WorldWideScience

Sample records for binding domain lbd

  1. Coiled-coil motif in LBD16 and LBD18 transcription factors are critical for dimerization and biological function in arabidopsis.

    Science.gov (United States)

    Pandey, Shashank K; Kim, Jungmook

    2018-01-02

    The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family members encode a class of plant-specific transcription factors that play important roles in many different aspects of plant growth and development. The LBD proteins contain a conserved LOB domain harboring a Leu zipper-like coiled-coil motif, which has been predicted to mediate protein-protein interactions among the LBD family members. Dimerization of transcription factors is crucial for the modulation of their DNA-binding affinity, specificity, and diversity, contributing to the transcriptional regulation of distinct cellular and biological responses. Our various molecular and biochemical experiments with genetic approaches on LBD16 and LBD18, which are known to control lateral root development in Arabidopsis, demonstrated that the conserved Leu or Val residues in the coiled-coil motifs of these transcription factors are critical for their dimerization as well as the transcriptional regulation to display their biological functions during lateral root formation. We further showed that beside the coiled-coil motif, the carboxyl-terminal region in LBD18 acts as an additional dimerization domain. These findings provide a molecular framework for the homo- and hetero-dimerization of the LBD family proteins for displaying their distinct and diverse biological functions in plants.

  2. Expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD

    Directory of Open Access Journals (Sweden)

    Fang ZHANG

    2011-01-01

    Full Text Available Objective To construct the fusion gene expression vector of penetrating peptide(PDT and the glucocorticoid receptor lack of ligand binding domain(GR-ΔLBD,and evaluate the prokaryotic expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD.Methods The target gene fragment GR-ΔLBD was obtained from plasmid pEGFP-GR-ΔLBD by double digestion,and sub-cloned into the prokaryotic expression vector pGEX-PDT to construct the fusion gene expression vector pGEX-PDT/GR-ΔLBD.PDT/GR-ΔLBD fusion protein was obtained after the expression vector was transformed into E.coli,followed by sequential induction with IPTG,treatment with glutathione-agarose resin and elution with glutathione.SDS-PAGE was performed to determine the expression of PDT/GR-ΔLBD fusion protein,and it which was diluted into a final concentration of 0,500 and 1000nmol/L,labeled with fluorescein FITC and co-cultivated with TC-1 cells for 2 hours,and the penetrativity was observed by fluorescence microscopy.Results The successfully constructed prokaryotic expression vector pPDT/GR-ΔLBD had the capacity of expressing protein,and it was 78.6kD in molecular weight,which was consistent with the theoretical value(80kD of the fusion protein PDT/GR-ΔLBD.PDT-GR-ΔLBD,penetrating the nuclear membrane in a concentration-dependent manner,was concentrated within nuclei.Conclusion PDT/GR-ΔLBD fusion protein,with good solubility and cell penetrativity,paves the way for further research on its anti-inflammatory effects.

  3. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  4. Crystallization and crystallographic analysis of the ligand-binding domain of the Pseudomonas putida chemoreceptor McpS in complex with malate and succinate

    International Nuclear Information System (INIS)

    Gavira, J. A.; Lacal, J.; Ramos, J. L.; García-Ruiz, J. M.; Krell, T.; Pineda-Molina, E.

    2012-01-01

    The crystallization of the ligand-binding domain of the methyl-accepting chemotaxis protein chemoreceptor McpS (McpS-LBD) is reported. Methyl-accepting chemotaxis proteins (MCPs) are transmembrane proteins that sense changes in environmental signals, generating a chemotactic response and regulating other cellular processes. MCPs are composed of two main domains: a ligand-binding domain (LBD) and a cytosolic signalling domain (CSD). Here, the crystallization of the LBD of the chemoreceptor McpS (McpS-LBD) is reported. McpS-LBD is responsible for sensing most of the TCA-cycle intermediates in the soil bacterium Pseudomonas putida KT2440. McpS-LBD was expressed, purified and crystallized in complex with two of its natural ligands (malate and succinate). Crystals were obtained by both the counter-diffusion and the hanging-drop vapour-diffusion techniques after pre-incubation of McpS-LBD with the ligands. The crystals were isomorphous and belonged to space group C2, with two molecules per asymmetric unit. Diffraction data were collected at the ESRF synchrotron X-ray source to resolutions of 1.8 and 1.9 Å for the malate and succinate complexes, respectively

  5. Subcloning, expression, purification, and characterization of recombinant human leptin-binding domain.

    Science.gov (United States)

    Sandowski, Yael; Raver, Nina; Gussakovsky, Eugene E; Shochat, Suzan; Dym, Orly; Livnah, Oded; Rubinstein, Menachem; Krishna, Radha; Gertler, Arieh

    2002-11-29

    A subdomain of the human leptin receptor encoding part of the extracellular domain (amino acids 428 to 635) was subcloned, expressed in a prokaryotic host, and purified to homogeneity, as evidenced by SDS-PAGE, with over 95% monomeric protein. The purified leptin-binding domain (LBD) exhibited the predicted beta structure, was capable of binding human, ovine, and chicken leptins, and formed a stable 1:1 complex with all mammalian leptins. The binding kinetics, assayed by surface plasmon resonance methodology, showed respective k(on) and k(off) values (mean +/- S.E.) of 1.20 +/- 0.23 x 10(-5) mol(-1) s(-1) and 1.85 +/- 0.30 x 10(-3) s(-1) and a K(d) value of 1.54 x 10(-8) m. Similar results were achieved with conventional binding experiments. LBD blocked leptin-induced, but not interleukin-3-induced, proliferation of BAF/3 cells stably transfected with the long form of human leptin receptor. The modeled LBD structure and the known three-dimensional structure of human leptin were used to construct a model of 1:1 LBD.human leptin complex. Two main residues, Phe-500, located in loop L3, and Tyr-441, located in L1, are suggested to contribute to leptin binding.

  6. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.

    Science.gov (United States)

    Kim, Jungmook; Lee, Han Woo

    2013-02-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPONSE FACTORS (ARFs), transcriptional regulators of auxin-regulated genes and Aux/IAA, negative regulators of ARFs, regulate lateral root formation. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a unique class of transcription factors harbouring a conserved plant-specific lateral organ boundary domain and plays a role in lateral organ development of plants including lateral root formation. In our previous study, we showed that LBD18 stimulates lateral root formation in combination with LBD16 downstream of ARF7 and ARF19 during the auxin response. We have recently demonstrated that LBD18 activates expression of EXP14, a gene encoding the cell-wall loosening factor, by directly binding to the EXP14 promoter to promote lateral root emergence. Here we present the molecular function of LBD18 and its gene regulatory network during lateral root formation.

  7. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  8. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  9. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2017-03-01

    Full Text Available Plant-specific ( genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L. Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II. The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11% of them were detected in segmental duplicated regions. Furthermore, the exon–intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L. Heynh resulted in increases in lateral root (LR number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA, abscisic acid (ABA, and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.

  10. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  11. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  12. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  13. Specific ligand binding domain residues confer low dioxin responsiveness to AHR1β of Xenopus laevis.

    Science.gov (United States)

    Odio, Camila; Holzman, Sarah A; Denison, Michael S; Fraccalvieri, Domenico; Bonati, Laura; Franks, Diana G; Hahn, Mark E; Powell, Wade H

    2013-03-12

    The aryl hydrocarbon receptor (AHR) is a Per-ARNT-Sim (PAS) family protein that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in vertebrates. Frogs are remarkably insensitive to TCDD, and AHRs from Xenopus laevis bind TCDD with low affinity. We sought to identify structural features of X. laevis AHR1β associated with low TCDD sensitivity. Substitution of the entire ligand binding domain (LBD) with the corresponding sequence from mouse AHR(b-1) dramatically increased TCDD responsiveness in transactivation assays. To identify the amino acid residues responsible, we constructed a comparative model of the AHR1β LBD using homologous domains of PAS proteins HIF2α and ARNT. The model revealed an internal cavity with dimensions similar to those of the putative binding cavity of mouse AHR(b-1), suggesting the importance of side chain interactions over cavity size. Of residues with side chains clearly pointing into the cavity, only two differed from the mouse sequence. When A354, located within a conserved β-strand, was changed to serine, the corresponding mouse residue, the EC50 for TCDD decreased more than 15-fold. When N325 was changed to serine, the EC50 decreased 3-fold. When the mutations were combined, the EC50 decreased from 18.6 to 0.8 nM, the value nearly matching the TCDD sensitivity of mouse AHR. Velocity sedimentation analysis confirmed that mutant frog AHRs exhibited correspondingly increased levels of TCDD binding. We also assayed mutant AHRs for responsiveness to a candidate endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ). Mutations that increased sensitivity to TCDD also increased sensitivity to FICZ. This comparative study represents a novel approach to discerning fundamental information about the structure of AHR and its interactions with biologically important agonists.

  14. Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2007-02-01

    Full Text Available Abstract Background Nuclear receptors (NRs are important transcriptional modulators in metazoans which regulate transcription through binding to the promoter region of their target gene by the DNA binding domain (DBD and activation or repression of mRNA synthesis through co-regulators bound to the ligand binding domain (LBD. NRs typically have a single DBD with a LBD. Results Three nuclear receptors named 2DBD-NRs, were identified from the flatworm Schistosoma mansoni that each possess a novel set of two DBDs in tandem with a LBD. They represent a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. The 2DBD-NRs form a new subfamily of NRs, VII. By database mining, 2DBD-NR genes from other flatworm species (Schmidtea mediterranea and Dugesia japonica, from Mollusks (Lottia gigantean and from arthropods (Daphnia pulex were also identified. All 2DBD-NRs possess a P-box sequence of CEACKK in the first DBD, which is unique to 2DBD-NRs, and a P-box sequence of CEGCKG in the second DBD. Phylogenetic analyses of both DBD and ligand binding domain sequences showed that 2DBD-NR genes originate from a common two DBD-containing ancestor gene. A single 2DBD-NR orthologue was found in Arthropoda, Platyhelminths and Mollusca. Subsequent 2DBD-NR gene evolution in Mollusks and Platyhelminths involved gene duplication. Chromosome localization of S. mansoni 2DBD-NR genes by Fluorescent in situ hybridization (FISH suggests that 2DBD-NR genes duplicated on different chromosomes in the Platyhelminths. Dimerization of Sm2DBDα indicates that 2DBD-NRs may act as homodimers, suggesting either that two repeats of a half-site are necessary for each DBD of 2DBD-NRs to bind to its target gene, or that each 2DBD-NR can recognize multiple sites. Conclusion 2DBD-NRs share a common ancestor gene which possessed an extra DBD that likely resulted from a recombination event. After the split of the Arthropods, Mollusks and Platyhelminths, 2DBD-NR underwent a recent duplication in a

  15. Identification of pseudomurein cell wall binding domains.

    Science.gov (United States)

    Steenbakkers, Peter J M; Geerts, Wim J; Ayman-Oz, Nilgün A; Keltjens, Jan T

    2006-12-01

    Methanothermobacter thermautotrophicus is a methanogenic Gram-positive microorganism with a cell wall consisting of pseudomurein. Currently, no information is available on extracellular pseudomurein biology and so far only two prophage pseudomurein autolysins, PeiW and PeiP, have been reported. In this paper we show that PeiW and PeiP contain two different N-terminal pseudomurein cell wall binding domains. This finding was used to identify a novel domain, PB007923, on the M. thermautotrophicus genome present in 10 predicted open reading frames. Three homologues were identified in the Methanosphaera stadtmanae genome. Binding studies of fusion constructs of three separate PB007923 domains to green fluorescent protein revealed that it also constituted a cell wall binding domain. Both prophage domains and the PB007923 domain bound to the cell walls of Methanothermobacter species and fluorescence microscopy showed a preference for the septal region. Domain specificities were revealed by binding studies with other pseudomurein-containing archaea. Localized binding was observed for M. stadtmanae and Methanobrevibacter species, while others stained evenly. The identification of the first pseudomurein cell wall binding domains reveals the dynamics of the pseudomurein cell wall and provides marker proteins to study the extracellular pseudomurein biology of M. thermautotrophicus and of other pseudomurein-containing archaea.

  16. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna

    2014-01-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... crystallized as a mixed dimer with L-Glu present in one subunit while neither L-Asp nor L-Glu were found in the other subunit. Thus, residual L-Glu is still present from the expression. On the other hand, only L-Asp was found at the binding site when using 50 mM or 250 mM L-Asp for crystallization. The binding...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  17. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  18. Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain ...

    Indian Academy of Sciences (India)

    2014-04-23

    Apr 23, 2014 ... finger-like-domain transcription factor family, and regulate diverse biological processes in plants. However, little is ... The expression profiles of the maize LBD genes under normal growth conditions were analysed by microarray data and. qRT-PCR. ... contain a distinct type of DNA-binding domain and tran-.

  19. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric

    2014-01-01

    ,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven......, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies...

  20. A large-scale expression strategy for multimeric extracellular protein complexes using Drosophila S2 cells and its application to the recombinant expression of heterodimeric ligand-binding domains of taste receptor.

    Science.gov (United States)

    Yamashita, Atsuko; Nango, Eriko; Ashikawa, Yuji

    2017-11-01

    Many of the extracellular proteins or extracellular domains of plasma membrane proteins exist or function as homo- or heteromeric multimer protein complexes. Successful recombinant production of such proteins is often achieved by co-expression of the components using eukaryotic cells via the secretory pathway. Here we report a strategy addressing large-scale expression of hetero-multimeric extracellular domains of plasma membrane proteins and its application to the extracellular domains of a taste receptor. The target receptor consists of a heterodimer of T1r2 and T1r3 proteins, and their extracellular ligand binding domains (LBDs) are responsible for the perception of major taste substances. However, despite the functional importance, recombinant production of the heterodimeric proteins has so far been unsuccessful. We achieved the successful preparation of the heterodimeric LBD by use of Drosophila S2 cells, which have a high secretory capacity, and by the establishment of a stable high-expression clone producing both subunits at a comparable level. The method overcame the problems encountered in the conventional transient expression of the receptor protein in insect cells using baculovirus or vector lipofection, which failed in the proper heterodimer production because of the biased expression of T1r3LBD over T1r2LBD. The large-scale expression methodology reported here may serve as one of the considerable strategies for the preparation of multimeric extracellular protein complexes. © 2017 The Protein Society.

  1. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  2. Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain

    Science.gov (United States)

    Kakar, Mudit; Davis, James R.; Kern, Steve E.; Lim, Carol S.

    2007-01-01

    Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins. PMID:17574289

  3. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  4. Table 1. Primers used in the qRT-PCR reactions. LBD gene name ...

    Indian Academy of Sciences (India)

    AGTTCGTCAGCATCATCTTG. VvLBD10. AATCCTTGCTCATCGTCTCAG. CATCTCTTGTTGCTCTCTTGC. VvLBD18. CCCGTGTATGGATGTGCTG. TGCTGCTGCTGCTGAAAG. Vvactin. TACAATTCCATCATGAAGTGTGATG. TTAGAAGCACTTCCTGTGAACAATG. Table 3. qRT-PCR analysis data in grape. Gene. Stress.

  5. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2)

    NARCIS (Netherlands)

    C.A. Berrevoets (Cor); P. Doesburg (Paul); K. Steketee (Karine); J. Trapman (Jan); A.O. Brinkmann (Albert)

    1998-01-01

    textabstractPrevious studies in yeast and mammalian cells showed a functional interaction between the amino-terminal domain and the carboxy-terminal, ligand-binding domain (LBD) of the human androgen receptor (AR). In the present study, the AR subdomains involved in

  6. Structural and histone binding ability characterizations of human PWWP domains.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently.The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3.PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the

  7. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Science.gov (United States)

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  8. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  9. Identification of binding peptides of the ADAM15 disintegrin domain ...

    Indian Academy of Sciences (India)

    Madhsudhan

    Karkkainen et al. 2006). In this study, the recombinant ADAM15 disintegrin domain (RADD) was expressed in E. coli, and 4 specific binding peptides of RADD were obtained by positive panning and subtractive selection using a phage display 12-mer.

  10. Biosensors engineered from conditionally stable ligand-binding domains

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  11. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    Science.gov (United States)

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  12. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    LXR agonist T-0901317 to the expression culture media and to all buffers used for lysis, and purification. The recombinant LXR β-LBD(197-461) fusion protein induced or uninduced at 15 ºC in the presence or absence of a synthetic agonist. T-0901317 and separated by SDS-PAGE and stained with Coomassie Brilliant Blue ...

  13. STRUCTURE AND FUNCTION OF PALLADIN’S ACTIN BINDING DOMAIN

    Science.gov (United States)

    Beck, Moriah R.; Dixon, Richard D.S.; Goicoechea, Silvia M.; Murphy, Grant S.; Brungardt, Joseph G.; Beam, Matthew T.; Srinath, Pavan; Patel, Julie; Mohiuddin, Jahan; Otey, Carol A.; Campbell, Sharon L.

    2013-01-01

    Here we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct F-actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and crosslinking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin crosslinking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo. PMID:23806659

  14. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands.

    Science.gov (United States)

    Shiizaki, Kazuhiro; Ohsako, Seiichiroh; Kawanishi, Masanobu; Yagi, Takashi

    2014-02-01

    Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.

  15. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta.

    Directory of Open Access Journals (Sweden)

    Wenjie Sun

    Full Text Available BACKGROUND: Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA, NGF-beta could target to nerve cells and improve nerve regeneration. METHODS: Laminin-binding assay and sustained release assay of NGF-beta fused with NtA (LBD-NGF from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. FINDINGS: LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. CONCLUSION: Fused with NtA, NGF-beta could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.

  16. Mapping small molecule binding data to structural domains.

    Science.gov (United States)

    Kruger, Felix A; Rostom, Raghd; Overington, John P

    2012-01-01

    Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes

  17. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain.

    Science.gov (United States)

    Sato, Yuya; Shimono, Chisei; Li, Shaoliang; Nakano, Itsuko; Norioka, Naoko; Sugiura, Nobuo; Kimata, Koji; Yamada, Masashi; Sekiguchi, Kiyotoshi

    2013-04-24

    Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes. Copyright © 2013 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  19. Dystrophin contains multiple independent membrane-binding domains.

    Science.gov (United States)

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Extended HSR/CARD domain mediates AIRE binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  1. PTEN-PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13.

    NARCIS (Netherlands)

    Sotelo, N.S.; Schepens, J.T.G.; Valiente, M.; Hendriks, W.J.A.J.; Pulido, R.

    2015-01-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from

  2. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  3. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    Science.gov (United States)

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain.

    Science.gov (United States)

    Melcher, Rebecca L J; Neumann, Marten; Fuenzalida Werner, Juan Pablo; Gröhn, Franziska; Moerschbacher, Bruno M

    2017-03-22

    Biomass waste products from green algae have recently been given new life, as these polysaccharides have potential applications in industry, agriculture, and medicine. One such polysaccharide group called ulvans displays many different, potentially useful properties that arise from their structural versatility. Hence, performing structural analyses on ulvan is crucial for future applications. However, chemical reaction-based analysis methods cannot fully characterize ulvan and tend to alter its structure. Thus, better methods require well-characterized ulvan-degrading enzymes. Therefore, we analysed a previously sequenced ulvan lyase (Genebank TM reference number JN104480) and characterized its domains. We suggest that the enzyme consists of a shorter than previously described catalytic domain, a newly identified substrate binding domain, and a C-terminal type 9 secretion system signal peptide. By separately expressing the two domains in E. coli, we confirmed that the binding domain is ulvan specific, having higher affinity for ulvan than most lectins for their ligands (affinity constant: 10 5  M -1 ). To our knowledge, this is the first description of an ulvan-binding domain. Overall, identifying this new binding domain is one step towards engineering ulvan enzymes that can be used to characterize ulvan, e.g. through enzymatic/mass spectrometric fingerprinting analyses, and help unlock its full potential.

  5. Supplementary data: Novel mutation in ATP-binding domain of ...

    Indian Academy of Sciences (India)

    Novel mutation in ATP-binding domain of ABCD1 gene in adrenoleucodystrophy. Neeraj Kumar, Krishna K. Taneja, Atul Kumar, Deepti Nayar, Bhupesh Taneja, Satindra Aneja,. Madhuri Behari, Veena Kalra and Surendra K. Bansal. J. Genet. 89, 473–477. Figure 1. Rmsd plot of native and Arg617Ser substituted models.

  6. Identification of binding peptides of the ADAM15 disintegrin domain ...

    Indian Academy of Sciences (India)

    Madhsudhan

    ADAM15 disintegrin domain (RADD) that could inhibit melanoma cell adhesion by using Escherichia coli. Second, four specific binding peptides (peptides A, B, C, and D) were selected using a phage display 12-mer peptide library. The screening protocol involved 4 rounds of positive panning on RADD and 2 rounds of ...

  7. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2002-01-01

    ); here we present the 2.5 Å structure of the uncomplexed apo enzyme, determined from twinned crystals. A structural analysis and comparison of the two structures of the E. coli enzyme show that binding of the inhibitor is accompanied by significant domain movements of approximately 12° around a hinge...

  8. Differential binding of heavy chain variable domain 3 antigen binding fragments to protein A chromatography resins.

    Science.gov (United States)

    Bach, Julia; Lewis, Nathaniel; Maggiora, Kathy; Gillespie, Alison J; Connell-Crowley, Lisa

    2015-08-28

    This work examines the binding of 15 different VH3 IgGs and their corresponding F(ab')2 fragments to two different protein A chromatography resins: MabSelect(®), which utilizes a recombinant protein A ligand, and MabSelect SuRe(®) (SuRe), which utilizes a tetrameric Z domain ligand. The results show that VH3 F(ab')2 fragments can exhibit a variety of binding behaviours for the two resins. Contrary to previously published data, a subset of these molecules show strong interaction with the Z domain of SuRe(®). Furthermore, the results show that sequence variability of residue 57 in the VH3 heavy chain CDR2 domain correlates with binding behaviour on MabSelect(®) and SuRe(®). Site-directed mutagenesis of this residue confers gain or loss of VH3 F(ab')2 binding to these resins in 3 mAbs, demonstrating that it plays a key role in both recombinant protein A and Z domain interaction. A fourth mAb with a longer CDR2 loop was not affected by mutation of residue 57, indicating that CDR2 domain length may alter the binding interface and lead to the involvement of other residues in protein A binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reimplementing the LBD DNS Load Balancer with concurrency in GO

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Using the current configuration with 430 aliases, today’s implementation of the LBD DNS Load Balancer does one cycle through all aliases in around 240 seconds. We have a scalability limit of 300 seconds - that is the update period of most aliases. This talk will present a PoC showing how the time could be reduced to just 12 seconds.

  10. Computational design of binding proteins to EGFR domain II.

    Directory of Open Access Journals (Sweden)

    Yoon Sup Choi

    Full Text Available We developed a process to produce novel interactions between two previously unrelated proteins. This process selects protein scaffolds and designs protein interfaces that bind to a surface patch of interest on a target protein. Scaffolds with shapes complementary to the target surface patch were screened using an exhaustive computational search of the human proteome and optimized by directed evolution using phage display. This method was applied to successfully design scaffolds that bind to epidermal growth factor receptor (EGFR domain II, the interface of EGFR dimerization, with high reactivity toward the target surface patch of EGFR domain II. One potential application of these tailor-made protein interactions is the development of therapeutic agents against specific protein targets.

  11. Engineering bispecificity into a single albumin-binding domain.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-α (TNF-α was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-α as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-α and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-α was analyzed. This analysis revealed an affinity for TNF-α below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-α and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed.

  12. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  13. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  14. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B

    1999-01-01

    spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...... is cooperative, with Hill coefficients of 1.5 and 4, respectively. The apparent affinities are described by K(0.5), determined to be 65 microM and 19 microM for constructs containing two and six domains, respectively. Our data reveal a unique regulation of Menkes protein upon a change in copper(I) concentration...

  15. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  16. Phosphorylation of the chromatin binding domain of KSHV LANA.

    Directory of Open Access Journals (Sweden)

    Crystal Woodard

    Full Text Available The Kaposi sarcoma associated herpesvirus (KSHV latency associated nuclear antigen (LANA is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1-329 that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3-21. Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.

  17. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains

    NARCIS (Netherlands)

    van der Plas, R. M.; Gomes, L.; Marquart, J. A.; Vink, T.; Meijers, J. C.; de Groot, P. G.; Sixma, J. J.; Huizinga, E. G.

    2000-01-01

    Binding of von Willebrand Factor (vWF) to sites of vascular injury is the first step of hemostasis. Collagen types I and III are important binding sites for vWF. We have previously determined the three-dimensional structure of the collagen binding A3 domain of vWF (Huizinga et al., Structure 1997;

  18. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  19. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  20. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain.

    Science.gov (United States)

    Nishie, Mami; Sasaki, Makoto; Nagao, Jun-ichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2011-04-01

    Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn(106) is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT.

  1. Lantibiotic Transporter Requires Cooperative Functioning of the Peptidase Domain and the ATP Binding Domain*

    Science.gov (United States)

    Nishie, Mami; Sasaki, Makoto; Nagao, Jun-ichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2011-01-01

    Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn106 is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT. PMID:21303905

  2. Role of exposed aromatic residues in substrate-binding of CBM family 5 chitin-binding domain of alkaline chitinase.

    Science.gov (United States)

    Uni, Fumiya; Lee, Sunmi; Yatsunami, Rie; Fukui, Toshiaki; Nakamura, Satoshi

    2009-01-01

    Chitinase J (ChiJ) from alkaliphilic Bacillus sp. strain J813 has a multidomain structure containing a catalytic domain (CatD), a fibronectin type III like domain (FnIIID) and a chitin-binding domain (ChBD). It has been shown that the ChBD binds to an insoluble chitin and enhances its degradation by the CatD. Further binding study of the ChBD was performed with a glutathione-S-transferase fusion protein. This fusion protein showed binding abilities to insoluble chitin and chitosan. Two surface-exposed aromatic residues (Trp541 and Trp542) were found in the tertiary-structure model of ChBD and targeted for mutational analysis. Single and double mutations of the two aromatic residues decreased the chitin- and chitosan-binding abilities. It was revealed that these residues would be important for substrate-binding of the ChBD.

  3. Structural and functional analysis of the YAP-binding domain of human TEAD2

    OpenAIRE

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.; Pan, Duojia; Luo, Xuelian

    2010-01-01

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription ...

  4. Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding.

    Science.gov (United States)

    Graille, Marc; Pagano, Maurice; Rose, Thierry; Ravaux, Michèle Reboud; van Tilbeurgh, Herman

    2010-06-09

    Fibronectin is a modular extracellular matrix protein involved in cell adhesion, cell motility, wound healing, and maintenance of cell morphology. It is composed of multiple repeats of three distinct modules: F(I), F(II), and F(III). Various combinations of these modules create fragments able to interact with different constituents of the extracellular matrix. Here, we present the 2.5-A resolution crystal structure of its 45-kDa gelatin-binding domain (GBD; 6F(I)-1F(II)-2F(II)-7F(I)-8F(I)-9F(I)), which also corresponds to the C-terminal half of the migration stimulating factor, a Fn splice variant expressed in human breast cancers. GBD forms a very compact zinc-mediated homodimer, in stark contrast with previous structures of fibronectin fragments. Most remarkably, 8F(I) no longer adopts the canonical F(I) fold but is composed of two long strands that associate with 7F(I) and 9F(I) into a large beta-sheet superdomain. Binding studies in solution confirmed that Zn induces conformational rearrangements and causes loss of binding of Fn-GBD to high-affinity collagen peptides. These data suggest the Zn may play a regulatory role for the cellular functions of fibronectin.

  5. The AP2/EREBP gene PUCHI Co-Acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis.

    Science.gov (United States)

    Kang, Na Young; Lee, Han Woo; Kim, Jungmook

    2013-08-01

    The developmental process of lateral root formation consists of priming, initiation, primordium development and the emergence of lateral roots from the primary root. Molecular genetic studies with Arabidopsis have revealed several key transcriptional regulators involved in lateral root development. However, their functional interaction has not been fully characterized yet. Here we utilized a genetic approach to understand some of these interactions, revealing that PUCHI functioning in morphogenesis of early lateral root primordium is regulated downstream of ARF7/ARF19 and acts with LBD16(ASL18)/LBD18(ASL20) to regulate lateral root development. We showed that auxin-responsive expression of PUCHI was significantly reduced in arf7 or arf19 single mutants and completely abolished in arf7 arf19 double mutants. Consistent with this, β-glucuronidase (GUS) expression under the PUCHI promoter in arf7 arf19 was greatly reduced in the lateral root primordium compared with that in the wild type and did not respond to exogenous auxin. Results of GUS expression analyses under the PUCHI, LBD16 or LBD18 promoter in lbd16, lbd18 single and double mutants or puchi demonstrated that PUCHI and LBD16 or LBD18 do not regulate each other's expression. Lateral root phenotypes of double and triple mutants of lbd16, lbd18 and puchi showed that the puchi mutation in lbd16 and lbd18 mutants synergistically decreased the number of emerged lateral roots. These analyses also showed that puchi affected lateral root primordium development of lbd16 or lbd18 additively but differentially. Taken together, these results suggest that PUCHI co-acts with LBD16 and LBD18 to control lateral root primordium development and lateral root emergence.

  6. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  7. The starch-binding domain family CBM41 - an in silico analysis of evolutionary relationships

    DEFF Research Database (Denmark)

    Janeček, Štefan; Majzlová, Katarína; Svensson, Birte

    2017-01-01

    Within the CAZy database, there are 81 carbohydrate-binding module (CBM) families. A CBM represents a non-catalytic domain in a modular arrangement of glycoside hydrolases (GHs). The present in silico study has been focused on starch-binding domains from the family CBM41 that are usually part...

  8. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  9. Functional Diversity of Tandem Substrate-Binding Domains in ABC Transporters from Pathogenic Bacteria

    NARCIS (Netherlands)

    Fulyani, Faizah; Schuurman-Wolters, Gea K.; Vujicic - Zagar, Andreja; Guskov, Albert; Slotboom, Dirk-Jan; Poolman, Bert

    2013-01-01

    The ATP-binding cassette (ABC) transporter GInPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional

  10. A sequential binding mechanism in a PDZ domain

    DEFF Research Database (Denmark)

    Chi, Celestine N; Bach, Anders; Engström, Åke

    2009-01-01

    that ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants...

  11. Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited.

    Directory of Open Access Journals (Sweden)

    Karolina A Aberg

    Full Text Available Methyl-binding domain (MBD enrichment followed by deep sequencing (MBD-seq, is a robust and cost efficient approach for methylome-wide association studies (MWAS. MBD-seq has been demonstrated to be capable of identifying differentially methylated regions, detecting previously reported robust associations and producing findings that replicate with other technologies such as targeted pyrosequencing of bisulfite converted DNA. There are several kits commercially available that can be used for MBD enrichment. Our previous work has involved MethylMiner (Life Technologies, Foster City, CA, USA that we chose after careful investigation of its properties. However, in a recent evaluation of five commercially available MBD-enrichment kits the performance of the MethylMiner was deemed poor. Given our positive experience with MethylMiner, we were surprised by this report. In an attempt to reproduce these findings we here have performed a direct comparison of MethylMiner with MethylCap (Diagenode Inc, Denville, NJ, USA, the best performing kit in that study. We find that both MethylMiner and MethylCap are two well performing MBD-enrichment kits. However, MethylMiner shows somewhat better enrichment efficiency and lower levels of background "noise". In addition, for the purpose of MWAS where we want to investigate the majority of CpGs, we find MethylMiner to be superior as it allows tailoring the enrichment to the regions where most CpGs are located. Using targeted bisulfite sequencing we confirmed that sites where methylation was detected by either MethylMiner or by MethylCap indeed were methylated.

  12. Conserved C-terminal nascent peptide binding domain of HYPK ...

    Indian Academy of Sciences (India)

    2014-07-09

    Jul 9, 2014 ... viability and decreases caspase activities in Huntington's disease (HD) cell culture model. This domain is found to be required ... Huntington's disease (HD), this domain reduces cellular toxicity. We also find that ..... the adaptive functional value conferred by the NPAA domain of. HYPK is quite higher in case ...

  13. STRUCTURAL CHARACTERIZATION OF THE RNA BINDING DOMAIN OF HUMAN STEM LOOP BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Maruthi Kashyap

    2013-12-01

    Full Text Available A gene encoding the RNA binding domain (RBD of human stem loop binding protein (SLBP was cloned in pET 28a vector and over-expressed in E. coli codon plus cells. The over-expressed SLBP-RBD carried no tag and aggregated as inclusion bodies in the cell lysate. Inclusion bodies were semi-purified to >85% purity by establishing a method involving detergent washing and subsequently denatured in 8 M urea. Refolding of the denatured RBD was carried out by step dialysis in decreasing concentrations of urea and L-arginine. Refolded SLBP-RBD was analyzed using size exclusion chromatography that revealed its monomeric nature and folded state. Uniformly 15N and 15N,13C labeled SLBP-RBD was prepared at concentrations for solution NMR studies. Approximately, 60% of the sequence specific backbone resonance assignments have been achieved through standard triple resonance NMR experiments. Analyses of secondary chemical shifts reveal presence of a small helical secondary structural elements and large intrinsically disordered regions.

  14. The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P.

    2007-01-01

    The CRS1–YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved “GxxG” loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes. PMID:17105995

  15. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  16. A minimum of three motifs is essential for optimal binding of pseudomurein cell wall-binding domain of Methanothermobacter thermautotrophicus.

    Directory of Open Access Journals (Sweden)

    Ganesh Ram R Visweswaran

    Full Text Available We have biochemically and functionally characterized the pseudomurein cell wall-binding (PMB domain that is present at the C-terminus of the Surface (S-layer protein MTH719 from Methanothermobacter thermautotrophicus. Chemical denaturation of the protein with guanidinium hydrochloride occurred at 3.8 M. A PMB-GFP fusion protein not only binds to intact pseudomurein of methanogenic archaea, but also to spheroplasts of lysozyme-treated bacterial cells. This binding is pH dependent. At least two of the three motifs that are present in the domain are necessary for binding. Limited proteolysis revealed a possible cleavage site in the spacing sequence between motifs 1 and 2 of the PMB domain, indicating that the motif region itself is protected from proteases.

  17. Src binds cortactin through an SH2 domain cystine-mediated linkage

    Science.gov (United States)

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  18. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic...

  19. The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Vikas; Wu, Dalei; Li, Sheng; Potluri, Nalini; Kim, Youngchang; Rastinejad, Fraydoon

    2017-10-11

    Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor beta-retinoic X receptor alpha (RAR beta-RXR alpha) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RAR beta ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within their quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its hetero-dimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.

  20. Table 1. Primers used in the qRT-PCR reactions. LBD gene name ...

    Indian Academy of Sciences (India)

    0.24. 0.09762. Leaf. 2.25. 0.0217. HT. 5.28. 0.0866. LT. 0.19. 0.08111. Table 4. Comparison of the number of LBD genes in Arabidopsis, rice, maize, poplar, apple, tomato and grape. Genomic size. Species. (Mb). Genes number Percentages (%) Class I Class II Class III LBD genes. Arabidopsis thaliana. 125. 25,498. 0.165.

  1. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  2. Structural and functional analysis of the YAP-binding domain of human TEAD2.

    Science.gov (United States)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R; Pan, Duojia; Luo, Xuelian

    2010-04-20

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like beta-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.

  3. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  4. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  5. Novel mutation in ATP-binding domain of ABCD1 gene in ...

    Indian Academy of Sciences (India)

    TMD) and nucleotide binding domain (NBD). (b) Multiple protein sequence alignment of ALDP of various species indicating conserved nature of arginine at position 617 in Homo sapiens. (c) Comparisons of native and mutated models of ALDP.

  6. Starch‐binding domains in the CBM45 family – low‐affinity domains from glucan, water dikinase and α‐amylase involved in plastidial starch metabolism

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Baumann, Martin; Abou Hachem, Maher

    2011-01-01

    Starch‐binding domains are noncatalytic carbohydrate‐binding modules that mediate binding to granular starch. The starch‐binding domains from the carbohydrate‐binding module family 45 (CBM45, ) are found as N‐terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing...... organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45‐type domains, the Solanum tuberosumα‐glucan, water dikinase and the Arabidopsis thaliana plastidial α‐amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry...

  7. SH3b Cell wall binding domains can enhance anti-staphylococcal activity of endolysin lytic domains.

    Science.gov (United States)

    Bacteriophage endolysins are peptidoglycan hydrolases and a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown [for some] to be essential for accurate cell wall recognition and subsequent staphylolytic ac...

  8. Endolysin of bacteriophage BFK20: evidence of a catalytic and a cell wall binding domain.

    Science.gov (United States)

    Gerova, Martina; Halgasova, Nora; Ugorcakova, Jana; Bukovska, Gabriela

    2011-08-01

    A gene product of ORF24' was identified on the genome of corynephage BFK20 as a putative phage endolysin. The protein of endolysin BFK20 (gp24') has a modular structure consisting of an N-terminal amidase_2 domain (gp24CD) and a C-terminal cell wall binding domain (gp24BD). The C-terminal domain is unrelated to any of the known cell wall binding domains of phage endolysins. The whole endolysin gene and the sequences of its N-terminal and C-terminal domains were cloned; proteins were expressed in Escherichia coli and purified to homogeneity. The lytic activities of endolysin and its catalytic domain were demonstrated on corynebacteria and bacillus substrates. The binding activity of cell wall binding domain alone and in fusion with green fluorescent protein (gp24BD-GFP) were shown by specific binding assays to the cell surface of BFK20 host Brevibacterium flavum CCM 251 as well as those of other corynebacteria. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. A small cellulose binding domain protein (CBD1) is highly variable in the nonbinding amino terminus

    Science.gov (United States)

    The small cellulose binding domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenophile Phytophthora infestans. Transgene expression of the protein in plants has also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. ...

  10. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Qingyang; Remmelzwaal, Sanne; Heck, Albert J R; Akhmanova, Anna; Liu, Fan

    2017-01-01

    Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding

  11. New method of detecting hydrophobic interaction between C-terminal binding domain and biomacromolecules.

    Science.gov (United States)

    Huang, JiaFeng; Wu, RiBang; Wu, CuiLing; Liu, Dan; Zhang, Jiang; Liao, BinQiang; Lei, Ming; Xiao, Xiao; Ma, ChangBei; He, HaiLun

    2018-01-10

    The C-terminal domains of proteases play crucial roles in hydrolysis, substrate adsorption and targeted binding. Identifying and characterizing interactions between C-terminal domains and biomacromolecules can help to examine the diversity as well as the substrate-binding ability of C-terminal domains and to explore novel functions. The bacterial pre-peptidase C-terminal (PPC) domain is a typical C-terminal domain normally found at the C-terminus of bacterial secreted proteases. In this work, we successfully demonstrated that 8-anilinonaphthalene-1-sulfonic acid (ANS) could be used to rapidly determine the interactions between this C-terminal domain and biomacromolecules. The time-resolved ANS fluorescence of PPC and collagen interaction could be used for quantitative analysis of the collagen-binding capability based on the slope of the time-scanning curve. Using this method, we found that PPC domains had an obvious affinity to fibrillar proteins but had little or no capacity to bind polysaccharides or linear DNAs. Docking studies proved that collagen bound to the same hydrophobic site of PPC as the ANS probe, causing a decrease in the emission intensity. This method is simple and cost effective and provides an effective detection technique to analyze the interaction between this C-terminal domain and biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251

    NARCIS (Netherlands)

    Penninga, Dirk; Veen, Bart A. van der; Knegtel, Ronald M.A.; Hijum, Sacha A.F.T. van; Rozeboom, Henriëtte J.; Kalk, Kor H.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

    1996-01-01

    The E-domain of cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) from Bacillus circulans strain 251 is a putative raw starch binding domain. Analysis of the maltose-dependent CGTase crystal structure revealed that each enzyme molecule contained three maltose molecules, situated at contact

  13. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  14. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  15. RNA-Binding Domain Proteins in Kinetoplastids: a Comparative Analysis†

    Science.gov (United States)

    De Gaudenzi, Javier; Frasch, Alberto C.; Clayton, Christine

    2005-01-01

    RNA-binding proteins are important in many aspects of RNA processing, function, and destruction. One class of such proteins contains the RNA recognition motif (RRM), which consists of about 90 amino acid residues, including the canonical RNP1 octapeptide: (K/R)G(F/Y)(G/A)FVX(F/Y). We used a variety of homology searches to classify all of the RRM proteins of the three kinetoplastids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. All three organisms have similar sets of RRM-containing protein orthologues, suggesting common posttranscriptional processing and regulatory pathways. Of the 75 RRM proteins identified in T. brucei, only 13 had clear homologues in other eukaryotes, although 8 more could be given putative functional assignments. A comparison with the 18 RRM proteins of the obligate intracellular parasite Encephalitozoon cuniculi revealed just 3 RRM proteins which appear to be conserved at the primary sequence level throughout eukaryotic evolution: poly(A) binding protein, the rRNA-processing protein MRD1, and the nuclear cap binding protein. PMID:16339728

  16. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    Energy Technology Data Exchange (ETDEWEB)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric (NIH)

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  17. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40

    Directory of Open Access Journals (Sweden)

    Nipaporn Ngernyuang

    2018-02-01

    Full Text Available The heparin-binding glycoprotein YKL-40 (CHI3L1 is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R and lysine (K (RRDK; residues 144–147; but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334–345 that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A substituted for K or R (K337A, K342A, R344A, led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases.

  18. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40.

    Science.gov (United States)

    Ngernyuang, Nipaporn; Yan, Wei; Schwartz, Lawrence M; Oh, Dennis; Liu, Ying-Bin; Chen, Hongzhuan; Shao, Rong

    2018-02-01

    The heparin-binding glycoprotein YKL-40 (CHI3L1) is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s) pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R) and lysine (K) (RRDK; residues 144-147); but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334-345) that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A) substituted for K or R (K337A, K342A, R344A), led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Genomewide analysis of the lateral organ boundaries domain gene ...

    Indian Academy of Sciences (India)

    sion patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes ... Keywords. genomewide analysis; lateral organ boundaries domain; gene family; stress; expression; Vitis vinifera. Journal of .... available from the NCBI were used with an e-value cut-off set to 1e-003 ...

  20. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    Science.gov (United States)

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  1. GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling

    Science.gov (United States)

    Carlessi, Rodrigo; Levin-Salomon, Vered; Ciprut, Sara; Bialik, Shani; Berissi, Hanna; Albeck, Shira; Peleg, Yoav; Kimchi, Adi

    2011-01-01

    Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein. PMID:21738225

  2. Molecular determinants for the complex binding specificity of the PDZ domain in PICK1

    DEFF Research Database (Denmark)

    Madsen, Kenneth L; Beuming, Thijs; Niv, Masha Y

    2005-01-01

    polarization. Our results showed that the PICK1 PDZ domain binds the type II sequence presented by the human dopamine transporter (-WLKV) with an almost 15-fold and >100-fold higher affinity than the type I sequences presented by protein kinase Calpha (-QSAV) and the beta(2)-adrenergic receptor (-DSLL......), respectively. Mutational analysis of Lys(83) in the alphaB1 position of the PDZ domain suggested that this residue mimics the function of hydrophobic residues present in this position in regular type II PDZ domains. The PICK1 PDZ domain was moreover found to prefer small hydrophobic residues in the C......-terminal P(0) position of the ligand. Molecular modeling predicted a rank order of (Val > Ile > Leu) that was verified experimentally with up to a approximately 16-fold difference in binding affinity between a valine and a leucine in P(0). The results define the structural basis for the unusual binding...

  3. Achieving peptide binding specificity and promiscuity by loops: case of the forkhead-associated domain.

    Science.gov (United States)

    Huang, Yu-Ming M; Chang, Chia-En A

    2014-01-01

    The regulation of a series of cellular events requires specific protein-protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.

  4. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  5. Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

    Science.gov (United States)

    Jiang, Ting-Ying; Ci, Yuan-Pei; Chou, Wei-I; Lee, Yuan-Chuan; Sun, Yuh-Ju; Chou, Wei-Yao; Li, Kun-Mou; Chang, Margaret Dah-Tsyr

    2012-01-01

    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs. PMID:22815939

  6. MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2009-12-01

    Full Text Available Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix.

  7. Conserved C-terminal nascent peptide binding domain of HYPK ...

    Indian Academy of Sciences (India)

    energies (in kcal/mol) (marked in black circles) for each amino acid residues of human HYPK protein. NPAA domain region has been ... Aromatic (H, F, W, Y). 1.17. 0.88. 0.77. 0.32. 0.99. 0.73 0.82. 0.51. 0.69. 0.47. 0.55. 0.18 polar (R, N, D, E, Q, H, K, S, T) 5.97. 1.50. 6.74. 1.22. 6.47. 1.59 6.58. 1.52. 6.32. 1.16. 6.43. 0.77.

  8. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianzhuang [ORNL; Nellas, Ricky B [ORNL; Glover, Mary M [ORNL; Shen, Tongye [ORNL

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  9. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    Science.gov (United States)

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  10. Identification of two functional PCNA-binding domains in human DNA polymerase κ.

    Science.gov (United States)

    Yoon, Jung-Hoon; Acharya, Narottam; Park, Jeseong; Basu, Debashree; Prakash, Satya; Prakash, Louise

    2014-07-01

    Previously, we have shown that human DNA polymerase (Pol) η has two functional PCNA-binding motifs, PIP1 and PIP2, and that a C-terminal deletion of Polη that lacks the ubiquitin-binding UBZ domain and the PIP2 domain but retains the PIP1 domain promotes normal levels of translesion synthesis (TLS) opposite a cis-syn TT dimer in human cells. Here, we identify two PIP domains in Polκ and show that TLS occurs normally in human fibroblast cells in which the pip1 or pip2 mutant Polκ is expressed, but mutational inactivation of both PIP domains renders Polκ nonfunctional in TLS opposite the thymine glycol lesion. Thus, the two PIP domains of Polκ function redundantly in TLS opposite this DNA lesion in human cells. However, and surprisingly, whereas mutational inactivation of the PIP1 domain completely inhibits the stimulation of DNA synthesis by Polκ in the presence of proliferating cell nuclear antigen (PCNA), replication factor C, and replication protein A, mutations in PIP2 have no adverse effect on PCNA-dependent DNA synthesis. This raises the possibility that activation of Polκ PIP2 as a PCNA-binding domain occurs during TLS in human cells and that protein-protein interactions and post-transcriptional modifications are involved in such activation. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  11. Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain.

    Science.gov (United States)

    Tišáková, Lenka; Vidová, Barbora; Farkašovská, Jarmila; Godány, Andrej

    2014-01-01

    The gene product of orf50 from actinophage μ1/6 of Streptomyces aureofaciens is a putative endolysin, Lyt μ1/6. It has a two-domain modular structure, consisting of an N-terminal catalytic and a C-terminal cell wall binding domain (CBD). Comparative analysis of Streptomyces phage endolysins revealed that they all have a modular structure and contain functional C-terminal domains with conserved amino acids, probably associated with their binding function. A blast analysis of Lyt μ1/6 in conjunction with secondary and tertiary structure prediction disclosed the presence of a PG_binding_1 domain within the CBD. The sequence of the C-terminal domain of lyt μ1/6 and truncated forms of it were cloned and expressed in Escherichia coli. The ability of these CBD variants fused to GFP to bind to the surface of S. aureofaciens NMU was shown by specific binding assays. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain.

    Directory of Open Access Journals (Sweden)

    Laura De Laporte

    Full Text Available Tenascin C (TNC is an extracellular matrix protein that is upregulated during development as well as tissue remodeling. TNC is comprised of multiple independent folding domains, including 15 fibronectin type III-like (TNCIII domains. The fifth TNCIII domain (TNCIII5 has previously been shown to bind heparin. Our group has shown that the heparin-binding fibronectin type III domains of fibronectin (FNIII, specifically FNIII12-14, possess affinity towards a large number of growth factors. Here, we show that TNCIII5 binds growth factors promiscuously and with high affinity. We produced recombinant fragments of TNC representing the first five TNCIII repeats (TNCIII1-5, as well as subdomains, including TNCIII5, to study interactions with various growth factors. Multiple growth factors of the platelet-derived growth factor (PDGF family, the fibroblast growth factor (FGF family, the transforming growth factor beta (TGF-β superfamily, the insulin-like growth factor binding proteins (IGF-BPs, and neurotrophins were found to bind with high affinity to this region of TNC, specifically to TNCIII5. Surface plasmon resonance was performed to analyze the kinetics of binding of TNCIII1-5 with TGF-β1, PDGF-BB, NT-3, and FGF-2. The promiscuous yet high affinity of TNC for a wide array of growth factors, mediated mainly by TNCIII5, may play a role in multiple physiological and pathological processes involving TNC.

  14. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  15. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization.

    Directory of Open Access Journals (Sweden)

    Maia V Vinogradova

    Full Text Available Kinesin-like calmodulin binding protein (KCBP, a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+ signaling since Ca(2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.

  16. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  17. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems

    Directory of Open Access Journals (Sweden)

    Kira eMakarova

    2014-04-01

    Full Text Available CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold. Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and effector domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death.

  18. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    Science.gov (United States)

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  19. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain

    NARCIS (Netherlands)

    Douangamath, Alice; Filipp, Fabian V.; Klein, André T. J.; Barnett, Phil; Zou, Peijian; Voorn-Brouwer, Tineke; Vega, M. Cristina; Mayans, Olga M.; Sattler, Michael; Distel, Ben; Wilmanns, Matthias

    2002-01-01

    While the function of most small signaling domains is confined to binary ligand interactions, the peroxisomal Pex13p SH3 domain has the unique capacity of binding to two different ligands, Pex5p and Pex14p. We have used this domain as a model to decipher its structurally independent ligand binding

  20. Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Wanhui; Wu, Huiwen; Zhang, Hong; Gong, Weibin; Perrett, Sarah

    2015-10-01

    Hsp70 chaperone proteins play crucial roles in the cell. Extensive structural and functional studies have been performed for bacterial and mammalian Hsp70s. Ssa1 from Saccharomyces cerevisiae is a member of the Hsp70 family. In vivo and biochemical studies on Ssa1 have revealed that it regulates prion propagation and the cell cycle. However, no structural data has been obtained for Ssa1 up to now. Here we report the almost complete (96 %) (1)H, (13)C, (15)N backbone and side chain NMR assignment of the 18.8 kDa Ssa1 substrate binding domain. The construct includes residues 382-554, which corresponds to the entire substrate binding domain and two following α-helices in homologous structures. The secondary structure predicted from the assigned chemical shifts is consistent with that of homologous Hsp70 substrate binding domains.

  1. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    Science.gov (United States)

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.

  2. FHA domains as phospho-threonine binding modules in cell signaling.

    Science.gov (United States)

    Hammet, Andrew; Pike, Brietta L; McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2003-01-01

    Forkhead-associated (FHA) domains are present in >200 diverse proteins in all phyla from bacteria to mammals and seem to be particularly prevalent in proteins with cell cycle control functions. Recent work from several laboratories has considerably improved our understanding of the structure and function of these domains that were virtually unknown a few years ago, and the first disease associations of FHA domains have now emerged. FHA domains form 11-stranded beta-sandwiches that contain some 100-180 amino acid residues with a high degree of sequence diversity. FHA domains act as phosphorylation-dependent protein-protein interaction modules that preferentially bind to phospho-threonine residues in their targets. Interestingly, point mutations in the human CHK2 gene that lead to single-residue amino acid substitutions in the FHA domain of this cell cycle checkpoint kinase have been found to cause a subset of cases of the Li-Fraumeni multi-cancer syndrome.

  3. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Eiji [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Takagi, Yoshimi [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan); Honda, Goichi [Medical Affairs Department, Asahi Kasei Pharma Corporation, 1-105 Kanda Jinbo-cho, Chiyoda-ku, Tokyo 101-8101 (Japan); Suzuki, Koji [Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka, Mie 513-8679 (Japan); Imai, Hiroshi [Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507 (Japan); Shimaoka, Motomu, E-mail: shimaoka@doc.medic.mie-u.ac.jp [Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 (Japan)

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.

  4. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA...... domain is responsible for this activity. Two other proteins containing this motif, the fission-yeast homologues of Rad23 and Dsk2, are also shown to bind multi-ubiquitin chains via their UBA domains. These two proteins are implicated, along with the fission-yeast Pus1(S5a/Rpn10) subunit of the 26 S...

  5. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  6. Alternative Conformations of the Tau Repeat Domain in Complex with an Engineered Binding Protein*

    Science.gov (United States)

    Grüning, Clara S. R.; Mirecka, Ewa A.; Klein, Antonia N.; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F.; Stoldt, Matthias; Hoyer, Wolfgang

    2014-01-01

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. PMID:24966331

  7. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  8. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.

    Science.gov (United States)

    Lewis, H A; Chen, H; Edo, C; Buckanovich, R J; Yang, Y Y; Musunuru, K; Zhong, R; Darnell, R B; Burley, S K

    1999-02-15

    Nova-1 and Nova-2 are related neuronal proteins that were initially cloned using antisera obtained from patients with the autoimmune neurological disease paraneoplastic opsoclonus-myoclonus ataxia (POMA). Both of these disease gene products contain three RNA-binding motifs known as K-homology or KH domains, and their RNA ligands have been identified via binding-site selection experiments. The KH motif structure has been determined previously using NMR spectroscopy, but not using X-ray crystallography. Many proteins contain more than one KH domain, yet there is no published structural information regarding the behavior of such multimers. We have obtained the first X-ray crystallographic structures of KH-domain-containing proteins. Structures of the third KH domains (KH3) of Nova-1 and Nova-2 were determined by multiple isomorphous replacement and molecular replacement at 2.6 A and 2.0 A, respectively. These highly similar RNA-binding motifs form a compact protease-resistant domain resembling an open-faced sandwich, consisting of a three-stranded antiparallel beta sheet topped by three alpha helices. In both Nova crystals, the lattice is composed of symmetric tetramers of KH3 domains that are created by two dimer interfaces. The crystal structures of both Nova KH3 domains are similar to the previously determined NMR structures. The most significant differences among the KH domains involve changes in the positioning of one or more of the alpha helices with respect to the betasheet, particularly in the NMR structure of the KH1 domain of the Fragile X disease protein FMR-1. Loop regions in the KH domains are clearly visible in the crystal structure, unlike the NMR structures, revealing the conformation of the invariant Gly-X-X-Gly segment that is thought to participate in RNA-binding and of the variable region. The tetrameric arrangements of the Nova KH3 domains provide insights into how KH domains may interact with each other in proteins containing multiple KH motifs.

  10. Chemically synthesized 58-mer LysM domain binds lipochitin oligosaccharide

    DEFF Research Database (Denmark)

    Sørensen, Kasper Kildegaard; Simonsen, Jens Bæk; Maolanon, Nicolai Nareth

    2014-01-01

    molecules is receptor mediated, and nod factor receptor 5 (NFR5) from the model legume Lotus japonicus is predicted to contain three LysM domain binding sites. Here we studied the interactions between nod factor and each of the three NFR5 LysM domains, which were chemically synthesized. LysM domain variants...... (up to 58 amino acids) designed to optimize solubility were chemically assembled by solid-phase peptide synthesis (SPPS) with microwave heating. Their interaction with nod factors and chitin oligosaccharides was studied by isothermal titration calorimetry and circular dichroism (CD) spectroscopy. Lys...

  11. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Science.gov (United States)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  12. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly.

    Science.gov (United States)

    AhYoung, Andrew P; Jiang, Jiansen; Zhang, Jiang; Khoi Dang, Xuan; Loo, Joseph A; Zhou, Z Hong; Egea, Pascal F

    2015-06-23

    Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits--the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles.

  13. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Goffinont, S.; Buré, C.; Davídková, Marie; Maurizot, J. C.; Cadene, M.; Spotheim-Maurizot, M.

    2007-01-01

    Roč. 403, part 3 (2007), s. 463-472 ISSN 0264-6021 R&D Projects: GA MŠk 1P05OC085 Institutional research plan: CEZ:AV0Z10480505 Keywords : ionizing radiation * oxidative damage * DNA binding domain * lac repressor Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2007

  14. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  15. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential...

  16. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  17. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  18. Domain composition of rhamnose-binding lectin from shishamo smelt eggs and its carbohydrate-binding profiles.

    Science.gov (United States)

    Hosono, Masahiro; Sugawara, Shigeki; Tatsuta, Takeo; Hikita, Toshiyuki; Kominami, Junko; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Kawsar, Sarkar M A; Ozeki, Yasuhiro; Hakomori, Sen-itiroh; Nitta, Kazuo

    2013-12-01

    Osmerus (Spirinchus) lanceolatus egg lectin (OLL) is a member of the rhamnose-binding lectin (RBL) family which is mainly found in aqueous beings. cDNA of OLL was cloned, and its genomic architecture was revealed. The deduced amino acid (aa) sequence indicated that OLL was composed of 213 aa including 95 aa of domain N and 97 aa of domain C. N and C showed 73 % sequence identity and contained both -ANYGR- and -DPC-KYL-peptide motifs which are conserved in most of the RBL carbohydrate recognition domains. The calculated molecular mass of mature OLL was 20,852, consistent with the result, and 20,677.716, from mass spectrometry. OLL was encoded by eight exons: exons 1 and 2 for a signal peptide; exons 3-5 and 6-8 for N- and C-domains, respectively. Surface plasmon resonance spectrometric analyses revealed that OLL showed comparable affinity for Galα- and β-linkages, whereas Silurus asotus lectin (SAL), a catfish RBL, bound preferentially to α-linkages of neoglycoproteins. The Kd values of OLL and SAL against globotriaosylceramide (Gb3) were 1.69 × 10⁻⁵ M for and 2.81 × 10⁻⁶ M, respectively. Thus, the carbohydrate recognition property of OLL is slightly different from that of SAL. On the other hand, frontal affinity chromatography revealed that both OLL and SAL interacted with only glycolipid-type oligosaccharides such as Gb3 trisaccharides, not with N-linked oligosaccharides. The domain composition of these RBLs and an analytical environment such as the "cluster effect" of a ligand might influence the binding between RBL and sugar chains.

  19. Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).

    Science.gov (United States)

    Buyannemekh, Dolgorsuren; Nham, Sang-Uk

    2017-05-31

    The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg 2+ and Mn 2+ ) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

  20. Crystal structures of chitin binding domains of chitinase from Thermococcus kodakarensis KOD1.

    Science.gov (United States)

    Hanazono, Yuya; Takeda, Kazuki; Niwa, Satomi; Hibi, Masahito; Takahashi, Naoya; Kanai, Tamotsu; Atomi, Haruyuki; Miki, Kunio

    2016-01-01

    Chitinase from T. kodakarensis (TkChiA) catalyzes the hydrolysis of chitin. The enzyme consists of two catalytic and three binding domains (ChBD1, ChBD2 and ChBD3). ChBD2 and ChBD3 can bind to not only chitin but also cellulose. In both domains, the intervals of the side chains of the three tryptophan residues, which are located on the molecular surface, correspond to twice the length of the lattice of the chitin. A binding model with crystalline chitin implies that the tryptophan residues and a glutamate residue interact with the hexose ring by CH-π interactions and the amide group by a hydrogen bond, respectively. © 2016 Federation of European Biochemical Societies.

  1. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  2. Partial association of restriction polymorphism of the ligand binding domain of human androgen receptor in prostate cancer

    Directory of Open Access Journals (Sweden)

    Mohamed Hessien

    2016-04-01

    Conclusion: Our results indicate that the loss of the restriction integrity in the C-terminal part (exons: 7 and 8 of the LBD is associated with the progression of benign prostatic hyperplasia to prostate cancer.

  3. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    Energy Technology Data Exchange (ETDEWEB)

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  4. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    Science.gov (United States)

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  5. High-affinity single-domain binding proteins with a binary-code interface.

    Science.gov (United States)

    Koide, Akiko; Gilbreth, Ryan N; Esaki, Kaori; Tereshko, Valentina; Koide, Shohei

    2007-04-17

    High degrees of sequence and conformation complexity found in natural protein interaction interfaces are generally considered essential for achieving tight and specific interactions. However, it has been demonstrated that specific antibodies can be built by using an interface with a binary code consisting of only Tyr and Ser. This surprising result might be attributed to yet undefined properties of the antibody scaffold that uniquely enhance its capacity for target binding. In this work we tested the generality of the binary-code interface by engineering binding proteins based on a single-domain scaffold. We show that Tyr/Ser binary-code interfaces consisting of only 15-20 positions within a fibronectin type III domain (FN3; 95 residues) are capable of producing specific binding proteins (termed "monobodies") with a low-nanomolar K(d). A 2.35-A x-ray crystal structure of a monobody in complex with its target, maltose-binding protein, and mutation analysis revealed dominant contributions of Tyr residues to binding as well as striking molecular mimicry of a maltose-binding protein substrate, beta-cyclodextrin, by the Tyr/Ser binary interface. This work suggests that an interaction interface with low chemical diversity but with significant conformational diversity is generally sufficient for tight and specific molecular recognition, providing fundamental insights into factors governing protein-protein interactions.

  6. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  7. Identification of MDP (muramyl dipeptide)-binding key domains in NOD2 (nucleotide-binding and oligomerization domain-2) receptor of Labeo rohita.

    Science.gov (United States)

    Maharana, Jitendra; Swain, Banikalyan; Sahoo, Bikash R; Dikhit, Manas R; Basu, Madhubanti; Mahapatra, Abhijit S; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-08-01

    In lower eukaryotes-like fish, innate immunity contributed by various pattern recognition receptor (PRR) plays an essential role in protection against diseases. Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic PRR that recognizes MDP (muramyl dipeptide) of the Gram positive and Gram negative bacteria as ligand and activates signalling to induce innate immunity. Hypothesizing a similar NOD2 signalling pathway of higher eukaryotes, the peripheral blood leucocytes (PBLs) of rohu (Labeo rohita) was stimulated with MDP. The data of quantitative real-time PCR (qRT-PCR) revealed MDP-mediated inductive expression of NOD2 and its down-stream molecule RICK/RIP2 (receptor-interacting serine-threonine protein kinase-2). This observation suggested the existence of MDP-binding sites in rohu NOD2 (rNOD2). To investigate it, 3D model of ligand-binding leucine-rich repeat (LRR) region of rNOD2 (rNOD2-LRR) was constructed following ab initio and threading approaches in I-TASSER web server. Structural refinement of the model was performed by energy minimization, and MD (molecular dynamics) simulation was performed in GROMACS (Groningen Machine for Chemical Simulations). The refined model of rNOD2-LRR was validated through SAVES, ProSA, ProQ, WHAT IF and MolProbity servers, and molecular docking with MDP was carried out in GOLD 4.1. The result of docking identified LRR3-7 comprising Lys820, Phe821, Asn822, Arg847, Gly849, Trp877, Trp901 and Trp931 as MDP-binding critical amino acids in rNOD2. This is the first study in fish to provide an insight into the 3D structure of NOD2-LRR region and its important motifs that are expected to be engaged in MDP binding and innate immunity.

  8. Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators.

    Science.gov (United States)

    Zor, Tsaffrir; Mayr, Bernhard M; Dyson, H Jane; Montminy, Marc R; Wright, Peter E

    2002-11-01

    cAMP-response element-binding protein (CREB)-binding protein (CBP) is a general transcriptional co-activator that mediates interactions between transcription factors and the basal transcription machinery. To obtain insights into the mechanism by which the KIX domain of CBP can recognize the transactivation domains of many different transcription factors, we have used NMR and biochemical analyses to study the interactions of KIX with the transactivation domain from the constitutive activator c-Myb and with the kinase-inducible transactivation domain (KID) from CREB. NMR chemical shift mapping shows that both activation domains bind to the same surface of KIX. In the unbound state, both the phosphorylated KID and c-Myb activation domains are only partly structured, and binding to KIX is coupled with folding to form an amphipathic helix. Helix-destabilizing mutations significantly impair binding, whereas mutations that increase the intrinsic secondary structure content of the free phosphorylated KID peptide have only a small influence on binding affinity. Low affinity but specific binding of unphosphorylated KID to KIX was measured by ITC and was also observed in Western blot assays and by a fluorescence resonance energy transfer experiment in living cells. The large increase in the affinity for phosphorylated KID is due to favorable intermolecular interactions involving the phosphate moiety. After induction by phosphorylation, CREB is able to compete effectively with other transcriptional activators for binding to CBP.

  9. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...... heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic...

  10. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Mei Mei Jaslyn Elizabeth; Midtgaard, Søren Roi; Gysel, Kira

    2015-01-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multi......LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement...... solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers...

  11. Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Science.gov (United States)

    Gerek, Z. Nevin; Ozkan, S. Banu

    2011-01-01

    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation. PMID:21998559

  12. RNA-binding domain in the nucleocapsid protein of gill-associated nidovirus of penaeid shrimp.

    Directory of Open Access Journals (Sweden)

    Chumporn Soowannayan

    Full Text Available Gill-associated virus (GAV infects Penaeus monodon shrimp and is the type species okavirus in the Roniviridae, the only invertebrate nidoviruses known currently. Electrophoretic mobility shift assays (EMSAs using His(6-tagged full-length and truncated proteins were employed to examine the nucleic acid binding properties of the GAV nucleocapsid (N protein in vitro. The EMSAs showed full-length N protein to bind to all synthetic single-stranded (ssRNAs tested independent of their sequence. The ssRNAs included (+ and (- sense regions of the GAV genome as well as a (+ sense region of the M RNA segment of Mourilyan virus, a crustacean bunya-like virus. GAV N protein also bound to double-stranded (dsRNAs prepared to GAV ORF1b gene regions and to bacteriophage M13 genomic ssDNA. EMSAs using the five N protein constructs with variable-length N-terminal and/or C-terminal truncations localized the RNA binding domain to a 50 amino acid (aa N-terminal sequence spanning Met(11 to Arg(60. Similarly to other RNA binding proteins, the first 16 aa portion of this sequence was proline/arginine rich. To examine this domain in more detail, the 18 aa peptide (M(11PVRRPLPPQPPRNARLI(29 encompassing this sequence was synthesized and found to bind nucleic acids similarly to the full-length N protein in EMSAs. The data indicate a fundamental role for the GAV N protein proline/arginine-rich domain in nucleating genomic ssRNA to form nucleocapsids. Moreover, as the synthetic peptide formed higher-order complexes in the presence of RNA, the domain might also play some role in protein/protein interactions stabilizing the helical structure of GAV nucleocapsids.

  13. Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding.

    Science.gov (United States)

    Marinelli, Luciana; Cosconati, Sandro; Steinbrecher, Thomas; Limongelli, Vittorio; Bertamino, Alessia; Novellino, Ettore; Case, David A

    2007-10-01

    NMDA receptors are glutamate-gated ion channels (iGluRs) that are involved in several important physiological functions such as neuronal development, synaptic plasticity, learning, and memory. Among iGluRs, NMDA receptors have been perhaps the most actively investigated for their role in chronic neurodegeneration such as Alzheimer's, Parkinson's, and Huntington's diseases. Recent studies have shown that the NTD of subunit NR2B modulates ion channel gating through the binding of allosteric modulators such as the prototypical compound ifenprodil. In the present paper, the construction of a three-dimensional model for the NR2B modulatory domain is described and docking calculations allow, for the first time, definition of the ifenprodil binding pose at an atomic level and fully explain all the available structure-activity relationships. Moreover, in an attempt to add further insight into the ifenprodil mechanism of action, as it is not completely clear if it binds and stabilizes an open or a closed conformation of the NR2B modulatory domain, a matter, which is fundamental for the rational design of NMDA antagonists, MD simulations followed by an MM-PBSA analysis were performed. These calculations reveal that the closed conformation of the R1-R2 domain, rather than the open, constitutes the high affinity binding site for ifenprodil and that a profound stabilization of the closed conformation upon ifenprodil binding occurs. Thus, for a rational design and/or for virtual screening experiments, the closed conformation of the R1-R2 domain should be taken into account and our 3D model can provide valuable hints for the design of NR2B-selective antagonists.

  14. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2...... containing the ZAC-C2 domain bind anionic phospholipids non-specifically, with some variance in Ca2+ and salt dependence. Similar assays demonstrated specific affinity of the ZAC N-terminal region (residues 1-174) for phosphatidylinositol 3-monophosphate (PI-3-P). Binding was dependent in part on an intact...

  15. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage.

    Science.gov (United States)

    Ahmed, Wareed; Bhat, Anuradha Gopal; Leelaram, Majety Naga; Menon, Shruti; Nagaraja, Valakunja

    2013-08-01

    Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.

  16. Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain

    Directory of Open Access Journals (Sweden)

    Cuc Quynh Nguyen Truong

    2014-11-01

    Full Text Available Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  17. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    binding to SRCR domain 3 exhibited effective inhibition of ligand binding. Furthermore, analysis of purified native CD163 revealed that proteolytic cleavage in SRCR domain 3 inactivates ligand binding. Calcium protects against cleavage in this domain. Analysis of the calcium sensitivity of ligand binding...

  18. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; McCarthy, J B; Furcht, L T

    1993-01-01

    of focal adhesion and stress fiber formation requires additional interactions. Heparin-binding fragments of fibronectin can provide this signal. The COOH-terminal heparin-binding domain of fibronectin contains five separate heparin-binding amino acid sequences. We show here that all five sequences...

  19. The Streptococcal Binding Site in the Gelatin-binding Domain of Fibronectin Is Consistent with a Non-linear Arrangement of Modules*

    Science.gov (United States)

    Atkin, Kate E.; Brentnall, Andrew S.; Harris, Gemma; Bingham, Richard J.; Erat, Michele C.; Millard, Christopher J.; Schwarz-Linek, Ulrich; Staunton, David; Vakonakis, Ioannis; Campbell, Iain D.; Potts, Jennifer R.

    2010-01-01

    Fibronectin-binding proteins (FnBPs) of Staphylococcus aureus and Streptococcus pyogenes mediate invasion of human endothelial and epithelial cells in a process likely to aid the persistence and/or dissemination of infection. In addition to binding sites for the N-terminal domain (NTD) of fibronectin (Fn), a number of streptococcal FnBPs also contain an upstream region (UR) that is closely associated with an NTD-binding region; UR binds to the adjacent gelatin-binding domain (GBD) of Fn. Previously, UR was shown to be required for efficient streptococcal invasion of epithelial cells. Here we show, using a Streptococcus zooepidemicus FnBP, that the UR-binding site in GBD resides largely in the 8F19F1 module pair. We also show that UR inhibits binding of a peptide from the α1 chain of type I collagen to 8F19F1 and that UR binding to 8F1 is likely to occur through anti-parallel β-zipper formation. Thus, we propose that streptococcal proteins that contain adjacent NTD- and GBD-binding sites form a highly unusual extended tandem β-zipper that spans the two domains and mediates high affinity binding to Fn through a large intermolecular interface. The proximity of the UR- and NTD-binding sequences in streptococcal FnBPs is consistent with a non-linear arrangement of modules in the tertiary structure of the GBD of Fn. PMID:20843804

  20. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.

    Science.gov (United States)

    Gu, Dan; Zhou, Yuzhen; Kallhoff, Verena; Baban, Berevan; Tanner, John J; Becker, Donald F

    2004-07-23

    The PutA flavoprotein from Escherichia coli is a transcriptional repressor and a bifunctional enzyme that regulates and catalyzes proline oxidation. PutA represses transcription of genes putA and putP by binding to the control DNA region of the put regulon. The objective of this study is to define and characterize the DNA binding domain of PutA. The DNA binding activity of PutA, a 1320 amino acid polypeptide, has been localized to N-terminal residues 1-261. After exploring a potential DNA-binding region and an N-terminal deletion mutant of PutA, residues 1-90 (PutA90) were determined to contain DNA binding activity and stabilize the dimeric structure of PutA. Cell-based transcriptional assays demonstrate that PutA90 functions as a transcriptional repressor in vivo. The dissociation constant of PutA90 with the put control DNA was estimated to be 110 nm, which is slightly higher than that of the PutA-DNA complex (K(d) approximately 45 nm). Primary and secondary structure analysis of PutA90 suggested the presence of a ribbon-helix-helix DNA binding motif in residues 1-47. To test this prediction, we purified and characterized PutA47. PutA47 is shown to purify as an apparent dimer, to exhibit in vivo transcriptional activity, and to bind specifically to the put control DNA. In gel-mobility shift assays, PutA47 was observed to bind cooperatively to the put control DNA with an overall dissociation constant of 15 nm for the PutA47-DNA complex. Thus, N-terminal residues 1-47 are critical for DNA-binding and the dimeric structure of PutA. These results are consistent with the ribbon-helix-helix family of transcription factors.

  1. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  2. Non-Catalytic Participation of the Pin1 Peptidyl-Prolyl Isomerase Domain in Target Binding

    Directory of Open Access Journals (Sweden)

    Brendan Tooke Innes

    2013-02-01

    Full Text Available Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (ie. pS/T-P motifs. A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions.

  3. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain.

    Science.gov (United States)

    Northall, Sarah J; Buckley, Ryan; Jones, Nathan; Penedo, J Carlos; Soultanas, Panos; Bolt, Edward L

    2017-09-01

    Hel308 helicases promote genome stability linked to DNA replication in archaea, and have homologues in metazoans. In the crystal structure of archaeal Hel308 bound to a tailed DNA duplex, core helicase domains encircle single-stranded DNA (ssDNA) in a "ratchet" for directional translocation. A winged helix domain (WHD) is also present, but its function is mysterious. We investigated the WHD in full-length Hel308, identifying that mutations in a solvent exposed α-helix resulted in reduced DNA binding and unwinding activities. When isolated from the rest of Hel308, the WHD protein alone bound to duplex DNA but not ssDNA, and DNA binding by WHD protein was abolished by the same mutations as were analyzed in full-length Hel308. Isolated WHD from a human Hel308 homologue (HelQ) also bound to duplex DNA. By disrupting the interface between the Hel308 WHD and a RecA-like domain, a topology typical of Ski2 helicases, we show that this is crucial for ATPase and helicase activities. The data suggest a model in which the WHD promotes activity of Hel308 directly, through binding to duplex DNA that is distinct from ssDNA binding by core helicase, and indirectly through interaction with the RecA-like domain. We propose how the WHD may contribute to ssDNA translocation, resulting in DNA helicase activity or in removal of other DNA bound proteins by "reeling" ssDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structural feature extraction protocol for classifying reversible membrane binding protein domains.

    Science.gov (United States)

    Källberg, Morten; Lu, Hui

    2009-01-01

    Machine learning based classification protocols for automated function annotation of protein structures have in many instances proven superior to simpler sequence based procedures. Here we present an automated method for extracting features from protein structures by construction of surface patches to be used in such protocols. The utility of the developed patch-growing procedure is exemplified by its ability to identify reversible membrane binding domains from the C1, C2, and PH families.

  5. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain

    Energy Technology Data Exchange (ETDEWEB)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-06-26

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH–START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH–START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine–rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization.

  7. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    Science.gov (United States)

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  8. Binding Moral Foundations and the Narrowing of Ideological Conflict to the Traditional Morality Domain.

    Science.gov (United States)

    Malka, Ariel; Osborne, Danny; Soto, Christopher J; Greaves, Lara M; Sibley, Chris G; Lelkes, Yphtach

    2016-09-01

    Moral foundations theory (MFT) posits that binding moral foundations (purity, authority, and ingroup loyalty) are rooted in the need for groups to promote order and cohesion, and that they therefore underlie political conservatism. We present evidence that binding foundations (and the related construct of disgust sensitivity) are associated with lower levels of ideological polarization on political issues outside the domain of moral traditionalism. Consistent support for this hypothesis was obtained from three large American Internet-based samples and one large national sample of New Zealanders (combined N = 7,874). We suggest that when political issues do not have inherent relevance to moral traditionalism, binding foundations promote a small centrist shift away from ideologically prescribed positions, and that they do so out of desire for national uniformity and cohesion. © 2016 by the Society for Personality and Social Psychology, Inc.

  9. Obtaining cellulose binding and hydrolyzing activity of a family 11 hybrid xylanase by fusion with xylan binding domain.

    Science.gov (United States)

    Liu, Ming-Qi; Dai, Xian-Jun; Liu, Guang-Fu; Wang, Qian

    2013-03-01

    The xylan binding domain (XBD) and linker sequences (LS) from thermostable and thermophilic Thermomonospora fusca xylanase A (TfxA) was fused to the carboxyl-terminus of a family 11 hybrid xylanase ATx. The constructed chimera (ATxX) was successfully expressed in Pichia pastoris, partially purified to homogeneity, and then characterized in detail. After 96-h 0.25% methanol induction, the xylanase and cellulose activity of ATxX from pPATxX1 transformant culture medium supernatant were 452.1 U/mg and 19.3 U/mg, respectively. SDS-PAGE analysis revealed that the molecular mass of ATxX was about 33.01 kDa. 3.7% ATxX was bound after incubation with 1% microcrystal cellulose at 25 °C for 3 h, while the ATx did not show cellulose binding-hydrolyzing ability. These results suggested that ATx obtained cellulose binding and hydrolyzing ability by fusing with XBD and LS. Enzymatic studies showed that the temperature and pH optimum of the ATxX xylanase activity were 60 °C and pH 5.0, respectively, which were the same as that of ATx. The temperature and pH optimum of the ATxX cellulase activity were 60 °C and pH 6.0, respectively. The major hydrolytic products released by ATxX from birchwood xylan were xylotriose and xylohexaose. Xylooligosaccharides from xylobiose to xylohexaose could be hydrolyzed by ATxX. Mode of action analysis showed that the chimeric ATxX was an endo-acting enzyme. The XBD and LS plays an important role in the binding and hydrolyzing of xylanase to insoluble substrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  11. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  12. New insights into interactions between the nucleotide‐binding domain of CFTR and keratin 8

    Science.gov (United States)

    Premchandar, Aiswarya; Kupniewska, Anna; Bonna, Arkadiusz; Faure, Grazyna; Fraczyk, Tomasz; Roldan, Ariel; Hoffmann, Brice; Faria da Cunha, Mélanie; Herrmann, Harald; Lukacs, Gergely L.

    2017-01-01

    Abstract The intermediate filament protein keratin 8 (K8) interacts with the nucleotide‐binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508‐CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen–deuterium exchange coupled with mass spectrometry (HDX‐MS) on recombinant wild‐type (wt) NBD1 and ΔF508‐NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt‐NBD1 and ΔF508‐NBD1. Finally, we performed HDX‐MS analysis of the NBD1 molecules and full‐length K8, revealing hydrogen‐bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508‐NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1. PMID:27870250

  13. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    , and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...

  14. The plasminogen binding site of the C-type lectin tetranectin is located in the carbohydrate recognition domain, and binding is sensitive to both calcium and lysine

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Lorentsen, R H; Jacobsen, C

    1998-01-01

    Tetranectin, a homotrimeric protein belonging to the family of C-type lectins and structurally highly related to corresponding regions of the mannose-binding proteins, is known specifically to bind the plasminogen kringle 4 protein domain, an interaction sensitive to lysine. Surface plasmon...

  15. Plasticity of BRCA2 function in homologous recombination: genetic interactions of the PALB2 and DNA binding domains.

    Directory of Open Access Journals (Sweden)

    Nicolas Siaud

    2011-12-01

    Full Text Available The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR. Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.

  16. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB.

    Directory of Open Access Journals (Sweden)

    Elif Nihal Korkmaz

    Full Text Available The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

  17. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition.

    Science.gov (United States)

    Hoverter, Nate P; Zeller, Michael D; McQuade, Miriam M; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M; Hertel, Klemens J; Baldi, Pierre; Waterman, Marian L

    2014-12-16

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Structure of the ankyrin-binding domain of alpha-Na,K-ATPase.

    Science.gov (United States)

    Zhang, Z; Devarajan, P; Dorfman, A L; Morrow, J S

    1998-07-24

    The ankyrin 33-residue repeating motif, an L-shaped structure with protruding beta-hairpin tips, mediates specific macromolecular interactions with cytoskeletal, membrane, and regulatory proteins. The association between ankyrin and alpha-Na,K-ATPase, a ubiquitous membrane protein critical to vectorial transport of ions and nutrients, is required to assemble and stabilize Na,K-ATPase at the plasma membrane. alpha-Na,K-ATPase binds both red cell ankyrin (AnkR, a product of the ANK1 gene) and Madin-Darby canine kidney cell ankyrin (AnkG, a product of the ANK3 gene) utilizing residues 142-166 (SYYQEAKSSKIMESFK NMVPQQALV) in its second cytoplasmic domain. Fusion peptides of glutathione S-transferase incorporating these 25 amino acids bind specifically to purified ankyrin (Kd = 118 +/- 50 nM). The three-dimensional structure (2.6 A) of this minimal ankyrin-binding motif, crystallized as the fusion protein, reveals a 7-residue loop with one charged hydrophilic face capping a double beta-strand. Comparison with ankyrin-binding sequences in p53, CD44, neurofascin/L1, and the inositol 1,4,5-trisphosphate receptor suggests that the valency and specificity of ankyrin binding is achieved by the interaction of 5-7-residue surface loops with the beta-hairpin tips of multiple ankyrin repeat units.

  19. Identification of the magnesium-binding domain of the high affinity ATP binding-site of the Bacillus subtilis and Escherichia coli seca protein

    NARCIS (Netherlands)

    van der Wolk, J.P.W.; Klose, M; de Wit, Janny; Blaauwen, T.den; Freudl, R; Driessen, A.J.M.

    1995-01-01

    The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain

  20. Non-canonical binding interactions of the RNA recognition motif (RRM domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP.

    Directory of Open Access Journals (Sweden)

    Anyango D Kamina

    Full Text Available RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP and P34 binds to 5S ribosomal RNA (rRNA and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  1. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  2. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies.

    Directory of Open Access Journals (Sweden)

    Kevin A Henry

    Full Text Available Staphylococcal protein A (SpA and streptococcal protein G (SpG affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species.

  3. Binding of curcumin and its long chain derivatives to the activator binding domain of novel protein kinase C.

    Science.gov (United States)

    Majhi, Anjoy; Rahman, Ghazi M; Panchal, Shyam; Das, Joydip

    2010-02-15

    Protein kinase C (PKC) is a family of serine/threonine kinases that play a central role in cellular signal transduction. The second messenger diacylglycerol having two long carbon chains acts as the endogenous ligand for the PKCs. Polyphenol curcumin, the active constituent of Curcuma longa is an anti-cancer agent and modulates PKC activity. To develop curcumin derivatives as effective PKC activators, we synthesized several long chain derivatives of curcumin, characterized their absorption and fluorescence properties and studied their interaction with the activator binding second cysteine-rich C1B subdomain of PKCdelta, PKCepsilon and PKCtheta. Curcumin (1) and its C16 long chain analog (4) quenched the intrinsic fluorescence of PKCdeltaC1B, PKCepsilonC1B and PKCthetaC1B in a manner similar to that of PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). The EC(50)s of the curcumin derivatives for fluorescence quenching varied in the range of 4-11 microM, whereas, EC(50)s for TPA varied in the range of 3-6 microM. Fluorescence emission maxima of 1 and 4 were blue shifted and the fluorescence anisotropy values were increased in the presence of the C1B domains in a manner similar to that shown by the fluorescent analog of TPA, sapintoxin-D, confirming that they were bound to the proteins. Molecular docking of 1 and 4 with novel PKC C1B revealed that both the molecules form hydrogen bonds with the protein residues. The present result shows that curcumin and its long chain derivatives bind to the C1B subdomain of novel PKCs and can be further modified structurally to improve its binding and activity. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Molecular dynamics and binding selectivity of nucleotides and polynucleotide substrates with EIF2C2/Ago2 PAZ domain.

    Science.gov (United States)

    Kandeel, Mahmoud; Kitade, Yukio

    2018-02-01

    RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron T. [Northwestern Univ., Evanston, IL (United States); Barupala, Dulmini [Wayne State Univ., Detroit, MI (United States); Stemmler, Timothy L. [Wayne State Univ., Detroit, MI (United States); Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  6. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    Science.gov (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  7. Concentration-dependent binding of CdSe quantum dots on the SH3 domain.

    Science.gov (United States)

    Bell, David R; Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2017-12-21

    Quantum dots (QDs) are being used increasingly in applications for solar panels, consumer electronics, and biomedical imaging. For biomedical applications, QDs are typically coated with a biocompatible molecule for the system of interest. Experiments have indicated a QD dose-dependent and surface coating-dependent toxicity, with a portion of the toxicity being ascribed to interference with biomolecules. In this work, the interaction of trioctylphosphine oxide (TOPO) coated (CdSe) 13 QDs with the SRC homology 3 domain (SH3) protein domain are explored using molecular dynamics simulations. The results of this research agree well with experiments that show that at the lowest concentration, the QDs have little affinity for the native proline-rich motif (PRM) binding site of SH3. At higher concentrations, the QDs aggregate and increasingly prefer the PRM binding site, indicating that the normal SH3 function is impeded. This binding dependence is attributed to changes in the local density of the surface coated TOPO molecules upon aggregation. These results present possible interesting QD toxicity patterns and reveal the interdependence between dose and surface coating effects in QD toxicity.

  8. Roles of N- and C-terminal domains in the ligand-binding properties of cytoglobin.

    Science.gov (United States)

    Hanai, Shumpei; Tsujino, Hirofumi; Yamashita, Taku; Torii, Ryo; Sawai, Hitomi; Shiro, Yoshitsugu; Oohora, Koji; Hayashi, Takashi; Uno, Tadayuki

    2018-02-01

    Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

    Science.gov (United States)

    Leliveld, Sirik Rutger; Dame, Remus Thei; Wuite, Gijs J L; Stitz, Lothar; Korth, Carsten

    2006-02-10

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we have provided a model on how altered molecular interactions between wild-type and mutant PrP set the stage for familial Creutzfeldt Jakob disease with octarepeat insertions. First, we showed that wild-type octarepeat domains interact in a copper-dependent and reversible manner, a "copper switch." This interaction becomes irreversible upon domain expansion, possibly reflecting a loss of function. Second, expanded octarepeat domains of increasing length gradually form homogenous globular multimers of 11-21 nm in the absence of copper ions when expressed as soluble glutathione S-transferase fusion proteins. Third, octarepeat domain expansion causes a gain of function with at least 10 repeats selectively binding PrPSc in a denaturant-resistant complex in the absence of copper ions. Thus, the combination of both a loss and gain of function profoundly influences homomeric interaction behavior of PrP with an expanded octarepeat domain. A multimeric cluster of prion proteins carrying expanded octarepeat domains may therefore capture and incorporate spontaneously arising short-lived PrPSc-like conformers, thereby providing a matrix for their conversion.

  10. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha.

    Science.gov (United States)

    Kulczyk, Arkadiusz W; Yang, Ji-Chun; Neuhaus, David

    2004-08-13

    DNA ligase IIIalpha carries out the final ligation step in the base excision repair (BER) and single strand break repair (SSBR) mechanisms of DNA repair. The enzyme recognises single-strand nicks and other damage features in double-stranded DNA, both through the catalytic domain and an N-terminal domain containing a single zinc finger. The latter is homologous to other zinc fingers that recognise damaged DNA, two in the N terminus of poly(adenosine-ribose)polymerase and three in the N terminus of the Arabidopsis thaliana nick-sensing DNA 3'-phosphoesterase. Here, we present the solution structure of the zinc-finger domain of human DNA ligase IIIalpha, the first structure of a finger from this group. It is related to that of the erythroid transcription factor GATA-1, but has an additional N-terminal beta-strand and C-terminal alpha-helix. Chemical shift mapping using a DNA ligand containing a single-stranded break showed that the DNA-binding surface of the DNA-ligase IIIalpha zinc finger is substantially different from that of GATA-1, consistent with the fact that the two proteins recognise very different features in the DNA. Likely implications for DNA binding are discussed.

  11. The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats.

    Science.gov (United States)

    Cao, Jiani; Sun, Changkai; Zhao, Hui; Xiao, Zhifeng; Chen, Bing; Gao, Jian; Zheng, Tiezheng; Wu, Wei; Wu, Shuang; Wang, Jingyu; Dai, Jianwu

    2011-06-01

    Nerve conduit provides a promising strategy for nerve injury repair in the peripheral nervous system (PNS). However, simply bridging the transected nerve with an empty conduit is hard to satisfy functional recovery. The regenerated axons may disperse during regeneration in the empty lumen, limiting the functional recovery. Our previous work had reported that linear ordered collagen scaffold (LOCS) could be used as a nerve guidance material. Here we cross-linked LOCS fibers with laminin which was a major component of the extracellular matrix in nervous system. Ciliary neurotrophic factor (CNTF) plays a critical role in peripheral nerve regeneration. But the lack of efficient CNTF delivery approach limits its clinical applications. To retain CNTF on the scaffold, a laminin binding domain (LBD) was fused to the N-terminal of CNTF. Compared with NAT-CNTF, LBD-CNTF exhibited specific laminin-binding ability and comparable neurotrophic bioactivity. We combined LBD-CNTF with the laminin modified LOCS fibers to construct a double-functional bio-scaffold. The functional scaffold was filled in silicon conduit and tested in the rat sciatic nerve transection model. Results showed that this functional biomaterial could guide the axon growth, retain more CNTF on the scaffolds and enhance the nerve regeneration as well as functional recovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions.

    Science.gov (United States)

    Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo

    2016-12-01

    Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β) 8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBD Vh ChiA . The recombinant ChBD Vh ChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBD Vh ChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBD Vh ChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Identification of an allosteric binding site for RORγt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Scheepstra, Marcel; Leysen, Seppe; vanAlmen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc (Merck); (Eindhoven)

    2015-12-07

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.

  14. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  15. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    Directory of Open Access Journals (Sweden)

    Kabir Hassan Biswas

    2015-04-01

    Full Text Available GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain. In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.

  16. Two carbohydrate recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity-A unique mannooligosaccharide recognition by N-terminal domain.

    Science.gov (United States)

    Shimokawa, Michiko; Haraguchi, Tomokazu; Minami, Yuji; Yagi, Fumio; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun

    2016-07-01

    Cycas revoluta leaf lectin (CRLL) of mannose-recognizing jacalin-related lectin (mJRL) has two tandem repeated carbohydrate recognition domains, and shows the characteristic sugar-binding specificity toward high mannose-glycans, compared with other mJRLs. We expressed the N-terminal domain and C-terminal domain (CRLL-N and CRLL-C) separately, to determine the fine sugar-binding specificity of each domain, using frontal affinity chromatography, glycan array and equilibrium dialysis. The specificity of CRLL toward high mannose was basically derived from CRLL-N, whereas CRLL-C had affinity for α1-6 extended mono-antennary complex-type glycans. Notably, the affinity of CRLL-N was most potent to one of three Man 8 glycans and Man 9 glycan, whereas the affinity of CRLL-C decreased with the increase in the number of extended α1-2 linked mannose residue. The recognition of the Man 8 glycans by CRLL-N has not been found for other mannose recognizing lectins. Glycan array reflected these specificities of the two domains. Furthermore, it was revealed by equilibrium dialysis method that the each domain had two sugar-binding sites, similar with Banlec, banana mannose-binding Jacalin-related lectin. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. High resolution crystal structures of the receptor-binding domain of Clostridium botulinum neurotoxin serotypes A and FA

    Directory of Open Access Journals (Sweden)

    Jonathan R. Davies

    2018-03-01

    Full Text Available The binding specificity of botulinum neurotoxins (BoNTs is primarily a consequence of their ability to bind to multiple receptors at the same time. BoNTs consist of three distinct domains, a metalloprotease light chain (LC, a translocation domain (HN and a receptor-binding domain (HC. Here we report the crystal structure of HC/FA, complementing an existing structure through the modelling of a previously unresolved loop which is important for receptor-binding. Our HC/FA structure also contains a previously unidentified disulphide bond, which we have also observed in one of two crystal forms of HC/A1. This may have implications for receptor-binding and future recombinant toxin production.

  18. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    DEFF Research Database (Denmark)

    Yatsenko, A S; Kucherenko, M M; Pantoja, M

    2009-01-01

    BACKGROUND: Dystroglycan (Dg) is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC) which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal ......BACKGROUND: Dystroglycan (Dg) is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC) which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C......-terminal PPXY motif has been established as a binding site for Dystrophin (Dys) WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. RESULTS: We now find that both WW binding sites are important for maintaining full Dg...

  19. Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding.

    Science.gov (United States)

    Ota, Azumi; Enoki, Yasuaki; Yamamoto, Noritaka; Sawai, Maki; Sakurai, Hiroshi

    2013-09-01

    Heat shock transcription factor (HSF) regulates the expression of genes encoding molecular chaperones and stress-responsive proteins. Conversion of HSF from a monomer to a homotrimer or heterotrimer is essential for its binding to heat shock elements (HSEs) comprised of inverted repeats of the pentamer nGAAn. Here, we constructed various human HSF1 derivatives and analyzed their transcriptional activity through the continuously and discontinuously arranged nGAAn units. We identified a short stretch of amino acids that inhibits the activation ability of HSF1, especially through discontinuous HSEs. This stretch is conserved in HSFs of various organisms, interacts with the hydrophobic repeat regions that mediate HSF oligomerization, and impedes homotrimer formation and DNA binding. This conserved domain plays an important role in maintaining HSF in an inactive monomeric form. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3

    International Nuclear Information System (INIS)

    Diehl, Carl; Genheden, Samuel; Modig, Kristofer; Ryde, Ulf; Akke, Mikael

    2009-01-01

    The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15 N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15 N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes

  1. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    Energy Technology Data Exchange (ETDEWEB)

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.; (UW)

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  2. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang; (Harvard-Med); (UMM-MED)

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  3. NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat.

    Science.gov (United States)

    Mujeeb, A; Bishop, K; Peterlin, B M; Turck, C; Parslow, T G; James, T L

    1994-01-01

    The Tat protein of human immunodeficiency virus type 1 enhances transcription by binding to a specific RNA element on nascent viral transcripts. Binding is mediated by a 10-amino acid basic domain that is rich in arginines and lysines. Here we report the three-dimensional peptide backbone structure of a biologically active 25-mer peptide that contains the human immunodeficiency virus type 1 Tat basic domain linked to the core regulatory domain of another lentiviral Tat--i.e., that from equine infectious anemia virus. Circular dichroism and two-dimensional proton NMR studies of this hybrid peptide indicate that the Tat basic domain forms a stable alpha-helix, whereas the adjacent regulatory sequence is mostly in extended form. These findings suggest that the tendency to form stable alpha-helices may be a common property of arginine- and lysine-rich RNA-binding domains. Images PMID:8058789

  4. Peptides identify multiple hotspots within the ligand binding domain of the TNF receptor 2

    Directory of Open Access Journals (Sweden)

    Lennick Michael

    2003-01-01

    Full Text Available Abstract Background Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. Results Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75 into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists. Using this approach, we generated peptides which were specific for human TNFR2, could be competed by the natural ligands, TNFα and TNFβ and induced an unexpected biological response in a TNFR2-specific manner. Conclusions To our knowledge, this is the first report describing the dissection of the TNFR2 into biologically active hotspots with the concomitant identification of a novel and unexpected biological activity.

  5. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sun; Li, Shu-Xing; Bren, Nina; Cheng, Kevin; Gomoto, Ryan; Chen, Lin; Sine, Steven M.

    2013-09-01

    To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å2 (1 Å=0.1 nm) of surface area, within which Arg36 and Phe32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr184 from loop-C of α7, while Asp30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr184. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.

  6. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  7. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.

    Science.gov (United States)

    Widlund, Per O; Stear, Jeffrey H; Pozniakovsky, Andrei; Zanic, Marija; Reber, Simone; Brouhard, Gary J; Hyman, Anthony A; Howard, Jonathon

    2011-02-15

    XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215's overall affinity for free tubulin. The mutants' overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a "bonsai" protein, with two TOG domains and a basic region, that has almost full polymerase activity.

  8. Takifugu rubripes cation independent mannose 6-phosphate receptor: Cloning, expression and functional characterization of the IGF-II binding domain.

    Science.gov (United States)

    A, Ajith Kumar; Nadimpalli, Siva Kumar

    2018-01-31

    Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.

  9. Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA

    Czech Academy of Sciences Publication Activity Database

    Vácha, P.; Zusková, Iva; Bumba, Ladislav; Večeř, J.; Obšilová, Veronika; Obšil, T.

    2013-01-01

    Roč. 184, DEC 31 (2013), s. 68-78 ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : binding kinetics * DNA-binding domain * FOXO4 forkhead transcription factor Subject RIV: BO - Biophysics; CE - Biochemistry (MBU-M) Impact factor: 2.319, year: 2013

  10. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  11. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A. (UPENN-MED)

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  12. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...

  13. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin; Peng, Lisheng; Krez, Nadja; Perry, Kay; Shoemaker, Charles B.; Dong, Min; Rummel, Andreas; Jin, Rongsheng (BCH); (Cornell); (Tufts CTSI); (UCI); (MHH)

    2017-08-07

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.

  14. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  15. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  16. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  17. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  18. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  19. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  20. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins.

    Science.gov (United States)

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan

    2017-06-01

    Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Hinderin, a five-domains protein including coiled-coil motifs that binds to SMC3

    Directory of Open Access Journals (Sweden)

    Ghiselli Giancarlo

    2005-01-01

    Full Text Available Abstract Background The structural maintenance of chromosome proteins SMC1 and SMC3 play an important role in the maintenance of chromosomal integrity by preventing the premature separation of the sister chromatids at the onset of anaphase. The two proteins are constitutive components of the multimeric complex cohesin and form dimers by interacting at their central globular regions. Results In order to identify proteins that by binding to SMC3 may interfere with the protein dimerization process, a human cDNA library was screened by the yeast two-hybrid system by using the hinge region of SMC3 as bait. This has lead to the identification of Hinderin, a novel five domains protein including two coiled-coil motifs and sharing a strikingly structural similarity to the SMC family of proteins. Hinderin is ubiquitously expressed in human tissues. Orthologue forms of the protein are present in other vertebrates but not in lower organisms. A mapping of the interaction sites revealed that the N- and C-terminal globular domains mediate the binding of Hinderin to SMC3. Hinderin/SMC3 complexes could be recovered by immunoprecipitation from cell lysates using an anti-SMC3 antibody, thus demonstrating that the two proteins interact in vivo. On the contrary, Hinderin did not interact with SMC1. In vivo the rate of SMC1/SMC3 interaction was decreased by the ectopic expression of Hinderin. Conclusions Hinderin is a novel binding partner of SMC3. Based on its ability to modulate SMC1/SMC3 interaction we postulate that Hinderin affects the availability of SMC3 to engage in the formation of multimeric protein complexes.

  2. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Torsten B. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States); Li, Amy; Liu, Yuen-Joyce [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Gagnon, Etienne [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Institut de Recherche en Immunologie et Cancerologie, Departement de Microbiologie et Immunologie, Universite de Montreal, Montreal, Canada H3T1J4 (Canada); Kobayashi, Koichi S., E-mail: Koichi_Kobayashi@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  3. Changes in the Factor VIII C2 domain upon membrane binding determined by hydrogen-deuterium exchange MS.

    Science.gov (United States)

    Pantazatos, Dionysios; Gessner, Christopher R; Woods, Virgil L; Gilbert, Gary E

    2014-08-01

    Factor VIII enhances the catalytic activity of Factor IXa in a membrane-bound enzyme complex and both proteins are necessary to prevent haemophilia. Tandem lectin-like C domains mediate the membrane binding of Factor VIII and membrane-interactive residues have been identified. However, the available data provide little insight into the dynamic changes that occur upon membrane binding. We used time-based hydrogen-deuterium exchange MS to evaluate the dynamics of FVIII-C2 (Factor VIII C2 domain) alone and when membrane bound. The results confirm the participation of previously identified membrane-interactive loops in the binding mechanism. In addition, they indicate that a long peptide segment, encompassing a membrane-interactive loop and strands of the β-barrel core, is remarkably dynamic prior to membrane binding. The flexibility is reduced following membrane binding. In addition, regions that interact with the A1 and C1 domains have reduced solvent exchange. Thus the isolated C2 domain has extensive flexibility that is subject to stabilization and could be related to interactions between domains as well as between Factor VIII and Factor IXa or Factor X. These results confirm that the proposed membrane-binding loops of the FVIII-C2 interact with the membrane in a manner that leads to protection from solvent exposure.

  4. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: Identification of peptides in the DNA binding domain

    International Nuclear Information System (INIS)

    Farrar, Y.J.K.; Evans, R.K.; Beach, C.M.; Coleman, M.S.

    1991-01-01

    Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32 P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32 P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp 221 -Lys 231 (peptide B8) and Cys 234 -Lys 249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an α-helical array of 39 angstrom which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase β that has been implicated in the binding of DNA template

  5. BuD, a helix–loop–helix DNA-binding domain for genome modification

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  6. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  7. Multimerization of the mouse TATA-binding protein (TBP) driven by its C-terminal conserved domain.

    Science.gov (United States)

    Kato, K; Makino, Y; Kishimoto, T; Yamauchi, J; Kato, S; Muramatsu, M; Tamura, T

    1994-04-11

    The conformational states of the mouse TATA-binding protein (TBP) in solution were studied. A histidine tag and a factor Xa recognition site-carrying mouse TBP was expressed in E. coli, highly purified, and its fundamental functions as a TBP were demonstrated. We analyzed the molecular states of mouse TBP by gel filtration and glycerol gradient sedimentation, and found that TBP forms heterogeneous multimers in solution. Direct binding of TBP molecules to each other was proven by the far-Western procedure. Analyses using TBPs truncated at the N- and C-termini demonstrated that the functionally important C-terminal domain was responsible for homomultimer formation, and the N-terminal domain enhances multimerization. Furthermore, it was found that the TATA sequence dissociates homomultimers, and only monomeric TBP binds to the TATA-box. We suggest that TBP shares structural motifs in the C-terminal conserved domain for intermolecular interaction and TATA-binding.

  8. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  9. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  10. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  11. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    International Nuclear Information System (INIS)

    Struble, E. B.; Gittis, A. G.; Bianchet, M. A.; McMacken, R.

    2007-01-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure

  12. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several...... mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  13. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    Energy Technology Data Exchange (ETDEWEB)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-09-08

    Abstract

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.

  14. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes.

    Science.gov (United States)

    Maurer, Lisa M; Tomasini-Johansson, Bianca R; Ma, Wenjiang; Annis, Douglas S; Eickstaedt, Nathan L; Ensenberger, Martin G; Satyshur, Kenneth A; Mosher, Deane F

    2010-12-24

    The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.

  15. Characterization of the PB2 Cap Binding Domain Accelerates Inhibitor Design

    Directory of Open Access Journals (Sweden)

    Amanda E. Constantinides

    2018-01-01

    Full Text Available X-ray crystallographic structural determinations of the PB2 cap binding domain (PB2cap have improved the conformational characterization of the RNA-dependent RNA polymerase machinery (PA, PB2, and PB1 of the influenza virus. Geometrically, the catalytic PB1 subunit resembles the palm of a human hand. PA lies near the thumb region, and PB2 lies near the finger region. PB2 binds the cap moiety in the pre-mRNA of the host cell, while the endonuclease of PA cleaves the pre-mRNA 10–13 nucleotides downstream. The truncated RNA piece performs as a primer for PB1 to synthesize the viral mRNA. Precisely targeting PB2cap with a small molecule inhibitor will halt viral proliferation via interference of the cap-snatching activity. Wild-type and mutant PB2cap from A/California/07/2009 H1N1 were expressed in Escherichia coli, purified by nickel affinity and size exclusion chromatography, crystallized, and subjected to X-ray diffraction experiments. The crystal of mutant PB2cap liganded with m7GTP was prepared by co-crystallization. Structures were solved by the molecular replacement method, refined, and deposited in the Protein Data Bank (PDB. Structural determination and comparative analyses of these structures revealed the functions of Glu361, Lys376, His357, Phe404, Phe323, Lys339, His432, Asn429, Gln406, and Met401 in PB2cap, and the dissociation of the influenza A PB2cap C-terminal subdomain (residues 446–479 upon ligand binding. Understanding the role of these residues will aid in the ultimate development of a small-molecule inhibitor that binds both Influenza A and B virus PB2cap.

  16. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi; Wang, Zhongduo; Hou, Feng; Harding, Rachel; Huang, Xinyi; Dong, Aiping; Walker, John R.; Tong, Yufeng

    2017-01-01

    Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.

  17. De novo design and engineering of functional metal and porphyrin-binding protein domains

    Science.gov (United States)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  18. Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain ...

    Indian Academy of Sciences (India)

    The investigation of transcription factor (TF) families is a major focus of postgenomic research. The plant-specific ASYMMETRIC LEAVES2-LIKE (ASL) / LATERAL ORGAN BOUNDARIES Domain (LBD) proteins constitute a major zincfinger-like-domain transcription factor family, and regulate diverse biological processes in ...

  19. Characterization and Functional Analysis of the Calmodulin-Binding Domain of Rac1 GTPase

    Science.gov (United States)

    Xu, Bing; Chelikani, Prashen; Bhullar, Rajinder P.

    2012-01-01

    Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s) in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151–164 in Rac1 is essential for calmodulin binding. Within the 151–164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A) demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A), activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration. PMID:22905193

  20. Characterization and functional analysis of the calmodulin-binding domain of Rac1 GTPase.

    Directory of Open Access Journals (Sweden)

    Bing Xu

    Full Text Available Rac1, a member of the Rho family of small GTPases, has been shown to promote formation of lamellipodia at the leading edge of motile cells and affect cell migration. We previously demonstrated that calmodulin can bind to a region in the C-terminal of Rac1 and that this interaction is important in the activation of platelet Rac1. Now, we have analyzed amino acid residue(s in the Rac1-calmodulin binding domain that are essential for the interaction and assessed their functional contribution in Rac1 activation. The results demonstrated that region 151-164 in Rac1 is essential for calmodulin binding. Within the 151-164 region, positively-charged amino acids K153 and R163 were mutated to alanine to study impact on calmodulin binding. Mutant form of Rac1 (K153A demonstrated significantly reduced binding to calmodulin while the double mutant K153A/R163A demonstrated complete lack of binding to calmodulin. Thrombin or EGF resulted in activation of Rac1 in CHRF-288-11 or HeLa cells respectively and W7 inhibited this activation. Immunoprecipitation studies demonstrated that higher amount of CaM was associated with Rac1 during EGF dependent activation. In cells expressing mutant forms of Rac1 (K153A or K153A/R163A, activation induced by EGF was significantly decreased in comparison to wild type or the R163A forms of Rac1. The lack of Rac1 activation in mutant forms was not due to an inability of GDP-GTP exchange or a change in subcelllular distribution. Moreover, Rac1 activation was decreased in cells where endogenous level of calmodulin was reduced using shRNA knockdown and increased in cells where calmodulin was overexpressed. Docking analysis and modeling demonstrated that K153 in Rac1 interacts with Q41 in calmodulin. These results suggest an important role for calmodulin in the activation of Rac1 and thus, in cytoskeleton reorganization and cell migration.

  1. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms.

    Science.gov (United States)

    Durocher, D; Taylor, I A; Sarbassova, D; Haire, L F; Westcott, S L; Jackson, S P; Smerdon, S J; Yaffe, M B

    2000-11-01

    Forkhead-associated (FHA) domains are a class of ubiquitous signaling modules that appear to function through interactions with phosphorylated target molecules. We have used oriented peptide library screening to determine the optimal phosphopeptide binding motifs recognized by several FHA domains, including those within a number of DNA damage checkpoint kinases, and determined the X-ray structure of Rad53p-FHA1, in complex with a phospho-threonine peptide, at 1.6 A resolution. The structure reveals a striking similarity to the MH2 domains of Smad tumor suppressor proteins and reveals a mode of peptide binding that differs from SH2, 14-3-3, or PTB domain complexes. These results have important implications for DNA damage signaling and CHK2-dependent tumor suppression, and they indicate that FHA domains play important and unsuspected roles in S/T kinase signaling mechanisms in prokaryotes and eukaryotes.

  2. N1421K mutation in the glycoprotein Ib binding domain impairs ristocetin- and botrocetin-mediated binding of von Willebrand factor to platelets

    DEFF Research Database (Denmark)

    Lanke, E.; Kristoffersson, A.C.; Isaksson, C.

    2008-01-01

    , moderately decreased plasma factor VIII (FVIII) and VWF levels, and disproportionately low-plasma VWF:RCo levels. The patients were found to be heterozygous for the novel N1421K mutation, caused by a 4263C > G transversion in exon 28 of the VWF gene coding for the A1 domain. Botrocetin- and ristocetin-mediated...... binding of plasma VWF to GPIb were reduced in the patients. In vitro mutagenesis and expression in COS-7 cells confirmed the impairment of the mutant in botrocetin- and ristocetin-mediated VWF binding to GPIb. VWF collagen binding capacity was unaffected in plasma from the heterozygous individuals as well...

  3. Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains

    Directory of Open Access Journals (Sweden)

    Han-Ha Chai

    2014-05-01

    Full Text Available The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4 when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure

  4. Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain.

    Science.gov (United States)

    Becker, Stephen C; Swift, Steven; Korobova, Olga; Schischkova, Nina; Kopylov, Pavel; Donovan, David M; Abaev, Igor

    2015-01-01

    Increases in the prevalence of antibiotic-resistant strains of Staphylococcus aureus have elicited efforts to develop novel antimicrobials to treat these drug-resistant pathogens. One potential treatment repurposes the lytic enzymes produced by bacteriophages as antimicrobials. The phage Twort endolysin (PlyTW) harbors three domains, a cysteine, histidine-dependent amidohydrolases/peptidase domain (CHAP), an amidase-2 domain and a SH3b-5 cell wall binding domain (CBD). Our results indicate that the CHAP domain alone is necessary and sufficient for lysis of live S. aureus, while the amidase-2 domain is insufficient for cell lysis when provided alone. Loss of the CBD results in ∼10X reduction of enzymatic activity in both turbidity reduction and plate lysis assays compared to the full length protein. Deletion of the amidase-2 domain resulted in a protein (PlyTW Δ172-373) with lytic activity that exceeded the activity of the full length construct in both the turbidity reduction and plate lysis assays. Addition of Ca(2+) enhanced the turbidity reduction activity of both the full length protein and truncation constructs harboring the CHAP domain. Chelation by addition of EDTA or the addition of zinc inhibited the activity of all PlyTW constructs. Published by Oxford University Press on behalf of FEMS 2014. This work is written by US Government employees and is in the public domain in the US.

  5. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily

    DEFF Research Database (Denmark)

    Bikker, Floris J; Ligtenberg, Antoon J M; Nazmi, Kamran

    2002-01-01

    SRCR domains that are separated by SRCR-interspersed domains (SIDs), 2 CUB (C1r/C1s Uegf Bmp1) domains, and a zona pellucida domain. We have searched for the peptide domains of agglutinin/DMBT1 responsible for bacteria binding. Digestion with endoproteinase Lys-C resulted in a protein fragment...

  6. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  7. Maturation of Shark Single-Domain (IgNAR) Antibodies: Evidence for Induced-Fit Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stanfield, R.L.; Dooley, H.; Verdino, P.; Flajnik, M.F.; Wilson, I.A.; /Scripps Res. Inst. /Maryland U.

    2007-07-13

    Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts with antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.

  8. Estimating Parameter Uncertainty in Binding-Energy Models by the Frequency-Domain Bootstrap

    Science.gov (United States)

    Bertsch, G. F.; Bingham, Derek

    2017-12-01

    We propose using the frequency-domain bootstrap (FDB) to estimate errors of modeling parameters when the modeling error is itself a major source of uncertainty. Unlike the usual bootstrap or the simple χ2 analysis, the FDB can take into account correlations between errors. It is also very fast compared to the Gaussian process Bayesian estimate as often implemented for computer model calibration. The method is illustrated with a simple example, the liquid drop model of nuclear binding energies. We find that the FDB gives a more conservative estimate of the uncertainty in liquid drop parameters than the χ2 method, and is in fair accord with more empirical estimates. For the nuclear physics application, there are no apparent obstacles to apply the method to the more accurate and detailed models based on density-functional theory.

  9. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle - Cell Wall Binding Domain (CBD) Conjugates.

    Science.gov (United States)

    Kim, Domyoung; Kwon, Seok Joon; Wu, Xia; Sauve, Jessica; Lee, Inseon; Nam, Jahyun; Kim, Jungbae; Dordick, Jonathan S

    2018-04-05

    Broad-spectrum antibiotics indiscriminately kill bacteria, removing non-pathogenic microorganisms and leading to evolution of antibiotic resistant strains. Specific antimicrobials that could selectively kill pathogenic bacteria without targeting other bacteria in the natural microbial community or microbiome may be able to address this concern. In this work, we demonstrate that silver nanoparticles, suitably conjugated to a selective cell wall binding domain (CBD), can efficiently target and selectively kill bacteria. As a relevant example, CBDBA from Bacillus anthracis selectively bound to B. anthracis in a mixture with B. subtilis, as well in a mixture with Staphylococcus aureus. This new biologically-assisted hybrid strategy, therefore, has the potential to provide selective decontamination of pathogenic bacteria with minimal impact on normal microflora.

  10. Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains

    Directory of Open Access Journals (Sweden)

    Donald R. Shaffer

    2014-01-01

    Full Text Available Chimeric antigen receptors (CARs are increasingly being used in clinical trials to treat a variety of malignant conditions and recent results with CD19-specific CARs showing complete tumor regressions has sparked the interest of researchers and the public alike. Traditional CARs have been generated using single-chain variable fragments (scFv, often derived from murine monoclonal antibodies, for antigen specificity. As the clinical experience with CAR T cells grows, so does the potential for unwanted immune responses against the foreign transgene. Strategies that may reduce the immunogenicity of CAR T cells are humanization of the scFv and the use of naturally occurring receptor ligands as antigen-binding domains. Herein, we review the experience with alternatively designed CARs that contain receptor ligands rather than scFv. While most of the experiences have been in the pre-clinical setting, clinical data is also emerging.

  11. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  12. Solution structure and molecular determinants of hemoglobin binding of the first NEAT domain of IsdB in Staphylococcus aureus.

    Science.gov (United States)

    Fonner, Brittany A; Tripet, Brian P; Eilers, Brian J; Stanisich, Jessica; Sullivan-Springhetti, Rose K; Moore, Rebecca; Liu, Mengyao; Lei, Benfang; Copié, Valérie

    2014-06-24

    The human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series of iron-regulated surface determinant (Isd) proteins. The cell wall anchored IsdB protein is recognized as the predominant Hb receptor, and is comprised of two NEAr transporter (NEAT) domains that act in concert to bind, extract, and transfer heme from Hb to downstream Isd proteins. Structural details of the NEAT 2 domain of IsdB have been investigated, but the molecular coordination between NEAT 2 and NEAT 1 to extract heme from hemoglobin has yet to be characterized. To obtain a more complete understanding of IsdB structure and function, we have solved the 3D solution structure of the NEAT 1 domain of IsdB (IsdB(N1)) spanning residues 125-272 of the full-length protein by NMR. The structure reveals a canonical NEAT domain fold and has particular structural similarity to the NEAT 1 and NEAT 2 domains of IsdH, which also interact with Hb. IsdB(N1) is also comprised of a short N-terminal helix, which has not been previously observed in other NEAT domain structures. Interestingly, the Hb binding region (loop 2 of IsdB(N1)) is disordered in solution. Analysis of Hb binding demonstrates that IsdB(N1) can bind metHb weakly and the affinity of this interaction is further increased by the presence of IsdB linker domain. IsdB(N1) loop 2 variants reveal that phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid heme transfer from metHb to IsdB. Together, these findings provide a structural role for IsdB(N1) in enhancing the rate of extraction of metHb heme by the IsdB NEAT 2 domain.

  13. CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk.

    Science.gov (United States)

    Peters, Nils; Opherk, Christian; Zacherle, Simone; Capell, Anja; Gempel, Petra; Dichgans, Martin

    2004-10-01

    Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL. Copyright 2004 Elsevier Inc.

  14. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R

    2000-01-01

    in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element...

  15. Urokinase-type plasminogen activator-like proteases in teleosts lack genuine receptor-binding epidermal growth factor-like domains

    DEFF Research Database (Denmark)

    Bager, René; Kristensen, Thomas K.; Jensen, Jan

    2012-01-01

    PA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could...

  16. A second tubulin binding site on the kinesin-13 motor head domain is important during mitosis.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available Kinesin-13s are microtubule (MT depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2 on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.

  17. Methyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila.

    Science.gov (United States)

    Gupta, Tarun; Morgan, Hannah R; Andrews, Jonathan C; Brewer, Edmond R; Certel, Sarah J

    2017-07-14

    Reproductive isolation and speciation are driven by the convergence of environmental and genetic variation. The integration of these variation sources is thought to occur through epigenetic marks including DNA methylation. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA and interpret epigenetic marks, providing a dynamic yet evolutionarily adapted cellular output. Here, we report the Drosophila MBD-containing proteins, dMBD-R2 and dMBD2/3, contribute to reproductive isolation and survival behavioral strategies. Drosophila melanogaster males with a reduction in dMBD-R2 specifically in octopamine (OA) neurons exhibit courtship toward divergent interspecies D. virilis and D. yakuba females and a decrease in conspecific mating success. Conspecific male-male courtship is increased between dMBD-R2-deficient males while aggression is reduced. These changes in adaptive behavior are separable as males with a hypermethylated OA neuronal genome exhibited a decrease in aggression without altering male-male courtship. These results suggest Drosophila MBD-containing proteins are required within the OA neural circuitry to inhibit interspecies and conspecific male-male courtship and indicate that the genetically hard-wired neural mechanisms enforcing behavioral reproductive isolation include the interpretation of the epigenome.

  18. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    Science.gov (United States)

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus.

  19. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    Science.gov (United States)

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G

    Science.gov (United States)

    Gronenborn, Angela M.; Filpula, David R.; Essig, Nina Z.; Achari, Aniruddha; Whitlow, Marc; Wingfield, Paul T.; Marius Clore, G.

    1991-08-01

    The high-resolution three-dimensional structure of a single immunoglobulin binding domain (B1, which comprises 56 residues including the NH_2-terminal Met) of protein G from group G Streptococcus has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1058 experimental restraints. The average atomic root-mean-square distribution about the mean coordinate positions is 0.27 angstrom (overset{circ}{mathrm A}) for the backbone atoms, 0.65 overset{circ}{mathrm A} for all atoms, and 0.39 overset{circ}{mathrm A} for atoms excluding disordered surface side chains. The structure has no disulfide bridges and is composed of a four-stranded β sheet, on top of which lies a long helix. The central two strands (β 1 and β 4), comprising the NH_2- and COOH-termini, are parallel, and the outer two strands (β 2 and β 3) are connected by the helix in a +3x crossover. This novel topology (-1, +3x, -1), coupled with an extensive hydrogen-bonding network and a tightly packed and buried hydrophobic core, is probably responsible for the extreme thermal stability of this small domain (reversible melting at 87^circC).

  1. Thermodynamics of the ATPase cycle of GlcV, the nucleotide-binding domain of the glucose ABC transporter of Sulfolobus solfataricus

    NARCIS (Netherlands)

    Pretz, Monika G.; Albers, Sonja-Verena; Schuurman-Wolters, Gea; Tampe, Robert; Driessen, Arnold J. M.; van der Does, Chris

    2006-01-01

    ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains ( NBDs) that energize the

  2. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nuemket, Nipawan [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu [Creative Research Institution ' Sousei,' Hokkaido University, Sapporo 001-0021 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tsukamoto, Kentaro; Tsuji, Takao [Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192 (Japan); Nakamura, Keiji; Kozaki, Shunji [Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531 (Japan); Yao, Min [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao, E-mail: tanaka@castor.sci.hokudai.ac.jp [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2011-07-29

    Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  3. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    International Nuclear Information System (INIS)

    Nuemket, Nipawan; Tanaka, Yoshikazu; Tsukamoto, Kentaro; Tsuji, Takao; Nakamura, Keiji; Kozaki, Shunji; Yao, Min; Tanaka, Isao

    2011-01-01

    Highlights: → We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. → An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. → Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. → A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  4. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  5. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    Directory of Open Access Journals (Sweden)

    Jörg Schaarschmidt

    Full Text Available Glycoprotein hormone receptors (GPHR have a large extracellular domain (ECD divided into the leucine rich repeat (LRR domain for binding of the glycoprotein hormones and the hinge region (HinR, which connects the LRR domain with the transmembrane domain (TMD. Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR can be replaced by those of the follitropin (FSHR and lutropin receptor (LHCGR without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.

  6. Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization.

    Science.gov (United States)

    McCullough, Laura L; Connell, Zaily; Xin, Hua; Studitsky, Vasily M; Feofanov, Alexey V; Valieva, Maria E; Formosa, Tim

    2018-03-07

    The essential histone chaperone FAcilitates Chromatin Transcription (FACT) promotes both nucleosome assembly and disassembly. FACT is a heterodimer of Spt16 with either SSRP1 or Pob3, differing primarily by the presence of a high-mobility group B (HMGB) DNA-binding domain furnished only by SSRP1. Yeast FACT lacks the intrinsic HMGB domain found in SSRP1-based homologs such as human FACT, but yeast FACT activity is supported by Nhp6, which is a freestanding, single HMGB domain protein. The importance of histone binding by FACT domains has been established, but the roles of DNA binding activity remain poorly understood. Here, we examined these roles by fusing single or multiple HMGB modules to Pob3 to mimic SSRP1 or to test the effects of extended DNA-binding capacity. Human FACT and a yeast mimic both required Nhp6 to support nucleosome reorganization in vitro, indicating that a single intrinsic DNA-binding HMGB module is insufficient for full FACT activity. Three fused HMGB modules supported activity without Nhp6 assistance, but this FACT variant did not efficiently release from nucleosomes and was toxic in vivo. Notably, intrinsic DNA-binding HMGB modules reduced the DNA accessibility and histone H2A-H2B dimer loss normally associated with nucleosome reorganization. We propose that DNA bending by HMGB domains promotes nucleosome destabilization and reorganization by exposing FACT's histone binding sites, but DNA bending also produces DNA curvature needed to accommodate nucleosome assembly. Intrinsic DNA bending activity therefore favors nucleosome assembly by FACT over nucleosome reorganization, but excessive activity impairs FACT release, suggesting a quality control checkpoint during nucleosome assembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Oligomerization domains in the glycan-binding receptors DC-SIGN and DC-SIGNR: Sequence variation and stability differences.

    Science.gov (United States)

    Dos Santos, Ália; Hadjivasiliou, Andreas; Ossa, Felipe; Lim, Novandy K; Turgut, Aylin; Taylor, Maureen E; Drickamer, Kurt

    2017-02-01

    Human dendritic cell-specific intercellular adhesion molecule-1 grabbing nonintegrin, DC-SIGN, and the sinusoidal endothelial cell receptor DC-SIGNR or L-SIGN, are closely related sugar-binding receptors. DC-SIGN acts both as a pathogen-binding endocytic receptor and as a cell adhesion molecule, while DC-SIGNR has only the pathogen-binding function. In addition to differences in the sugar-binding properties of the carbohydrate-recognition domains in the two receptors, there are sequence differences in the adjacent neck domains, which are coiled-coil tetramerization domains comprised largely of 23-amino acid repeat units. A series of model polypeptides consisting of uniform repeat units have been characterized by gel filtration, differential scanning calorimetry and circular dichroism. The results demonstrate that two features characterize repeat units which form more stable tetramers: a leucine reside in the first position of the heptad pattern of hydrophobic residues that pack on the inside of the coiled coil and an arginine residue on the surface of the coiled coil that forms a salt bridge with a glutamic acid residue in the same polypeptide chain. In DC-SIGNR from all primates, very stable repeat units predominate, so the carbohydrate-recognition domains must be held relatively closely together. In contrast, stable repeat units are found only near the membrane in DC-SIGN. The presence of residues that disrupt tetramer formation in repeat units near the carbohydrate-recognition domains of DC-SIGN would allow these domains to splay further apart. Thus, the neck domains of DC-SIGN and DC-SIGNR can contribute to the different functions of these receptors by presenting the sugar-binding sites in different contexts. © 2016 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  8. High integrin αVβ6affinity reached by hybrid domain deletion slows ligand-binding on-rate.

    Science.gov (United States)

    Dong, Xianchi; Zhao, Bo; Lin, Fu-Yang; Lu, Chafen; Rogers, Bruce N; Springer, Timothy A

    2018-02-13

    The role of the hybrid domain in integrin affinity regulation is unknown, as is whether the kinetics of ligand binding is modulated by integrin affinity state. Here, we compare cell surface and soluble integrin α V β 6 truncation mutants for ligand-binding affinity, kinetics, and thermodynamics. Removal of the integrin transmembrane/cytoplasmic domains or lower legs has little effect on α V β 6 affinity, in contrast to β 1 integrins. In integrin opening, rearrangement at the interface between the βI and hybrid domains is linked to remodeling at the ligand-binding site at the opposite end of the βI domain, which greatly increases in affinity in the open conformation. The larger size of the βI-hybrid interface in the closed state suggests that the hybrid domain stabilizes closing. In agreement, deletion of the hybrid domain raised affinity by 50-fold. Surface plasmon resonance and isothermal titration calorimetry gave similar results and the latter revealed tradeoffs between enthalpy and entropy not apparent from affinity. At extremely high affinity reached in Mn 2+ with hybrid domain truncation, α V β 6 on-rate for both pro-TGF-β1 and fibronectin declined. The results suggest that the open conformation of α V β 6 has lower on-rate than the closed conformation, correlate with constriction of the ligand-binding pocket in open α V β 6 structures, and suggest that the extended-closed conformation is kinetically selected for ligand binding. Subsequent transition to the extended-open conformation is stabilized by its much higher affinity for ligand and would also be stabilized by force exerted across ligand-bound integrins by the actin cytoskeleton.

  9. Phage Endolysin: A Way To Understand A Binding Function Of C-Terminal Domains A Mini Review

    Directory of Open Access Journals (Sweden)

    Jarábková Veronika

    2015-12-01

    Full Text Available Endolysins are bacteriophage-encoded peptidoglycan hydrolases, which are synthesized in the end of phage reproduction cycle, in an infected host cell. Usually, for endolysins from phages that infect Gram-positive bacteria, a modular structure is typical. Therefore, these are composed of at least two separate functional domains: an N-terminal catalytic domain (EAD and a C-terminal cell wall binding domain (CBD. Specific ligand recognition of CBDs and following peptidoglycan (PG binding mostly allows a rapid lytic activity of an EAD. Here we briefly characterize phage endolysin CBDs in conjuction with their domain architecture, (nonnecessity for the following lytic activity and a high/low specificity of their ligands as well. Such an overall assessment of CBDs may help to find new ways to widen opportunities in their protein design to create ‛designer recombinant endolysins’ with diverse applications.

  10. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus.

    Science.gov (United States)

    Pluym, Mark; Muryoi, Naomi; Heinrichs, David E; Stillman, Martin J

    2008-03-01

    Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.

  11. Anti-HIV double variable domain immunoglobulins binding both gp41 and gp120 for targeted delivery of immunoconjugates.

    Directory of Open Access Journals (Sweden)

    Ryan B Craig

    Full Text Available BACKGROUND: Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs that bind to both epitopes. METHODS: Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells. FINDINGS: The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK](nA resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS](n. In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent. CONCLUSIONS: DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.

  12. Interdomain Linker Determines Primarily the Structural Stability of Dystrophin and Utrophin Tandem Calponin-Homology Domains Rather than Their Actin-Binding Affinity.

    Science.gov (United States)

    Bandi, Swati; Singh, Surinder M; Mallela, Krishna M G

    2015-09-08

    Tandem calponin-homology (CH) domains are the most common actin-binding domains in proteins. However, structural principles underlying their function are poorly understood. These tandem domains exist in multiple conformations with varying degrees of inter-CH-domain interactions. Dystrophin and utrophin tandem CH domains share high sequence similarity (∼82%), yet differ in their structural stability and actin-binding affinity. We examined whether the conformational differences between the two tandem CH domains can explain differences in their stability and actin binding. Dystrophin tandem CH domain is more stable by ∼4 kcal/mol than that of utrophin. Individual CH domains of dystrophin and utrophin have identical structures but differ in their relative orientation around the interdomain linker. We swapped the linkers between dystrophin and utrophin tandem CH domains. Dystrophin tandem CH domain with utrophin linker (DUL) has similar stability as that of utrophin tandem CH domain. Utrophin tandem CH domain with dystrophin linker (UDL) has similar stability as that of dystrophin tandem CH domain. Dystrophin tandem CH domain binds to F-actin ∼30 times weaker than that of utrophin. After linker swapping, DUL has twice the binding affinity as that of dystrophin tandem CH domain. Similarly, UDL has half the binding affinity as that of utrophin tandem CH domain. However, changes in binding free energies due to linker swapping are much lower by an order of magnitude compared to the corresponding changes in unfolding free energies. These results indicate that the linker region determines primarily the structural stability of tandem CH domains rather than their actin-binding affinity.

  13. Cooperative phosphoinositide and peptide binding by PSD-95/discs large/ZO-1 (PDZ) domain of polychaetoid, Drosophila zonulin.

    Science.gov (United States)

    Ivarsson, Ylva; Wawrzyniak, Anna Maria; Wuytens, Gunther; Kosloff, Mickey; Vermeiren, Elke; Raport, Marie; Zimmermann, Pascale

    2011-12-30

    PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.

  14. Influence of transposition and insertion of additional binding domain on expression and characteristics of xylanase C of Clostridium thermocellum.

    Science.gov (United States)

    Khan, M Imran Mahmood; Sajjad, Muhammad; Ali, Imran; Ahmad, Sajjad; Akhtar, M Waheed

    2010-10-01

    Clostridium thermocellum encodes a xylanase gene (xynC) which is the major component of its cellulosome. XynC is a multidomain enzyme comprising of a substrate binding domain at the N-terminal followed by the catalytic domain and a dockerin domain. To study the influence of binding domain on activity, stability and expression of the enzyme the protein with the binding domain at C-terminal (XynC-CB), and the one with the binding domain at both N- and C-terminal (XynC-BCB) were expressed in E. coli. Recombinant plasmids, pXynC-CB and pXynC-BCB were constructed by inserting the corresponding gene in pET22b(+). XynC-CB and XynC-BCB were expressed at levels around 30% and 33% of the total E. coli cell proteins, respectively, while losing 40% and 20% of their activities at 70°C for 120 min, respectively. The specific activities of XynC-CB, XynC-BCB were 76 and 98 U mg(-1), while the activities on equimolar basis were 4410 and 7450 U μM(-1) against birchwood xylan, respectively. Their overall activities produced in the culture were 3660 and 5430 U L(-1) OD(600)(-1). Substrate binding studies showed that in case of XynC-C 51% of the activity remained unbound to birchwood xylan, whereas in the cases of XynC-BC, XynC-CB and XynC-BCB the activities left unbound were 33%, 32% and 12%, respectively, under the assay conditions used. Similar binding values were obtained in the case of oat spelt xylan. K(m) values for XynC-CB and XynC-BCB against birchwood xylan were found to be 3.1 and 1.47 mg ml(-1), respectively. Thus addition of a second carbohydrate binding domain at the C-terminal of the catalytic domain enhances activity, substrate affinity as well as thermostability. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Phosphoinositide binding regulates α-actinin CH2 domain structure: Analysis by hydrogen/deuterium exchange mass spectrometry

    Science.gov (United States)

    Full, Stephen J.; Deinzer, Max L.; Ho, P. Shing; Greenwood, Jeffrey A.

    2007-01-01

    α-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P2) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P3) bind to the calponin homology 2 domain of α-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates α-actinin function using mass spectrometry to monitor hydrogen–deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P3 binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P2 induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P3 also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of α-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P3 perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length α-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors. PMID:17965186

  16. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Full, Stephen J; Deinzer, Max L; Ho, P Shing; Greenwood, Jeffrey A

    2007-12-01

    alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.

  17. Redox-linked Gating of Nucleotide Binding by the N-terminal Domain of Adenosine 5′-Phosphosulfate Kinase*

    Science.gov (United States)

    Ravilious, Geoffrey E.; Westfall, Corey S.; Jez, Joseph M.

    2013-01-01

    Adenosine 5′-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5′-phosphosulfate (APS) to 3′-phosphoadenosine-5′-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys86–Cys119). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg93 as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity. PMID:23322773

  18. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    International Nuclear Information System (INIS)

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-01-01

    Highlights: ► The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. ► The fusion enzyme was stable at 80 °C for 120-min. ► The fusion enzyme was responsible for cellulose-binding capacity. ► The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS–PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  19. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com [Department of Biological Science, Faculty of Science, Ubon-Ratchathani University, Warinchumrab, Ubon-Ratchathani 34190 (Thailand); Ikeda, Hiroko; Iefuji, Haruyuki [Application Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  20. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation.

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z

    2015-04-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting that the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  2. Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300.

    Science.gov (United States)

    Denis, Christopher M; Langelaan, David N; Kirlin, Alyssa C; Chitayat, Seth; Munro, Kim; Spencer, Holly L; LeBrun, David P; Smith, Steven P

    2014-06-01

    The E-protein transcription factors play essential roles in lymphopoiesis, with E12 and E47 (hereafter called E2A) being particularly important in B cell specification and maturation. The E2A gene is also involved in a chromosomal translocation that results in the leukemogenic oncoprotein E2A-PBX1. The two activation domains of E2A, AD1 and AD2, display redundant, independent, and cooperative functions in a cell-dependent manner. AD1 of E2A functions by binding the transcriptional co-activator CBP/p300; this interaction is required in oncogenesis and occurs between the conserved ϕ-x-x-ϕ-ϕ motif in AD1 and the KIX domain of CBP/p300. However, co-activator recruitment by AD2 has not been characterized. Here, we demonstrate that the first of two conserved ϕ-x-x-ϕ-ϕ motifs within AD2 of E2A interacts at the same binding site on KIX as AD1. Mutagenesis uncovered a correspondence between the KIX-binding affinity of AD2 and transcriptional activation. Although AD2 is dispensable for oncogenesis, experimentally increasing the affinity of AD2 for KIX uncovered a latent potential to mediate immortalization of primary hematopoietic progenitors by E2A-PBX1. Our findings suggest that redundancy between the two E2A activation domains with respect to transcriptional activation and oncogenic function is mediated by binding to the same surface of the KIX domain of CBP/p300. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97.

    Science.gov (United States)

    Chang, Yoonjee; Ryu, Sangryeol

    2017-01-01

    Endolysin from Staphylococcus aureus phage SA97 (LysSA97) was cloned and investigated. LysSA97 specifically lyse the staphylococcal strains and effectively disrupted staphylococcal biofilms. Bioinformatic analysis of LysSA97 revealed a novel putative cell wall binding domain (CBD) as well as two enzymatically active domains (EADs) containing cysteine, histidine-dependent amidohydrolases/peptidases (CHAP, PF05257) and N-acetylmuramoyl-L-alanine amidase (Amidase-3, PF01520) domains. Comparison of 98 endolysin genes of S. aureus phages deposited in GenBank showed that they can be classified into six groups based on their domain composition. Interestingly, approximately 80.61 % of the staphylococcal endolysins have a src-homology 3 (SH3, PF08460) domain as CBD, but the remaining 19.39 %, including LysSA97, has a putative C-terminal CBD with no homology to the known CBD. The fusion protein containing green fluorescent protein and the putative CBD of LysSA97 showed a specific binding spectrum against staphylococcal cells comparable to SH3 domain (PF08460), suggesting that the C-terminal domain of LysSA97 is a novel CBD of staphylococcal endolysins.

  4. Simulation of the coupling between nucleotide binding and transmembrane domains in the ABC transporter BtuCD

    DEFF Research Database (Denmark)

    Sonne, Jacob; Kandt, C.; Peters, Günther H.j.

    2007-01-01

    binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B12 to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B12 from the transporter pore....

  5. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains

    NARCIS (Netherlands)

    Logan, N.; Delavaine, L.; Graham, A.; Reilly, C.; Wilson, J.; Brummelkamp, T.R.; Hijmans, E.M.; Bernards, R.A.; Thangue, N.B. La

    2004-01-01

    The E2F family of transcription factors play an important role in regulating cell cycle progression. We report here the characterization and functional properties of a new member of the human E2F family, referred to as E2F-7. E2F-7 has two separate DNA-binding domains, a feature that distinguishes

  6. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris

    Science.gov (United States)

    Catalytic properties of the two glucoamylases, AmyC and AmyD, without starch binding domains from Rhizopus oryzae strain 99-880 were heterologously expressed and purified to homogeneity. AmyC and AmyD demonstrate pH optima of 5.5 and 6.0, respectively, nearly 1 unit higher than most fungal glucoamy...

  7. Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants

    NARCIS (Netherlands)

    Ji, Q.; Oomen, R.J.F.J.; Vincken, J.P.; Bolam, D.N.; Gilbert, H.J.; Suurs, L.C.J.M.; Visser, R.G.F.

    2004-01-01

    Granule size is an important parameter when using starch in industrial applications. An artificial tandem repeat of a family 20 starch-binding domain (SBD2) was engineered by two copies of the SBD derived from Bacillus circulans cyclodextrin glycosyltransferase via the Pro-Thr-rich linker peptice

  8. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  9. Mutational analysis of a CBM family 5 chitin-binding domain of an alkaline chitinase from Bacillus sp. J813.

    Science.gov (United States)

    Uni, Fumiya; Lee, Sunmi; Yatsunami, Rie; Fukui, Toshiaki; Nakamura, Satoshi

    2012-01-01

    Chitinase J from alkaliphilic Bacillus sp. J813 comprises a glycoside hydrolase (GH) family 18 catalytic domain (CatD), a fibronectin type III like domain, and a carbohydrate-binding module (CBM) family 5 chitin-binding domain (ChBD). It has been suggested that the ChBD binds to insoluble chitin and enhances its degradation by the CatD. To investigate the roles of two aromatic residues (Trp541 and Trp542), which are exposed on the surface of the ChBD, mutational analysis was performed. Single and double mutations of the two aromatic residues decreased binding and hydrolyzing abilities toward insoluble chitin. This result suggests that the ChBD binds to chitin by hydrophobic interactions via two surface-exposed aromatic residues. However, the double mutant, which has no such aromatic residue, bound to chitin at pH 5.2, probably by electrostatic interactions. Moreover, the ChBD bound to insoluble chitosan by electrostatic interactions.

  10. The Tomato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor I-2 Couples DNA-Binding to Nucleotide-Binding Domain Nucleotide Exchange

    NARCIS (Netherlands)

    Fenyk, S.; Dixon, C.H.; Gittens, W.H.; Townsend, P.D.; Sharples, G.J.; Pålsson, L.O.; Takken, F.L.W.; Cann, M.J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognise and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception.

  11. In-depth study of DNA binding of Cys2His2 finger domains in testis zinc-finger protein.

    Directory of Open Access Journals (Sweden)

    Chun-Chi Chou

    Full Text Available Previously, we identified that both fingers 1 and 2 in the three Cys2His2 zinc-finger domains (TZD of testis zinc-finger protein specifically bind to its cognate DNA; however, finger 3 is non-sequence-specific. To gain insights into the interaction mechanism, here we further investigated the DNA-binding characteristics of TZD bound to non-specific DNAs and its finger segments bound to cognate DNA. TZD in non-specific DNA binding showed smaller chemical shift perturbations, as expected. However, the direction of shift perturbation, change of DNA imino-proton NMR signal, and dynamics on the 15N backbone atom significantly differed between specific and non-specific binding. Using these unique characteristics, we confirmed that the three single-finger segments (TZD1, TZD2 and TZD3 and the two-finger segment (TZD23 non-specifically bind to the cognate DNA. In comparison, the other two-finger segment (TZD12 binding to the cognate DNA features simultaneous non-specific and semi-specific binding, both slowly exchanged in terms of NMR timescale. The process of TZD binding to the cognate DNA is likely stepwise: initially TZD non-specifically binds to DNA, then fingers 1 and 2 insert cooperatively into the major groove of DNA by semi-specific binding, and finally finger 3 non-specifically binds to DNA, which promotes the specific binding on fingers 1 and 2 and stabilizes the formation of a specific TZD-DNA complex.

  12. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  13. A Folded Excited State of Ligand-Free Nuclear Coactivator Binding Domain (NCBD) Underlies Plasticity in Ligand Recognition

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Andersen, Lisbeth; Nielsen, Lau Dalby

    2013-01-01

    Intrinsically disordered proteins are renowned for their structural plasticity when they undergo coupled folding and binding to partner proteins. The nuclear coactivator binding domain of CBP is a remarkable example of this adaptability as it folds into two different conformations depending...... experience conformational exchange. The dispersion data can be described by a global two-state exchange process between a ground state and an excited state populated to 8%. The three helices are still folded in the excited state but have a different packing from the ground state; the contact between helices...... with that of NCBD in complex with the ligand IRF-3. The energy landscape of this domain is thus proposed to resemble the fold-switching proteins that have two coexisting native states, which may serve as a starting point for binding via conformational selection....

  14. A Novel Mutation in the DNA Binding Domain of NFKB is Associated with Speckled Leukoplakia.

    Science.gov (United States)

    Govindarajan, Giri Valanthan Veda; Bhanumurthy, Lokesh; Balasubramanian, Anandh; Ramanathan, Arvind

    2016-01-01

    Activation and inactivation of nuclear factor of kappa light chain gene enhancer in B cells (NFKB) is tightly regulated to ensure effective onset and cessation of defensive inflammatory signaling. However, mutations within NFKB, or change in activation and inactivation molecules have been reported in a few cancers. Although oral squamous cell carcinoma is one of the most prevalent forms of cancer in India, with a development associated with malignant transformation of precancerous lesions, the genetic status of NFKB and relative rates of change in oral precancerous lesions remain unknown. Hence in the present study we investigated all twenty four exons of NFKB gene in two precancerous lesions, namely oral submucous fibrosis (OSMF) and oral leukoplakia (OL) to understand its occurrence, incidence and assess its possible contribution to malignant transformation. Chromosomal DNA isolated from twenty five each of OSMF and OL tissue biopsy samples were subjected to PCR amplification with intronic primers flanking twenty four exons of the NFKB gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Sequence analysis identified a novel heterozygous mutation, c.419T>A causing substitution of leucine with glutamine at codon 140 (L140Q) in an OL sample. The identification of a substitution mutation L140Q within the DNA binding domain of NFKB in OL suggests that NFKB mutation may be relatively an early event during transformation. To the best of our knowledge, this study is the first to have identified a missense mutation in NFKB in OL.

  15. Backbone resonance assignments of the human p73 DNA binding domain.

    Science.gov (United States)

    Cino, Elio A; Soares, Iaci N; Freitas, Mônica S; Silva, Jerson L

    2016-04-01

    p53, p63, p73 family of proteins are transcription factors with crucial roles in regulating cellular processes such apoptosis, proliferation, differentiation, and DNA damage response. The three family members have both overlapping and unique biological functions. Sequence and structural homology are greatest in the DNA binding domains (DBD), which is the site of the majority of p53 mutations. Structurally unstable p53 DBD mutants can associate with themselves or p63 and p73 DBDs, impeding tumor suppressor functions. Evidence suggests that these proteins associate to form amyloid-like oligomers and fibrils through an aggregation-prone sequence within the DBDs. Despite having high sequence and structure similarities, p63 and p73 DBDs appear to have considerably lower tendencies to be incorporated into p53 aggregates, relative to p53. The backbone resonance assignments of p73 DBD reported here complement those previously reported for p53 and p63, allowing comparisons and providing molecular insights into their biological functions and roles in aggregation and tumor development.

  16. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Directory of Open Access Journals (Sweden)

    Julius W Kim

    Full Text Available Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting.As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells.These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  17. Structure of a new DNA-binding domain which regulates pathogenesis in a wide variety of fungi.

    Science.gov (United States)

    Lohse, Matthew B; Rosenberg, Oren S; Cox, Jeffery S; Stroud, Robert M; Finer-Moore, Janet S; Johnson, Alexander D

    2014-07-22

    WOPR-domain proteins are found throughout the fungal kingdom where they function as master regulators of cell morphology and pathogenesis. Genetic and biochemical experiments previously demonstrated that these proteins bind to specific DNA sequences and thereby regulate transcription. However, their primary sequence showed no relationship to any known DNA-binding domain, and the basis for their ability to recognize DNA sequences remained unknown. Here, we describe the 2.6-Å crystal structure of a WOPR domain in complex with its preferred DNA sequence. The structure reveals that two highly conserved regions, separated by an unconserved linker, form an interdigitated β-sheet that is tilted into the major groove of DNA. Although the main interaction surface is in the major groove, the highest-affinity interactions occur in the minor groove, primarily through a deeply penetrating arginine residue. The structure reveals a new, unanticipated mechanism by which proteins can recognize specific sequences of DNA.

  18. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Gao, Xiaoli [Department of Biochemistry and Molecular Biology, Michigan State University (United States); Michael Garavito, R., E-mail: garavito@msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University (United States)

    2011-04-22

    Highlights: {yields} Crystal structure of the intracellular domain of (pro)renin receptor (PRR-IC) as MBP fusion protein at 2.0 A (maltose-free) and 2.15 A (maltose-bound). {yields} MBP fusion protein is a dimer in crystals in the presence and absence of maltose. {yields} PRR-IC domain is responsible for the dimerization of the fusion protein. {yields} Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermolecular interactions, suggesting a role for the PRR-IC domain in PRR dimerization. -- Abstract: The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain ({approx}310 amino acids), a single transmembrane domain ({approx}20 amino acids) and an intracellular domain ({approx}19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ({approx}30 amino acids), the IC domain is also involved in assembly of V{sub 0} portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 A (maltose-free) and 2.15 A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR

  19. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  20. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Nikhil; Goldgur, Yehuda; Xu, Kai; Paavilainen, Sari; Nikolov, Dimitar B.; Himanen, Juha P. (MSKCC); (Turku)

    2010-09-08

    Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 {angstrom} resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.

  1. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Regina [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  2. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin

    Directory of Open Access Journals (Sweden)

    Aaron J. Brown

    2017-02-01

    Full Text Available CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG. CXCL7 exists as monomers and dimers, and dimerization (~50 μM and CXCR2 binding (~10 nM constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.

  3. Glutamine rich and basic region/leucine zipper (bZIP) domains stabilize cAMP-response element-binding protein (CREB) binding to chromatin.

    Science.gov (United States)

    Mayr, Bernhard M; Guzman, Ernesto; Montminy, Marc

    2005-04-15

    We have examined the dynamics of cAMP-response element-binding protein (CREB) binding to chromatin in live cells using fluorescence recovery after photobleaching (FRAP). CREB was found to bind to target sites with a residence time of 100 s, and exposure to a cAMP agonist had no effect on these kinetics. In addition to the basic region/leucine zipper (bZIP) domain, a glutamine-rich trans-activation domain in CREB called Q2 also appeared to be critical for promoter occupancy. Indeed, mutations in Q2 that reduced residence time by FRAP assay disrupted target gene activation via CREB in cells exposed to a cAMP agonist. Notably, insertion of the glutamine-rich B trans-activation domain of SP1 into a mutant CREB polypeptide lacking Q2 stabilized CREB occupancy and rescued target gene activation. These results suggest a novel mechanism by which the family of glutamine-rich activators promotes cellular gene expression.

  4. Novel interactions of ankyrins-G at the costameres: The muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C

    Energy Technology Data Exchange (ETDEWEB)

    Maiweilidan, Yimingjiang; Klauza, Izabela; Kordeli, Ekaterini, E-mail: ekaterini.kordeli@inserm.fr

    2011-04-01

    Ankyrins, the adapters of the spectrin skeleton, are involved in local accumulation and stabilization of integral proteins to the appropriate membrane domains. In striated muscle, tissue-dependent alternative splicing generates unique Ank3 gene products (ankyrins-G); they share the Obscurin/Titin-Binding-related Domain (OTBD), a muscle-specific insert of the C-terminal domain which is highly conserved among ankyrin genes, and binds obscurin and titin to Ank1 gene products. We previously proposed that OTBD sequences constitute a novel domain of protein-protein interactions which confers ankyrins with specific cellular functions in muscle. Here we searched for muscle proteins binding to ankyrin-G OTBD by yeast two hybrid assay, and we found plectin and filamin C, two organizing elements of the cytoskeleton with essential roles in myogenesis, muscle cell cytoarchitecture, and muscle disease. The three proteins coimmunoprecipitate from skeletal muscle extracts and colocalize at costameres in adult muscle fibers. During in vitro myogenesis, muscle ankyrins-G are first expressed in postmitotic myocytes undergoing fusion to myotubes. In western blots of subcellular fractions from C2C12 cells, the majority of muscle ankyrins-G appear associated with membrane compartments. Occasional but not extensive co-localization at nascent costameres suggested that ankyrin-G interactions with plectin and filamin C are not involved in costamere assembly; they would rather reinforce stability and/or modulate molecular interactions in sarcolemma microdomains by establishing novel links between muscle-specific ankyrins-G and the two costameric dystrophin-associated glycoprotein and integrin-based protein complexes. These results report the first protein-protein interactions involving the ankyrin-G OTBD domain and support the hypothesis that OTBD sequences confer ankyrins with a gain of function in vertebrates, bringing further consolidation and resilience of the linkage between sarcomeres

  5. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  6. Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.J.; Ouellette, N.; Evodokimova, E.; Savchenko, A.; Edwards, A.; Anderson, W.F. (Toronto); (NWU)

    2010-03-08

    S-adenosyl-L-methionine-dependent methyltransferases (MTs) are abundant, and highly conserved across phylogeny. These enzymes use the cofactor AdoMet to methylate a wide variety of molecular targets, thereby modulating important cellular and metabolic activities. Thermotoga maritima protein 0872 (TM0872) belongs to a large sequence family of predicted MTs, ranging phylogenetically from relatively simple bacteria to humans. The genes for many of the bacterial homologs are located within operons involved in cell wall synthesis and cell division. Despite preliminary biochemical studies in E. coli and B. subtilis, the substrate specificity of this group of more than 150 proteins is unknown. As part of the Midwest Center for Structural Genomics initiative (www.mcsg.anl.gov), we have determined the structure of TM0872 in complexes with AdoMet and with S-adenosyl-L-homocysteine (AdoHcy). As predicted, TM0872 has a typical MT domain, and binds endogenous AdoMet, or co-crystallized AdoHcy, in a manner consistent with other known MT structures. In addition, TM0872 has a second domain that is novel among MTs in both its location in the sequence and its structure. The second domain likely acts in substrate recognition and binding, and there is a potential substrate-binding cleft spanning the two domains. This long and narrow cleft is lined with positively charged residues which are located opposite the S{sup +}-CH{sub 3} bond, suggesting that a negatively charged molecule might be targeted for catalysis. However, AdoMet and AdoHcy are both buried, and access to the methyl group would presumably require structural rearrangement. These TM0872 crystal structures offer the first structural glimpses at this phylogenetically conserved sequence family.

  7. Monoclonal Antibodies That Bind to the Ly6 Domain of GPIHBP1 Abolish the Binding of LPL

    DEFF Research Database (Denmark)

    Hu, Xuchen; Sleeman, Mark W; Miyashita, Kazuya

    2017-01-01

    GPIHBP1, an endothelial cell protein, binds lipoprotein lipase (LPL) in the interstitial spaces and shuttles it to its site of action inside blood vessels. For years, studies of human GPIHBP1 have been hampered by an absence of useful antibodies. We reasoned that monoclonal antibodies (mAbs) agai...

  8. Graph-Theoretic Models of Mutations in the Nucleotide Binding Domain 1 of the Cystic Fibrosis Transmembrane Conductance Regulator

    Directory of Open Access Journals (Sweden)

    Debra J. Knisley

    2013-01-01

    Full Text Available Cystic fibrosis is one of the most common inherited diseases and is caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR. This protein serves as a chloride channel and regulates the viscosity of mucus lining the ducts of a number of organs. Although much has been learned about the consequences of mutations on the energy landscape and the resulting disrupted folding pathway of CFTR, a level of understanding needed to correct the misfolding has not been achieved. The most common mutations of CFTR are located in one of two nucleotide binding domains, namely, the nucleotide binding domain 1 (NBD1. We model NBD1 using a nested graph model. The vertices in the lowest layer each represent an atom in the structure of an amino acid residue, while the vertices in the mid layer each represent the residue. The vertices in the top layer each represent a subdomain of the nucleotide binding domain. We use this model to quantify the effects of a single point mutation on the protein domain. We compare the wildtype structure with eight of the most common mutations. The graph-theoretic model provides insight into how a single point mutation can have such profound structural consequences.

  9. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins.

    Science.gov (United States)

    Low, Lieh Yoon; Yang, Chen; Perego, Marta; Osterman, Andrei; Liddington, Robert

    2011-09-30

    The recombinant lysins of lytic phages, when applied externally to Gram-positive bacteria, can be efficient bactericidal agents, typically retaining high specificity. Their development as novel antibacterial agents offers many potential advantages over conventional antibiotics. Protein engineering could exploit this potential further by generating novel lysins fit for distinct target populations and environments. However, access to the peptidoglycan layer is controlled by a variety of secondary cell wall polymers, chemical modifications, and (in some cases) S-layers and capsules. Classical lysins require a cell wall-binding domain (CBD) that targets the catalytic domain to the peptidoglycan layer via binding to a secondary cell wall polymer component. The cell walls of Gram-positive bacteria generally have a negative charge, and we noticed a correlation between (positive) charge on the catalytic domain and bacteriolytic activity in the absence of the CBD (nonclassical behavior). We investigated a physical basis for this correlation by comparing the structures and activities of pairs of lysins where the lytic activity of one of each pair was CBD-independent. We found that by engineering a reversal of sign of the net charge of the catalytic domain, we could either eliminate or create CBD dependence. We also provide evidence that the S-layer of Bacillus anthracis acts as a molecular sieve that is chiefly size-dependent, favoring catalytic domains over full-length lysins. Our work suggests a number of facile approaches for fine-tuning lysin activity, either to enhance or reduce specificity/host range and/or bactericidal potential, as required.

  10. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme.

    Science.gov (United States)

    Choo, Jocelyn M; Cheung, Jackie K; Wisniewski, Jessica A; Steer, David L; Bulach, Dieter M; Hiscox, Thomas J; Chakravorty, Anjana; Smith, A Ian; Gell, David A; Rood, Julian I; Awad, Milena M

    2016-01-01

    The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringens heme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.

  11. Crystal structure of the starch-binding domain of glucoamylase from Aspergillus niger.

    Science.gov (United States)

    Suyama, Yousuke; Muraki, Norifumi; Kusunoki, Masami; Miyake, Hideo

    2017-10-01

    Glucoamylases are widely used commercially to produce glucose syrup from starch. The starch-binding domain (SBD) of glucoamylase from Aspergillus niger is a small globular protein containing a disulfide bond. The structure of A. niger SBD has been determined by NMR, but the conformation surrounding the disulfide bond was unclear. Therefore, X-ray crystal structural analysis was used to attempt to clarify the conformation of this region. The SBD was purified from an Escherichia coli-based expression system and crystallized at 293 K. The initial phase was determined by the molecular-replacement method, and the asymmetric unit of the crystal contained four protomers, two of which were related by a noncrystallographic twofold axis. Finally, the structure was solved at 2.0 Å resolution. The SBD consisted of seven β-strands and eight loops, and the conformation surrounding the disulfide bond was determined from a clear electron-density map. Comparison of X-ray- and NMR-determined structures of the free SBD showed no significant difference in the conformation of each β-strand, but the conformations of the loops containing the disulfide bond and the L5 loop were different. In particular, the difference in the position of the C α atom of Cys509 between the X-ray- and NMR-determined structures was 13.3 Å. In addition, the B factors of the amino-acid residues surrounding the disulfide bond are higher than those of other residues. Therefore, the conformation surrounding the disulfide bond is suggested to be highly flexible.

  12. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44 domain of vitronectin.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    2010-02-01

    Full Text Available Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV family of extracellular-associated (matricellular proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP, von Willebrand factor type C (vWF, thrombospondin type 1 (TSP, and C-terminal growth factor cysteine knot (CT domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed.In this report, surface plasmon resonance (SPR experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC with K(D in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB(1-44 of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin alphav beta3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB(1-44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB(1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB(1-44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, beta-endorphin, and other molecules.The finding that Cyr61 interacts with the SMTB(1-44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.

  13. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    International Nuclear Information System (INIS)

    Lindfors, Hanna E.; Koning, Peter E. de; Wouter Drijfhout, Jan; Venezia, Brigida; Ubbink, Marcellus

    2008-01-01

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints

  14. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Hanna E. [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands); Koning, Peter E. de; Wouter Drijfhout, Jan [Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion (Netherlands); Venezia, Brigida; Ubbink, Marcellus [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2008-07-15

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.

  15. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruoxi [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Fang, Liurong, E-mail: fanglr@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Wang, Dang; Cai, Kaimei; Zhang, Huan [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China); Xie, Lilan; Li, Yi [College of Life Science and Technology, Wuhan Institute of Bioengineering, Wuhan 430415 (China); Chen, Huanchun; Xiao, Shaobo [State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 (China); The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070 (China)

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  16. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  17. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    International Nuclear Information System (INIS)

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-01-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  18. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  19. Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain: a new fold with an additional C-terminal helix.

    Science.gov (United States)

    Sue, Shih-Che; Hsiao, Hsin-Hao; Chung, Ben C-P; Cheng, Ying-Hsien; Hsueh, Kuang-Lung; Chen, Chung Mong; Ho, Chia Hsing; Huang, Tai-Huang

    2006-02-10

    The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.

  20. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA

    OpenAIRE

    Arentson, Benjamin?W.; Hayes, Erin?L.; Zhu, Weidong; Singh, Harkewal; Tanner, John?J.; Becker, Donald?F.

    2016-01-01

    Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and ?1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon?helix?helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membran...

  1. The solution structure of the forkhead box-O DNA binding domain of Brugia malayi DAF-16a.

    Science.gov (United States)

    Casper, Sarah K; Schoeller, Scott J; Zgoba, Danielle M; Phillips, Andrew J; Morien, Thomas J; Chaffee, Gary R; Sackett, Peter C; Peterson, Francis C; Crossgrove, Kirsten; Veldkamp, Christopher T

    2014-12-01

    Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF-16a, a putative ortholog of Caenorhabditis elegans DAF-16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF-16 is involved in the insulin/IGF-I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF-16a is a member of the FOXO family of forkhead proteins. © 2014 Wiley Periodicals, Inc.

  2. Maturation and activity of sterol regulatory element binding protein 1 is inhibited by acyl-CoA binding domain containing 3.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    Full Text Available Imbalance of lipid metabolism has been linked with pathogenesis of a variety of human pathological conditions such as diabetes, obesity, cancer and neurodegeneration. Sterol regulatory element binding proteins (SREBPs are the master transcription factors controlling the homeostasis of fatty acids and cholesterol in the body. Transcription, expression, and activity of SREBPs are regulated by various nutritional, hormonal or stressful stimuli, yet the molecular and cellular mechanisms involved in these adaptative responses remains elusive. In the present study, we found that overexpressed acyl-CoA binding domain containing 3 (ACBD3, a Golgi-associated protein, dramatically inhibited SREBP1-sensitive promoter activity of fatty acid synthase (FASN. Moreover, lipid deprivation-stimulated SREBP1 maturation was significantly attenuated by ACBD3. With cell fractionation, gene knockdown and immunoprecipitation assays, it was showed that ACBD3 blocked intracellular maturation of SREBP1 probably through directly binding with the lipid regulator rather than disrupted SREBP1-SCAP-Insig1 interaction. Further investigation revealed that acyl-CoA domain-containing N-terminal sequence of ACBD3 contributed to its inhibitory effects on the production of nuclear SREBP1. In addition, mRNA and protein levels of FASN and de novo palmitate biosynthesis were remarkably reduced in cells overexpressed with ACBD3. These findings suggest that ACBD3 plays an essential role in maintaining lipid homeostasis via regulating SREBP1's processing pathway and thus impacting cellular lipogenesis.

  3. Cloning, purification and structure determination of the HIV integrase-binding domain of lens epithelium-derived growth factor.

    Science.gov (United States)

    Hannon, Clare; Cruz-Migoni, Abimael; Platonova, Olga; Owen, Robin L; Nettleship, Joanne E; Miller, Ami; Carr, Stephen B; Harris, Gemma; Rabbitts, Terence H; Phillips, Simon E V

    2018-03-01

    Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase in human cells. The crystal structure of the HIV integrase-binding domain (IBD) of LEDGF has been determined in the absence of ligand. IBD was overexpressed in Escherichia coli, purified and crystallized by sitting-drop vapour diffusion. X-ray diffraction data were collected at Diamond Light Source to a resolution of 2.05 Å. The crystals belonged to space group P2 1 , with eight polypeptide chains in the asymmetric unit arranged as an unusual octamer composed of four domain-swapped IBD dimers. IBD exists as a mixture of monomers and dimers in concentrated solutions, but the dimers are unlikely to be biologically relevant.

  4. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.

    Science.gov (United States)

    Lewis, H A; Musunuru, K; Jensen, K B; Edo, C; Chen, H; Darnell, R B; Burley, S K

    2000-02-04

    The structure of a Nova protein K homology (KH) domain recognizing single-stranded RNA has been determined at 2.4 A resolution. Mammalian Nova antigens (1 and 2) constitute an important family of regulators of RNA metabolism in neurons, first identified using sera from cancer patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia (POMA). The structure of the third KH domain (KH3) of Nova-2 bound to a stem loop RNA resembles a molecular vise, with 5'-Ura-Cyt-Ade-Cyt-3' pinioned between an invariant Gly-X-X-Gly motif and the variable loop. Tetranucleotide recognition is supported by an aliphatic alpha helix/beta sheet RNA-binding platform, which mimics 5'-Ura-Gua-3' by making Watson-Crick-like hydrogen bonds with 5'-Cyt-Ade-3'. Sequence conservation suggests that fragile X mental retardation results from perturbation of RNA binding by the FMR1 protein.

  5. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  6. Regulation of the heavy metal pump AtHMA4 by a metal-binding autoinhibitory domain

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Roed, Maria Dalgaard; Zhang, Yang

    Heavy metal pumps, or P1B ATPases, are important for heavy metal homeostasis in most cells. In general, these pumps contain extended N- and/or C-termini with one or more metal-binding domains (MBDs), but the role of the extended termini is still not clear. The Arabidopsis thaliana Zn2+-ATPase At......HMA4 contains a very long C-terminus with 13 cysteine pairs and an 11 amino acid residue long histidine stretch at the end. To ascertain the role of the potentially metal-binding domains in the C-terminus of AtHMA4, the C-terminal region alone was expressed in yeast. This resulted in increased Zn...

  7. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains

    DEFF Research Database (Denmark)

    Dahlbäck, Madeleine; Jørgensen, Lars M; Nielsen, Morten A

    2011-01-01

    by a parasite expressed protein named VAR2CSA. A vaccine protecting pregnant women against placental malaria should induce antibodies inhibiting the interaction between VAR2CSA and CSA. Much effort has been put into defining the part of the 350 kDa VAR2CSA protein that is responsible for binding. It has been...... of truncated VAR2CSA proteins. The experiments indicate that the core of the CSA-binding site is situated in three domains, DBL2X-CIDR(PAM) and a flanking domain, located in the N-terminal part of VAR2CSA. Furthermore, recombinant VAR2CSA subfragments containing this region elicit antibodies with high parasite...

  8. Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding*

    Science.gov (United States)

    Huang, Yiping; Nokhrin, Sergiy; Hassanzadeh-Ghassabeh, Gholamreza; Yu, Corey H.; Yang, Haojun; Barry, Amanda N.; Tonelli, Marco; Markley, John L.; Muyldermans, Serge; Dmitriev, Oleg Y.; Lutsenko, Svetlana

    2014-01-01

    The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1–3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell. PMID:25253690

  9. Molecular Insights into the Coding Region Determinant-binding Protein-RNA Interaction through Site-directed Mutagenesis in the Heterogeneous Nuclear Ribonucleoprotein-K-homology Domains*

    Science.gov (United States)

    Barnes, Mark; van Rensburg, Gerrit; Li, Wai-Ming; Mehmood, Kashif; Mackedenski, Sebastian; Chan, Ching-Man; King, Dustin T.; Miller, Andrew L.; Lee, Chow H.

    2015-01-01

    The ability of its four heterogeneous nuclear RNP-K-homology (KH) domains to physically associate with oncogenic mRNAs is a major criterion for the function of the coding region determinant-binding protein (CRD-BP). However, the particular RNA-binding role of each of the KH domains remains largely unresolved. Here, we mutated the first glycine to an aspartate in the universally conserved GXXG motif of the KH domain as an approach to investigate their role. Our results show that mutation of a single GXXG motif generally had no effect on binding, but the mutation in any two KH domains, with the exception of the combination of KH3 and KH4 domains, completely abrogated RNA binding in vitro and significantly retarded granule formation in zebrafish embryos, suggesting that any combination of at least two KH domains cooperate in tandem to bind RNA efficiently. Interestingly, we found that any single point mutation in one of the four KH domains significantly impacted CRD-BP binding to mRNAs in HeLa cells, suggesting that the dynamics of the CRD-BP-mRNA interaction vary over time in vivo. Furthermore, our results suggest that different mRNAs bind preferentially to distinct CRD-BP KH domains. The novel insights revealed in this study have important implications on the understanding of the oncogenic mechanism of CRD-BP as well as in the future design of inhibitors against CRD-BP function. PMID:25389298

  10. Ligand binding and signaling of dendritic cell immunoreceptor (DCIR is modulated by the glycosylation of the carbohydrate recognition domain.

    Directory of Open Access Journals (Sweden)

    Karien Bloem

    Full Text Available C-type lectins are innate receptors expressed on antigen-presenting cells that are involved in the recognition of glycosylated pathogens and self-glycoproteins. Upon ligand binding, internalization and/or signaling often occur. Little is known on the glycan specificity and ligands of the Dendritic Cell Immunoreceptor (DCIR, the only classical C-type lectin that contains an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM. Here we show that purified DCIR binds the glycan structures Lewis(b and Man3. Interestingly, binding could not be detected when DCIR was expressed on cells. Since DCIR has an N-glycosylation site inside its carbohydrate recognition domain (CRD, we investigated the effect of this glycan in ligand recognition. Removing or truncating the glycans present on purified DCIR increased the affinity for DCIR-binding glycans. Nevertheless, altering the glycosylation status of the DCIR expressing cell or mutating the N-glycosylation site of DCIR itself did not increase glycan binding. In contrast, cis and trans interactions with glycans induced DCIR mediated signaling, resulting in a decreased phosphorylation of the ITIM sequence. These results show that glycan binding to DCIR is influenced by the glycosylation of the CRD region in DCIR and that interaction with its ligands result in signaling via its ITIM motif.

  11. Subcloning and Assessment of the Expression of Synthetic Botulinum Neurotoxin Type B Binding Domain (BD/B

    Directory of Open Access Journals (Sweden)

    Majid Baradaran

    2016-07-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by Clostridium botulinum neurotoxin. This neurotoxin has 7 serotypes, from A to G. The best way to prevent botulism syndrome caused by BoNT/B is immunization with recombinant binding domains of BoNT/B (due to containing sufficient epitopes to stimulate the immune system. In this study, the expression of the BoNT/B binding domain as a candidate vaccine, was investigated. Methods: At first, the sequence of the BoNT/B binding domain gene was obtained from NCBI website with accession number of EF028399.1. After codon optimization, the gene was synthesized in pUC18 vector. Then, the gene was subcloned in pET32a(+ expression vector that carries an ampicillin selection marker. PCR, enzymatic digestion, and sequencing were used to confirm subcloning accuracy, and E. coli BL21(DE3 was used for the expression analysis. The accuracy of protein expression was evaluated by electrophoresis and western blotting. Results: PCR reaction, enzymatic digestion, and sequencing confirmed that the gene of interest has been subcloned appropriately in the vector. The expression analysis by SDS-PAGE and subsequently western blotting, showed that the protein of interest is not expressed in the mentioned expression strain. Conclusion: Although the gene was successfully subcloned in pET32a(+ vector, no significant expression of the gene was observed.

  12. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains.

    Science.gov (United States)

    Gasch, Alexander; Wiesner, Silke; Martin-Malpartida, Pau; Ramirez-Espain, Ximena; Ruiz, Lidia; Macias, Maria J

    2006-01-06

    The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.

  13. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  14. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  15. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  16. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  17. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Keryer-Bibens, Cecile, E-mail: cecile.keryer-bibens@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Legagneux, Vincent; Namanda-Vanderbeken, Allen [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Cosson, Bertrand [UPMC Universite de Paris 06, UMR 7150, Equipe Traduction Cycle Cellulaire et Developpement, Station Biologique de Roscoff, 29682 Roscoff (France); CNRS, UMR 7150, Station Biologique de Roscoff, 29682 Roscoff (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Paillard, Luc [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France); Poncet, Didier [Virologie Moleculaire et Structurale, UMR CNRS, 2472, INRA, 1157, 91198 Gif sur Yvette (France); Osborne, H. Beverley, E-mail: beverley.osborne@univ-rennes1.fr [Universite de Rennes 1, IFR 140, Institut de Genetique et Developpement de Rennes, 35000 Rennes (France); CNRS, UMR 6061, equipe Expression Genetique et Developpement, 35000 Rennes (France); Universite Europeenne de Bretagne, 35000 Rennes (France)

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  19. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  20. Expression of the high capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants

    Science.gov (United States)

    Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)

    2002-01-01

    Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.

  1. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  2. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    Science.gov (United States)

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  3. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Rønne, E; Solberg, H.

    1992-01-01

    The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associat...

  4. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition.

    Science.gov (United States)

    Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang

    2018-01-24

    The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.

  5. Solution NMR structure of the DNA-binding domain from Scml2 (sex comb on midleg-like 2).

    Science.gov (United States)

    Bezsonova, Irina

    2014-05-30

    Scml2 is a member of the Polycomb group of proteins involved in epigenetic gene silencing. Human Scml2 is a part of a multisubunit protein complex, PRC1 (Polycomb repressive complex 1), which is responsible for maintenance of gene repression, prevention of chromatin remodeling, preservation of the "stemness" of the cell, and cell differentiation. Although the majority of PRC1 subunits have been recently characterized, the structure of Scml2 and its role in PRC1-mediated gene silencing remain unknown. In this work a conserved protein domain within human Scml2 has been identified, and its structure was determined by solution NMR spectroscopy. This module was named Scm-like embedded domain, or SLED. Evolutionarily, the SLED domain emerges in the first multicellular organisms, consistent with the role of Scml2 in cell differentiation. Furthermore, it is exclusively found within the Scm-like family of proteins, often accompanied by malignant brain tumor domain (MBT) and sterile α motif (SAM) domains. The domain adopts a novel α/β fold with no structural analogues found in the Protein Data Bank (PDB). The ability of the SLED to bind double-stranded DNA was also examined, and the isolated domain was shown to interact with DNA in a sequence-specific manner. Because PRC1 complexes localize to the promoters of a specific subset of developmental genes in vivo, the SLED domain of Scml2 may provide an important link connecting the PRC1 complexes to their target genes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells

    Science.gov (United States)

    Kinet, Sandrina; Swainson, Louise; Lavanya, Madakasira; Mongellaz, Cedric; Montel-Hagen, Amélie; Craveiro, Marco; Manel, Nicolas; Battini, Jean-Luc; Sitbon, Marc; Taylor, Naomi

    2007-01-01

    Background We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. Results As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. Conclusion Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes. PMID:17504522

  7. The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV.

    Science.gov (United States)

    Maurer, P; Hohenadl, C; Hohenester, E; Göhring, W; Timpl, R; Engel, J

    1995-10-20

    The extracellular glycoprotein BM-40 consists of three domains, an acidic domain I, a follistatin (FS)-like domain II and a calcium-binding EC domain with an EF-hand related motif. BM-40 and several other related proteins (QR1, SC1/hevin, testican and tsc-36/FRP) are members of a novel modular protein family that share the FS domain followed by an EC domain. We have expressed this pair of FS and EC domains (mutant delta I) and the calcium-binding EC domain alone (mutant delta I, II) of human BM-40 as recombinant proteins in human 293 cells. Circular dichroism demonstrated that both mutants were obtained as folded proteins with a distinct three-dimensional conformation. In addition, mutant delta I, II could be readily crystallized and diffraction patterns with a resolution limit of 2.4 A resolution were obtained. Calcium binding to this fragment was ten times weaker (Kd = 0.8 microM) than for the wild-type protein. Identical reversible increases in alpha-helicity upon calcium binding were observed for the 150-residue long mutant delta I, II and for BM-40 (286 residues). A 26-residue synthetic peptide corresponding to the EF-hand related motif exhibited much weaker calcium binding. The apparent dissociation constant decreased with increasing peptide concentration (from Kd 2.4 mM at 1 microM, to Kd 0.3 mM at 100 microM peptide concentration) and calcium binding was accompanied by dimerization of the peptide. This suggests that for strong calcium binding the EF-hand related motif has to be embedded into a larger protein domain that can form an autonomously folding protein module. The EC domain was also shown by surface plasmon resonance assay to be responsible for calcium-dependent binding to collagen IV with an affinity (Kd = 19 microM) only sixfold lower than that of intact human BM-40.

  8. DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF.

    Science.gov (United States)

    Singh, Dhirendra P; Kubo, E; Takamura, Y; Shinohara, T; Kumar, A; Chylack, Leo T; Fatma, N

    2006-01-20

    Lens epithelium derived growth factor (LEDGF), a nuclear protein, plays a role in regulating the transcription of stress-associated genes such as heat shock proteins by binding to consensus core DNA sequences nAGGn or nGAAn or their repeats, and in doing so helps to provide cyto-protection. However, additional information is required to identify the specific structural features of LEDGF involved in gene transcription. Here we have investigated the functional domains activating and repressing DNA-binding modules, by using a DNA binding assay and trans-activation experiments performed by analyzing proteins prepared from deletion constructs. The results disclosed the DNA-binding domain of N-terminal LEDGF mapped between amino acid residues 5 and 62, a 58 amino acid residue stretch PWWP domain which binds to stress response elements (STRE; A/TGGGGA/T). C-terminal LEDGF contains activation domains, an extensive loop-region (aa 418-530) with two helix-turn-helix (HTH)-like domains, and binds to a heat shock element (HSE; nGAAn). A trans-activation assay using Hsp27 promoter revealed that both HTH domains contribute in a cooperative manner to the trans-activation potential of LEDGF. Interestingly, removal of N-terminal LEDGF (aa 1-187) significantly enhances the gene activation potential of C-terminal LEDGF (aa 199-530); thus the N-terminal domain (aa 5-62), exhibits auto-transcriptional repression activity. It appears that this domain is involved in stabilizing the LEDGF-DNA binding complex. Collectively, our results demonstrate that LEDGF contains three DNA-binding domains, which regulate gene expression depending on cellular microenvironment and thus modify the physiology of cells to maintain cellular homeostasis.

  9. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    International Nuclear Information System (INIS)

    Lechner, Mark S.; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-01-01

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization

  10. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev

    Science.gov (United States)

    Cooper, Christopher D. O.; Newman, Joseph A.; Aitkenhead, Hazel; Allerston, Charles K.; Gileadi, Opher

    2015-01-01

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors. PMID:25866208

  11. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  12. Constant domains influence binding of mouse–human chimeric antibodies to the capsular polypeptide of Bacillus anthracis

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-01-01

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct “rim” quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse–human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared “puffy” in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site. PMID:23863605

  13. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis.

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-08-15

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.

  14. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production.

    Science.gov (United States)

    Kandasamy, Suresh K; Fukunaga, Ryuya

    2016-12-06

    The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22-24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5'-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5'-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing.

  15. Engineering a trifunctional proline utilization A chimaera by fusing a DNA-binding domain to a bifunctional PutA.

    Science.gov (United States)

    Arentson, Benjamin W; Hayes, Erin L; Zhu, Weidong; Singh, Harkewal; Tanner, John J; Becker, Donald F

    2016-12-01

    Proline utilization A (PutA) is a bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) domains that catalyses the two-step oxidation of proline to glutamate. Trifunctional PutAs also have an N-terminal ribbon-helix-helix (RHH) DNA-binding domain and moonlight as autogenous transcriptional repressors of the put regulon. A unique property of trifunctional PutA is the ability to switch functions from DNA-bound repressor to membrane-associated enzyme in response to cellular nutritional needs and proline availability. In the present study, we attempt to construct a trifunctional PutA by fusing the RHH domain of Escherichia coli PutA (EcRHH) to the bifunctional Rhodobacter capsulatus PutA (RcPutA) in order to explore the modular design of functional switching in trifunctional PutAs. The EcRHH-RcPutA chimaera retains the catalytic properties of RcPutA while acquiring the oligomeric state, quaternary structure and DNA-binding properties of EcPutA. Furthermore, the EcRHH-RcPutA chimaera exhibits proline-induced lipid association, which is a fundamental characteristic of functional switching. Unexpectedly, RcPutA lipid binding is also activated by proline, which shows for the first time that bifunctional PutAs exhibit a limited form of functional switching. Altogether, these results suggest that the C-terminal domain (CTD), which is conserved by trifunctional PutAs and certain bifunctional PutAs, is essential for functional switching in trifunctional PutAs. © 2016 The Author(s).

  16. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21

    DEFF Research Database (Denmark)

    Marhovic, M.; Svensson, Birte; MacGregor, E. A.

    2005-01-01

    Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD...... that the original idea of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein should be modified. Although the CBM20 functionally important tryptophans were found to be substituted in several cases, these aromatics and the regions around them belong to the best conserved...

  17. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Kristin N., E-mail: kparent@msu.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Tang, Jinghua; Cardone, Giovanni [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Gilcrease, Eddie B. [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Janssen, Mandy E.; Olson, Norman H. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu [University of Utah School of Medicine, Division of Microbiology and Immunology, Department of Pathology, Salt Lake City, UT 84112 (United States); Baker, Timothy S., E-mail: tsb@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378 (United States); University of California, San Diego, Division of Biological Sciences, La Jolla, CA, 92093 (United States)

    2014-09-15

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.

  18. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    International Nuclear Information System (INIS)

    Parent, Kristin N.; Tang, Jinghua; Cardone, Giovanni; Gilcrease, Eddie B.; Janssen, Mandy E.; Olson, Norman H.; Casjens, Sherwood R.; Baker, Timothy S.

    2014-01-01

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer

  19. Structural Insights into the Functional Role of the Hcn Sub-domain of the Receptor-Binding Domain of the Botulinum Neurotoxin Mosaic Serotype C/D

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Gardberg, Anna; Edwards, Tom E.; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M.; Buchko, Garry W.

    2013-07-01

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding module (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell’s membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a B-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been indentified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) molecule bound in an hydrophobic cleft between B-strands in the B-sheet jelly fold roll of the Hcn sub-domain. The molecule is completely engulfed in the cleft, making numerous hydrophobic (Y932, S959, W966, and D1042) and hydrophilic (S935, W977, L979, N1013, and I1066) contacts with the protein’s side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid

  20. Asymmetric Assembly of Merkel Cell Polyomavirus Large T-Antigen Origin Binding Domains at the Viral Origin

    Energy Technology Data Exchange (ETDEWEB)

    C Harrison; G Meinke; H Kwun; H Rogalin; P Phelan; P Bullock; Y Chang; P Moore; A Bohm

    2011-12-31

    The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 {angstrom} crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistent with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be {approx} 740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.

  1. FRKAS: knowledge acquisition using a fuzzy rule base approach to insight of DNA-binding domains/proteins.

    Science.gov (United States)

    Huang, Hui-Ling; Chang, Fang-Lin; Ho, Shinn-Jang; Shu, Li-Sun; Huang, Wen-Lin; Ho, Shinn-Ying

    2013-03-01

    Numerous prediction methods of DNA-binding domains/proteins were proposed by identifying informative features and designing effective classifiers. These researches reveal that the DNA-protein binding mechanism is complicated and existing accurate predictors such as support vector machine (SVM) with position specific scoring matrices (PSSMs) are regarded as black-box methods which are not easily interpretable for biologists. In this study, we propose an ensemble fuzzy rule base classifier consisting of a set of interpretable fuzzy rule classifiers (iFRCs) using informative physicochemical properties as features. In designing iFRCs, feature selection, membership function design, and fuzzy rule base generation are all simultaneously optimized using an intelligent genetic algorithm (IGA). IGA maximizes prediction accuracy, minimizes the number of features selected, and minimizes the number of fuzzy rules to generate an accurate and concise fuzzy rule base. Benchmark datasets of DNA-binding domains are used to evaluate the proposed ensemble classifier of 30 iFRCs. Each iFRC has a mean test accuracy of 77.46%, and the ensemble classifier has a test accuracy of 83.33%, where the method of SVM with PSSMs has the accuracy of 82.81%. The physicochemical properties of the first two ranks according to their contribution are positive charge and Van Der Waals volume. Charge complementarity between protein and DNA is thought to be important in the first step of recognition between protein and DNA. The amino acid residues of binding peptides have larger Van Der Waals volumes and positive charges than those of non-binding ones. The proposed knowledge acquisition method by establishing a fuzzy rule-based classifier can also be applicable to predict and analyze other protein functions from sequences.

  2. AtMBD6, a methyl CpG binding domain protein, maintains gene ...

    Indian Academy of Sciences (India)

    ... targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved inRNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 alsointeracts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM ...

  3. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity.

    Science.gov (United States)

    Cherian, Milu T; Chai, Sergio C; Wright, William C; Singh, Aman; Alexandra Casal, Morgan; Zheng, Jie; Wu, Jing; Lee, Richard E; Griffin, Patrick R; Chen, Taosheng

    2018-03-31

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. 1H, 13C and 15N resonance assignments of the GTPase-activating (GAP) and Ral binding domains (GBD) of RLIP76 (RalBP1).

    Science.gov (United States)

    Rajasekar, Karthik V; Campbell, Louise J; Nietlispach, Daniel; Owen, Darerca; Mott, Helen R

    2012-10-01

    RLIP76 (also known as RalBP1) is an effector for Ral small G proteins. RLIP76 is a multifunctional, multi-domain protein that includes a GTPase activating domain for the Rho family (RhoGAP domain) and a GTPase binding domain (GBD) for the Ral small G proteins. The juxtaposition of these two domains (GAP and GBD) may be a strategy employed to co-ordinate regulation of Rho family and Ral-controlled signalling pathways at a crossover node. Here we present the (1)H, (15)N and (13)C NMR backbone and sidechain resonance assignments of the GAP and GBD di-domain (31 kDa).

  5. Backbone and side-chain assignments for a novel CBM69 starch binding domain AmyP-SBD.

    Science.gov (United States)

    Li, Xinxin; Yu, Jigang; Zhang, Jiahai; Sun, Hongbin; Zhang, Xuecheng

    2017-10-01

    Starch binding domains (SBDs) are important for the functions of glycoside hydrolysis enzymes such as α-amylases, they have great application potential in biotechnology and industries. AmyP is a newly identified α-amylase belonging to a new subfamily 37 of glycoside hydrolysis enzyme family 13. AmyP shows preferential degradation to soluble starch, in which its C-terminal starch binding domain, AmyP-SBD, plays an important role. AmyP-SBD shares very low sequence similarity with other biochemically characterized SBDs and was assigned to a new carbohydrate binding module family CBM69. Intriguingly, AmyP-SBD is unfolded in free form, and substrate analogue β-cyclodextrin may induce it to fold into a relatively rigid state. Structure determination for AmyP-SBD will be helpful for understanding its unique properties. Here, we report the backbone and side-chain 1 H, 13 C and 15 N resonance assignments of folded AmyP-SBD, as a basis for structure determination and further studies.

  6. Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain.

    Directory of Open Access Journals (Sweden)

    Francesco A Aprile

    Full Text Available Oligomerization in the heat shock protein (Hsp 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of nanoelectrospray ionization mass spectrometry, optical spectroscopy and quantitative size exclusion chromatography. Our results show that Hsp70 oligomerization takes place through a specific interaction between the interdomain linker of one molecule and the substrate-binding domain of a different molecule, generating dimers and higher-order oligomers. We have found that substrate binding shifts the oligomerization equilibrium towards the accumulation of functional monomeric protein, probably by sequestering the helical lid sub-domain needed to stabilize the chaperone: substrate complex. Taken together, these findings suggest a possible role of chaperone oligomerization as a mechanism for regulating the availability of the active monomeric form of the chaperone and for the control of substrate binding and release.

  7. PICK1 regulates the trafficking of ASIC1a and acidotoxicity in a BAR domain lipid binding-dependent manner

    Directory of Open Access Journals (Sweden)

    Jin Wenying

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channel 1a (ASIC1a is the major ASIC subunit determining acid-activated currents in brain neurons. Recent studies show that ASIC1a play critical roles in acid-induced cell toxicity. While these studies raise the importance of ASIC1a in diseases, mechanisms for ASIC1a trafficking are not well understood. Interestingly, ASIC1a interacts with PICK1 (protein interacting with C-kinase 1, an intracellular protein that regulates trafficking of several membrane proteins. However, whether PICK1 regulates ASIC1a surface expression remains unknown. Results Here, we show that PICK1 overexpression increases ASIC1a surface level. A BAR domain mutant of PICK1, which impairs its lipid binding capability, blocks this increase. Lipid binding of PICK1 is also required for PICK1-induced clustering of ASIC1a. Consistent with the effect on ASIC1a surface levels, PICK1 increases ASIC1a-mediated acidotoxicity and this effect requires both the PDZ and BAR domains of PICK1. Conclusions Taken together, our results indicate that PICK1 regulates trafficking and function of ASIC1a in a lipid binding-dependent manner.

  8. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer (SG); (Columbia); (JHU)

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  9. Guanine nucleotide-binding protein (Gα) endocytosis by a cascade of ubiquitin binding domain proteins is required for sustained morphogenesis and proper mating in yeast.

    Science.gov (United States)

    Dixit, Gauri; Baker, Rachael; Sacks, Carly M; Torres, Matthew P; Dohlman, Henrik G

    2014-05-23

    Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen-Goldberg syndrome.

    Science.gov (United States)

    Schepers, Dorien; Doyle, Alexander J; Oswald, Gretchen; Sparks, Elizabeth; Myers, Loretha; Willems, Patrick J; Mansour, Sahar; Simpson, Michael A; Frysira, Helena; Maat-Kievit, Anneke; Van Minkelen, Rick; Hoogeboom, Jeanette M; Mortier, Geert R; Titheradge, Hannah; Brueton, Louise; Starr, Lois; Stark, Zornitza; Ockeloen, Charlotte; Lourenco, Charles Marques; Blair, Ed; Hobson, Emma; Hurst, Jane; Maystadt, Isabelle; Destrée, Anne; Girisha, Katta M; Miller, Michelle; Dietz, Harry C; Loeys, Bart; Van Laer, Lut

    2015-02-01

    Shprintzen-Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys-Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFβ activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)). This implicates that the initial molecular testing could be focused on mutation analysis of the first half of exon 1 of SKI. As the majority of the known mutations are located in the R-SMAD binding domain of SKI, our study further emphasizes the importance of TGFβ signaling in the pathogenesis of SGS.

  11. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    International Nuclear Information System (INIS)

    Akabayov, B.; Lee, S.; Akabayov, S.; Rekhi, S.; Zhu, B.; Richardson, C.

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  12. "Cytoplasmic domain effects on exposure of co-receptor-binding sites of HIV-1 Env".

    Science.gov (United States)

    Vzorov, Andrei N; Compans, Richard W

    2016-11-01

    We defined the effects of the cytoplasmic domain (CT) of the Env glycoprotein on co-receptor usage of HIV-1 by reciprocal exchanges of regions containing V3-V5 loops between CD4-dependent and CD4-independent isolates. Primary HIV-1 isolate Env clones CD8 CXCR4-tropic 92UG046 CT84 with an 84-aa truncated CT domain, CD4 CXCR4-tropic 92UG046, and CD4 CCR5-tropic SF162 with full-length (FL) CT domains were used for comparison. The parental 92UG046 Env with CT84 was not fusogenic, but a chimeric SF162 V3-V5-CT84 with an 84-aa truncated CT domain, which demonstrated a switched co-receptor specificity, exhibited syncytium-formation activity with 3T3T4X4 cells. The wild-type (WT) SF162 Env with CT84 or full-length CT was fusogenic in 3T3T4R5 cells. By exchange of V3-V5 loops, we were able to alter WT SF162 to switch its co-receptor preference, which was not dependent on CT domain length. These results provide evidence that CT domains can induce conformational changes in functional regions of gp120 and determine receptor tropism but do not modulate HIV-1 co-receptor specificity.

  13. Fluorone dyes have binding sites on both cytoplasmic and extracellular domains of Na,K-ATPase.

    Science.gov (United States)

    Havlíková, Marika; Huličiak, Miroslav; Bazgier, Václav; Berka, Karel; Kubala, Martin

    2013-02-01

    Combination of fluorescence techniques and molecular docking was used to monitor interaction of Na,K-ATPase and its large cytoplasmic loop connecting fourth and fifth transmembrane helices (C45) with fluorone dyes (i.e. eosin Y, 5(6)-carboxyeosin, rose bengal, fluorescein, and erythrosine B). Our data suggested that there are at least two binding sites for all used fluorone dyes, except of 5(6)-carboxyeosin. The first binding site is located on C45 loop, and it is sensitive to the presence of nucleotide. The other site is located on the extracellular part of the enzyme, and it is sensitive to the presence of Na(+) or K(+) ions. The molecular docking revealed that in the open conformation of C45 loop (which is obtained in the presence of ATP) all used fluorone dyes occupy position directly inside the ATP-binding pocket, while in the closed conformation (i.e. in the absence of any ligand) they are located only near the ATP-binding site depending on their different sizes. On the extracellular part of the protein, the molecular docking predicts two possible binding sites with similar binding energy near Asp897(α) or Gln69(β). The former was identified as a part of interaction site between α- and β-subunits, the latter is in contact with conserved FXYD sequence of the γ-subunit. Our findings provide structural explanation for numerous older studies, which were performed with fluorone dyes before the high-resolution structures were known. Further, fluorone dyes seem to be good probes for monitoring of intersubunit interactions influenced by Na(+) and K(+) binding. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  15. Production of recombinant PvDBPII, receptor binding domain of Plasmodium vivax Duffy binding protein, and evaluation of immunogenicity to identify an adjuvant formulation for vaccine development.

    Science.gov (United States)

    Bhardwaj, Rukmini; Shakri, Ahmad Rushdi; Hans, Dhiraj; Gupta, Pankaj; Fernandez-Becerra, Carmen; Del Portillo, Hernando A; Pandey, Gaurav; Chitnis, Chetan E

    2017-08-01

    Plasmodium vivax is dependent on interaction with the Duffy antigen receptor for chemokines (DARC) for invasion of human erythrocytes. The P. vivax Duffy binding protein (PvDBP) mediates interaction of P. vivax merozoites with DARC. The DARC receptor-binding domain lies in a conserved N-terminal cysteine-rich region of PvDBP referred to as region II (PvDBPII). PvDBPII is an attractive vaccine candidate since antibodies raised against PvDBPII block erythrocyte invasion by P. vivax. Here, we describe methods to produce recombinant PvDBPII in its correctly folded conformation. A synthetic gene optimized for expression of PvDBPII in Escherichia coli and fed batch fermentation process based on exponential feeding strategy was used to achieve high levels of expression of recombinant PvDBPII. Recombinant PvDBPII was isolated from inclusion bodies, refolded by rapid dilution and purified by ion exchange chromatography. Purified recombinant PvDBPII was characterized for identity, purity and functional activity using standardized release assays. Recombinant PvDBPII formulated with various human compatible adjuvants including glycosylpyranosyl lipid A-stable emulsion (GLA-SE) and alhydrogel was used for immunogenicity studies in small animals to downselect a suitable formulation for clinical development. Sera collected from immunized animals were tested for recognition of PvDBPII and inhibition of PvDBPII-DARC binding. GLA-SE formulations of PvDBPII yielded higher ELISA and binding inhibition titres compared to PvDBPII formulated with alhydrogel. These data support further development of a recombinant vaccine for P. vivax based on PvDBPII formulated with GLA-SE. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Crystal Structure of 12-Lipoxygenase Catalytic-Domain-Inhibitor Complex Identifies a Substrate-Binding Channel for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shu; Mueser, Timothy C.; Marnett, Lawrence J.; Funk, Jr., Max O. (Toledo); (Vanderbilt)

    2014-10-02

    Lipoxygenases are critical enzymes in the biosynthesis of families of bioactive lipids including compounds with important roles in the initiation and resolution of inflammation and in associated diseases such as diabetes, cardiovascular disease, and cancer. Crystals diffracting to high resolution (1.9 {angstrom}) were obtained for a complex between the catalytic domain of leukocyte 12-lipoxygenase and the isoform-specific inhibitor, 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP). In the three-dimensional structure of the complex, the inhibitor occupied a new U-shaped channel open at one end to the surface of the protein and extending past the redox-active iron site that is essential for catalysis. In models, the channel accommodated arachidonic acid, defining the binding site for the substrate of the catalyzed reaction. There was a void adjacent to the OPP binding site connecting to the surface of the enzyme and providing a plausible access channel for the other substrate, oxygen.

  17. Subcloning and Assessment of the Expression of Synthetic Gene of Botulinum Neurotoxin Type A Binding Domain (BD/A

    Directory of Open Access Journals (Sweden)

    Majid Zavvary

    2016-08-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by Clostridium botulinum neurotoxin. This neurotoxin has seven serotypes ranging from A to G. The best way to prevent botulism syndrome caused by Botulinum neurotoxin (BoNT, is using recombinant vaccine made from its binding domain (due to having sufficient epitopes to stimulate immune system. In this study, the binding domain of BoNT serotype A (BoNT/A, was investigated. Methods: Initially, BoNT/A gene with accession number CP000727.1, was obtained from GenBank and was codon optimized according to the codon usage of E. coli. Then, the sequence was synthesized in pET28a plasmid and then subcloned in pGEX-4T-1 expression plasmid. The subcloning was done using PCR with Pfu DNA polymerase and then double digestion with XmaI and XhoI restriction enzymes. E. coli BL21 strain was used as the expression host. The selected marker for pGEX-4T-1 was ampicillin. Results: PCR and restriction digestion with the mentioned enzymes confirmed the subcloning process. The assessment of gene expression was performed by SDS-PAGE and western blotting (using horse anti-BoNT/A (and then glutathione affinity chromatography was performed. Although, the subcloning was performed successfully, no protein expression was observed.  Conclusion: According to the findings of this study, it seems that other hosts, such as eukaryotic hosts should be used for recombinant expression of BoNT/A binding domain.

  18. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1 bind PECAM1.

    Directory of Open Access Journals (Sweden)

    Sanne S Berger

    Full Text Available Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1 family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs. Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1 are more likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and show that two genetically different parasite lines expressing DC5-PfEMP1 bind PECAM1, and that anti-DC5-specific antibodies inhibit binding of DC5-PfEMP1-expressing parasites to transformed human bone marrow endothelial cells (TrHBMEC. We also show that antibodies against each of the four domains characteristic for DC5 react with native PfEMP1 expressed on the surface of infected erythrocytes, and that some of these antibodies are cross-reactive between the two DC5-containing PfEMP1 molecules tested. Finally, we confirm that anti-DC5 antibodies are acquired early in life by individuals living in malaria endemic areas, that individuals having high levels of these antibodies are less likely to develop febrile malaria episodes and that the antibody levels correlate positively with hemoglobin levels.

  19. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joshua D Garcia

    Full Text Available Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh, a key regulator of planar cell polarity, and Discs large (Dlg, a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH. These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.

  20. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    The purified urokinase plasminogen activator receptor (u-PAR) was cleaved into two fragments by mild chymotrypsin treatment. The smaller fragment (apparent Mr 16,000) possessed the ligand-binding capability, as shown by chemical cross-linking analysis. This fragment constituted the NH2-terminal...... part of the intact receptor, probably including the whole sequence 1-87, and contained N-linked carbohydrate. After detergent phase separation in the Triton X-114 system, the fragment was present in the water phase where its binding activity could be demonstrated in the absence of the rest...

  1. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  2. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA.

    Science.gov (United States)

    Meinke, Gretchen; Phelan, Paul; Moine, Stephanie; Bochkareva, Elena; Bochkarev, Alexey; Bullock, Peter A; Bohm, Andrew

    2007-02-01

    DNA replication is initiated upon binding of "initiators" to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.

  3. An SH2 domain model of STAT5 in complex with phospho-peptides define "STAT5 Binding Signatures".

    Science.gov (United States)

    Gianti, Eleonora; Zauhar, Randy J

    2015-05-01

    The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

  4. An SH2 domain model of STAT5 in complex with phospho-peptides define ``STAT5 Binding Signatures''

    Science.gov (United States)

    Gianti, Eleonora; Zauhar, Randy J.

    2015-05-01

    The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

  5. Sequential binding of calcium ions to the B-repeat domain of SdrD from Staphylococcus aureus.

    Science.gov (United States)

    Roman, Andrei Yu; Devred, François; Lobatchov, Vladimir M; Makarov, Alexander A; Peyrot, Vincent; Kubatiev, Aslan A; Tsvetkov, Philipp O

    2016-02-01

    Biofilms of live bacteria forming on medical devices and implants contribute significantly to bacterial blood dissemination and to the spread of nosocomial infections. Cell surface SdrD protein plays a key role in the attachment of Staphylococcus aureus to the extracellular matrix (ECM) and in the formation of biofilm. SdrD binds calcium ions using its B1-B5 region bearing EF-hand Ca-binding sites, leading to conformational changes in the structure of SdrD. This alters the distance between the bacterial surface and the ECM-interacting domain of SdrD in a spring-like fashion, participating in bacterial attachment. In this study we investigated calcium binding to EF-hand sites of SdrD using isothermal titration calorimetry and determined the impact of this process on SdrD's thermodynamic stability. This allowed us to propose a model of B1-B5 reorganization upon binding of calcium and to get new insight into the molecular mechanism of SdrD's action.

  6. Using molecular principal axes for structural comparison: determining the tertiary changes of a FAB antibody domain induced by antigenic binding

    Directory of Open Access Journals (Sweden)

    Silverman B David

    2007-11-01

    Full Text Available Abstract Background Comparison of different protein x-ray structures has previously been made in a number of different ways; for example, by visual examination, by differences in the locations of secondary structures, by explicit superposition of structural elements, e.g. α-carbon atom locations, or by procedures that utilize a common symmetry element or geometrical feature of the structures to be compared. Results A new approach is applied to determine the structural changes that an antibody protein domain experiences upon its interaction with an antigenic target. These changes are determined with the use of two different, however comparable, sets of principal axes that are obtained by diagonalizing the second-order tensors that yield the moments-of-geometry as well as an ellipsoidal characterization of domain shape, prior to and after interaction. Determination of these sets of axes for structural comparison requires no internal symmetry features of the domains, depending solely upon their representation in three-dimensional space. This representation may involve atomic, Cα, or residue centroid coordinates. The present analysis utilizes residue centroids. When the structural changes are minimal, the principal axes of the domains, prior to and after interaction, are essentially comparable and consequently may be used for structural comparison. When the differences of the axes cannot be neglected, but are nevertheless slight, a smaller relatively invariant substructure of the domains may be utilized for comparison. The procedure yields two distance metrics for structural comparison. First, the displacements of the residue centroids due to antigenic binding, referenced to the ellipsoidal principal axes, are noted. Second, changes in the ellipsoidal distances with respect to the non-interacting structure provide a direct measure of the spatial displacements of the residue centroids, towards either the interior or exterior of the domain

  7. Mapping of a Microbial Protein Domain Involved in Binding and Activation of the TLR2/TLR1 Heterodimer 1

    Science.gov (United States)

    Liang, Shuang; Hosur, Kavita B.; Lu, Shanyun; Nawar, Hesham F.; Weber, Benjamin R.; Tapping, Richard I.; Connell, Terry D.; Hajishengallis, George

    2009-01-01

    LT-IIb-B5, a doughnut-shaped oligomeric protein from enterotoxigenic Escherichia coli, is known to activate the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B5 interaction with TLR2/1 in order to define the structure-function relationship of LT-IIb-B5 and, moreover, to gain an insight into how TLR2/1 recognizes large, non-acylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam3CSK4 lipopeptide. We first identified four critical residues in the upper region of the LT-IIb-B5 pore: Corresponding point mutants (M69E, A70D, L73E, S74D) were defective in binding TLR2 or TLR1 and could not activate antigen-presenting cells, despite retaining full ganglioside-binding capacity. Point mutations in the TLR2/1 dimer interface, as determined in the crystallographic structure of the TLR2/1-Pam3CSK4 complex, resulted in diminished activation by both Pam3CSK4 and LT-IIb-B5. Docking analysis of the LT-IIb-B5 interaction with this apparently “predominant” activation conformation of TLR2/1 revealed that LT-IIb-B5 may primarily contact the convex surface of the TLR2 central domain. Although the TLR1/LT-IIb-B5 interface is relatively smaller, the leucine-rich repeat motifs 9–12 in the central domain of TLR1 were found to be critical for cooperative TLR2-induced cell activation by LT-IIb-B5. Moreover, the putative LT-IIb-B5 binding site overlaps partially with that of Pam3CSK4; consistent with this, Pam3CSK4 suppressed TLR2 binding of LT-IIb-B5, albeit not as potently as self-competitive inhibition. In conclusion, we identified the upper pore region of LT-IIb-B5 as a TLR2/1 interactive domain, which contacts the heterodimeric receptor at a site that is distinct from, though overlaps with, that of Pam3CSK4. PMID:19234193

  8. Binding properties of the regulatory domains in Manduca sexta hemolymph proteinase-14, an initiation enzyme of the prophenoloxidase activation system.

    Science.gov (United States)

    Wang, Yang; Jiang, Haobo

    2010-03-01

    Pathogen recognition and rapid initiation of defense responses are essential for the survival of host insects. In Manduca sexta, hemolymph proteinase-14 precursor (proHP14) senses non-self presence and triggers a branched serine proteinase pathway which leads to prophenoloxidase activation and melanin formation around the invading organisms. To understand functions of individual domains in HP14, we have produced a series of HP14 domains and truncation mutants and studied their interactions with microbial polysaccharides and beta-1,3-glucan recognition protein-1 (betaGRP1)-a biosensor for fungal and bacterial infection. These include: the low-density lipoprotein receptor class A repeats 1-5 (LDL(1-5)), Sushi domain, Wonton domain, and proteinase catalytic domain of HP14, as well as proHP14 missing 1-4 LDL repeats (DeltaLDL(1), DeltaLDL(12), DeltaLDL(1-3) and DeltaLDL(1-4)). LDL(1-5), Sushi, and Wonton domains specifically recognized Lys-type PG, whereas the latter two also bound betaGRP1. Wonton in addition bound to lipopolysaccharide (LPS), lipoteichoic acid (LTA), and meso-diaminopimelic acid (DAP)-type peptidoglycan (PG). The four N-terminally truncated proHP14 (DeltaL(x)) further confirmed specific interactions with LPS, LTA, DAP-PG, Lys-PG, laminarin, and betaGRP1. These binding data suggest a broad specificity of proHP14 in pattern recognition. Its role in mediating immune responses is anticipated to be influenced by other plasma factors and surface structures of invading pathogens. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter.

    Science.gov (United States)

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph-Anthony; Roldan, Ariel; Finkbeiner, Walter E; Haggie, Peter M; Lukacs, Gergely L; Verkman, Alan S

    2018-03-01

    The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin-Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z' factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC 50 . Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain.

  10. Structural Analysis of a Complex between Small Ubiquitin-like Modifier 1 (SUMO1) and the ZZ Domain of CREB-binding Protein (CBP/p300) Reveals a New Interaction Surface on SUMO

    DEFF Research Database (Denmark)

    Diehl, Carl; Akke, Mikael; Bekker-Jensen, Simon

    2016-01-01

    We have recently discovered that the ZZ zinc finger domain represents a novel small ubiquitin-like modifier (SUMO) binding motif. In this study we identify the binding epitopes in the ZZ domain of CBP (CREB-binding protein) and SUMO1 using NMR spectroscopy. The binding site on SUMO1 represents a ...

  11. Silencing of a unique integrated domain nucleotide-binding leucine-rich repeat gene in wheat abolishes Diuraphis noxia resistance.

    Science.gov (United States)

    Nicolis, Vittorio Filippo; Venter, Eduard

    2018-03-13

    Plants respond in a similar manner to aphid feeding as to pathogen attack. Diuraphis noxia is a specialist aphid, feeding only on selected grasses that include wheat, barley, and oats. The wheat-Diuraphis noxia interaction is characterized by very similar responses as seen in wheat-pathogen interactions with none of the underlying resistance pathways and genes characterized yet. From wheat harboring the Dn1 resistance gene, we have identified a nucleotide-binding leucine-rich repeat (NLR) gene containing two integrated domains (IDs). These are three C-terminus ankyrin repeat-domains and an N-terminus WRKY domain. The NLR core of the gene can be traced through speciation events within the grass family, with a recent WRKY domain integration that is Triticum specific. Virus induced gene silencing of the gene in a resistant wheat line resulted in the abolishment of the resistance response and induced a highly susceptible phenotype. Silenced plants supported a higher number of aphids similar to the susceptible NIL and the intrinsic rate of increase of the aphids matched that of aphids feeding on the susceptible NIL. The presence of the gene is necessary for Dn1 resistance and we have named the gene Associated with Dn resistance 1 (Adr1) to reflect this function.

  12. AtMBD6, a methyl CpG binding domain protein, maintains gene ...

    Indian Academy of Sciences (India)

    2017-01-13

    , Johnson CA, Laherty CD, Turner BM, Eisenman. RN and Bird A 1998 Transcriptional repression by the methyl-. CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 386-389. Pendle AF, Clark ...

  13. Identification of the Galactose Binding Domain of the Adeno-Associated Virus Serotype 9 Capsid

    Science.gov (United States)

    Bell, Christie L.; Gurda, Brittney L.; Van Vliet, Kim; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus serotype 9 (AAV9) vectors show promise for gene therapy of a variety of diseases due to their ability to transduce multiple tissues, including heart, skeletal muscle, and the alveolar epithelium of the lung. In addition, AAV9 is unique compared to other AAV serotypes in that it is capable of surpassing the blood-brain barrier and transducing neurons in the brain and spinal cord. It has recently been shown that AAV9 uses galactose as a receptor to transduce many different cell types in vitro, as well as cells of the mouse airway in vivo. In this study, we sought to identify the specific amino acids of the AAV9 capsid necessary for binding to galactose. By site-directed mutagenesis and cell binding assays, plus computational ligand docking studies, we discovered five amino acids, including N470, D271, N272, Y446, and W503, which are required for galactose binding that form a pocket at the base of the protrusions around the icosahedral 3-fold axes of symmetry. The importance of these amino acids for tissue tropism was also confirmed by in vivo studies in the mouse lung. Identifying the interactions necessary for AAV9 binding to galactose may lead to advances in vector engineering. PMID:22514350

  14. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2017-01-01

    Roč. 7, Jan 16 (2017), č. článku 40381. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * N-methylscopolamine * ligand binding * molecular dynamics Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 4.259, year: 2016

  15. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Škerlová, Jana; Fábry, Milan; Hubálek, Martin; Otwinowski, Z.; Řezáčová, Pavlína

    2014-01-01

    Roč. 281, č. 18 (2014), s. 4280-4292 ISSN 1742-464X R&D Projects: GA MŠk ME08016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : dimeric interface * effector binding * Schiff base * transcription repressor * X-ray crystallography Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 4.001, year: 2014

  16. AtMBD6, a methyl CpG binding domain protein, maintains gene ...

    Indian Academy of Sciences (India)

    DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome fromtransposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG bindingdomain proteins are members of a class of proteins that bind tomethylated ...

  17. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    Energy Technology Data Exchange (ETDEWEB)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.; Rizo, Josep

    2017-09-18

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturating conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.

  18. Ligand binding to the PDZ domains of postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Toto, Angelo; Pedersen, Søren W; Karlsson, O Andreas

    2016-01-01

    Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 ...

  19. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Nielsen, Morten Schallburg; Brejning, Jeanette; García, R.

    1997-01-01

    /LRP was essentially abolished following deletion of residues 404-430, and pretreatment of CHO cells with the peptide comprising aa 402-423 inhibited the binding of LpL-(313-448). We conclude that the C-terminal folding domain of human LpL has a site for binding to heparin and to HSPG, presumably involving amino acids...

  20. Focal Adhesion Kinase (FAK) Binds RET Kinase via Its FERM Domain, Priming a Direct and Reciprocal RET-FAK Transactivation Mechanism

    NARCIS (Netherlands)

    Plaza-Menacho, Ivan; Morandi, Andrea; Mologni, Luca; Boender, Piet; Gambacorti-Passerini, Carlo; Magee, Anthony I.; Hofstra, Robert M. W.; Knowles, Phillip; McDonald, Neil Q.; Isacke, Clare M.

    2011-01-01

    Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely

  1. Existence of different but overlapping IgG- and IgM-binding sties on the globular domain of human C1q

    DEFF Research Database (Denmark)

    Zlatarova, A.S.; Rouseva, M.; Roumenina, L.T.

    2006-01-01

    C1q is the first subcomponent of the classical complement pathway that binds antigen-bound IgG or IgM and initiates complement activation via association of serine proteases C1r and C1s. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure compo...

  2. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.

    2006-01-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase...

  3. NMR assignments and ligand-binding studies on a two-domain family GH19 chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen.

    Science.gov (United States)

    Takashima, Tomoya; Ohnuma, Takayuki; Fukamizo, Tamo

    2017-04-01

    A two-domain family GH19 chitinase from Japanese cedar (Cryptomeria japonica) pollen, CJP-4, which consists of an N-terminal CBM18 domain and a GH19 catalytic domain, is known to be an important allergen, that causes pollinosis. We report here the resonance assignments of the NMR spectrum of CJP-4. The backbone resonances were almost completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of a chitin dimer to the enzyme solution perturbed the chemical shifts of the resonances of amino acid residues forming a long extended binding site spanning from the CBM18 domain to the GH19 catalytic domain.

  4. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.

    Science.gov (United States)

    Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro

    2017-12-04

    Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.

  5. Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain*

    Science.gov (United States)

    Mazerik, Jessica N.; Tyska, Matthew J.

    2012-01-01

    One of the most abundant components of the enterocyte brush border is the actin-based monomeric motor, myosin-1a (Myo1a). Within brush border microvilli, Myo1a carries out a number of critical functions at the interface between membrane and actin cytoskeleton. Proper physiological function of Myo1a depends on its ability to bind to microvillar membrane, an interaction mediated by a C-terminal tail homology 1 (TH1) domain. However, little is known about the mechanistic details of the Myo1a-TH1/membrane interaction. Structure-function analysis of Myo1a-TH1 targeting in epithelial cells revealed that an N-terminal motif conserved among class I myosins and a C-terminal motif unique to Myo1a-TH1 are both required for steady state microvillar enrichment. Purified Myo1a bound to liposomes composed of phosphatidylserine and phosphoinositol 4,5-bisphosphate, with moderate affinity in a charge-dependent manner. Additionally, peptides of the N- and C-terminal regions required for targeting were able to compete with Myo1a for binding to highly charged liposomes in vitro. Single molecule total internal reflection fluorescence microscopy showed that these motifs are also necessary for slowing the membrane detachment rate in cells. Finally, Myo1a-TH1 co-localized with both lactadherin-C2 (a phosphatidylserine-binding protein) and PLCδ1-PH (a phosphoinositol 4,5-bisphosphate-binding protein) in microvilli, but only lactaderin-C2 expression reduced brush border targeting of Myo1a-TH1. Together, our results suggest that Myo1a targeting to microvilli is driven by membrane binding potential that is distributed throughout TH1 rather than localized to a single motif. These data highlight the diversity of mechanisms that enable different class I myosins to target membranes in distinct biological contexts. PMID:22367206

  6. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8.

    Science.gov (United States)

    Jagannathan, Indu; Culver, Gloria M

    2003-07-04

    Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.

  7. Characterization of niphatenones that inhibit androgen receptor N-terminal domain.

    Directory of Open Access Journals (Sweden)

    Carmen A Banuelos

    Full Text Available Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC. The androgen receptor (AR remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD. Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD. Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S-niphatenone had significantly better activity against the AR NTD compared to (R-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR activity and covalently bound to GR activation function-1 (AF-1 region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.

  8. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  9. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Chromatin Domain Organization of the TCRb Locus and Its Perturbation by Ectopic CTCF Binding.

    Science.gov (United States)

    Rawat, Pratishtha; Jalan, Manisha; Sadhu, Ananya; Kanaujia, Abhilasha; Srivastava, Madhulika

    2017-05-01

    CTCF-mediated chromatin interactions influence organization and function of mammalian genome in diverse ways. We analyzed the interactions among CTCF binding sites (CBS) at the murine TCRb locus to discern the role of CTCF-mediated interactions in the regulation of transcription and VDJ recombination. Chromosome conformation capture analysis revealed thymocyte-specific long-range intrachromosomal interactions among various CBS across the locus that were relevant for defining the limit of the enhancer Eb-regulated recombination center (RC) and for facilitating the spatial proximity of TCRb variable (V) gene segments to the RC. Ectopic CTCF binding in the RC region, effected via genetic manipulation, altered CBS-directed chromatin loops, interfered with RC establishment, and reduced the spatial proximity of the RC with Trbv segments. Changes in chromatin loop organization by ectopic CTCF binding were relatively modest but influenced transcription and VDJ recombination dramatically. Besides revealing the importance of CTCF-mediated chromatin organization for TCRb regulation, the observed chromatin loops were consistent with the emerging idea that CBS orientations influence chromatin loop organization and underscored the importance of CBS orientations for defining chromatin architecture that supports VDJ recombination. Further, our study suggests that in addition to mediating long-range chromatin interactions, CTCF influences intricate configuration of chromatin loops that govern functional interactions between elements. Copyright © 2017 American Society for Microbiology.

  11. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes

    Directory of Open Access Journals (Sweden)

    Yu-Fu Hung

    2015-07-01

    Full Text Available Dengue virus (DENV is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A is a vital component of the viral replication complex (RC and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1–48 is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1–48 to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1–48 to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.

  12. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes.

    Science.gov (United States)

    Hung, Yu-Fu; Schwarten, Melanie; Hoffmann, Silke; Willbold, Dieter; Sklan, Ella H; Koenig, BerndW

    2015-07-21

    Dengue virus (DENV) is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A) is a vital component of the viral replication complex (RC) and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1-48) is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1-48) to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1-48) to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.

  13. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  14. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  15. The 1.7 Å X-ray crystal structure of the porcine factor VIII C2 domain and binding analysis to anti-human C2 domain antibodies and phospholipid surfaces.

    Directory of Open Access Journals (Sweden)

    Caileen M Brison

    Full Text Available The factor VIII C2 domain is essential for binding to activated platelet surfaces as well as the cofactor activity of factor VIII in blood coagulation. Inhibitory antibodies against the C2 domain commonly develop following factor VIII replacement therapy for hemophilia A patients, or they may spontaneously arise in cases of acquired hemophilia. Porcine factor VIII is an effective therapeutic for hemophilia patients with inhibitor due to its low cross-reactivity; however, the molecular basis for this behavior is poorly understood. In this study, the X-ray crystal structure of the porcine factor VIII C2 domain was determined, and superposition of the human and porcine C2 domains demonstrates that most surface-exposed differences cluster on the face harboring the "non-classical" antibody epitopes. Furthermore, antibody-binding results illustrate that the "classical" 3E6 antibody can bind both the human and porcine C2 domains, although the inhibitory titer to human factor VIII is 41 Bethesda Units (BU/mg IgG versus 0.8 BU/mg IgG to porcine factor VIII, while the non-classical G99 antibody does not bind to the porcine C2 domain nor inhibit porcine factor VIII activity. Further structural analysis of differences between the electrostatic surface potentials suggest that the C2 domain binds to the negatively charged phospholipid surfaces of activated platelets primarily through the 3E6 epitope region. In contrast, the G99 face, which contains residue 2227, should be distal to the membrane surface. Phospholipid binding assays indicate that both porcine and human factor VIII C2 domains bind with comparable affinities, and the human K2227A and K2227E mutants bind to phospholipid surfaces with similar affinities as well. Lastly, the G99 IgG bound to PS-immobilized factor VIII C2 domain with an apparent dissociation constant of 15.5 nM, whereas 3E6 antibody binding to PS-bound C2 domain was not observed.

  16. Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding

    Science.gov (United States)

    Shi, Yunhua; Mowery, Richard A; Ashley, Jonathan; Hentz, Michelle; Ramirez, Alejandro J; Bilgicer, Basar; Slunt-Brown, Hilda; Borchelt, David R; Shaw, Bryan F

    2012-01-01

    The amino acid substitution or post-translational modification of a cytosolic protein can cause unpredictable changes to its electrophoretic mobility during SDS-PAGE. This type of “gel shifting” has perplexed biochemists and biologists for decades. We identify a mechanism for “gel shifting” that predominates among a set of ALS (amyotrophic lateral sclerosis) mutant hSOD1 (superoxide dismutase) proteins, post-translationally modified hSOD1 proteins, and homologous SOD1 proteins from different organisms. By first comparing how 39 amino acid substitutions throughout hSOD1 affected SDS-PAGE migration, we found that substitutions that caused gel shifting occurred within a single polyacidic domain (residues ∼80–101), and were nonisoelectric. Substitutions that decreased the net negative charge of domain 80–101 increased migration; only one substitution increased net negative charge and slowed migration. Capillary electrophoresis, circular dichroism, and size exclusion chromatography demonstrated that amino acid substitutions increase migration during SDS-PAGE by promoting the binding of three to four additional SDS molecules, without significantly altering the secondary structure or Stokes radius of hSOD1-SDS complexes. The high negative charge of domain 80–101 is required for SOD1 gel shifting: neutralizing the polyacidic domain (via chimeric mouse-human SOD1 fusion proteins) inhibited amino acid substitutions from causing gel shifting. These results demonstrate that the pattern of gel shifting for mutant cytosolic proteins can be used to: (i) identify domains in the primary structure that control interactions between denatured cytosolic proteins and SDS and (ii) identify a predominant chemical mechanism for the interaction (e.g., hydrophobic vs. electrostatic). PMID:22692797

  17. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  18. Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains

    DEFF Research Database (Denmark)

    Bikker, Floris J; Ligtenberg, Antoon J M; End, Caroline

    2004-01-01

    The scavenger receptor cysteine-rich (SRCR) proteins form an archaic group of metazoan proteins characterized by the presence of SRCR domains. These proteins are classified in group A and B based on the number of conserved cysteine residues in their SRCR domains, i.e. six for group A and eight...... acid motif (DMBT1 pathogen-binding site 1 or DMBT1pbs1; GRVEVLYRGSW). An alanine substitution scan revealed that VEVL and Trp are critical residues in this motif. Bacteria binding by DMBT1pbs1 was different from the bacteria binding by the macrophage receptor MARCO in which an RXR motif was critical...

  19. A helical membrane-binding domain targets the Toxoplasma ROP2-family to the parasitophorous vacuole

    OpenAIRE

    Reese, Michael L.; Boothroyd, John C.

    2009-01-01

    During invasion, the obligate intracellular pathogen, Toxoplasma gondii, secretes into its host cell a variety of effector molecules, several of which have been implicated in strain-specific variation in disease. The largest family of these effectors, defined by the canonical member ROP2, quickly associates with the nascent parasitophorous vacuole membrane (PVM) after secretion. Here we demonstrate that the NH2-terminal domain of the ROP2-family contains a series of amphipathic helices that a...

  20. Enhancer-binding proteins with a forkhead-associated domain and the sigma(54) regulon in Myxococcus xanthus fruiting body development

    DEFF Research Database (Denmark)

    Jelsbak, Lars; Givskov, Michael Christian; Kaiser, D.

    2005-01-01

    In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer......-binding proteins. Here we report the finding of an unusual group of 12 genes encoding sigma(54)-dependent enhancer-binding proteins containing a forkhead-associated (FHA) domain as their N-terminal sensory domain. FHA domains in other proteins recognize phosphothreonine residues. An insertion mutation in one...

  1. Genomewide analysis of the lateral organ boundaries domain gene ...

    Indian Academy of Sciences (India)

    95, 515–526]. Introduction. Transcription factor (TF) families play important roles in several biological processes in plants including growth and development, signal transduction and environmental stress responses. The lateral organ boundaries domain (LBD) gene family encodes plant-specific TFs that function in lateral.

  2. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  3. The flexible loop L1 of the H3K4 demethylase JARID1B ARID domain has a crucial role in DNA-binding activity

    International Nuclear Information System (INIS)

    Yao, Wenming; Peng, Yu; Lin, Donghai

    2010-01-01

    JARID1B, a member of the JmjC demethylase family, has a crucial role in H3K4me3 demethylation. The ARID domain is a potential DNA-binding domain of JARID1B. Previous studies indicate that a GC-rich DNA motif is the specific target of the ARID domain. However, the details of the interaction between the ARID domain and duplex DNA require further study. Here, we utilized NMR spectroscopy to assign the backbone amino acids and mapped the DNA-binding sites of the human JARID1B ARID domain. Perturbations to 1 H- 15 N correlation spectra revealed that the flexible loop L1 of ARID was the main DNA-binding interface. EMSA and intrinsic fluorescence experiments demonstrated that mutations on loop L1 strongly reduced the DNA-binding activity of JARID1B ARID. Furthermore, transfection of mutant forms resulted in a distinct loss of intrinsic H3K4 demethylase activity, implying that the flexible loop L1 made a major contribution to sustaining the DNA-binding ability of JARID1B ARID domain.

  4. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R

    1997-01-01

    Replication factor C (RF-C) is a heteropentameric protein essential for DNA replication and DNA repair. It is a molecular matchmaker required for loading of the proliferating cell nuclear antigen (PCNA) sliding clamp onto double-strand DNA and for PCNA-dependent DNA synthesis by DNA polymerases...... delta and epsilon. The DNA and PCNA binding domains of the large 140 kDa subunit of human RF-C have been recently cloned [Fotedar, R., Mossi, R., Fitzgerald, P., Rousselle, T., Maga, G., Brickner, H., Messier, H., Khastilba. S., Hübscher, U., & Fotedar, A. (1996) EMBO J. 15, 4423-4433]. Here we show...... that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF-C...

  5. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...... truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...

  6. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer.

    Directory of Open Access Journals (Sweden)

    Dongmei Feng

    Full Text Available The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB. Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616, located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin.

  7. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available The cellulose binding domain (CBD of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids.

  8. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.

    Science.gov (United States)

    Rausin, Glwadys; Tillemans, Vinciane; Stankovic, Nancy; Hanikenne, Marc; Motte, Patrick

    2010-05-01

    Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.

  9. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  10. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B ca expression did not restore adipogenesis.

  11. Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation.

    Science.gov (United States)

    Kamano, Yuya; Watanabe, Jun; Iida, Tsutomu; Kondo, Takeru; Okawa, Hiroko; Yatani, Hirofumi; Saeki, Makio; Egusa, Hiroshi

    2018-01-29

    The calcineurin/nuclear factor of activated T cell (NFAT) signaling pathway plays a major role in osteoclast differentiation; however, the proteins that react with the calcineurin-NFAT complex in osteoclasts to regulate osteoclastogenesis remain unclear. Here, we present evidence that PICK1 also positively regulates calcineurin B in osteoclasts to activate NFAT to promote osteoclastogenesis. mRNA and protein expression of PICK1 in murine primary bone marrow macrophages (BMMs) was significantly increased during RANKL-induced osteoclast differentiation. The interaction of PICK1 with calcineurin B in BMMs was confirmed by co-immunoprecipitation. An inhibitor of the PICK1 PDZ domain significantly decreased osteoclastogenesis marker gene expression and the number of TRAP-positive multinucleated cells among RAW264.7 osteoclast progenitor cells. Overexpression of PICK1 in RAW264.7 cells significantly increased the number of TRAP-positive mature osteoclasts. Increased NFAT activation with transcriptional activation of PICK1 during RAW264.7 osteoclastogenesis was also confirmed in a tetracycline-controlled PICK1 expression system. These results suggest that the PDZ domain of PICK1 directly interacts with calcineurin B in osteoclast progenitor cells and promotes osteoclast differentiation through activation of calcineurin-NFAT signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The nature of the hydrophobic n-alkanol binding site within the C1 domains of protein kinase Calpha.

    Science.gov (United States)

    Slater, Simon J; Malinowski, Steve A; Stubbs, Christopher D

    2004-06-15

    The activator-binding sites within the C1 domains of protein kinase C (PKC) are also able to bind alcohols and anesthetics. In this study, the nature of the interaction of these agents with the hydrophobic region within the C1 domains was investigated and a structure-activity relationship for the alcohol effects was obtained. The effects of a series of n-alkanols on PKCalpha activity, determined using an in vitro assay system that lacked lipids, were found to be a nonlinear function of the chain length. In the absence of phorbol ester or diacylglycerol, 1-octanol potently activated PKCalpha in a concentration-dependent manner, while 1-heptanol was completely without effect, despite differing by one methylene unit. The minimal structural requirement for the activating effect corresponded to R-CH(OH)-(CH(2))(n)-CH(3), where R = H or an alkyl group and n >or= 6. Consistent with this, 2-octanol, for which n = 5, was without effect on the activity, even though this alcohol is only marginally less hydrophobic than 1-octanol, whereas 2-nonanol, for which n = 6, was able to produce activity. Importantly, it was found that PKCalpha was activated to a greater extent by R-2-nonanol than by the S enantiomer. The potentiation of phorbol ester-induced, membrane-associated PKCalpha activity by long-chain n-alkanols reported previously (Slater, S. J., Kelly, M. B., Larkin, J. D., Ho, C, Mazurek, A, Taddeo, F. J., Yeager, M. D., Stubbs, C. D. (1997) J. Biol. Chem. 272, 6167-6173), was also found here for nonmembrane associated PKC, indicating that this effect is an intrinsic property of the enzyme rather than a result of membrane perturbation. Overall, the results suggest that the alcohol-binding sites within the C1 domains of PKCalpha contain spatially distinct hydrophilic and hydrophobic regions that impose a high degree of structural specificity on the interactions of alcohols and other anesthetic compounds, as well as diacylglycerols and phorbol esters.

  13. Chitin-binding domains of Escherichia coli ChiA mediate interactions with intestinal epithelial cells in mice with colitis.

    Science.gov (United States)

    Low, Daren; Tran, Hoa T; Lee, In-Ah; Dreux, Nicolas; Kamba, Alan; Reinecker, Hans-Christian; Darfeuille-Michaud, Arlette; Barnich, Nicolas; Mizoguchi, Emiko

    2013-09-01

    Inducible chitinase 3-like-1 is expressed by intestinal epithelial cells (IECs) and adheres to bacteria under conditions of inflammation. We performed a structure-function analysis of the chitin-binding domains encoded by the chiA gene, which mediates the pathogenic effects of adherent invasive Escherichia coli (AIEC). We created AIEC (strain LF82) with deletion of chiA (LF82-ΔchiA) or that expressed chiA with specific mutations. We investigated the effects of infecting different IEC lines with these bacteria compared with nonpathogenic E coli; chitinase activities were measured using the colloidal chitin-azure method. Colitis was induced in C57/Bl6 mice by administration of dextran sodium sulfate, and mice were given 10(8) bacteria for 15 consecutive days by gavage. Stool/tissue samples were collected and analyzed. LF82-ΔchiA had significantly less adhesion to IEC lines than LF82. Complementation of LF82-ΔchiA with the LF82 chiA gene, but not chiA from nonpathogenic (K12) E coli, increased adhesion. We identified 5 specific polymorphisms in the chitin-binding domain of LF82 chiA (at amino acids 362, 370, 378, 388, and 548) that differ from chiA of K12 and were required for LF82 to interact directly with IECs. This interaction was mediated by an N-glycosylated asparagine in chitinase 3-like-1 (amino acid 68) on IECs. Mice infected with LF82, or LF82-ΔchiA complemented with LF82 chiA, developed more severe colitis after administration of dextran sodium sulfate than mice infected with LF82-ΔchiA or LF82 that expressed mutant forms of chiA. AIEC adheres to an N-glycosylated chitinase 3-like-1 on IECs via the chitin-binding domain of chiA. This mechanism promotes the pathogenic effects of AIEC in mice with colitis. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production.

    Science.gov (United States)

    Wang, Jianjun; Zhu, Junge; Min, Cong; Wu, Sheng

    2014-05-13

    γ-lactamase is used for the resolution of γ-lactam which is utilized in the synthesizing of abacavir and peramivir. In some cases, enzymatic method is the most utilized method because of its high efficiency and productivity. The cellulose binding domain (CBD) of cellulose is often used as the bio-specific affinity matrix for enzyme immobilization. Cellulose is cheap and it has excellent chemical and physical properties. Meanwhile, binding between cellulose and CBD is tight and the desorption rarely happened. We prepared two fusion constructs of the γ-lactamase gene gla, which was from Sulfolobus solfataricus P2. These two constructs had Cbd (cellulose binding domain from Clostridium thermocellum) fused at amino or carboxyl terminus of the γ-lactamase. These two constructs were heterogeneously expressed in E. coli rosetta (DE3) as two fusion proteins. Both of them were immobilized well on Avicel (microcrystalline cellulose matrix). The apparent kinetic parameters revealed that carboxyl terminus fused protein (Gla-linker-Cbd) was a better catalyst. The V(max) and k(cat) value of Avicel immobilized Gla-linker-Cbd were 381 U mg⁻¹ and 4.7 × 10⁵ s⁻¹ respectively. And the values of the free Gla-linker-Cbd were 151 U mg⁻¹ and 1.8 × 10⁵ s⁻¹ respectively. These data indicated that the catalytic efficiency of the enzyme was upgraded after immobilization. The immobilized Gla-linker-Cbd had a 10-degree temperature optimum dropping from 80°C to 70°C but it was stable when incubated at 60°C for 48 h. It remained stable in catalyzing 20-batch reactions. After optimization, the immobilized enzyme concentration in transformation was set as 200 mg/mL. We found out that there was inhibition that occurred to the immobilized enzyme when substrate concentration exceeded 60 mM. Finally a 10 mL-volume transformation was conducted, in which 0.6 M substrate was hydrolyzed and the resolution was completed within 9 h with a 99.5% ee value. Cellulose is the most

  15. Enhancer-binding proteins with a forkhead-associated domain and the sigma(54) regulon in Myxococcus xanthus fruiting body development

    DEFF Research Database (Denmark)

    Jelsbak, Lars; Givskov, Michael Christian; Kaiser, D.

    2005-01-01

    of these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response...... donor cell. Because FHA domains respond to phosphothreonine-containing proteins, these results suggest a regulatory link to the abundant Ser/Thr protein kinases in M. xanthus.......-binding proteins. Here we report the finding of an unusual group of 12 genes encoding sigma(54)-dependent enhancer-binding proteins containing a forkhead-associated (FHA) domain as their N-terminal sensory domain. FHA domains in other proteins recognize phosphothreonine residues. An insertion mutation in one...

  16. Structure of REV-ERBβ Ligand-binding Domain Bound to a Porphyrin Antagonist*

    Science.gov (United States)

    Matta-Camacho, Edna; Banerjee, Subhashis; Hughes, Travis S.; Solt, Laura A.; Wang, Yongjun; Burris, Thomas P.; Kojetin, Douglas J.

    2014-01-01

    REV-ERBα and REV-ERBβ are members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors that play important roles in the regulation of circadian physiology, metabolism, and immune function. Although the REV-ERBs were originally characterized as orphan receptors, recent studies have demonstrated that they function as receptors for heme. Here, we demonstrate that cobalt protoporphyrin IX (CoPP) and zinc protoporphyrin IX (ZnPP) are ligands that bind directly to the REV-ERBs. However, instead of mimicking the agonist action of heme, CoPP and ZnPP function as antagonists of REV-ERB function. This was unexpected because the only distinction between these ligands is the metal ion that is coordinated. To understand the structural basis by which REV-ERBβ can differentiate between a porphyrin agonist and antagonist, we characterized the interaction between REV-ERBβ with heme, CoPP, and ZnPP using biochemical and structural approaches, including x-ray crystallography and NMR. The crystal structure of CoPP-bound REV-ERBβ indicates only minor conformational changes induced by CoPP compared with heme, including the porphyrin ring of CoPP, which adopts a planar conformation as opposed to the puckered conformation observed in the heme-bound REV-ERBβ crystal structure. Thus, subtle changes in the porphyrin metal center and ring conformation may influence the agonist versus antagonist action of porphyrins and when considered with other studies suggest that gas binding to the iron metal center heme may drive alterations in REV-ERB activity. PMID:24872411

  17. Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains.

    Directory of Open Access Journals (Sweden)

    Chung-Wei Chiang

    Full Text Available BACKGROUND: In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt family harbors two Ca(2+-binding domains (C2A and C2B which serve as Ca(2+ sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca(2+ binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca(2+ sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca(2+-binding ability in C2A or C2B in SACs. Subsequent live Ca(2+ imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca(2+ transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca(2+ transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca(2+ transients. CONCLUSIONS/SIGNIFICANCE: Through Ca(2+ binding to C2A or C2B, the Ca(2+ sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development

  18. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors

    DEFF Research Database (Denmark)

    Van den Steen, Philippe E; Van Aelst, Ilse; Hvidberg, Vibeke

    2006-01-01

    with a compact three-dimensional structure. The OG and hemopexin domains have no influence on the cleavage efficiency of MMP-9 substrates. In contrast, the hemopexin domain contains a binding site for the cargo receptor low density lipoprotein receptor-related protein-1 (LRP-1). Furthermore, megalin/LRP-2......Gelatinase B/matrix metalloproteinase-9 (MMP-9), a key regulator and effector of immunity, contains a C-terminal hemopexin domain preceded by a unique linker sequence of approximately 64 amino acid residues. This linker sequence is demonstrated to be an extensively O-glycosylated (OG) domain...... is identified as a new functional receptor for the hemopexin domain of MMP-9, able to mediate the endocytosis and catabolism of the enzyme. The OG domain is required to correctly orient the hemopexin domain for inhibition by TIMP-1 and internalization by LRP-1 and megalin. Therefore, the OG and hemopexin...

  19. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9.

    Science.gov (United States)

    Dhayalan, Arunkumar; Tamas, Raluca; Bock, Ina; Tattermusch, Anna; Dimitrova, Emilia; Kudithipudi, Srikanth; Ragozin, Sergey; Jeltsch, Albert

    2011-06-01

    Mutations in the ATRX protein are associated with the alpha-thalassemia and mental retardation X-linked syndrome (ATR-X). Almost half of the disease-causing mutations occur in its ATRX-Dnmt3-Dnmt3L (ADD) domain. By employing peptide arrays, chromatin pull-down and peptide binding assays, we show specific binding of the ADD domain to H3 histone tail peptides containing H3K9me3. Peptide binding was disrupted by the presence of the H3K4me3 and H3K4me2 modification marks indicating that the ATRX-ADD domain has a combined readout of these two important marks (absence of H3K4me2 and H3K4me3 and presence of H3K9me3). Disease-causing mutations reduced ATRX-ADD binding to H3 tail peptides. ATRX variants, which fail in the H3K9me3 interaction, show a loss of heterochromatic localization in cells, which indicates the chromatin targeting function of the ADD domain of ATRX. Disruption of H3K9me3 binding may be a general pathogenicity pathway of ATRX mutations in the ADD domain which may explain the clustering of disease mutations in this part of the ATRX protein.

  20. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  1. Breast Cancer Anti-estrogen Resistance 3 (BCAR3) Protein Augments Binding of the c-Src SH3 Domain to Crk-associated Substrate (p130cas)*

    Science.gov (United States)

    Makkinje, Anthony; Vanden Borre, Pierre; Near, Richard I.; Patel, Prayag S.; Lerner, Adam

    2012-01-01

    The focal adhesion adapter protein p130cas regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130cas. AND-34/BCAR3, one of three NSP family members, binds the p130cas carboxyl terminus, adjacent to a bipartite p130cas Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130cas. Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130cas complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130cas to bind the Src SH3 domain through an RPLPSPP motif in the p130cas SBD. Although our prior work identified phosphorylation of the serine within the p130cas RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130cas. The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130cas complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130cas substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130cas. Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130cas and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130cas complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130cas SBD. PMID:22711540

  2. A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Karamysheva, Zemfira N; Surovtseva, Yulia V; Vespa, Laurent; Shakirov, Eugene V; Shippen, Dorothy E

    2004-11-12

    Little is known about the protein composition of plant telomeres. We queried the Arabidopsis thaliana genome data base in search of genes with similarity to the human telomere proteins hTRF1 and hTRF2. hTRF1/hTRF2 are distinguished by the presence of a single Myb-like domain in their C terminus that is required for telomeric DNA binding in vitro. Twelve Arabidopsis genes fitting this criterion, dubbed TRF-like (TRFL), fell into two distinct gene families. Notably, TRFL family 1 possessed a highly conserved region C-terminal to the Myb domain called Myb-extension (Myb-ext) that is absent in TRFL family 2 and hTRF1/hTRF2. Immunoprecipitation experiments revealed that recombinant proteins from TRFL family 1, but not those from family 2, formed homodimers and heterodimers in vitro. DNA binding studies with isolated C-terminal fragments from TRFL family 1 proteins, but not family 2, showed specific binding to double-stranded plant telomeric DNA in vitro. Removal of the Myb-ext domain from TRFL1, a family 1 member, abolished DNA binding. However, when the Myb-ext domain was introduced into the corresponding region in TRFL3, a family 2 member, telomeric DNA binding was observed. Thus, Myb-ext is required for binding plant telomeric DNA and defines a novel class of proteins in Arabidopsis.

  3. (1)H, (13)C and (15)N chemical shift assignments for the cyclic-nucleotide binding homology domain of a KCNH channel.

    Science.gov (United States)

    Li, Qingxin; Ng, Hui Qi; Kang, CongBao

    2015-04-01

    The KCNH family of ion channels plays important roles in heart and nerve cells. The C-terminal region of the KCNH channel contains a cyclic-nucleotide binding homology domain (CNBHD) which is important for channel gating through interaction with the eag domain. To study the solution structure of CNBHD of the KCNH channel of zebrafish, we over-expressed and purified this domain from E. coli. We report the resonance assignments of the CNBHD. The assignments will allow us to perform structural and dynamic studies for this domain, which will shed light on its role in channel gating.

  4. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    Science.gov (United States)

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  5. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine R Langlois

    2016-11-01

    Full Text Available Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

  6. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.

    Science.gov (United States)

    Hishiki, Asami; Hara, Kodai; Ikegaya, Yuzu; Yokoyama, Hideshi; Shimizu, Toshiyuki; Sato, Mamoru; Hashimoto, Hiroshi

    2015-05-22

    HLTF (helicase-like transcription factor) is a yeast RAD5 homolog found in mammals. HLTF has E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. HLTF has an N-terminal domain that has been designated the HIRAN (HIP116 and RAD5 N-terminal) domain. The HIRAN domain has been hypothesized to play a role in DNA binding; however, the structural basis of, and functional evidence for, the HIRAN domain in DNA binding has remained unclear. Here we show for the first time the crystal structure of the HIRAN domain of human HLTF in complex with DNA. The HIRAN domain is composed of six β-strands and two α-helices, forming an OB-fold structure frequently found in ssDNA-binding proteins, including in replication factor A (RPA). Interestingly, this study reveals that the HIRAN domain interacts with not only with a single-stranded DNA but also with a duplex DNA. Furthermore, the structure unexpectedly clarifies that the HIRAN domain specifically recognizes the 3'-end of DNA. These results suggest that the HIRAN domain functions as a sensor to the 3'-end of the primer strand at the stalled replication fork and that the domain facilitates fork regression. HLTF is recruited to a damaged site through the HIRAN domain at the stalled replication fork. Furthermore, our results have implications for the mechanism of template switching. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Critical role of nucleotide-binding oligomerization domain-like receptor 3 in vascular repair

    Energy Technology Data Exchange (ETDEWEB)

    Schlaweck, Sebastian; Zimmer, Sebastian; Struck, Rafael [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Bartok, Eva [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Bauernfeind, Franz [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Latz, Eicke [Institute of Innate Immunity, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Hornung, Veit [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Ghanem, Alexander, E-mail: ghanem@uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2011-08-05

    Highlights: {yields} NLRP3 is not required for systemic cardiovascular function in healthy mice. {yields} NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and that it does not alter peripheral differential blood counts. {yields} NLRP3 is critical in neointima formation following vascular injury. -- Abstract: Vascular remodeling characterized by hyperproliferative neointima formation is an unfavorable repair process that is triggered by vascular damage. This process is characterized by an increased local inflammatory and proliferative response that critically involves the pro-inflammatory cytokine interleukin-1{beta} (IL-1{beta}). IL-1{beta} is expressed and cytosolically retained as a procytokine that requires additional processing prior to exerting its pro-inflammatory function. Maturation and release of pro IL-1{beta} is governed by a cytosolic protein scaffold that is known as the inflammasome. Here we show that NLRP3 (NOD-like receptor family, pryin domain containing 3), an important activating component of the inflammasome, is involved in neointima formation after vascular injury. NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and does not alter peripheral differential blood counts. However, neointima development following wire injury of the carotid artery was significantly decreased in NLRP3-deficient mice as compared to wild-type controls. In all, NLRP3 plays a non-redundant role in vascular damage mediated neointima formation. Our data establish NLRP3 as a key player in the response to vascular damage, which could open new avenues to therapeutic intervention.

  8. Critical role of nucleotide-binding oligomerization domain-like receptor 3 in vascular repair

    International Nuclear Information System (INIS)

    Schlaweck, Sebastian; Zimmer, Sebastian; Struck, Rafael; Bartok, Eva; Werner, Nikos; Bauernfeind, Franz; Latz, Eicke; Nickenig, Georg; Hornung, Veit; Ghanem, Alexander

    2011-01-01

    Highlights: → NLRP3 is not required for systemic cardiovascular function in healthy mice. → NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and that it does not alter peripheral differential blood counts. → NLRP3 is critical in neointima formation following vascular injury. -- Abstract: Vascular remodeling characterized by hyperproliferative neointima formation is an unfavorable repair process that is triggered by vascular damage. This process is characterized by an increased local inflammatory and proliferative response that critically involves the pro-inflammatory cytokine interleukin-1β (IL-1β). IL-1β is expressed and cytosolically retained as a procytokine that requires additional processing prior to exerting its pro-inflammatory function. Maturation and release of pro IL-1β is governed by a cytosolic protein scaffold that is known as the inflammasome. Here we show that NLRP3 (NOD-like receptor family, pryin domain containing 3), an important activating component of the inflammasome, is involved in neointima formation after vascular injury. NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and does not alter peripheral differential blood counts. However, neointima development following wire injury of the carotid artery was significantly decreased in NLRP3-deficient mice as compared to wild-type controls. In all, NLRP3 plays a non-redundant role in vascular damage mediated neointima formation. Our data establish NLRP3 as a key player in the response to vascular damage, which could open new avenues to therapeutic intervention.

  9. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity

    International Nuclear Information System (INIS)

    Zemach, Assaf; Paul, Laju K.; Stambolsky, Perry; Efroni, Idan; Rotter, Varda; Grafi, Gideon

    2009-01-01

    The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.

  10. Loss of sialic acid binding domain redirects protein σ1 to enhance M cell-directed vaccination.

    Directory of Open Access Journals (Sweden)

    Dagmara Zlotkowska

    Full Text Available Ovalbumin (OVA genetically fused to protein sigma 1 (pσ1 results in tolerance to both OVA and pσ1. Pσ1 binds in a multi-step fashion, involving both protein- and carbohydrate-based receptors. To assess the relative pσ1 components responsible for inducing tolerance and the importance of its sialic binding domain (SABD for immunization, modified OVA-pσ1, termed OVA-pσ1(short, was deleted of its SABD, but with its M cell targeting moiety intact, and was found to be immunostimulatory and enhanced CD4(+ and CD8(+ T cell proliferation. When used to nasally immunize mice given with and without cholera toxin (CT adjuvant, elevated SIgA and serum IgG responses were induced, and OVA-pσ1(s was more efficient for immunization than native OVA+CT. The immune antibodies (Abs were derived from elevated Ab-forming cells in the upper respiratory tissues and submaxillary glands and were supported by mixed Th cell responses. Thus, these studies show that pσ1(s can be fused to vaccines to effectively elicit improved SIgA responses.

  11. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin.

    Science.gov (United States)

    Kong, Minsuk; Shin, Joong Ho; Heu, Sunggi; Park, Je-Kyun; Ryu, Sangryeol

    2017-10-15

    The development of a cost-effective and efficient bacterial detection assay is essential for diagnostic fields, particularly in resource-poor settings. Although antibodies have been widely used for bacterial capture, the production of soluble antibodies is still expensive and time-consuming. Here, we developed a nitrocellulose-based lateral flow assay using cell wall binding domains (CBDs) from phage as a recognition element and colloidal gold nanoparticles as a colorimetric signal for the detection of a model pathogenic bacterium, Bacillus cereus (B. cereus). To improve conjugation efficiency and detection sensitivity, cysteine-glutathione-S-transferase-tagged CBDs and maltose-binding protein-tagged CBDs were produced in Escherichia coli (E. coli) and incorporated in our assays. The sensitivity of the strip to detect B. cereus was 1×10 4 CFU/mL and the overall assay time was 20min. The assay showed superior results compared to the antibody-based approach, and did not show any significant cross-reactivity. This proof of concept study indicates that the lateral flow assay using engineered CBDs hold considerable promise as simple, rapid, and cost-effective biosensors for whole cell detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains.

    Science.gov (United States)

    Thomas, Charlotte M; Timson, David J

    2015-09-01

    FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.

  13. Drosophila melanogaster mini spindles TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface.

    Science.gov (United States)

    Howard, Amy E; Fox, Jaime C; Slep, Kevin C

    2015-04-17

    Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A-F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1-3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Purification and characterization of a long-acting ciliary neurotrophic factor via genetically fused with an albumin-binding domain.

    Science.gov (United States)

    Xu, Longfu; Zhang, Chun; Liu, Liping; Zhang, Yao; Wang, Qi; Wang, Jian; Liu, Yongdong; Su, Zhiguo

    2017-11-01

    Ciliary neurotrophic factor (CNTF) is a promising candidate for the treatment of neurodegenerative or metabolic diseases, but suffers rapid clearance in body. Herein we constructed a new long-acting recombinant human CNTF (rhCNTF) by genetic fusion with an albumin-binding domain (ABD) through a flexible peptide linker, hoping to endow the new molecule prolonged serum circulation time by binding with endogenous human serum albumin (HSA) and then utilizing the naturally long-half-life property of HSA. This fused protein rhCNTF-ABD was expressed in Escherichia coli mainly in the soluble form and purified through a two-step chromatography, with purity of 95% and a high yield of 90-100 mg/L culture. The in vitro binding ability of rhCNTF-ABD with HSA was firstly verified by incubation of the two components together followed by HP-SEC analysis. ABD-fused rhCNTF showed similar secondary and tertiary structure as the parent protein. It retained approximately 94.1% of the native bioactivity as demonstrated via CCK-8 cell viability assay analysis. In vivo studies in SD rats were performed and the terminal half-life of 483.89 min for rhCNTF-ABD was determined, which is about 14 folds longer than that of rhCNTF (34.28 min) and comparable with 20 k-40 kDa PEGylated rhCNTFs. The new constructed rhCNTF-ABD represents a potential therapeutic modality, and the proposed strategy may also have useful applications for other long-lasting biopharmaceutics' design. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Protein-binding elements establish in the oocyte the primary imprint of the Prader-Willi/Angelman syndromes domain.

    Science.gov (United States)

    Kaufman, Yotam; Heled, Maya; Perk, Jonathan; Razin, Aharon; Shemer, Ruth

    2009-06-23

    Imprinting of the PWS/AS 2.4 Mb domain in the human is controlled by a paternally active imprinting center (PWS-IC). PWS-IC on the maternal allele is methylated and inactivated by an 880-bp sequence (AS-IC) located 30 kb upstream. In this communication, we report the identification of 7 cis acting elements within AS-IC. The elements: DMR, DNS, 2 OCTA sequences, SOX, E1, and E2 bind specific proteins that form at least 2 protein complexes. Using variants of an imprinted transgene, mutated at the elements each at a time, we show that (i) all 7 elements are involved in the methylation and inactivation of the maternal PWS-IC; (ii) the OCTA and SOX elements that bind a protein complex, and the E1 and E2 elements, function in establishing the primary imprint that constitutes an active and unmethylated AS-IC in the oocyte; (iii) DNS and DMR bind a multiprotein complex that may facilitate interaction between AS-IC and PWS-IC, mediating the inactivation in cis of PWS-IC; and (iv) all 7 elements participate in maintaining an unmethylated PWS-IC in the oocyte, which is essential for its maternal methylation later in development. Altogether, the above observations imply that the cis acting elements on AS-IC display diverse functions in establishing the imprints at both AS-IC and PWS-IC in the oocyte. A postulated epigenetic mark imprints the PWS-IC in the oocyte and maintains its inactive status during development before it is translated into maternal methylation.

  16. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in Bra