding subunit. (+)-cis-Azidodiltiazem binds competitively to the benzothiazepine receptor in rabbit skeletal muscle transverse tubule membranes. Upon ultraviolet irradiation of the (+)-cis-[3H]azidodiltiazem-purified calcium channel complex, the ligand photoincorporates exclusively into the alpha 1 subunit. Photoincorporation is protected by 100 microM (-)-desmethoxyverapamil and 100 microM (+)-cis-diltiazem. A polyclonal antiserum directed against (+)-cis-azidodiltiazem was employed to detect (+)-cis-azidodiltiazem immunoreactivity photoincorporated into the purified calcium channel complex, confirming the exclusive labeling of the alpha 1 subunit. Our data provide direct evidence that, together with the drug receptors for 1,4-dihydropyridines and phenylalkylamines, the benzothiazepine binding domain of skeletal muscle calcium channels is located on the alpha 1 subunit. We conclude that our anti-ligand antibodies could be used successfully to affinity purify the photolabeled proteolytic fragments of the alpha 1 subunit which are expected to form part of the benzothiazepine binding domain

  14. Structural and mechanistic investigations on Salmonella typhimurium acetate kinase (AckA: identification of a putative ligand binding pocket at the dimeric interface

    Directory of Open Access Journals (Sweden)

    Chittori Sagar

    2012-10-01

    Full Text Available Abstract Background Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA and phosphotransacetylase (Pta, key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results Here we report kinetic characterization of S. typhimurium AckA (StAckA and structures of its unliganded (Form-I, 2.70 Å resolution and citrate-bound (Form-II, 1.90 Å resolution forms. The enzyme showed broad substrate specificity with kcat/Km in the order of acetate > propionate > formate. Further, the Km for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP and divalent cations (Mn2+ and Co2+, respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic βββαβαβα topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA. Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230–300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these

  15. Steroid hormones affect binding of the sigma ligand C-11-SA4503 in tumour cells and tumour-bearing rats

    NARCIS (Netherlands)

    Rybczynska, Anna A.; Elsinga, Philip H.; Sijbesma, Jurgen W.; Ishiwata, Kiichi; de Jong, Johan R.; de Vries, Erik F.; Dierckx, Rudi A.; van Waarde, Aren

    2009-01-01

    Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined change

  16. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments.

    Science.gov (United States)

    Muñoz-García, Juan C; Chabrol, Eric; Vivès, Romain R; Thomas, Aline; de Paz, José L; Rojo, Javier; Imberty, Anne; Fieschi, Franck; Nieto, Pedro M; Angulo, Jesús

    2015-04-01

    Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns

  17. Synthesis, structure information, DNA/BSA binding affinity and in vitro cytotoxic studies of mixed ligand copper(II) complexes containing a phenylalanine derivative and diimine co-ligands.

    Science.gov (United States)

    Annaraj, B; Balakrishnan, C; Neelakantan, M A

    2016-07-01

    Binary [Cu(PAIC)(H2O)2]·H2O (1) and mixed ligand [Cu(PAIC)(L)]·2H2O complexes, where PAIC=phenylalanine imidazole carboxylic acid, L=diimine coligands [2,2'-bipyridine (bpy) (2) and 1,10-phenanthroline (phen) (3)] have been synthesized and fully characterized by analytical and spectral techniques. The X-ray structure of [Cu(PAIC)(phen)]·2H2O (3) shows a N4O coordination with square pyramidal geometry around the copper (II) atom. The spin Hamiltonian parameters calculated for the complexes account for the distorted square planar structure and rules out the possibility of a trigonal bipyramidal structure. Interaction of the complexes (1-3) with calf thymus DNA (CT DNA) was studied by using different techniques (absorption titration, fluorescence quenching and thermal melting) and the studies suggest that these complexes bind to CT DNA through intercalation. The DNA-binding affinity of the complexes has further been explained by DFT computational results. Binding activity of Bovine serum albumin (BSA) reveals that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. DNA cleavage experiments using plasmid DNA pUC 19 show that the complexes exhibit efficient chemical nuclease activity even in the absence of any external additives. The cytotoxicity of the complexes against human normal cell line (HBL 100) and human breast cancer cell line (MCF-7) shows that metal complexation of the ligands results in a significant enhancement in the cell death of MCF-7. Finally, docking studies on DNA and protein binding interactions were performed. PMID:27155593

  18. Panning of a phage display library against a synthetic capsule for peptide ligands that bind to the native capsule of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Michael Beer

    Full Text Available Bacillus anthracis is the causative agent of anthrax with the ability to not only produce a tripartite toxin, but also an enveloping capsule comprised primarily of γ-D-glutamic acid residues. The purpose of this study was to isolate peptide ligands capable of binding to the native capsule of B. anthracis from a commercial phage display peptide library using a synthetic form of the capsule consisting of 12 γ-D-glutamic acid residues. Following four rounds of selection, 80 clones were selected randomly and analysed by DNA sequencing. Four clones, each containing a unique consensus sequence, were identified by sequence alignment analysis. Phage particles were prepared and their derived 12-mer peptides were also chemically synthesized and conjugated to BSA. Both the phage particles and free peptide-BSA conjugates were evaluated by ELISA for binding to encapsulated cells of B. anthracis as well as a B. anthracis capsule extract. All the phage particles tested except one were able to bind to both the encapsulated cells and the capsule extract. However, the peptide-BSA conjugates could only bind to the encapsulated cells. One of the peptide-BSA conjugates, with the sequence DSSRIPMQWHPQ (termed G1, was fluorescently labelled and its binding to the encapsulated cells was further confirmed by confocal microscopy. The results demonstrated that the synthetic capsule was effective in isolating phage-displayed peptides with binding affinity for the native capsule of B. anthracis.

  19. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand.

    Science.gov (United States)

    Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello

    2016-08-01

    A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry. PMID:27427335

  20. Novel chiral N4S2- and N6S3-donor macrocyclic ligands: synthesis, protonation constants, metal-ion binding and asymmetric catalysis in the Henry reaction.

    Science.gov (United States)

    Gao, Jian; Martell, A E

    2003-08-01

    New hydrophobic chiral macrocyclic ligands L1-L3 with chiral diamino and thiophene moieties have been synthesized by the Schiff base condensation approach. Protonation constants of L1 and L2 were determined by potentiometry titration. Metal-ion binding experiments exhibited that L1 and L3 are pronounced in selective recognition, Ag+, Cu2+ and Ca2+ ions among the surveyed metal ions (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+, Li+, Na+, K+, and Ca2+). L1 was found to spectroscopically detect the presence of Cu2+ and Ca2+ to function as a multiple readout sensor. The detection limit for Ca2+ ions was found to be 9.8 x 10(-5) M in CH2Cl2-MeOH solution. The trimeric chiral ligand L3 has been shown to be an efficient auxiliary in a Zn(II)-mediated enantioselective Henry reaction. PMID:12948208

  1. Synthesis, characterization, crystal structure and HSA binding of two new N,O,O-donor Schiff-base ligands derived from dihydroxybenzaldehyde and tert-butylamine

    Science.gov (United States)

    Khosravi, Iman; Hosseini, Farnaz; Khorshidifard, Mahsa; Sahihi, Mehdi; Rudbari, Hadi Amiri

    2016-09-01

    Two new o-hydroxy Schiff-bases compounds, L1 and L2, were derived from the 1:1 M condensation of 2,3-dihydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde with tert-butylamine and were characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies. The crystal structure of L2 was also determined by single crystal X-ray analysis. The crystal structure of L2 showed that the compound exists as a zwitterionic form in the solid state, with the H atom of the phenol group being transferred to the imine N atom. It adopts an E configuration about the central Cdbnd N double bond. Furthermore, binding of these Schiff base ligands to Human Serum Albumin (HSA) was investigated by fluorescence quenching, absorption spectroscopy, molecular docking and molecular dynamics (MD) simulation methods. The fluorescence emission of HSA was quenched by ligands. Also, suitable models were used to analyze the UV-vis absorption spectroscopy data for titration of HSA solution by various amounts of Schiff bases. The spectroscopic studies revealed that these Schiff bases formed 1:1 complex with HSA. Energy transfer mechanism of quenching was discussed and the values of 3.35 and 1.57 nm as the mean distances between the bound ligands and the HSA were calculated for L1 and L2, respectively. Molecular docking results indicated that the main active binding site for these Schiff bases ligands is in subdomain IB. Moreover, MD simulation results suggested that this Schiff base complex can interact with HSA, with a slight modification of its tertiary structure.

  2. Novel mutation in the ligand-binding domain of the androgen receptor gene (1790p) associated with complete androgen insensitivity syndrome

    Institute of Scientific and Technical Information of China (English)

    Florina Raicu; Rossella Giuliani; Valentina Gatta; Chiara Palka; Paolo Guanciali Franchi; Pierluigi Lelli-Chiesa; Stefano Tumini; Liborio Stuppia

    2008-01-01

    Mutations in the X-linked androgen receptor (AR) gene cause androgen insensitivity syndrome (AIS), resulting in an impaired embryonic sex differentiation in 46,XY genetic men. Complete androgen insensitivity (CAIS) produces a female external phenotype, whereas cases with partial androgen insensitivity (PAIS) have various ambiguities of the genitalia. Mild androgen insensitivity (MAIS) is characterized by undermasculinization and gynecomastia. Here we describe a 2-month-old 46,XY female patient, with all of the characteristics of CAIS. Defects in testosterone (T) and dihydrotestosterone (DHT) synthesis were excluded. Sequencing of the AR gene showed the presence in exon 6 of a T to C transition in the second base of codon 790, nucleotide position 2369, causing a novel missense Leu790Pro mutation in the ligand-binding domain of the AR protein. The identification of a novel AR mutation in a girl with CAIS provides significant information due to the importance of missense mutations in the ligand-binding domain of the AR, which are able to induce functional abnormalities in the androgen binding capability, stabilization of active conformation, or interaction with coactivators. (Asian J Androl 2008 Jul; 10: 687-691)

  3. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.

    Science.gov (United States)

    Iglesias-Bexiga, Manuel; Castillo, Francisco; Cobos, Eva S; Oka, Tsutomu; Sudol, Marius; Luque, Irene

    2015-01-01

    YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling. PMID:25607641

  4. WW domains of the yes-kinase-associated-protein (YAP transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.

    Directory of Open Access Journals (Sweden)

    Manuel Iglesias-Bexiga

    Full Text Available YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.

  5. Development of Plate Reader and On-Line Microfluidic Screening to Identify Ligands of the 5-Hydroxytryptamine Binding Protein in Venoms

    Directory of Open Access Journals (Sweden)

    Reka A. Otvos

    2015-06-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel, which is expressed in the nervous system. Its antagonists are used clinically for treatment of postoperative- and radiotherapy-induced emesis and irritable bowel syndrome. In order to better understand the structure and function of the 5-HT3 receptor, and to allow for compound screening at this receptor, recently a serotonin binding protein (5HTBP was engineered with the Acetylcholine Binding Protein as template. In this study, a fluorescence enhancement assay for 5HTBP ligands was developed in plate-reader format and subsequently used in an on-line microfluidic format. Both assay types were validated using an existing radioligand binding assay. The on-line microfluidic assay was coupled to HPLC via a post-column split which allowed parallel coupling to a mass spectrometer to collect MS data. This high-resolution screening (HRS system is well suitable for compound mixture analysis. As a proof of principle, the venoms of Dendroapsis polylepis, Pseudonaja affinis and Pseudonaja inframacula snakes were screened and the accurate masses of the found bioactives were established. To demonstrate the subsequent workflow towards structural identification of bioactive proteins and peptides, the partial amino acid sequence of one of the bioactives from the Pseudonaja affinis venom was determined using a bottom-up proteomics approach.

  6. Bispyrimidines as potent histamine H(4) receptor ligands: delineation of structure-activity relationships and detailed H(4) receptor binding mode.

    Science.gov (United States)

    Engelhardt, Harald; Schultes, Sabine; de Graaf, Chris; Nijmeijer, Saskia; Vischer, Henry F; Zuiderveld, Obbe P; Dobler, Julia; Stachurski, Katharina; Mayer, Moriz; Arnhof, Heribert; Scharn, Dirk; Haaksma, Eric E J; de Esch, Iwan J P; Leurs, Rob

    2013-06-13

    The basic methylpiperazine moiety is considered a necessary substructure for high histamine H4 receptor (H4R) affinity. This moiety is however also the metabolic hot spot for various classes of H4R ligands (e.g., indolcarboxamides and pyrimidines). We set out to investigate whether mildly basic 2-aminopyrimidines in combination with the appropriate linker can serve as a replacement for the methylpiperazine moiety. In the series of 2-aminopyrimidines, the introduction of an additional 2-aminopyrimidine moiety in combination with the appropriate linker lead to bispyrimidines displaying pKi values for binding the human H4R up to 8.2. Furthermore, the methylpiperazine replacement results in compounds with improved metabolic properties. The attempt to transfer the knowledge generated in the class of bispyrimidines to the indolecarboxamides failed. Combining the derived structure-activity relationships with homology modeling leads to new detailed insights in the molecular aspects of ligand-H4R binding in general and the binding mode of the described bispyrimidines in specific. PMID:23668417

  7. Dual-point competition association assay: a fast and high-throughput kinetic screening method for assessing ligand-receptor binding kinetics.

    Science.gov (United States)

    Guo, Dong; van Dorp, Erika J H; Mulder-Krieger, Thea; van Veldhoven, Jacobus P D; Brussee, Johannes; Ijzerman, Adriaan P; Heitman, Laura H

    2013-03-01

    The concept of ligand-receptor binding kinetics is emerging as an important parameter in the early phase of drug discovery. Since the currently used kinetic assays are laborious and low throughput, we developed a method that enables fast and large format screening. It is a so-called dual-point competition association assay, which measures radioligand binding at two different time points in the absence or presence of unlabeled competitors. Specifically, this assay yields the kinetic rate index (KRI), which is a measure for the binding kinetics of the unlabeled ligands screened. As a prototypical drug target, the adenosine A(1) receptor (A(1)R) was chosen for assay validation and optimization. A screen with 35 high-affinity A(1)R antagonists yielded seven compounds with a KRI value above 1.0, which indicated a relatively slow dissociation from the target. All other compounds had a KRI value below or equal to 1.0, predicting a relatively fast dissociation rate. Several compounds were selected for follow-up kinetic quantifications in classical kinetic assays and were shown to have kinetic rates that corresponded to their KRI values. The dual-point assay and KRI value may have general applicability at other G-protein-coupled receptors, as well as at drug targets from other protein families. PMID:23093571

  8. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Qifeng Bai

    Full Text Available We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551. The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com.

  9. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    International Nuclear Information System (INIS)

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 μM for the agonist (±)-Bay K8644 and for the antagonists nifedipine, (±)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 μM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTPγS) and guanosine 5'-O-(2-thiodiphosphate) (GDPβS) on binding parameters. GTPγS did increase the ability of (±)-[3H]PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites

  10. The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Science.gov (United States)

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R. PMID:25629160

  11. The extracellular loop 2 (ECL2 of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity.

    Directory of Open Access Journals (Sweden)

    David Wifling

    Full Text Available In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R shows extraordinarily high constitutive activity. In the extracellular loop (ECL, replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R.

  12. An improved expression system for the VC1 ligand binding domain of the receptor for advanced glycation end products in Pichia pastoris.

    Science.gov (United States)

    Degani, Genny; Colzani, Mara; Tettamanzi, Alberto; Sorrentino, Luca; Aliverti, Alessandro; Fritz, Guenter; Aldini, Giancarlo; Popolo, Laura

    2015-10-01

    The receptor for the advanced glycation end products (RAGE) is a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily and binds a variety of unrelated ligands sharing a negative charge. Most ligands bind to the extracellular V or VC1 domains of the receptor. In this work, V and VC1 of human RAGE were produced in the methylotrophic yeast Pichia pastoris and directed to the secretory pathway. Fusions to a removable C-terminal His-tag evidenced proteolytic processing of the tag by extracellular proteases and also intracellular degradation of the N-terminal portion of V-His. Expression of untagged forms was attempted. While the V domain was retained intracellularly, VC1 was secreted into the medium and was functionally active in binding AGEs. The glycosylation state of VC1 was analyzed by mass spectrometry and peptide-N-glycosidase F digestion. Like RAGE isolated from mammalian sources, the degree of occupancy of the N-glycosylation sites was full at Asn25 and partial at Asn81 which was also subjected to non-enzymatic deamidation. A simple procedure for the purification to homogeneity of VC1 from the medium was developed. The folded state of the purified protein was assessed by thermal shift assays. Recombinant VC1 from P. pastoris showed a remarkably high thermal stability as compared to the protein expressed in bacteria. Our in vivo approach indicates that the V and C1 domains constitute a single folding unit. The stability and solubility of the yeast-secreted VC1 may be beneficial for future in vitro studies aimed to identify new ligands or inhibitors of RAGE. PMID:26118699

  13. Direct Binding of the Ligand PSG17 to CD9 Requires a CD9 Site Essential for Sperm-Egg Fusion

    OpenAIRE

    Ellerman, Diego A; Ha, Cam; Primakoff, Paul; Myles, Diana G.; Dveksler, Gabriela S.

    2003-01-01

    The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17 receptor being a CD9 cis-associated protein. In the current study, CD9 extracellular loop (EC2) specifically bound to PSG17-coated beads, ind...

  14. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain

    OpenAIRE

    Buck, Janina; Noeske, Jonas; Wöhnert, Jens; Schwalbe, Harald

    2010-01-01

    Long-range tertiary interactions determine the three-dimensional structure of a number of metabolite-binding riboswitch RNA elements and were found to be important for their regulatory function. For the guanine-sensing riboswitch of the Bacillus subtilis xpt-pbuX operon, our previous NMR-spectroscopic studies indicated pre-formation of long-range tertiary contacts in the ligand-free state of its aptamer domain. Loss of the structural pre-organization in a mutant of this RNA (G37A/C61U) result...

  15. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    Science.gov (United States)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  16. Primary study of a novel reporter gene/probe system human ER ligand binding domain/radiolabeled estradiol

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility of a new reporter gene/probe system, namely human ER ligand binding domain (hERL)/radionuclide labeled estradiol, and to provide basis for its monitoring gene and cell therapy from in vitro cellular uptake study and in vivo imaging experiment. Methods: Recombinant plasmid pDC316-hERL -internal ribosome entry site-VEGF165 (pDC316-hERL-IRES-VEGF165, or EIV) and recombinant Ad-EIV were constructed, which carried a reporter gene (hERL) and a therapeutic gene (VEGF165) through IRES. Adenovirus was used as a vector. MSCs were obtained from tibias and femurs of rat, and cultured normally. Ad-EIV and EIV coated with lipofectamine 2000 (Lipo-EIV) were transfected into MSCs. RT-PCR and Western blot were performed to detect the expression of hERL and VEGF165 from mRNA and protein level.The cellular uptake values of 125I labeled estradiol (125I-E2) were measured in Ad-EIV, Lipo-EIV and non-transfected MSCs at different incubation time (1, 3, 6, 9, 12 and 24 h). Ad-EIV transfected MSCs were injected into the left upper limb of rats, and non-transfected MSCs into the right upper limb as self-control. Micro PET/CT images were obtained after 1 d of transfection. T-test and Pearson linear correlation analysis were used to analyze the data. Results: After transfected with Ad-EIV, mRNA and protein expressions of hERL and VEGF165 in MSCs were increased with adenovirus multiplicity of infection (MOI), and positive correlation could be seen (r2=0.953 and 0.966, both P<0.05). The expressions of mRNA and protein in Ad-EIV group were higher than those of Lipo-EIV transfected MSCs. Time-dependent accumulation of 125I-E2 was observed in the Ad-EIV group and Lipo-EIV group, and the highest uptake rates occurred at 24 h, with peak values of (10.94 ± 0.30) % and (8.93 ± 0.18)%, respectively. Higher cellular uptakes could be seen at all time points in the Ad-EIV group than those of the Lipo-EIV group (t=4.132-16.168, all P<0.05). Moreover, the cellular

  17. Characterization of osteoprotegerin binding to glycosaminoglycans by surface plasmon resonance: Role in the interactions with receptor activator of nuclear factor κB ligand (RANKL) and RANK

    International Nuclear Information System (INIS)

    Osteoprotegerin (OPG) is a decoy receptor for receptor activator of nuclear factor κB ligand (RANKL), a key inducer of osteoclastogenesis via its receptor RANK. We previously showed that RANK, RANKL, and OPG are able to form a tertiary complex and that OPG must be also considered as a direct effector of osteoclast functions. As OPG contains a heparin-binding domain, the present study investigated the interactions between OPG and glycosaminoglycans (GAGs) by surface plasmon resonance and their involvement in the OPG functions. Kinetic data demonstrated that OPG binds to heparin with a high-affinity (K D: 0.28 nM) and that the pre-incubation of OPG with heparin inhibits in a dose-dependent manner the OPG binding to the complex RANK-RANKL. GAGs from different structure/origin (heparan sulfate, dermatan sulfate, and chondroitin sulfate) exert similar activity on OPG binding. The contribution of the sulfation pattern and the size of the oligosaccharide were determined in this inhibitory mechanism. The results demonstrated that sulfation is essential in the OPG-blocking function of GAGs since a totally desulfated heparin loses its capacity to bind and to block OPG binding to RANKL. Moreover, a decasaccharide is the minimal structure that totally inhibits the OPG binding to the complex RANK-RANKL. Western blot analysis performed in 293 cells surexpressing RANKL revealed that the pre-incubation of OPG with these GAGs strongly inhibits the OPG-induced decrease of membrane RANKL half-life. These data support an essential function of the related glycosaminoglycans heparin and heparan sulfate in the activity of the triad RANK-RANKL-OPG

  18. Modifications of the 7-Hydroxyl Group of the Transthyretin Ligand Luteolin Provide Mechanistic Insights into Its Binding Properties and High Plasma Specificity.

    Science.gov (United States)

    Nilsson, Lina; Larsson, Andreas; Begum, Afshan; Iakovleva, Irina; Carlsson, Marcus; Brännström, Kristoffer; Sauer-Eriksson, A Elisabeth; Olofsson, Anders

    2016-01-01

    Amyloid formation of the plasma protein transthyretin (TTR) has been linked to familial amyloid polyneuropathy and senile systemic amyloidosis. Binding of ligands within its natural hormone binding site can stabilize the tetrameric structure and impair amyloid formation. We have recently shown that the flavonoid luteolin stabilizes TTR in human plasma with a very high selectivity. Luteolin, however, is inactivated in vivo via glucuronidation for which the preferred site is the hydroxy group at position 7 on its aromatic A-ring. We have evaluated the properties of two luteolin variants in which the 7-hydroxy group has been exchanged for a chlorine (7-Cl-Lut) or a methoxy group (7-MeO-Lut). Using an in vitro model, based on human liver microsomes, we verified that these modifications increase the persistence of the drug. Crystal structure determinations show that 7-Cl-Lut binds similarly to luteolin. The larger MeO substituent cannot be accommodated within the same space as the chlorine or hydroxy group and as a result 7-MeO-Lut binds in the opposite direction with the methoxy group in position 7 facing the solvent. Both 7-Cl-Lut and 7-MeO-Lut qualify as high-affinity binders, but in contrast to luteolin, they display a highly non-specific binding to other plasma components. The binding of the two conformations and the key-interactions to TTR are discussed in detail. Taken together, these results show a proof-of-concept that the persistence of luteolin towards enzymatic modification can be increased. We reveal two alternative high-affinity binding modes of luteolin to TTR and that modification in position 7 is restricted only to small substituents if the original orientation of luteolin should be preserved. In addition, the present work provides a general and convenient method to evaluate the efficacy of TTR-stabilizing drugs under conditions similar to an in vivo environment. PMID:27050398

  19. An Introductory Classroom Exercise on Protein Molecular Model Visualization and Detailed Analysis of Protein-Ligand Binding

    Science.gov (United States)

    Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria

    2013-01-01

    A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…

  20. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    DEFF Research Database (Denmark)

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G.; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M.; Blader, Ira J.; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected...

  1. Soluble FasR ligand-binding domain: high-yield production of active fusion and non-fusion recombinant proteins using the baculovirus/insect cell system.

    Science.gov (United States)

    Mahiou, J; Abastado, J P; Cabanie, L; Godeau, F

    1998-03-01

    We used the recombinant baculovirus/insect cell system to express two soluble forms of the mouse Fas receptor (mFasR) extracellular domain (ECD): a monomer comprising the entire ligand-binding portion of mFasR followed by a carboxy-terminal hexa-histidine extension aiding purification by immobilized metal affinity chromatography and an immunoadhesin in which the same 148 residues were fused to the Fc portion of a truncated human IgG1 immunoglobulin heavy chain. Both constructs harboured a 24 base pairs insertion placed upstream of the initiating ATG [Peakman, Charles, Sydenham, Gewert, Page, and Makoff (1992) Nucleic Acids Res. 20, 6111-6112]. Despite its hexa-histidine extension, the monovalent recombinant protein from crude culture media failed to bind immobilized Ni2+ unless proteins were first precipitated twice by ammonium sulphate. The overall procedure then yielded approximately 10mg/l of protein which could be purified to near homogeneity using two additional chromatographic steps. The glycosylated polypeptide migrated as a band of Mr=(21-31) x 10(3) in SDS/PAGE and was monomeric in physiological buffers. Under non-reducing conditions, denaturation in 6 M guanidinium chloride was reversible after slow removal of the denaturing agent. The mFasR immunoadhesin was secreted (approximately 5-10 mg/l) as a disulphide-linked homodimer, and endowed with ligand-binding activity since it could bind FasL on the surface of D11S, FasL-expressing cells. When tested for their ability to inhibit FasR-dependent cell lysis, the soluble dimeric immunoadhesin markedly inhibited FasL-mediated cytotoxicity (IC50 approximately 30 nM), and was approximately 6 times as effective as its monomeric counterpart. PMID:9480929

  2. Discovery of a novel selective PPARγ ligand with partial agonist binding properties by integrated in silico / in vitro work flow

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Petersen, Rasmus K.; Fratev, Filip Filipov;

    2013-01-01

    partial agonist binding properties. Toward this end we applied an integrated in silico/in vitro workflow, based on pharmacophore-and structure-based virtual screening of the ZINC library, coupled with competitive binding and transactivation assays, and adipocyte differentiation and gene expression studies...

  3. Ligand binding by antibody IgE Lb4: assessment of binding site preferences using microcalorimetry, docking, and free energy simulations.

    OpenAIRE

    Sotriffer, C A; Flader, W; Cooper, A.; Rode, B M; Linthicum, D S; Liedl, K. R.; Varga, J M

    1999-01-01

    Antibody IgE Lb4 interacts favorably with a large number of different compounds. To improve the current understanding of the structural basis of this vast cross-reactivity, the binding of three dinitrophenyl (DNP) amino acids (DNP-alanine, DNP-glycine, and DNP-serine) is investigated in detail by means of docking and molecular dynamics free energy simulations. Experimental binding energies obtained by isothermal titration microcalorimetry are used to judge the results of the computational stu...

  4. Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti

    Science.gov (United States)

    Leal, Gabriel M.; Leal, Walter S.

    2015-01-01

    Odorant-binding proteins (OBPs), also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new light on the mechanism of transport, although there is considerable debate on how they deliver odorant to receptors. An OBP from the southern house mosquito, Culex quinquefasciatus, binds the hydrophobic moiety of a mosquito oviposition pheromone (MOP) on the edge of its binding cavity. Likewise, it has been demonstrated that the orthologous protein from the malaria mosquito binds the insect repellent DEET on a similar edge of its binding pocket. A high school research project was aimed at testing whether the orthologous protein from the yellow fever mosquito, AaegOBP1, binds DEET and other insect repellents, and MOP was used as a positive control. Binding assays using the fluorescence reporter N-phenyl-1-naphtylamine (NPN) were inconclusive. However, titration of NPN fluorescence emission in AaegOBP1 solution with MOP led to unexpected and intriguing results. Quenching was observed in the initial phase of titration, but addition of higher doses of MOP led to a stepwise increase in fluorescence emission coupled with a blue shift, which can be explained at least in part by formation of MOP micelles to house stray NPN molecules. PMID:25671088

  5. Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti

    OpenAIRE

    Leal, Gabriel M.; Leal, Walter S.

    2015-01-01

    Odorant-binding proteins (OBPs), also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new li...

  6. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J. [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); McDonald, Neil Q., E-mail: neil.mcdonald@cancer.org.uk [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom)

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.

  7. Quantitative Characterization of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2015-06-29

    Selectins (E-, P-, and L-selectins) interact with glycoprotein ligands to mediate the essential tethering/rolling step in cell transport and delivery that captures migrating cells from the circulating flow. In this work, we developed a real time immunoprecipitation assay on a surface plasmon resonance chip that captures native glycoforms of two well known E-selectin ligands (CD44/hematopoietic cell E-/L-selectin ligand and P-selectin glycoprotein ligand-1) from hematopoietic cell extracts. Here we present a comprehensive characterization of their binding to E-selectin. We show that both ligands bind recombinant monomeric E-selectin transiently with fast on- and fast off-rates, whereas they bind dimeric E-selectin with remarkably slow onand off-rates. This binding requires the sialyl Lewis x sugar moiety to be placed on both O- and N-glycans, and its association, but not dissociation, is sensitive to the salt concentration. Our results suggest a mechanism through which monomeric selectins mediate initial fast on and fast off kinetics to help capture cells out of the circulating shear flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to significantly slow rolling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Supramolecular Isomers of Metal-Organic Frameworks Derived from a Partially Flexible Ligand with Distinct Binding Motifs

    KAUST Repository

    Abdul Halim, Racha Ghassan

    2016-01-04

    Three novel metal-organic frameworks (MOFs) were isolated upon reacting a heterofunctional ligand 4 (pyrimidin-5 yl)benzoic acid (4,5-pmbc) with mixed valence Cu(I,II) under solvothermal conditions. X-ray crystal structural analysis reveals that the first compound is a layered structure composed of one type of inorganic building block, dinuclear paddlewheel [Cu2(O2C–)4], which are linked through 4,5-pmbc ligands. The two other supramolecular isomers are composed of the same Cu(II) dinuclear paddlewheel and a dinuclear Cu2I2 cluster, which are linked via the 4,5-pmbc linkers to yield two different 3-periodic frameworks with underlying topologies related to lvt and nbo. The observed structural diversity in these structures is due to the distinct coordination modes of the two coordinating moieties (the carboxylate group on the phenyl ring and the N-donor atoms from the pyrimidine moiety).

  9. Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle glycogen phosphorylase b. Comparison with ligand binding to pCDK2-cyclin A complex.

    Science.gov (United States)

    Kosmopoulou, Magda N; Leonidas, Demetres D; Chrysina, Evangelia D; Bischler, Nicolas; Eisenbrand, Gerhard; Sakarellos, Constantinos E; Pauptit, Richard; Oikonomakos, Nikos G

    2004-06-01

    The binding of indirubin-5-sulphonate (E226), a potential anti-tumour agent and a potent inhibitor (IC(50) = 35 nm) of cyclin-dependent kinase 2 (CDK2) and glycogen phosphorylase (GP) has been studied by kinetic and crystallographic methods. Kinetic analysis revealed that E226 is a moderate inhibitor of GPb (K(i) = 13.8 +/- 0.2 micro m) and GPa (K(i) = 57.8 +/- 7.1 micro m) and acts synergistically with glucose. To explore the molecular basis of E226 binding we have determined the crystal structure of the GPb/E226 complex at 2.3 A resolution. Structure analysis shows clearly that E226 binds at the purine inhibitor site, where caffeine and flavopiridol also bind [Oikonomakos, N.G., Schnier, J.B., Zographos, S.E., Skamnaki, V.T., Tsitsanou, K.E. & Johnson, L.N. (2000) J. Biol. Chem.275, 34566-34573], by intercalating between the two aromatic rings of Phe285 and Tyr613. The mode of binding of E226 to GPb is similar, but not identical, to that of caffeine and flavopiridol. Comparative structural analyses of the GPb-E226, GPb-caffeine and GPb-flavopiridol complex structures reveal the structural basis of the differences in the potencies of the three inhibitors and indicate binding residues in the inhibitor site that can be exploited to obtain more potent inhibitors. Structural comparison of the GPb-E226 complex structure with the active pCDK2-cyclin A-E226 complex structure clearly shows the different binding modes of the ligand to GPb and CDK2; the more extensive interactions of E226 with the active site of CDK2 may explain its higher affinity towards the latter enzyme. PMID:15153119

  10. Ligand binding to the inhibitory and stimulatory GTP cyclohydrolase I/GTP cyclohydrolase I feedback regulatory protein complexes

    OpenAIRE

    Yoneyama, Toshie; Hatakeyama, Kazuyuki

    2001-01-01

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation bet...

  11. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Vaezeslami, Soheila [Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H., E-mail: geiger@chemistry.msu.edu [Chemistry Department, Michigan State University, East Lansing, MI 48824-1322 (United States); Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States)

    2008-12-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII.

  12. Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor.

    OpenAIRE

    Kiefer, M C; Stephans, J C; Crawford, K; Okino, K.; Barr, P.J.

    1990-01-01

    Expression cloning of cDNAs encoding a basic fibroblast growth factor (FGF) binding protein confirms previous hypotheses that this molecule is a cell-surface heparan sulfate proteoglycan. A cDNA library constructed from a hamster kidney cell line rich in FGF receptor activity was transfected into a human lymphoblastoid cell line. Clones expressing functional basic FGF binding proteins at their surfaces were enriched by panning on plastic dishes coated with human basic FGF. The amino acid sequ...

  13. Anti-Lipid A Monoclonal Antibody Centoxin (HA-1A) Binds to a Wide Variety of Hydrophobic Ligands

    OpenAIRE

    Helmerhorst, E.J.; Maaskant, J.J.; Appelmelk, B J

    1998-01-01

    This note describes the binding specificities of four lipid A monoclonal antibodies (MAbs) including Centoxin (HA-1A); these MAbs display similar binding properties. MAbs reacted with lipid A and heat-killed smooth bacteria, whereas no reactivity was observed with smooth lipopolysaccharide (LPS). Immunoblotting of bacterial extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the MAbs bound to many polypeptide bands including the molecular weight markers...

  14. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients.

    Science.gov (United States)

    Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-06-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity. PMID:20223752

  15. The Structure of the MUR1 GDP-mannose 4,67-deydratase from A. thaliana: Implications for Ligand Binding Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Mulichak, A.M.; Bonin, C.P.; Reiter, W.-D.; Garavito, R.M. (Michigan State University)

    2010-03-08

    GDP-D-mannose 4,6-dehydratase catalyzes the first step in the de novo synthesis of GDP-L-fucose, the activated form of L-fucose, which is a component of glycoconjugates in plants known to be important to the development and strength of stem tissues. We have determined the three-dimensional structure of the MUR1 dehydratase isoform from Arabidopsis thaliana complexed with its NADPH cofactor as well as with the ligands GDP and GDP-D-rhamnose. MUR1 is a member of the nucleoside-diphosphosugar modifying subclass of the short-chain dehydrogenase/reductase enzyme family, having homologous structures and a conserved catalytic triad of Lys, Tyr, and Ser/Thr residues. MUR1 is the first member of this subfamily to be observed as a tetramer, the interface of which reveals a close and intimate overlap of neighboring NADP{sup +}-binding sites. The GDP moiety of the substrate also binds in an unusual syn conformation. The protein-ligand interactions around the hexose moiety of the substrate support the importance of the conserved triad residues and an additional Glu side chain serving as a general base for catalysis. Phe and Arg side chains close to the hexose ring may serve to confer substrate specificity at the O2 position. In the MUR1/GDP-D-rhamnose complex, a single unique monomer within the protein tetramer that has an unoccupied substrate site highlights the conformational changes that accompany substrate binding and may suggest the existence of negative cooperativity in MUR1 function.

  16. Structure of the ligand-binding domain of rat VDR in complex with the nonsecosteroidal vitamin D3 analogue YR301

    International Nuclear Information System (INIS)

    The crystal structure of the ligand-binding domain of rat VDR in complex with a nonsecosteroidal vitamin D3 analogue YR301 has been determined at 2.0 Å resolution. Vitamin D receptor (VDR) is a ligand-inducible hormone receptor that mediates 1α,25(OH)2D3 action, regulating calcium and phosphate metabolism, induces potent cell differentiation activity and has immunosuppressive effects. Analogues of 1α,25(OH)2D3 have been used clinically for some years. However, the risk of potential side effects limits the use of these substances. LG190178 is a novel nonsecosteroidal ligand for VDR. (2S)-3-[4-(3-{4-[(2R)-2-hydroxy-3,3-dimethylbutoxy]-3-methylphenyl} pentan-3-yl)-2-methylphenoxy] propane-1,2-diol (YR301) is the only one of the four evaluated stereoisomers of LG190178 to have strong activity. To understand the strong activity of YR301, the crystal structure of YR301 complexed with the rat VDR ligand-binding domain (VDR LBD) was solved at 2.0 Å resolution and compared with the structure of the VDR LBD–1α,25(OH)2D3 complex. YR301 and 1α,25(OH)2D3 share the same position and the diethylmethyl group occupies a similar space to the C and D rings of 1α,25(OH)2D3. YR301 has two characteristic hydroxyl groups which contribute to its potent activity. The first is 2′-OH, which forms hydrogen bonds to the NE2 atoms of both His301 and His393. The other is 2-OH, which interacts with Ser233 OG and Arg270 NH1. These two hydroxyl groups of YR301 correspond exactly to 25-OH and 1-OH, respectively, of 1α,25(OH)2D3. The terminal hydroxyl group (3-OH) of YR301 is directly hydrogen bonded to Arg270 and also interacts indirectly with Tyr232 OH and the backbone NH of Asp144 via water molecules. Additional derivatization of the terminal hydroxyl group using the positions of the water molecules might be useful for the design of more potent compounds

  17. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens

    NARCIS (Netherlands)

    J. Veldscholte (Jos); C. Ris-Stalpers (Carolyn); G.G.J.M. Kuiper (George); G.W. Jenster (Guido); C.A. Berrevoets (Cor); H.J.H.M. Claassen (Eric); H.C.J. van Rooij (Henri); J. Trapman (Jan); A.O. Brinkmann (Albert); E. Mulder (Eppo)

    1990-01-01

    markdownabstractAbstract INCaP prostate tumor cells contain an abnormal androgen receptor system. Progestagens, estradiol and anti-androgens can compete with androgens for binding to the androgen receptor and can stimulate both cell growth and excretion of prostate specific acid phosphatase. We ha

  18. Evaluación de la unión espermatozoide-ADN exógeno en espermatozoides porcinos eyaculados y epididimarios Evaluation of binding sperm-exogenous DNA in ejaculate and epididimary porcine spermatozoa

    Directory of Open Access Journals (Sweden)

    FA García-Vázquez

    2009-01-01

    , agriculture and biomedicine. Sperm mediated gene transfer (SMGT is an interesting tool for animal transgenesis consisting on the intrinsic ability of the spermatic cells to bind and internalize exogenous DNA and allow their transfer into oocytes after fertilization, to become part of the genome of the new embryo. The seminal plasma plays an important role acting as a natural barrier and protecting the spermatozoa from exogenous molecules that could compromise their integrity. So, the epididymal spermatozoa are a valuable model to explore the possible effect of seminal plasma components. The objective of this study was to evaluate the interaction among sperm and transgene using Epididymal (EP vs Ejaculated (EJ sperm without seminal plasma. Linealized plasmid (GFP (5.7 kb labelled with fluorescein was added (1x10(8 spermatozoa/ml + 5µg DNA/ml and incubated at 16 ºC. DNA binding and viability were measured simultaneously by flow cytometry during 120 minutes of incubation. The results showed that EP spermatozoa present a similar DNA-binding ability (12.63 ± 1.23% vs 10.94 ± 1.05%, P = 0.31 and viability throughout the incubation (14.64 ± 0.94% vs 13.42 ± 0.61%, P = 0.23 than EJ. We only detected a greater percentage of living DNA-bound spermatozoa in EP compared to EJ (2.10 ± 0.33% vs 1.05 ± 0.14%, P < 0.01. The DNA-binding was associated mainly to dead sperm or with low viability in both groups (EP: 10.53 ± 1.01% vs EJ: 9.89 ± 0.97%, P = 0.98. These results open new ways to explore and use epididymal spermatozoa in diverse applications (artificial insemination, in vitro fertilization and ICSI associated with SMGT method.

  19. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  20. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins

    International Nuclear Information System (INIS)

    Introduction: To determine the availability of nicotinic acetylcholine receptors in different human brain regions using the positron emission tomography (PET) radioligand 2-[18F]fluoro-A-85380 (2-[18F]FA) and invasive approaches for quantification, it is important to correct the arterial input function as well for plasma protein binding (PPB) of the radioligand as for radiolabeled metabolites accumulating in blood. This study deals with some aspects of PPB of 2-[18F]FA. Methods: Patients with different neurological disorders (n=72), such as Parkinson's disease, Alzheimer's disease and multiple sclerosis, and a group of healthy volunteers (n=15) subjected for PET imaging were analyzed for their PPB level of 2-[18F]FA using ultrafiltration. Protein gel electrophoresis of plasma samples was performed to identify the binding protein of 2-[18F]FA. The dependency of PPB on time and on free ligand concentration was analyzed to obtain the binding parameters B max and K d. Results: Albumin was identified to be the binding protein of 2-[18F]FA. PPB of 2-[18F]FA was low at 17±4% and did not show significant differences between the groups of patients. Corresponding to this, a narrow range of plasma albumin of 0.62±0.05 mM was observed. B max was determined as twice the albumin concentration, which indicates two binding sites for 2-[18F]FA on the protein. No time dependence of the PPB could be observed. By relating PPB to B max, an average K d value of 6.0±1.5 mM was obtained. Conclusion: This study shows the dependency of PPB of 2-[18F]FA on human albumin plasma concentration. An equation utilizing B max and K d to easily estimate PPB is presented

  1. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10-phenanthroline family of ligands: DNA binding and photocleavage studies

    Indian Academy of Sciences (India)

    S Arounaguiri; D Easwaramoorthy; A Ashokkumar; Aparna Dattagupta; Bhaskar G Maiya

    2000-02-01

    DNA binding and photocleavage characteristics of a series of mixedligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) and = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants () have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz > phen < phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2 (dppz)]3+ have also been reported.

  2. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    Science.gov (United States)

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively. PMID:27295415

  3. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H. (MSU); (Rigaku)

    2009-09-02

    The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the {alpha} 2 helix at its entrance. This chain of interactions acts as a 'pillar' that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the {alpha}2 helix adopting an altered conformation compared with wild-type CRABPII.

  4. Bile acid derivatives as ligands of the farnesoid x receptor: molecular determinants for bile acid binding and receptor modulation.

    Science.gov (United States)

    Gioiello, Antimo; Cerra, Bruno; Mostarda, Serena; Guercini, Chiara; Pellicciari, Roberto; Macchiarulo, Antonio

    2014-01-01

    Bile acids are a peculiar class of steroidal compounds that never cease to amaze. From being simple detergents with a primary role in aiding the absorption of fats and fat-soluble vitamins, bile acids are now widely considered as crucial hormones endowed with genomic and non-genomic functions that are mediated by their interaction with several proteins including the nuclear receptor Farnesoid X Receptor (FXR). Taking advantages of the peculiar properties of bile acids in interacting with the FXR receptor, several biliary derivatives have been synthesized and tested as FXR ligands. The availability of these compounds has contributed to characterize the receptor from a structural, patho-physiological and therapeutic standpoint. Among these, obeticholic acid is a first-in-class FXR agonist that is demonstrating hepatoprotective effects upon FXR activation in patients with liver diseases such as primary biliary cirrhosis and nonalcoholic steatohepatitis. This review provides an historical overview of the rationale behind the discovery of obeticholic acid and chemical tools generated to depict the molecular features and bio-pharmacological relevance of the FXR receptor, as well as to summarize structure-activity relationships of bile acid-based FXR ligands so far reported. PMID:25388535

  5. Mapping the Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays

    OpenAIRE

    Rusconi, B.; Maranhao, A.C.; Fuhrer, J P; Krotee, P.; Choi, S. H.; Grun, F; Thireou, T; Dimitratos, S.D.; Woods, D F; Marinotti, O.; Walter, M.F.; Eliopoulos, E.

    2012-01-01

    The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues c...

  6. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    Science.gov (United States)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  7. Hetero-metallic trigonal cage-shaped dimeric Ni3K core complex of L-proline ligand: Synthesis, structural, electrochemical and DNA binding and cleavage activities

    Indian Academy of Sciences (India)

    S Nagasubramanian; A Jayamani; V Thamilarasan; G Aravindan; V Ganesan; N Sengottuvelan

    2014-05-01

    Hetero-metallic trigonal cage-shaped dimeric Ni3K core complex of L-proline ligand has been synthesized and characterized. Single crystal X-ray diffraction analysis showed that the hetero-metallic Ni(II)-K(I) complex has a dimeric structure with nine coordinated potassium atoms and six coordinated nickel atoms. The cyclic voltammograms of the complex exhibited two successive quasireversible reduction waves at ($E^{1}_{pc} = −1.02$ V and $E^{2}_{pc} = −1.33$ V) and two successive irreversible oxidation waves ($E^{1}_{pa} = 0.95$ V and $E^{2}_{pa} = 1.45$ V) versus Ag/AgCl in DMF solution. Interaction of the complex with calf-thymus DNA (CT DNA) has been studied using spectroscopic techniques. The complex is an avid DNA binder with a binding constant of 3.6 × 108 M-1. The complex showed efficient oxidative cleavage of supercoiled pBR322 DNA in the presence of the reducing agent hydrogen peroxide involving hydroxyl radical (°OH) species. As evidenced from the control experiment, DNA cleavage in the presence of °OH radical was inhibited by quenchers, viz. DMSO and KI. The complex showed in vitro antimicrobial activity against four bacteria and two fungi and the activity is greater than that of the free ligand.

  8. Exogenous lipid pneumonia

    International Nuclear Information System (INIS)

    Exogenous lipid pneumonia (ELP) is caused by the aspiration of animal, vegetal or, more often, mineral oils. Even though it may also be acute, ELP is most frequently a chronic disease, affecting people with predisposing factors, such as neuromuscular disorders, structural abnormalities and so on; very often exogenous lipid pneumonia is found in tracheotomized patients. The pathology of lipid pneumonia is a chronic inflammatory process evolving in foreign-body-like reaction, and eventually in ''end-stage lung'' condition. Clinically, most patients are asymptomatic; few cases only present with cough, dyspnea and chest pain. Eight cases of ELP, studied over the past 3 years, are described in this paper. All the patients were examined by chest radiographs and standard tomograms; 3 patients underwent CT. X-ray features were mono/bilateral consolidation of the lower zones, with air bronchogram and variable reduction in volume. CT density was not specific for fat tissue. In all cases the diagnosis was confirmed at biopsy. In 5 patients, followed for at least one year, clinical-radiological features showed no change. Thus, complications of ELP (especially malignant evolution) could be excluded. The authors conclude that lipid pneumonia must be considered in differential diagnosis of patients with history of usage of oils and compatible X-ray findings. The usefulness of an accurate follow-up is stressed

  9. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    International Nuclear Information System (INIS)

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane

  10. Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand

    OpenAIRE

    Williams-Carrier, Rosalind; Kroeger, Tiffany; Barkan, Alice

    2008-01-01

    Pentatricopeptide repeat (PPR) proteins are defined by degenerate 35-amino acid repeats that are related to the tetratricopeptide repeat (TPR). Most characterized PPR proteins mediate specific post-transcriptional steps in gene expression in mitochondria or chloroplasts. However, little is known about the structure of PPR proteins or the biochemical mechanisms through which they act. Here we establish features of PPR protein structure and nucleic acid binding activity through in vitro experim...

  11. Ligand Selectivity of D2 Dopamine Receptors Is Modulated by Changes in Local Dynamics Produced by Sodium Binding

    OpenAIRE

    Ericksen, Spencer S.; Cummings, David F.; Weinstein, Harel; Schetz, John A.

    2008-01-01

    We have uncovered a significant allosteric response of the D2 dopamine receptor to physiologically relevant concentrations of sodium (140 mM), characterized by a sodium-enhanced binding affinity for a D4-selective class of agonists and antagonists. This enhancement is significantly more pronounced in a D2-V2.61(91)F mutant and cannot be mimicked by an equivalent concentration of the sodium replacement cation N-methyl-d-glucamine. This phenomenon was explored comput...

  12. The G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIalpha to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells.

    Directory of Open Access Journals (Sweden)

    Nassima Temime-Smaali

    Full Text Available In Alternative Lengthening of Telomeres (ALT cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIalpha (Topo III is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is modulated by G-quadruplex formation. Topo III binding to G-quadruplex-forming oligonucleotides was strongly inhibited by telomestatin, a potent and specific G-quadruplex ligand. In ALT cells, telomestatin treatment resulted in the depletion of the Topo III/BLM/TRF2 complex and the disruption of APBs and led to the segregation of PML, shelterin components and Topo III. Interestingly, a DNA damage response was observed at telomeres in telomestatin-treated cells. These data indicate the importance of G-quadruplex stabilization during telomere maintenance in ALT cells. The function of TRF2/Topo III/BLM in the resolution of replication intermediates at telomeres is discussed.

  13. Synthesis, characterization and DNA-binding studies on La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide

    Science.gov (United States)

    He, Xin-Qian; Lin, Qiu-Yue; Hu, Rui-Ding; Lu, Xiao-Hong

    2007-09-01

    La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide (HL) were synthesized and characterized by elemental analyses, conductivity measurement, IR spectra and thermal analysis. The general formulas of the complexes were [Ln(HL) 3(H 2O) 2](NO 3) 3·2H 2O [Ln = La(III), Ce(III)]. The results indicated that the oxygen of carbonyl and the nitrogen of pyridyl coordinated to Ln(III), and there were also two water molecules taking part in coordination. Ln(III) and HL formed 1:3 chelate complexes and the coordination number was eight. The interaction between the complexes and DNA was studied by means of UV-vis spectra, fluorescence spectra, SERS spectra and agarose gel electrophoresis. The results showed that complexes can bind to DNA. The binding ability decreased in following order: La(III) complex, Ce(III) complex, and HL. The interaction modes between DNA and the three compounds were found to be mainly intercalative.

  14. Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8-sulphonate which suppresses self-association of the hydrophobic apo-protein

    DEFF Research Database (Denmark)

    Holm, Jan; Lawaetz, Anders Juul; Hansen, Steen I.

    2012-01-01

    High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible...... decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence...... decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby...

  15. Nutraceuticals as Ligands of PPARγ

    OpenAIRE

    Meera Penumetcha; Nalini Santanam

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (...

  16. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  17. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations

    Directory of Open Access Journals (Sweden)

    Gil Luiz HS

    2010-11-01

    Full Text Available Abstract Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP. The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII, which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.

  18. Synthesis of 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides and their evaluation as ligands for NMDA receptor glycine binding site.

    Science.gov (United States)

    Bluke, Zanda; Paass, Einars; Sladek, Meik; Abel, Ulrich; Kauss, Valerjans

    2016-08-01

    A series of 2-substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides were synthesized and evaluated for their affinity to the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor. The binding affinity was determined by the displacement of radioligand [(3)H]MDL-105,519 from rat cortical membrane preparations. The most attractive structures in the search for prospective NMDA receptor ligands were identified to be 2-arylcarbonylmethyl substituted 3,4-dihydro-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxides. It has been demonstrated for the first time that the replacement of NH group in the ligand by sp(3) CH2 is tolerated. This finding may pave the way for previously unexplored approaches for designing new ligands of the NMDA receptor. PMID:26114309

  19. Changes to gonadotropin-releasing hormone (GnRH) receptor extracellular loops differentially affect GnRH analog binding and activation: evidence for distinct ligand-stabilized receptor conformations.

    Science.gov (United States)

    Pfleger, Kevin D G; Pawson, Adam J; Millar, Robert P

    2008-06-01

    GnRH and its structural variants bind to GnRH receptors from different species with different affinities and specificities. By investigating chimeric receptors that combine regions of mammalian and nonmammalian GnRH receptors, a greater understanding of how different domains influence ligand binding and receptor activation can be achieved. Using human-catfish and human-chicken chimeric receptors, we demonstrate the importance of extracellular loop conformation for ligand binding and agonist potency, providing further evidence for GnRH and GnRH II stabilization of distinct active receptor conformations. We demonstrate examples of GnRH receptor gain-of-function mutations that apparently improve agonist potency independently of affinity, implicating a role for extracellular loops in stabilizing the inactive receptor conformation. We also show that entire extracellular loop substitution can overcome the detrimental effects of localized mutations, thereby demonstrating the importance of considering the conformation of entire domains when drawing conclusions from point-mutation studies. Finally, we present evidence implicating the configuration of extracellular loops 2 and 3 in combination differentiating GnRH analog binding modes. Because there are two endogenous forms of GnRH ligand but only one functional form of full-length GnRH receptor in humans, understanding how GnRH and GnRH II can elicit distinct functional effects through the same receptor is likely to provide important insights into how these ligands can have differential effects in both physiological and pathological situations. PMID:18356273

  20. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    Science.gov (United States)

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  1. In vivo binding in rat brain and radiopharmaceutical preparation of radioiodinated HEAT, an alpha-1 adrenoceptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Couch, M.W.; Greer, D.M.; Thonoor, C.M.; Williams, C.M.

    1988-03-01

    In vivo binding of (/sup 125/I)-2-(beta-(3-iodo-4-hydroxyphenyl)ethylaminomethyl tetralone) ((/sup 125/I)HEAT) to alpha-1 adrenoceptors in the rat brain was determined over 4 hr. Uptake in the thalamus and frontal cortex was approximately 0.1% injected dose per gram tissue. Thalamus/cerebellum ratios of 10:1 and frontal cortex/cerebellum ratios of 5:1 were found at 4 hr. Pretreatment with prazosin, an alpha-1 antagonist, completely inhibited the accumulation of (/sup 125/I)HEAT in thalamus and frontal cortex; yet uptake of radioactivity was not significantly affected by antagonists and agonists for other receptors classes (propranolol, beta-1; apomorphine, D-1; spiperone, D-2). Binding of (/sup 125/I)HEAT is saturable. At 4 hr, (/sup 125/I)HEAT or (/sup 123/I)HEAT was shown to be the only radioactive material in rat thalamus and frontal cortex. Iodine-123 HEAT and (/sup 125/I)HEAT were synthesized as radiopharmaceuticals within 3 hr in 99% radiochemical purity.

  2. The antiproliferative and proapoptotic effects of cladosporols A and B are related to their different binding mode as PPARγ ligands.

    Science.gov (United States)

    Zurlo, Diana; Ziccardi, Pamela; Votino, Carolina; Colangelo, Tommaso; Cerchia, Carmen; Dal Piaz, Fabrizio; Dallavalle, Sabrina; Moricca, Salvatore; Novellino, Ettore; Lavecchia, Antonio; Colantuoni, Vittorio; Lupo, Angelo

    2016-05-15

    Cladosporols are secondary metabolites from Cladosporium tenuissimum characterized for their ability to control cell proliferation. We previously showed that cladosporol A inhibits proliferation of human colon cancer cells through a PPARγ-mediated modulation of gene expression. In this work, we investigated cladosporol B, an oxidate form of cladosporol A, and demonstrate that it is more efficient in inhibiting HT-29 cell proliferation due to a robust G0/G1-phase arrest and p21(waf1/cip1) overexpression. Cladosporol B acts as a PPARγ partial agonist with lower affinity and reduced transactivation potential in transient transfections as compared to the full agonists cladosporol A and rosiglitazone. Site-specific PPARγ mutants and surface plasmon resonance (SPR) experiments confirm these conclusions. Cladosporol B in addition displays a sustained proapoptotic activity also validated by p21(waf1/cip1) expression analysis in the presence of the selective PPARγ inhibitor GW9662. In the DMSO/H2O system, cladosporols A and B are unstable and convert to the ring-opened compounds 2A and 2B. Finally, docking experiments provide the structural basis for full and partial PPARγ agonism of 2A and 2B, respectively. In summary, we report here, for the first time, the structural characteristics of the binding of cladosporols, two natural molecules, to PPARγ. The binding of compound 2B is endowed with a lower transactivation potential, higher antiproliferative and proapoptotic activity than the two full agonists as compound 2A and rosiglitazone (RGZ). PMID:26995279

  3. Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2'-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity

    Indian Academy of Sciences (India)

    Perumal Gurumoorthy; Jayaram Ravichandran; Aziz Kalilur Rahiman

    2014-05-01

    A new mixed-ligand binuclear copper(II) complex [Cu(MS)(bpy)]2.(ClO4)2, built of 5-methylsalicylaldehyde and 2,2'-bipyridyl has been synthesized and characterized by using elemental analysis, IR and UV-Vis spectroscopy. Crystal structure of the complex shows that copper(II) ion lies in a square pyramidal coordination environment. The structure consists of two symmetrical half units in which the copper(II) ion of one half unit connected with the phenolate oxygen atom of other half unit along with one perchlorate anion in the crystal lattice as free molecule. Presence of uncoordinated perchlorate anion was also confirmed by IR spectroscopy. Absorption spectroscopy exhibits d-d transition at 628 nm, which further supports the square pyramidal geometry around the copper(II) ions. EPR spectrum of the copper(II) complex at room temperature shows a broad signal without any splitting pattern at ∥ = 2.26, ⊥ = 2.03 and the magnetic moment (eff = 1.31 BM) obtained at room temperature indicate an antiferromagnetic interaction between the two copper(II) ions through phenoxide-bridge. Binding studies reveal that the complex possesses good binding propensity (b = 5.2 ± 1.7 × 104 M-1) and bind to nitrogenous bases of DNA through intercalation. Nuclease activity of the complex with pBR322 DNA shows that the effect of hydrolytic cleavage is dose-dependent and the oxidative cleavage indicates the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species.

  4. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Directory of Open Access Journals (Sweden)

    Julien Lang

    2014-10-01

    Full Text Available By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour, a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D of 0.6 µM greater than that for nopaline (KD of 3.7 µM. Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to

  5. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Science.gov (United States)

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  6. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction

    OpenAIRE

    Monastyrskaia, Katherine; Lundstrom, Kenneth; Plahl, Doris; Acuna, Gonzalo; Schweitzer, Christophe; Malherbe, Pari; Mutel, Vincent

    1999-01-01

    The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5′[γ-35S]-thiotriphosphate [γ-35S]-GTP binding assay.Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters KD and Bmax values of 150 nM and 9.3 pmoles mg−1 protein, respectively. Th...

  7. Probing the impact of ligand binding on the acyl-homoserine lactone-hindered transcription factor EsaR of Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Schu, Daniel J; Ramachandran, Revathy; Geissinger, Jared S; Stevens, Ann M

    2011-11-01

    The quorum-sensing regulator EsaR from Pantoea stewartii subsp. stewartii is a LuxR homologue that is inactivated by acyl-homoserine lactone (AHL). In the corn pathogen P. stewartii, production of exopolysaccharide (EPS) is repressed by EsaR at low cell densities. However, at high cell densities when high concentrations of its cognate AHL signal are present, EsaR is inactivated and derepression of EPS production occurs. Thus, EsaR responds to AHL in a manner opposite to that of most LuxR family members. Depending on the position of its binding site within target promoters, EsaR serves as either a repressor or activator in the absence rather than in the presence of its AHL ligand. The effect of AHL on LuxR homologues has been difficult to study in vitro because AHL is required for purification and stability. EsaR, however, can be purified without AHL enabling an in vitro analysis of the response of the protein to ligand. Western immunoblots and pulse-chase experiments demonstrated that EsaR is stable in vivo in the absence or presence of AHL. Limited in vitro proteolytic digestions of a biologically active His-MBP tagged version of EsaR highlighted intradomain and interdomain conformational changes that occur in the protein in response to AHL. Gel filtration chromatography of the full-length fusion protein and cross-linking of the N-terminal domain both suggest that this conformational change does not impact the multimeric state of the protein. These findings provide greater insight into the diverse mechanisms for AHL responsiveness found within the LuxR family. PMID:21949066

  8. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  9. Daily to decadal variability of size-fractionated iron and iron-binding ligands at the Hawaii Ocean Time-series Station ALOHA

    Science.gov (United States)

    Fitzsimmons, Jessica N.; Hayes, Christopher T.; Al-Subiai, Sherain N.; Zhang, Ruifeng; Morton, Peter L.; Weisend, Rachel E.; Ascani, François; Boyle, Edward A.

    2015-12-01

    Time-series studies of trace metals in the ocean are rare, but they are critical for evaluating both the residence times of the metals themselves and also the timescales over which the marine ecosystems that depend on micronutrient metals can change. In this paper we present two new time-series of the essential micronutrient iron (Fe) taken from the Hawaii Ocean Time-series (HOT) site, Station ALOHA (22.75°N, 158°W): a set of intermittent monthly surface samples taken from ∼50 dates between 1999 and 2011 by the HOT program, and a daily-resolved sample set from summer 2012 and 2013 containing ∼80 surface samples and 7 profiles to 1500 m depth. The long-term monthly climatology of surface total dissolvable Fe (TDFe) concentrations covaried with the seasonal cycle of continental Asian dust deposition at Hawaii, indicating dust as the major source of TDFe to ALOHA surface waters and a short residence time for TDFe (order ∼ months). During the daily summer time-series, surface Fe was most variable in the larger size fractions (>0.4 μm particulate and 0.02-0.4 μm colloidal) and nearly constant in the smallest (ALOHA. The surface Fe-binding ligand daily time-series showed that excess ligand concentrations lagged dFe by 1-2 days, revealing a short residence time of ligands in the central North Pacific likely due to photochemical degradation. In the ferricline, the dissolved Fe (dFe) linear relationship with apparent oxygen utilization was used to establish a water column dFe:C ratio of 3.12 ± 0.11 μmol/mol and a pre-formed dFe concentration of 0.067 ± 0.009 nmol/kg that defines the central/mode waters of Station ALOHA. Finally, in deep waters near 1200 m, where minimal temporal variation in dFe might be expected, dFe instead ranged over a factor of two in concentration (0.72-1.44 nmol/kg), driven by the intermittent passing of the Loihi hydrothermal plume through Station ALOHA. This study not only provides the largest number of Fe measurements made at a single

  10. Synthesis, characterization, and binding properties towards CT-DNA and lipoxygenase of mixed-ligand silver(I) complexes with 2-mercaptothiazole and its derivatives and triphenylphosphine.

    Science.gov (United States)

    Kyros, L; Banti, C N; Kourkoumelis, N; Kubicki, M; Sainis, I; Hadjikakou, S K

    2014-03-01

    Mixed-ligand silver(I) complexes of formulae [AgCl(TPP)2(MTZD)] (1), {[AgCl(TPP)2(MBZT)]·(MBZT)·2(toluene)} (2), and [AgCl(TPP)2(CMBZT)] (3) were obtained by refluxing toluene solutions of silver(I) chloride with triphenylphosphine (TPP) and the appropriate heterocyclic thioamides 2-mercaptothiazolidine (MTZD), 2-mercaptobenzothiazole (MBZT), and 5-chloro-2-mercaptobenzothiazole (CMBZT). The complexes were characterized by the melting point, vibrational spectroscopy (Fourier transform mid-IR), (1)H-NMR spectroscopy, UV-vis spectroscopy, and X-ray crystallography. DNA binding tests indicate the ability of complexes 1-3 to modify the activity of cells. The binding constants of 1-3 towards calf-thymus DNA (CT-DNA) [(3.5 ± 8.5) × 10(4) M(-1) for 1, (10.0 ± 0.0) × 10(4) M(-1) for 2, and (46.4 ± 7.0) × 10(4) M(-1) for 3] indicate strong interaction of 3. Changes in the fluorescence of ethidium bromide in the presence of DNA suggest intercalation into or electrostatic interactions with DNA. The corresponding apparent binding constants (K app) towards CT-DNA calculated through fluorescence spectra are (3.5 ± 0.7) × 10(4) M(-1) for 1, (10.0 ± 0.0) × 10(4) M(-1) for 2, and (46.4 ± 7.0) × 10(4) M(-1) for 3. Docking studies on DNA complexes confirm the binding of 1 and 2 in the major groove of CT-DNA and of 3 in the minor groove. Moreover, the influence of 1-3 on the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase was studied kinetically and theoretically. The antibacterial effect of 1-3 against the bacterial species Pseudomonas aeruginosa and Escherichia coli was evaluated. Complex 1 exhibits the strongest activity. PMID:24445998

  11. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    Science.gov (United States)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  12. Insights into Regulated Ligand Binding Sites from the Structure of ZO-1 Src Homology 3-Guanylate Kinase Module

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Ming F.; Fanning, Alan S.; Su, Ying; Anderson, James M.; Lavie, Arnon (UNC); (UIC)

    2010-11-09

    Tight junctions are dynamic components of epithelial and endothelial cells that regulate the paracellular transport of ions, solutes, and immune cells. The assembly and permeability of these junctions is dependent on the zonula occludens (ZO) proteins, members of the membrane-associated guanylate kinase homolog (MAGUK) protein family, which are characterized by a core Src homology 3 (SH3)-GUK module that coordinates multiple protein-protein interactions. The structure of the ZO-1 SH3-GUK domain confirms that the interdependent folding of the SH3 and GUK domains is a conserved feature of MAGUKs, but differences in the orientation of the GUK domains in three different MAGUKs reveal interdomain flexibility of the core unit. Using pull-down assays, we show that an effector loop, the U6 region in ZO-1, forms a novel intramolecular interaction with the core module. This interaction is divalent cation-dependent and overlaps with the binding site for the regulatory molecule calmodulin on the GUK domain. These findings provide insight into the previously observed ability of the U6 region to regulate TJ assembly in vivo and the structural basis for the complex protein interactions of the MAGUK family.

  13. In silico identification and pharmacological evaluation of novel endocrine disrupting chemicals that act via the ligand-binding domain of the estrogen receptor α.

    Science.gov (United States)

    McRobb, Fiona M; Kufareva, Irina; Abagyan, Ruben

    2014-09-01

    Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM-3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. PMID:24928891

  14. In Silico Identification and Pharmacological Evaluation of Novel Endocrine Disrupting Chemicals That Act via the Ligand-Binding Domain of the Estrogen Receptor α

    Science.gov (United States)

    Kufareva, Irina; Abagyan, Ruben

    2014-01-01

    Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM–3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption. PMID:24928891

  15. [11C]Raclopride binding was reduced in vivo by sigma1 receptor ligand SA4503 in the mouse brain, while [11C]SA4503 binding was not by raclopride

    International Nuclear Information System (INIS)

    [11C]Raclopride is widely used as a representative dopamine D2-like receptor ligand in positron emission tomography (PET) studies, and [11C]1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride ([11C]SA4503) is a recently developed selective ligand for mapping sigma1 receptors in the brain. The striatal uptake of [11C]raclopride in mice was reduced by co-injection of an excess amount of SA4503, in spite of the fact that raclopride had no effect on the brain uptake of [11C]SA4503 as shown in a previous study. The blocking effect of SA4503 on the striatal uptake of [11C]raclopride was dose-dependent, but disappeared by 1 h or 6 h after intraperitoneal injection of SA4503. The brain uptake of [11C]SA4503 was not affected by a dopamine transporter inhibitor GBR 12909, nor was [11C]β-CIT-FP inhibited by SA4503. The IC50 values of raclopride for sigma1 and sigma2 receptor subtypes measured in vitro were 11800 nM and 4950 nM, respectively, suggesting that the affinity was too low for [11C]raclopride to bind in vivo to sigma receptors. On the other hand, the IC50 value of SA4503 for dopamine D2 receptors was 470 nM, that is approximate 1/25 of the affinity of raclopride for the dopamine D2 receptors. Therefore, possible explanations for the partial blocking effects of SA4503 on the striatal uptake of [11C]raclopride are: (1) an excess amount of SA4503 may reduce the [11C]raclopride uptake due to its low affinity for dopamine D2 receptors, or (2) SA4503 may enhance endogenous dopamine release, which results in the competitive inhibition of the [11C]raclopride uptake. These findings support that both [11C]raclopride and [11C]SA4503 are selective in vivo ligands for dopamine D2-like receptors and sigma1 receptors, respectively, in spite of the partial blocking effect of SA4503 on the striatal uptake of [11C]raclopride

  16. Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    International Nuclear Information System (INIS)

    Equilibrium binding studies with the sigma receptor ligand [3H]1,3-di(2-tolyl)guanidine ([3H]DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. [Life Sci. 45:1721-1732 (1989)]. Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that [3H]DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of [3H]DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of [3H]DTG from site 2, suggesting an association of this binding site with calcium channels

  17. Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of {alpha}1 {beta}2 {gamma}2 GABAA receptors

    DEFF Research Database (Denmark)

    Wang, Qian; Pless, Stephan Alexander; Lynch, Joseph W

    2010-01-01

    from ligand-induced fluorescence changes. Previous attempts to define the roles of loops C and F using this technique have focused on homomeric Cys-loop receptors. However, the problem with studying homomeric receptors is that it is difficult to eliminate the possibility of bound ligands interacting...

  18. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    OpenAIRE

    Fomina Alla F; Dadsetan Sepehr; Chen Huaiyang; Gong Qizhi

    2008-01-01

    Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic...

  19. Exogenous ochronosis masquerading refractory melasma

    OpenAIRE

    Swati Sharma; Raghavendra Rao

    2014-01-01

    Exogenous ochronosis is an infrequent dermatosis characterized by dark blue hyperpigmentation. It may be caused largely by hydroquinone, a fenolic compound which is used in the treatment of melasma and other skin hyperpigmentation. The exact etiopathology is still not understood and the results of various treatments offered are unsatisfactory. We present a case of exogenous ochronosis which resembled melasma but clinicopathologic evaluation led to the correct diagnosis. We also emphasize the ...

  20. Utilization of exogenous siderophores and natural catechols by Listeria monocytogenes.

    OpenAIRE

    N. Simon; Coulanges, V; ANDRE, P; Vidon, D J

    1995-01-01

    Listeria monocytogenes does not produce siderophores for iron acquisition. We demonstrate that a number of microbial siderophores and natural iron-binding compounds are able to promote the growth of iron-starved L. monocytogenes. We suggest that the ability of L. monocytogenes to use a variety of exogenous siderophores and natural catechols accounts for its ubiquitous character.