WorldWideScience

Sample records for binding constant studies

  1. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  2. Binding constants of phenylalanine for the four mononucleotides

    Science.gov (United States)

    Khaled, M. A.; Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1984-01-01

    Earlier work has shown that several properties of amino acids correlate directly with properties of their anticodonic nucleotides. Furthermore, in precipitation studies with thermal proteinoids and homopolyribonucleotides, an anticodonic preference was displayed between Lys-rich, Pro-rich and Gly-rich thermal proteinoids and their anticodonic polyribonucleotides. However, Phe-rich thermal proteinoid displayed a preference for its codonic nucleotide, poly U. This inconsistency seemed to be explained by a folding in of the hydrophobic residues of Phe causing the proteinoid to appear more hydrophilic. The present work used nuclear magnetic resonance techniques to resolve a limited question: to which of the four nucleotides does Phe bind most strongly? The results show quite clearly that Phe binds most strongly to its anticodonic nucleotide, AMP.

  3. New Quasar Studies Keep Fundamental Physical Constant Constant

    Science.gov (United States)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  4. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe......Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions...... that cooperativity is absent while the stoichiometric equation is valid even when cooperativity is present. It was found with palmitate as well as with stearate that the two equations fitted the data equally well, and it was concluded that the observations were compatible with absence of cooperativity. The relative...

  5. Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex Mixtures

    DEFF Research Database (Denmark)

    Meier, Sebastian; Beeren, Sophie

    2014-01-01

    to determine binding constants for all other detectable and resolvable hosts. With the use of high-resolution 1H−13C HSQC experiments, complexes of amphiphiles with more than 10 different maltooligosaccharides can be resolved. Hereby, the binding capabilities of a set of structurally related hosts can...

  6. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    Science.gov (United States)

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  7. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    Science.gov (United States)

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  8. Modeling Nonlinear Adsorption with a Single Chemical Parameter: Predicting Chemical Median Langmuir Binding Constants.

    Science.gov (United States)

    Davis, Craig Warren; Di Toro, Dominic M

    2015-07-07

    Procedures for accurately predicting linear partition coefficients onto various sorbents (e.g., organic carbon, soils, clay) are reliable and well established. However, similar procedures for the prediction of sorption parameters of nonlinear isotherm models are not. The purpose of this paper is to present a procedure for predicting nonlinear isotherm parameters, specifically the median Langmuir binding constants, K̃L, obtained utilizing the single-chemical parameter log-normal Langmuir isotherm developed in the accompanying work. A reduced poly parameter linear free energy relationship (pp-LFER) is able to predict median Langmuir binding constants for graphite, charcoal, and Darco granular activated carbon (GAC) adsorption data. For the larger F400 GAC data set, a single pp-LFER model was insufficient, as a plateau is observed for the median Langmuir binding constants of larger molecular volume sorbates. This volumetric cutoff occurs in proximity to the median pore diameter for F400 GAC. A log-linear relationship exists between the aqueous solubility of these large compounds and their median Langmuir binding constants. Using this relationship for the chemicals above the volumetric cutoff and the pp-LFER below the cutoff, the median Langmuir binding constants can be predicted with a root-mean square error for graphite (n = 13), charcoal (n = 11), Darco GAC (n = 14), and F400 GAC (n = 44) of 0.129, 0.307, 0.407, and 0.424, respectively.

  9. THE USE OF HAMMETT CONSTANTS TO UNDERSTAND THE NON-COVALENT BINDING OF AROMATICS

    Directory of Open Access Journals (Sweden)

    Michael Lewis

    2012-04-01

    Full Text Available Non-covalent interactions of aromatics are important in a wide range of chemical and biological applications. The past two decades have seen numerous reports of arene-arene binding being understood in terms Hammett substituent constants, and similar analyses have recently been extended to cation-arene and anion-arene binding. It is not immediately clear why electrostatic Hammett parameters should work so well in predicting the binding for all three interactions, given that different intermolecular forces dominate each interaction. This review explores such anomalies, and summarizes how Hammett substituent constants have been employed to understand the non-covalent binding in arene-arene, cation-arene and anion-arene interactions.

  10. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  11. Surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardana, U.R.; Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. (Univ. of Oklahoma, Norman, OK (United States))

    1993-09-01

    A new method has been developed for determining binding constants of complexes of cyclodextrins with surface-active compounds, including water-soluble ionic surfactants. The technique requires measuring the change in surface tension caused by addition of a cyclodextrin (CD) to aqueous solutions of the surfactant; the experimental results lead directly to inferred values of the thermodynamic activity of the surfactant. Surface tension results are reported for three different surfactants sodium dodecyl sulfate (SDS), cetylpyridinium chloride (CPC), and cetyltrimethylammonium bromide (CTAB) in the presence and in the absence of added [beta]-CD. Data for CPC have been obtained at surfactant concentrations below and above the critical micelle concentration. Correlations between surface tension and surfactant activity are expressed by the Szyszkowski equation, which subsumes the Langmuir adsorption model and the Gibbs equation. It is observed that the surface tension increases monotonically as [beta]-cyclodextrin is added to ionic surfactant solutions. At concentrations of CD well in excess of the surfactant concentration, the surface tension approaches that of pure water, indicating that neither the surfactant-CD complexes nor CD itself are surface active. Binding constants are inferred from a model that incorporates the parameters of the Szyszkowski equation and mass action constants relating to the formation of micelles from monomers of the surfactant and the counterion. Evidence is given that two molecules of CD can complex the C-16 hydrocarbon chain of the cetyl surfactants. 30 refs., 5 figs., 1 tab.

  12. Kinetic mechanism of phenylalanine hydroxylase: intrinsic binding and rate constants from single-turnover experiments.

    Science.gov (United States)

    Roberts, Kenneth M; Pavon, Jorge Alex; Fitzpatrick, Paul F

    2013-02-12

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH(4)) and O(2). A complete kinetic mechanism for PheH was determined by global analysis of single-turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH(4)-phenylalanine complex begins with the rapid binding of BH(4) (K(d) = 65 μM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (K(d) = 130 μM) is approximately 10-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O(2) rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, which can be detected as a decrease in absorbance at 340 nm, with a rate constant of 140 s(-1). Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is 10-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines k(cat). Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation.

  13. DNA binding studies of tartrazine food additive.

    Science.gov (United States)

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  14. A study on the dielectric constant of microcapsules during ageing.

    Science.gov (United States)

    Labhasetwar, V D; Joshi, S V; Dorle, A K

    1988-01-01

    Gelatin and methylcellulose microcapsules with and without sulphadiazine were compressed into compacts. The dielectric constant of these compacts was measured at regular intervals during ageing at 45 degrees C. An initial sharp fall in dielectric constant is followed by a progressive increase. Dielectric constant could be a parameter to study the changes occurring in microcapsules during ageing.

  15. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    Science.gov (United States)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  16. Partition coefficient vs. binding constant: How best to assess molecular lipophilicity.

    Science.gov (United States)

    Cevc, Gregor

    2015-05-01

    Partition coefficient, P, is the preferred descriptor of molecular lipo- or hydrophilicity, and thus of relationships between a solute (S, e.g., a drug), a polar medium (W, e.g., an aqueous buffer), and an essentially apolar, organic, medium or a drug carrier (O). The coefficient is commonly identified with the linear ratio of solute quantities in the two media, P=nSO/nSW, even to characterise solute association with or binding to a surface (e.g., of a HPLC column or a drug carrier). To check the latter practice correctness-and credibility of the prevailing P definition-this paper compares an ideal solute distribution between two separate homogeneous fluid media (i.e., partitioning) to solute association with a uniform surface immersed in one such medium (i.e., binding). This reveals that solute partitioning and binding fundamentally differ and can only exceptionally be described, or analysed, with similar equations. Nonlinearised formulae that describe partitioning (Eq. (9)) and binding (Eq. (11)) can yield similar lipophilicity descriptor values only if solute preparation is relatively dilute; employing a large organic medium fraction is helpful in this respect. Additional prerequisites for partitioning and binding models match are: 1:1 stoichiometry at the association maximum and identical interfacial area of solute and organic medium molecules. If these requirements are not met, binding model yields different, potentially somewhat higher, but more often up to >10 times lower results than partitioning model. The main reason is saturation of organic medium with solute molecules. Partitioning model excludes this phenomenon, which cannot always be prevented by focussing on dilute solute preparations. The current practice of using a linear model and approximate equations to study partitioning or binding can cause large errors (>10(3)×), and is one possible reason for the notoriously high experimental logP values scattering. The latter makes logP predictions more

  17. Predicting the Strength of Anion-π Interactions of Substituted Benzenes: the Development of Anion-π Binding Substituent Constants.

    Science.gov (United States)

    Bagwill, Christina; Anderson, Christa; Sullivan, Elizabeth; Manohara, Varun; Murthy, Prithvi; Kirkpatrick, Charles C; Stalcup, Apryll; Lewis, Michael

    2016-11-23

    A computational study aimed at accurately predicting the strength of the anion-π binding of substituted benzenes is presented. The anion-π binding energies (Ebind) of 37 substituted benzenes and the parent benzene, with chloride or bromide were investigated at the MP2(full)/6-311++G** level of theory. In addition, energy decomposition analysis was performed on 27 selected chloride-arene complexes via symmetry adapted perturbation theory (SAPT), using the SAPT2+ approach. Initial efforts aimed to correlate the anion-π Ebind values with the sum of the Hammett constants σp (Σσp) or σm (Σσm), as done by others. This proved a decent approach for predicting the binding strength of aromatics with electron-withdrawing substituents. For the Cl(-)-substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r(2) values of 0.89 and 0.87 respectively. For the Br(-)-substituted benzene Ebind values, the correlation with the Σσp and Σσm values of aromatics with electron-withdrawing groups had r(2) values of 0.90 and 0.87. However, adding aromatics with electron-donating substituents to the investigation caused the correlation to deteriorate. For the Cl(-)-substituted benzene complexes the correlation between Ebind values and the Hammett constants had r(2) = 0.81 for Σσp and r(2) = 0.84 for Σσm. For the Br(-)-substituted benzene complexes, the respective r(2) values were 0.71 for Σσp and 0.79 for Σσm. The deterioration in correlation upon consideration of substituted benzenes with electron-donating substituents is due to the anion-π binding energies becoming more attractive regardless of what type of substituent is added to the aromatic. A similar trend has been reported for parallel face-to-face substituted benzene-benzene binding. This is certainly counter to what electrostatic arguments would predict for trends in anion-π binding energies, and this discrepancy is further highlighted

  18. A study on zeta potential and dielectric constant of liposomes.

    Science.gov (United States)

    Labhasetwar, V; Mohan, M S; Dorle, A K

    1994-01-01

    Zeta potential and dielectric constant of the liposomes were measured to study the effect of some of the formulation factors and in vitro ageing. Sonication affects zeta potential and dielectric constant of the liposomes. The ageing study showed an increase in the dielectric constant and zeta potential of liposomes at different storage temperatures. These two electrical parameters could be useful in studying structural alterations in liposomal vesicles and system as a function of different conditions. Particle size distribution and optical density were also measured, for comparison.

  19. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity.

    Directory of Open Access Journals (Sweden)

    Marcela Torres

    Full Text Available Mouse-human chimeric antibodies composed of murine variable (V and human (C chains are useful therapeutic reagents. Consequently, we investigated whether heterologous C-regions from mice and humans affected specificity and affinity, and determined the contribution of C(H glycosylation to antigen binding. The interaction of a 12-mer peptide mimetic with monoclonal antibody (mAb 18B7 to Cryptococcus neoformans glucuronoxylomannan, and its chimeric (ch and deglycosylated forms were studied by surface plasmon resonance. The equilibrium and rate association constants for the chAb were higher than for mAb 18B7. V region affinity was not affected by C(H region glycosylation whereas heterologous C region of the same isotype altered the Ab binding affinity and the specificity for self-antigens. Structural models displayed local differences that implied changes on the connectivity of residues. These findings suggest that V region conformational changes can be dictated by the C(H domains through an allosteric effect involving networks of highly connected amino acids.

  20. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis.

    Science.gov (United States)

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilián; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Affinity capillary electrophoresis (ACE) has been applied to estimation of apparent binding constant of complexes of (R,S)-enantiomers of selected acyclic nucleoside phosphonates (ANPs) with chiral selector β-cyclodextrin (βCD) in aqueous alkaline medium. The noncovalent interactions of five pairs of (R,S)-enantiomers of ANPs-based antiviral drugs and their derivatives with βCD were investigated in the background electrolyte (BGE) composed of 35 or 50 mM sodium tetraborate, pH 10.0, and containing variable concentration (0-25 mM) of βCD. The apparent binding constants of the complexes of (R,S)-enantiomers of ANPs with βCD were estimated from the dependence of effective electrophoretic mobilities of (R,S)-enantiomers of ANPs (measured simultaneously by ACE at constant reference temperature 25°C inside the capillary) on the concentration of βCD in the BGE using different nonlinear and linear calculation methodologies. Nonlinear regression analysis provided more precise and accurate values of the binding constants and a higher correlation coefficient as compared to the regression analysis of the three linearized plots of the effective mobility dependence on βCD concentration in the BGE. The complexes of (R,S)-enantiomers of ANPs with βCD have been found to be relatively weak - their apparent binding constants determined by the nonlinear regression analysis were in the range 13.3-46.4 L/mol whereas the values from the linearized plots spanned the interval 12.3-55.2 L/mol.

  1. Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin.

    Science.gov (United States)

    Zhang, Zhisen; Santos, Andrew P; Zhou, Qing; Liang, Lijun; Wang, Qi; Wu, Tao; Franzen, Stefan

    2016-04-01

    The binding free energy of 4-bromophenol (4-BP), an inhibitor that binds in the internal binding site in dehaloperoxidase-hemoglobin (DHP) was calculated using Molecular Dynamics (MD) methods combined with pulling or umbrella sampling. The effects of systematic changes in the pulling speed, pulling force constant and restraint force constant on the calculated potential of mean force (PMF) are presented in this study. The PMFs calculated using steered molecular dynamics (SMD) were validated by umbrella sampling (US) in the strongly restrained regime. A series of restraint force constants ranging from 1000 down to 5 kJ/(mol nm(2)) were used in SMD simulations. This range was validated using US, however noting that weaker restraints give rise to a broader sampling of configurations. This comparison was further tested by a pulling simulation conducted without any restraints, which was observed to have a value closest to the experimentally measured free energy for binding of 4-BP to DHP based on ultraviolet-visible (UV-vis) and resonance Raman spectroscopies. The protein-inhibitor system is well suited for fundamental study of free energy calculations because the DHP protein is relatively small and the inhibitor is quite rigid. Simulation configuration structures are compared to the X-ray crystallography structures of the binding site of 4-BP in the distal pocket above the heme.

  2. Measurement of Nanomolar Dissociation Constants by Titration Calorimetry and Thermal Shift Assay – Radicicol Binding to Hsp90 and Ethoxzolamide Binding to CAII

    Directory of Open Access Journals (Sweden)

    Vilma Michailovienė

    2009-06-01

    Full Text Available The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC and thermal shift assay (TSA is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90aN and the binding of ethoxzolamide to human carbonic anhydrase (hCAII were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90aN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding.

  3. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-05

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1).

  4. Study on cipher propertys of constant weight codes

    Institute of Scientific and Technical Information of China (English)

    Lin Bogang

    2006-01-01

    Constant weight code is an important error-correcting control code in communications. Basic structure of constant weight codes for some arriving at Johnson bound, A(n, 2u, w), is presented. Some correlative propertys of the codes, the solution of arriving at Johnson bound, and the results on the couple constant code and some constant weight codes are discussed. The conclusion is verified through four examples.

  5. Binding of beta-scorpion toxin: a physicochemical study.

    Science.gov (United States)

    Jover, E; Bablito, J; Couraud, F

    1984-03-13

    The binding to rat brain synaptosomes of a beta-scorpion toxin, i.e., toxin II of Centruroides suffusus suffusus (Css II), was studied as a function of pH, temperature, and concentration of some monovalent and divalent cations. At 10 degrees C and pH 6.0, the specific binding of 125I-labeled Css II corresponds to a single class of noninteracting high-affinity binding sites (KD = 0.18 nM) with a capacity (4.2 pmol/mg of protein) that is almost identical with that generally accepted for saxitoxin. The equilibrium dissociation constant of beta-scorpion toxin is pH independent, but the maximum binding capacity is reduced with increasing pH. Li+, guanidinium, Ca2+, Mg2+, and Mn2+ modified the apparent KD of the 125I-labeled Css II toxin. The equilibrium dissociation constant varies markedly with the temperature. The van't Hoff plot of the data is curvilinear, corresponding to a standard free-energy change associated with an entropy-driven process. The association rate constant also varies considerably with the temperature whereas the Arrhenius plot is linear between 1 and 30 degrees C. The energy of activation determined from these data is 17.6 kcal/mol. These results support the hypothesis that a cluster of nonpolar amino acid residues present on one face of the molecule is involved in the toxin-receptor interaction.

  6. Computational study on Kerr constants of neutral and ionized gases

    Science.gov (United States)

    Sato, M.; Kumada, A.; Hidaka, K.

    2015-08-01

    In order to quantitatively examine the measurement capability of Poisson's field using electro-optic Kerr-effect (EOKE), Kerr constants of neutral molecules and ions are examined by means of first principle calculations. We have systematically computed Kerr constants of neutral molecules and ions of several molecular symmetry groups, with consistent theory level and basis sets. Computed Kerr constants of neutral molecules (N2, CO2, SF6, and CF3I) ranging across two orders of magnitudes are within 50% error of the experimental values, which are comparable to the scattering between experimental values itself. The results show that SF6 has smaller Kerr constant due to its high molecular symmetry compared to those of N2 and CO2. In contrast, CF3I has large Kerr constant due to its permanent dipole. Computed Kerr constants for anions are larger by two orders of magnitude than those of neutral molecules, probably due to the shielding effect. For cations, the opposite holds true; however, due to anisotropic polarizability, computed Kerr constants for some cations are comparable to neutral molecules, while others show smaller values. The ratio of Kerr constants of ions to those of neutral molecules are at most 102; EOKE is valid for measuring electric field in weakly ionized gas whose ionization degree is smaller than 10-3.

  7. Determination of binding constants and stoichiometries of short-range, hydrogen-bonding solvation by use of a proton-transfer indicator reaction

    Science.gov (United States)

    Schullery, Stephen E.; Wojdyla, Stephen M.; Ostroski, Robert A.; Scott, Ronald M.

    1997-10-01

    A recent method for determination of stoichiometries and binding constants for short-range, hydrogen bonding solvation is reviewed and new results are presented. The method exploits the sensitivity of a proton-transfer equilibrium, KPT to changes in solvent composition. Solvation numbers and binding constants for primary and secondary stages of solvation of an aminephenol proton-transfer adduct and the phenol and amine are determined as adjustable parameters when model isotherms are fitted to KPT versus [ S] data, where [ S] is the concentration of a hydrogen-bonding minor component of a mixed solvent, Results for most of the twenty-three aprotic solvents investigated are modeled by bifurcation-type hydrogen bonding of two or more electron pairs to a single polar hydrogen. Results for the seven protic solvents studied, including new data for ethanol, 2-choloroethanol, and 2,2-dichloroethanol, are modeled by two, or possibly three, successive stages of solvation, assumed to involve hydrogen-bonded chains. Preliminary results indicate that solvation by water is amenable to this analysis.

  8. Constant composition kinetics study of carbonated apatite dissolution

    Science.gov (United States)

    Tang, Ruikang; Henneman, Zachary J.; Nancollas, George H.

    2003-03-01

    The carbonated apatites (CAP) may be more suitable models for biominerals such as bone and dental hard tissues than is pure hydroxyapatite (HAP) since they have similar chemical compositions. Although they contain only a relatively small amount of carbonate, the solubility and dissolution properties are different. The solubility product of the CAP particles used in this dissolution study, 2.88×10 -112 mol 18 l -18, was significantly greater than that of HAP, 5.52×10 -118 mol 18 l -18. The kinetics of dissolution of CAP has been studied using the constant composition (CC) method. At low undersaturations, the dissolution reaction appeared to be controlled mainly by surface diffusion with an effective reaction order of 1.9±0.1 with respect to the relative undersaturation. These results together with those obtained by scanning electron microscopy (SEM) suggest a dissolution model. Based on the surface diffusion theory of Burton, Cabrera and Frank (BCF). The interfacial tension between CAP and the aqueous phase calculated from this dissolution model, 9.0 m J m -2, was consistent with its relatively low solubility. An abnormal but interesting dissolution behavior is that the CAP dissolution rate was relatively insensitive to changes in calcium and phosphate concentrations at higher undersaturations, suggesting the importance of the carbonate component under these conditions.

  9. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs-Ga1- x Al x As spherical quantum dot

    Science.gov (United States)

    Mese, A. I.; Cicek, E.; Erdogan, I.; Akankan, O.; Akbas, H.

    2017-03-01

    The ground state, 1s, and the excited state, 2p, energies of a hydrogenic impurity in a GaAs-Ga1- x Al x As spherical quantum dot, are computed as a function of the donor positions. We study how the impurity self-polarization depends on the location of the impurity and the dielectric constant. The excited state anomalous impurity self-polarization in the quantum dot is found to be present in the absence of any external influence and strongly depends on the impurity position and the radius of the dot. Therefore, the excited state anomalous impurity self-polarization can give information about the impurity position in the system. Also, the variation of E_{b1s} and E_{b2p} with the dielectric constant can be utilized as a tool for finding out the correct dielectric constant of the dot material by measuring the 1s or 2p state binding energy for a fixed dot radius and a fixed impurity position.

  10. Competitive reactions in solutions of poly-L-histidine, calf thymus DNA, and synthetic polyanions: determining the binding constants of polyelectrolytes.

    Science.gov (United States)

    Zelikin, Alexander N; Trukhanova, Elizabeth S; Putnam, David; Izumrudov, Vladimir A; Litmanovich, Andrey A

    2003-11-12

    The physicochemical characteristics of a nonviral gene delivery system will govern its functional bioactivity; however, empiricism dominates the literature in this field, and a significant deficiency of quantitative investigation and evaluation of nonviral gene delivery vehicles remains. Herein, we derive a physical model and experimental method to quantitatively determine the binding constants between a model polycationic nonviral gene delivery vehicle poly-L-histidine (PLH) and calf thymus DNA. The approach has utility to a variety of systems and is not limited to the described polymer model. The interaction of PLH with DNA was monitored by fluorescence quenching of an ethidium bromide probe in the pH range 4 to 8. The interaction increased with pH decrease with the most pronounced change between pH 6 and 7. The obtained pH-dependence of fraction of salt bonds formed between PLH and DNA was used to estimate pK(a) of PLH in the presence of DNA, which equaled 6.24. The interaction of PLH with DNA in the presence of added synthetic polyanions was studied by the same approach and found to be controlled by pH, nature of the charge groups of the polyanion, and its degree of polymerization. In the mixture with sodium poly(styrenesulfonate) the interaction was negligible in the whole studied pH range, whereas in the mixtures with sodium poly(acrylate) (PA) or sodium poly(methacrylate), DNA was able to compete effectively for the binding with PLH. For PA samples with degree of polymerization higher than degree of polymerization of PLH, DP(PA) > DP(PLH), the fraction of polycation bound to DNA was constant regardless of DP(PA.) In contrast, at DP(PA) PLH), a pronounced increase in the bound fraction was observed. It substantiates the notion that the binding energy of two polymers is mainly controlled by the DP of the shorter component of polyelectrolyte complex. The data on PLH distribution between DNA and added polyanion with different values of DP were treated according

  11. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Alireza; Wang, Xue B.; Wang, Yangping; O' Doherty, George A.; Kass, Steven R.

    2016-03-17

    Flexible acyclic alcohols with 1–5 hydroxyl groups were bound to chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45 – 5.96 eV. These values are 0.84 – 2.35 eV larger than the adiabatic detachment energy of Cl– as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol–Cl– clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H–Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and non-ionic hydrogen bonds (i.e., OH•••Cl– and OH•••OH•••Cl–) form in the larger polyols complexes, and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrrabuylammonium chloride (TBACl) in acetonitrile at -24.2, 22.0, and 53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol–1). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with

  12. Estimation of the pH-independent binding constants of alanylphenylalanine and leucylphenylalanine stereoisomers with beta-cyclodextrin in the presence of urea.

    Science.gov (United States)

    Li, J; Waldron, K C

    1999-01-01

    The separation of stereoisomers, particularly enantiomers, is important when their physiological activity differs. We have resolved the four stereoisomers each of alanylphenylalanine (Ala-Phe) and of leucylphenylalanine (Leu-Phe) by capillary electrophoresis using beta-cyclodextrin as a buffer additive and urea to enhance its solubility. A study of the influence of pH and beta-cyclodextrin concentration on the separations showed that weak inclusion complexes were formed between the dipeptides and chiral selector. It was found that pH could alter the migration order of enantiomers L-Ala-L-Phe and D-Ala-D-Phe, as well as L-Leu-L-Phe and D-Leu-D-Phe; however, there was no change in order for the other pairs of optical isomers. Electrophoretic mobility data were used to estimate the acid dissociation constants of the dipeptide isomers at pH < 7 with no chiral selector present. By varying the concentration of beta-cyclodextrin, the chiral selector, the binding constants of Ala-Phe and Leu-Phe optical isomers in their fully protonated and zwitterionic forms were estimated. For the four Ala-Phe stereoisomers, K = 42-66 M(-1) and 4-41 M(-1) for the cationic and zwitterionic forms, respectively. For the four Leu-Phe stereoisomers, K = 43-94 M(-1) and 1-28 M(-1) for the cationic and zwitterionic forms, respectively.

  13. Isothermal titration calorimetry for drug design: Precision of the enthalpy and binding constant measurements and comparison of the instruments.

    Science.gov (United States)

    Linkuvienė, Vaida; Krainer, Georg; Chen, Wen-Yih; Matulis, Daumantas

    2016-12-15

    Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein - small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments - PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (Kd = 0.3 nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed.

  14. Binding equilibrium study between Mn( Ⅱ ) and HSA or BSA

    Institute of Scientific and Technical Information of China (English)

    LIANG, Hong; TU, Chu-Qiao; ZHANG, Hong-Zhi; SHEN, Xing-Can; ZHOU, Yong-Qia; SHEN, Pan-Wen

    2000-01-01

    The binding of Mn( Ⅱ ) to human serum allbumin (HSA) or bovine serum albumin (BSA) has been studied by equilibrium dialysis at physiological pH (7.43). The Scatchard analysis indicates that there are 1.8 and 1.9 strong binding sites of Mn( Ⅱ ) in HSA and BSA, respectively. The successive stobility constants which are reported for the first time are obtained by non-linear least-squares methods fitting Bjerrum formula.For both Mn( Ⅱ )-HSA and Mn( Ⅱ )-BSA systems, the order of magnitude of K1 was found to be 104. The analyses of Hill plots and free energy coupling show that the positive cooperative effect was found in both Mn( Ⅱ )-HSA and Mn(Ⅱ)-BSA systems. The results of Mn ( Ⅱ ) competing with Cu ( Ⅱ )、Zn( Ⅱ )、Cd( Ⅱ ) or Ca( Ⅱ ) to bind to HSA or BSA further support the conjecture that there are two strong binding sites of Mn( Ⅱ ) in both HSA and BSA. One is most probably located at the tripeptide segment of N-terminal sequence of HSA and BSA molecules involving four groups composed of nitrogen atoms, and the fifth coordination atom is the carboxyl oxygen of Asp1. The coordinated atoms of the other are most probably almost all oxygen atoms.

  15. Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

    Science.gov (United States)

    Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.

    1996-05-01

    A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K- Δ E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO 2-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log Kint between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces.

  16. Binding constants of inclusion complexes of nitroimidazoles with {beta}-cyclodextrins in the absence and presence of PVP

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, Renu [University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014 (India)]. E-mail: renukchadha2004@yahoo.co.in; Jain, D.V.S. [Depatment of Chemistry, Panjab University, Chandigarh 160014 (India); Aggarwal, Amit [University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014 (India); Singh, Surjit [GND University, Amritsar, Panjab (India); Thakur, Deepika [University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014 (India)

    2007-07-01

    Thermodynamics of complexation of 5-nitroimidazoles with {beta}-cyclodextrin and its methylated and hydroxypropyl derivatives in water and in 0.25% polyvinylpyrrolidone are determined by solution calorimetry. A 1:1 stoichiometry was established. The equilibrium constant (K) for all the nitroimidazoles fall in the range 1000-1900 M{sup -1} suitable for use of cyclodextrins as drug carriers. The complexation ability is significantly enhanced by methylation of the {beta}-cyclodextrin. The stability constant increased in the order metronidazole < ornidazole < tinidazole < secnidazole. The presence of polyvinylpyrrolidone enhances the stability constants.

  17. Determination of the binding constant between alprostadil and alpha-cyclodextrin by capillary electrophoresis: implications for a freeze-dried formulation.

    Science.gov (United States)

    Schipper, Benjamin R; Ramstad, Tore

    2005-07-01

    The binding constant between alprostadil (PGE1) and alpha-cyclodextrin (alpha-CD) was determined at three temperatures by capillary electrophoresis. alpha-CD is an excipient material in Caverject Dual Chamber Syringe (DCS), added to enhance stability. The binding constant was used to calculate the amount of PGE1 free upon reconstitution and injection, the latter of which is critical to product performance. Measurement was made in a pH 7.2 separation buffer to ensure a negative charge on PGE1. The concentration of PGE1 was fixed while the concentration of alpha-CD was varied over a suitable range. As the amount of PGE1 bound to alpha-CD increases, the weighted average of the resultant mobility decreases, thereby allowing a binding isotherm to be generated from which the stability constant was extracted via nonlinear regression analysis. A value of 708 +/- 64 M(-1) was obtained at 27 degrees C, while at physiological temperature (37 degrees C) the value was 537 +/- 27 M(-1). These results compare favorably to values previously obtained by NMR. Calculation of the percent PGE1 free upon reconstitution and injection show it to be near the desired outcome of 100%. Hence, we were able to conclude that the amount of free drug delivered by Caverject DCS is nominally the same as for Caverject S. Po., an earlier-developed product that contains no alpha-CD.

  18. Determination by NMR of the binding constant for the molecular complex between alprostadil and alpha-cyclodextrin. Implications for a freeze-dried formulation.

    Science.gov (United States)

    Ramstad, Tore; Hadden, Chad E; Martin, Gary E; Speaker, Stanley M; Teagarden, Dirk L; Thamann, Thomas J

    2005-05-30

    A binding constant was determined for the complexation reaction between alprostadil (PGE1) and alpha-cyclodextrin (alpha-CD). This constant was used to calculate the fraction PGE1 free upon reconstitution of Caverject dual chamber syringe, indicated for the treatment of erectile dysfunction. The determination was based on the measurement of the chemical shift of the C20 methyl protons of PGE1. The observed chemical shift varies as a linear function of the amount of PGE1 bound. The binding constant was obtained from the binding isotherm, a curve of the observed chemical shift versus free ligand (alpha-CD) concentration, through the application of non-linear regression analysis. A value K11 = 966 M(-1) +/- 130 M(-1) (2s), measured at 27 degrees C, was obtained. This value is in good agreement with those reported in the literature. The percent PGE1 free was subsequently calculated for the reconstituted solution and in the corpora cavernosum after injection. The latter showed PGE1 to be delivered essentially quantitatively to the targeted site.

  19. Infrared Optical Constants and Computational Studies of Neat Liquid -Butylethylether

    Directory of Open Access Journals (Sweden)

    K. B. Beć

    2013-01-01

    Full Text Available Aliphatic ethers are of interest to researchers due to their wide application in the fuel, chemical, and pharmaceutical industry. In this paper we studied vibrational properties of neat liquid n-butylethylether (NBEE, including the determination of complex refractive index in the NIR and MIR range (11700–560 cm−1. The high absorption of neat liquid in the MIR range required the use of thin-film transmission recordings. The spectra analysis was based on conformational analysis and anharmonic calculations on B2PLYP/N07D level of theory. Final band assignments procedure was based on potential energy distributions. The theoretical investigation revealed that although 26 conformers of NBEE can be expected to exist in the liquid phase at 298 K, only few of them are essential for the forming of the spectrum. This study is important for the proper understanding of vibrational properties of other aliphatic ethers.

  20. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    Science.gov (United States)

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  1. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    Directory of Open Access Journals (Sweden)

    Hua-jin Zeng

    2016-01-01

    Full Text Available The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly through electrostatic and hydrophobic interactions with one binding site. Synchronous fluorescence, three-dimensional fluorescence, and molecular docking results revealed that liquiritigenin bound directly to the enzyme cavity site and this binding influenced the microenvironment of the hyaluronidase activity site, resulting in reduced hyaluronidase activity. The present study provides useful information for clinical applications of liquiritigenin as a hyaluronidase inhibitor.

  2. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins

    Indian Academy of Sciences (India)

    Beena Mishra; Atanu Barik; K Indira Priyadarsini; Hari Mohan

    2005-11-01

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime measurements of HSA showed decrease in the average lifetimes indicating binding at a location, near the tryptophan moiety, and the possibility of fluorescence energy transfer between excited tryptophan and quercetin. Critical transfer distance () was determined, from which the mean distance between tryptophan-214 in HSA and quercetin was calculated. The above studies were also carried out with bovine serum albumin (BSA).

  3. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    Science.gov (United States)

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D

    2008-08-06

    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  4. Study of cylindrically symmetric solutions in metric f(R) gravity with constant R

    CERN Document Server

    Rincon-Ramirez, Monica Tatiana

    2013-01-01

    Solutions for cylindrically symmetric spacetimes in f(R) gravity are studied. As a first approach, R=constant is assumed. A solution was found such that it is equivalent to a result given by Azadi et al. for R=0 and a metric was found for R=constant different from zero. Comparison with the case of general relativity with cosmological constant is made and the metric constants are given in terms of \\Lambda. Overlap with arXiv:0810.4673 [gr-qc] by A. Azadi, D. Momeni and M. Nouri-Zonoz

  5. A model of mitochondrial creatine kinase binding to membranes: adsorption constants, essential amino acids and the effect of ionic strength

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Belousova, Lubov; Plesner, Igor

    1993-01-01

    The quantitative aspects of mitochondrial creatinekinase (mitCK) binding to mitochondrial membranes were investigated. A simple adsorption and binding model was used for data fitting, taking into account the influence of protein concentration, pH, ionic strength and substrate concentration...... is is suggested as the main candidate to form the adsorption site of mitCK. Deprotonated octameric mitCK easily dissociated from the membrane (View the MathML source at ionic strength View the MathML source and 5°C); after protonation its affinity increased many times (View the MathML source). Determination...... on the enzyme adsorption. An analysis of our own data as well as of the data from the literature is consistent with the adsorption site of the octameric mitCK being composed of 4 amino acid residues with pK = 8.8 in the free enzyme. The pK value changes to 9.8 upon binding of the protein to the membrane. Lysine...

  6. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl......-CoA esters containing more than eight carbon atoms and that the 3'-phosphate of the ribose accounts for almost half of the binding energy. Binding of acyl-CoA esters, with increasing chain length, to ACBP was clearly enthalpically driven with a slightly unfavorable entropic contribution. Accessible surface...... areas derived from the measured enthalpies were compared to those calculated from sets of three-dimensional solution structures and showed reasonable correlation, confirming the enthalphically driven binding. Binding of dodecanoyl-CoA to ACBP was studied at various temperatures and was characterized...

  7. HypCal, a general-purpose computer program for the determination of standard reaction enthalpy and binding constant values by means of calorimetry.

    Science.gov (United States)

    Arena, Giuseppe; Gans, Peter; Sgarlata, Carmelo

    2016-09-01

    The program HypCal has been developed to provide a means for the simultaneous determination, from data obtained by isothermal titration calorimetry, of both standard enthalpy of reaction and binding constant values. The chemical system is defined in terms of species of given stoichiometry rather than in terms of binding models (e.g., independent or cooperative). The program does not impose any limits on the complexity of the chemical systems that can be treated, including competing ligand systems. Many titration curves may be treated simultaneously. HypCal can also be used as a simulation program when designing experiments. The use of the program is illustrated with data obtained with nicotinic acid (niacin, pyridine-3 carboxylic acid). Preliminary experiments were used to establish the rather different titration conditions for the two sets of titration curves that are needed to determine the parameters for protonation of the carboxylate and amine groups.

  8. Methyl-triclosan binding to human serum albumin: multi-spectroscopic study and visualized molecular simulation.

    Science.gov (United States)

    Lv, Wenjuan; Chen, Yonglei; Li, Dayong; Chen, Xingguo; Leszczynski, Jerzy

    2013-10-01

    Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS-HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV-vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298K) is 6.32 × 10(3)L mol(-1); ΔH(0), ΔS(0) and ΔG(0) were 22.48 kJ mol(-1), 148.16 J mol(-1)K(-1) and -21.68 kJ mol(-1), respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS-HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.

  9. A comparative study of partogram in normal labour with and without a constant caring companion

    Directory of Open Access Journals (Sweden)

    Aditi Rajgire

    2017-01-01

    Full Text Available Background: In today's world with the concept of changing childbirth, where there is a 'women centered approach', the idea of a constant caring companion has reemerged. In a busy labour ward patients may deliver safely but it may contribute to patient's dissatisfaction, as they do not feel cared for. The constant caring companion would prove an important asset to the doctor and nurses involved in the management of the women in labour. Methods: Prospective study carried out in 120 patients meeting inclusion criteria. Results: Patients with constant caring companion had significant lower percentage (13.3% of pain level as compared to those without companion. The mean satisfaction score of the patients with ccc was 90.66 whereas the score of the group without ccc was 30.33 which statistically highly significant. 42 of the patients with ccc and 39 patients without ccc opted for known female relative as constant caring companion. All woman in the study group and 97% in the control group would recommend a constant caring companion to the pregnant woman. Conclusions: Women with a constant caring companion have a more fulfilling and satisfactory experience of the labour process which cannot be said about the women without ccc. Since no negative impact was observed due to the presence of a constant caring companion, this practice may be recommended. The constant caring companion would prove an important asset to the doctor involved in the management of labouring women.

  10. A novel method for thermodynamic study on binding of copper ion with Alzheimer's amyliod β peptide

    Institute of Scientific and Technical Information of China (English)

    BEHBEHANI G. Rezaei

    2009-01-01

    The interaction of Cu2+ with the first 16 residues of the Alzheimer's amyliod β peptide, Afl(1-16), was studied by employing isothermal titration calorimetry at pH 7.2 and 37℃ in aqueous solution. The Gholamreza Rezaei Behbehani (GRB) solvation model was used to reproduce the enthalpies of Cu2++Aβ(1-16) interaction over the whole Cu++concentrations. The binding parameters recovered from the solvation model were attributed to the structural change of Aβ(1-16) due to the metal ion interaction. It was found that there is a set of two identical and non interacting binding sites for Cu2+ ions. The molar enthalpy of binding is △H=27.895 kJ/mol. The association binding constants are 1.895 μM-1 and 1.891 μM-1 for the first and second binding sites respectively.

  11. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    Science.gov (United States)

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution.

  12. Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-05-01

    Highlights: • The affinity of DCP to HSA is higher than DQ. • DCP and DQ have quenched the fluorescence emission spectrum of HSA by static quenching mechanism. • Electrostatic interactions are very important in HSA-DCP and HSA-DQ complexes. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of DQ changes the conformation of protein, on the contrary to DCP. - Abstract: The interactions of dichlorprop (DCP) and diquat dibromide (DQ) herbicides with human serum albumin (HSA) protein were studied by UV absorption, fluorescence, synchronous fluorescence and circular dichroism (CD) spectroscopy. Both DCP and DQ quenched the fluorescence emission spectrum of HSA through the static quenching mechanism. The Stern–Volmer quenching constant, binding constant, the number of binding sites and thermodynamic parameters were determined at 288 K, 298 K, 310 K and 318 K. In HSA-DCP and HSA-DQ systems, an increase in temperature led to a decrease in the Stern–Volmer quenching constant and binding constant. One binding site was obtained for DCP and DQ on HSA. It was found that DCP can bind to HSA with higher affinity than DQ. Negative ΔH and positive ΔS values were obtained for the binding processes between protein and herbicide molecules. This result displayed that electrostatic interactions play a major role in the formation of HSA-DCP and HSA-DQ complexes. The binding processes were exothermic reactions and spontaneous. In addition, synchronous fluorescence and CD spectra of HSA revealed that the binding of DCP to HSA did not cause a significant conformational change in protein, but the interaction of DQ with HSA led to an alteration in the protein structure.

  13. Presence of a highly efficient binding to bacterial contamination can distort data from binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J. (Department of Anatomy, University of Sydney, N.S.W. (Australia))

    1990-12-01

    {sup 3}HGABA at low concentrations (5-10 nM) was bound by what appeared to be a GABA receptor binding site in bacterial contamination originating from a batch of distilled water. Under experimental conditions similar to those usually employed in {sup 3}HGABA binding studies, the apparent binding displayed a very high specific component and a high efficiency in terms of {sup 3}HGABA bound per mg of protein. The binding was blocked by muscimol but not by isoguvacine, SR95531 and nipecotic acid. These characteristics suggest that the presence of such spurious binding in the experiments using 3H-labeled ligands in brain homogenates may not always be very obvious and, moreover, it can result in subtle, but serious, distortions of data from such studies, which may not be immediately recognized.

  14. Magnetic core/shell Fe3O4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy.

    Science.gov (United States)

    Jin, Rui; Song, Daqian; Xiong, Huixia; Ai, Lisha; Ma, Pinyi; Sun, Ying

    2016-03-01

    Magnetic core/shell Fe3O4/Au nanoparticles were used in the determination of drug binding to bovine serum albumin (BSA) using a fluorescence spectroscopic method. The binding constants and number of binding sites for protein with drugs were calculated using the Scatchard equation. Because of their superparamagnetic and biocompatible characteristics, magnetic core/shell Fe3O4/Au nanoparticles served as carrier proteins for fixing proteins. After binding of the protein to a drug, the magnetic core/shell Fe3O4/Au nanoparticles-protein-drug complex was separated from the free drug using an applied magnetic field. The free drug concentration was obtained directly by fluorescence spectrometry and the proteins did not influence the drug determination. So, the achieved number of binding sites should be reliable. The binding constant and site number for ciprofloxacin (CPFX) binding to BSA were 2.055 × 10(5) L/mol and 31.7, and the corresponding values for norfloxacin (NOR) binding to BSA were 1.383 × 10(5) L/mol and 38.8. Based on the achieved results, a suitable method was proposed for the determination of binding constants and the site number for molecular interactions. The method was especially suitable for studies on the interactions of serum albumin with the active ingredients of Chinese medicine.

  15. Study of Stability Constants of Fe (Iii And Mn (Ii with Chloramphenicol by Paper Electrophoretic Technique

    Directory of Open Access Journals (Sweden)

    Arvind Singh

    2014-12-01

    Full Text Available Stabilty constant of binary complexes of Fe(III and Mn(II with medicinally important ligand chloramphenicol antibiotics in solution were determined by paper electrophoretic technique. Stability constant of the complexes were determined at 25°C temperature and 0.1M (HClO4 ionic strength. Our study is based upon the migration of a spot of metal ions on a paper strip at different pH against mobility gives information about the binary complexes and permits to calculate their stability constant. The stability constant data revealed that chloramphenicol may be used as chelating agent in chelation for medical treatment of metal overload or poisoning.

  16. Binding and conformational changes of human serum albumin upon interaction with 4-aminoantipyrine studied by spectroscopic methods and cyclic voltammetry.

    Science.gov (United States)

    Gowda, Jayant I; Nandibewoor, Sharanappa T

    2014-04-24

    The interactions of 4-aminoantipyrine (AAP) with human serum albumin (HSA) have been studied by UV-visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The binding of 4-aminoantipyrine quenches the HSA fluorescence, revealing a 1:1 interaction with a binding constant of about 10(5) M(-1). The experimental results showed that AAP effectively quenched the intrinsic fluorescence of HSA via dynamic type of quenching. In addition, according to the synchronous fluorescence spectra of HSA in presence of 4-aminoantipyrine, the tryptophan residue of the proteins are most perturbed by the binding process. The number of binding sites, the binding constant, site probe study, some common metal ions effect and the thermodynamic parameters were calculated.

  17. Antigen-antibody selective recognition using LiTaO3 SH-SAW sensors: investigations on macromolecules effects on binding kinetic constants

    Science.gov (United States)

    Bergaoui, Y.; Zerrouki, C.; Fourati, N.; Fougnion, J. M.; Abdelghani, A.

    2011-10-01

    A gravimetric surface acoustic wave (SAW) biosensor, based on the biotin-streptavidin and antistreptavidin-streptavidin recognitions, has been carried out. A network analyser and a pulse excitation technique were used to monitor both amplitude and phase changes. The SAW biosensor presented a total selective recognition of streptavidin-antistreptavidin and HRPstreptavidin-antistreptavidin. The presence of HRP (Horseradish peroxidase) affects neither the selectivity nor the sensitivity (of order of 0.25°/nM) of the biosensor, nevertheless, it causes a reduction of binding kinetics by a factor ranging between 2 to 5, as well as a diminution of antistreptavidin saturation concentration (of 40%). Results showed that equilibrium constants can be different, depending on evaluation method (from saturation values or from linear part of the output signal variation according to solution concentration).

  18. Microdialysis-liquid chromatographic study on competitive binding of drugs to protein

    Institute of Scientific and Technical Information of China (English)

    汪海林; 邹汉法; 张玉奎

    1997-01-01

    A new method to determine the interaction between drug and protein has been developed by utilizing the technique of microdialysis sampling with the ketoprofen and the human serum albumin (HSA) as the model of drug and protein.Two kinds of binding sites of HSA to ketoprofen have been observed.The binding constants and number of binding sites obtained by the Scatchard equation are 0.799,3.18×106 mol-1 L and 2.15,2.01×105 mol-1 L,respectively The displacement binding of drugs to HSA has also been studied.The strong displacement of competitive binding of ibuprofen with ketoprofen to HSA was observed,which means that the primary binding site of HSA to ketoprofen and that to ibuprofen are the same.However,only a weaker displacement of warfarin for the association of ketoprofen with HSA was observed,which may suggest that the primary binding site of HSA to ketoprofen is different from that to warfarin.Such a displacement effect for competitive binding of drugs to HSA was explained by the displacement model i

  19. Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories

    Directory of Open Access Journals (Sweden)

    M.Valiskó

    2005-01-01

    Full Text Available A systematic Monte Carlo (MC simulation and perturbation theoretical (PT study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the dielectric constant of the polarizable fluid is obtained from the Kirkwood-Fröhlich equation. In the molecular approach, the polarizability is built into the model on the molecular level, which makes the interactions non-pairwise additive. Here we use Wertheim's renormalized PT method to calculate the induced dipole moment, while the dielectric constant is calculated from our recently introduced formula. We also apply a series expansion for the dielectric constant both in the continuum and the molecular approach. These series expansions ensure a better agreement with simulation results. The agreement between our MC data and the PT results in the molecular approach is excellent for low to moderate dipole moments and polarizabilities. At stronger dipolar interactions ergodicity problems and anizotropic behaviour appear where simulation results become uncertain and the theoretical approach becomes invalid.

  20. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    OpenAIRE

    Hua-jin Zeng; Ran Yang; Jing You; Ling-bo Qu; Yan-jun Sun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly thro...

  1. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  2. Studies on the binding of vinpocetine to human serum albumin by molecular spectroscopy and modeling

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Rong Rong Chen; Hong Cui Wang; Han Lin Pu

    2012-01-01

    The interaction between vinpocetine (VPC) and human serum albumin (HSA) in physiological buffer (pH 7.40) was investigated by fluorescence,FT-IR,UV-vis absorption and molecular modeling.VPC effectively quenched the intrinsic fluorescence of HSA via static quenching.The binding site number n and apparent binding constant Ka,corresponding thermodynamic parameters △G,△H and △S at different temperatures were calculated.The synchronous fluorescence and FT-IR spectra were used to investigate the structural change of HSA molecules with addition of VPC.Molecular modeling indicated that VPC could bind to the site I of HSA and hydrophobic interaction was the major acting force,which was in agreement with the binding mode study.

  3. Studies on the binding of amylopectin sulfate with gastric mucin.

    Science.gov (United States)

    Kim, Y S; Bella, A; Whitehead, J S; Isaacs, R; Remer, L

    1975-07-01

    Amylopectin sulfate, a sulfated polysaccharide that has an antipeptic property, was examined for its ability to bind gastric mucins. After chemically cross-linking the amylopectin sulfate into an insoluble gel, its binding with mucins isolated from antral and fundic mucosa of canine stomachs was studied with chromatography. A component present in both mucin fractions bound to the amylopectin sulfate gel below pH 4.5. This binding was reversible, and the complex dissociated above pH 5. Similar binding properties were found with soluble amylopectin sulfate. The component of the mucine which bound to amylopectin sulfate differed from the one which did not bind in its electrophoretic mobility and in its higher proportion of basic amino acids and a lower hexosamine, serine, and threonine content. This study suggests that amylopectin sulfate may bind to gastric mucins only under conditions of low pH.

  4. AFM studies of nonspecific binding of enzyme on DNA

    Institute of Scientific and Technical Information of China (English)

    张益; 谢恒月; 等

    1996-01-01

    Atomic force microscope(AFM) is used to study restriction endonuclease digestion of plasmid DNA,pWRr plasmid DNA is digested by Hind Ⅲ,and the specific and the nonspecific binding of the restriction endonuclease are imaged,and the biological function of the enzyme binding to nonspecific sites is discussed.In addition,it is found that nonspecific binding of Hind ǚ could not induce the DNA characteristic bending angle.

  5. Study of MMLV RT- Binding with DNA using Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    Lei WU; Ming-Hui HUANG; Jian-Long ZHAO; Meng-Su YANG

    2005-01-01

    Surface plasmon resonance biosensor technique was used to study the binding of Moloney murine leukemia virus reverse transcriptase without RNase H domain (MMLV RT-) with DNA in the absence and in the presence of inhibitors. Different DNA substrates, including single-stranded DNA (ssDNA),DNA template-primer (T-P) duplex and gapped DNA, were immobilized on the biosensor chip surface using streptavidin-biotin, and MMLV RT--DNA binding kinetics were analyzed by different models. MMLV RT-could bind with ssDNA and the binding was involved in conformation change. MMLV RT- binding DNA T-P duplex and gapped DNA could be analyzed using the simple 1:1 Langmuir model. The lack of RNase H domain reduced the affinity between MMLV RT- and T-P duplex. The effects of RT inhibitors, including efavirenz, nevirapine and quercetin, on the interaction between MMLV RT- and gapped DNA were analyzed according to recovered kinetics parameters. Efavirenz slightly interfered with the binding between RT and DNA and the affinity constant in the presence of the inhibitor (KA=1.21× 106 M-1) was lower than in the absence of the inhibitor (KA=4.61× 106 M-1). Nevirapine induced relatively tight binding between RT and DNA and the affinity constant in the presence of the inhibsitor (KA=l.47×107 M-1) was approximately three folds higher than without nevirapine, mainly due to rapid association and slow dissociation. Quercetin, a flavonoid originating from plant which has previously shown strong inhibition of the activity of RT, was found to have minimal effect on the RT-DNA binding.

  6. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    Science.gov (United States)

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  7. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    CERN Document Server

    Bhowmik, Anal; Roy, Sourav; Majumder, Sonjoy

    2016-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with detail of their many-body correlations using relativistic coupled cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostic, with this correlation exhaustive many-body approach are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of ?different isotopes of W VI, presented in this paper will be helpful to get accurate picture of abundances of this element in different astronomical bodies.

  8. Studies on dissociation energies of diatomic molecules using vibrational spectroscopic constants

    Institute of Scientific and Technical Information of China (English)

    HOU; Shilin(侯世林); SUN; Weiguo(孙卫国)

    2003-01-01

    New analytical expression and numerical approach are suggested to calculate dissociation energies De of diatomic molecular states using an extreme value method (EVM). Studies on some electronic states of OH, BH, N2, Br2, ClF and CO molecules show that the accuracy of the EVM dissociation energies depends on the number of correct vibrational constants used in the calculations. The convergence qualities of De are suggested to be an alternative physical criterion to measure the qualities of the various sets of vibrational constants from different literature for the same diatomic state.

  9. Influence of turbulence on power quality. Comparative study between constant and variable wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Longatt, Francisco M. [Universidad Nacional Experimental Politecnica de la Fuerza Armada Nacional (UNEFA), Aragua (Venezuela). Grupo de Investigaciones Avanzadas en Energia

    2008-07-01

    Turbulence is clearly a complex process, and one which cannot be represented simply in terms of deterministic equations. The main objective of this paper is a comparative study of impact on dynamic behavior on constant and variable speed wind turbines considering several turbulence sceneries. We consider integration on a test system of squirrel cage induction generator for constant speed wind turbine, and doubly fed induction generator for variable speed wind turbine. Several simulations with different intensity of turbulences were developed, and conclusions are presented. Good dynamic behavior is evident on doubly fed induction generator, with controls. (orig.)

  10. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  11. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  12. DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Rezvani, Alireza; Mansouri, Ghobad

    2011-05-01

    The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5 × 10(5) and 5 × 10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.

  13. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Science.gov (United States)

    Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  14. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  15. Isothermal titration calorimetric and computational studies on the binding of chitooligosaccharides to pumpkin (Cucurbita maxima) phloem exudate lectin.

    Science.gov (United States)

    Narahari, Akkaladevi; Singla, Hitesh; Nareddy, Pavan Kumar; Bulusu, Gopalakrishnan; Surolia, Avadhesha; Swamy, Musti J

    2011-04-14

    The interaction of chitooligosaccharides [(GlcNAc)(2-6)] with pumpkin phloem exudate lectin (PPL) was investigated by isothermal titration calorimetry and computational methods. The dimeric PPL binds to (GlcNAc)(3-5) with binding constants of 1.26-1.53 × 10(5) M(-1) at 25 °C, whereas chitobiose exhibits approximately 66-fold lower affinity. Interestingly, chitohexaose shows nearly 40-fold higher affinity than chitopentaose with a binding constant of 6.16 × 10(6) M(-1). The binding stoichiometry decreases with an increase in the oligosaccharide size from 2.26 for chitobiose to 1.08 for chitohexaose. The binding reaction was essentially enthalpy driven with negative entropic contribution, suggesting that hydrogen bonds and van der Waals' interactions are the main factors that stabilize PPL-saccharide association. The three-dimensional structure of PPL was predicted by homology modeling, and binding of chitooligosaccharides was investigated by molecular docking and molecular dynamics simulations, which showed that the protein binding pocket can accommodate up to three GlcNAc residues, whereas additional residues in chitotetraose and chitopentaose did not exhibit any interactions with the binding pocket. Docking studies with chitohexaose indicated that the two triose units of the molecule could interact with different protein binding sites, suggesting formation of higher order complexes by the higher oligomers of GlcNAc by their simultaneous interaction with two protein molecules.

  16. Biopharmaceutical constants for carbamazepine immediate release tablets in simplifying bioequivalence studies

    Directory of Open Access Journals (Sweden)

    Nanayakkara Mangala

    2006-01-01

    Full Text Available Current study was undertaken in order to determine model biopharmaceutical constants for carbamazepine immediate release tablets (200 mg from documented data of plasma concentration vs time curves. The constants and the proposed methodology simplify bioequivalence determinations to blood sampling restricted only to two time points. Twelve volunteer drug plasma concentration (Cp determinations from a crossover design bioequivalence study were fitted into equations containing two rate processes. The optimized rate constants were used to generate the Cp vs time curves (generated curves. Generated curves were then differentiated (dCp/dt to obtain the first derivative curve for each volunteer from which times for highest rate of absorption (TAmaxn and highest rate of elimination (TEmaxn were determined. The corresponding highest rate of absorption and the highest rate of elimination for each individual were then obtained from the generated curve and named as Amaxn and Emaxn. Individual Amaxn and Emaxn values were then averaged to obtain the mean Amax and Emax. Out of the 24 determinations, a total of 13 Amaxn and 20 Emaxn values fell within ±20% of the overall mean. Final Amax and Emax values ware arrived at by averaging each set of individual 13 values and 20 values respectively. From these two mean coordinates, the corresponding constants, plasma drug concentration at the point of highest rate of absorption (CpAmax and corresponding time TAmax, as well as the plasma drug concentration at the point of highest rate of elimination (CpEmax and the corresponding time TEmax, were determined.

  17. Studies on binding mechanism between carotenoids from sea buckthorn and thermally treated α-lactalbumin

    Science.gov (United States)

    Dumitraşcu, Loredana; Ursache, Florentina Mihaela; Stănciuc, Nicoleta; Aprodu, Iuliana

    2016-12-01

    Sea buckthorn is a natural food ingredient rich in bioactive compounds such as carotenoids, tocopherols, sterols, flavonoids, lipids, vitamins, tannins and minerals. Herein, fluorescence and UV-vis techniques were used to study the interaction of heat treated α-lactalbumin (α-LA) with carotenoids from sea buckthorn berries extract (CSB) and β-carotene. Further atomic level details on the interaction between α-LA and β-carotene were obtained by means of molecular modelling techniques. The quenching rate constants, binding constants, and number of binding sites were calculated in the presence of CSB. The emission spectral studies revealed that, CSB have the ability to bind α-LA and form a ground state complex via static quenching process. Maximum degree of quenching was reached at 100 °C, where β-carotene and CSB quenched the Trp fluorescence of α-LA by 56% and 47%, respectively. In order to reveal the interaction between CSB and α-LA, the thermodynamic parameters were determined from the van't Hoff plot based on the temperature dependence of the binding constant. In agreement with the in silico observations, the thermodynamic parameters enabled us to consider that the association between α-LA and β-carotene is a spontaneous process driven by enthalpy, dominated mainly by the van der Waals interaction, but hydrophobic interactions might also be considered. The interaction between CSB and α-LA was further confirmed by UV-vis absorption spectra, where a blue shift of position was noticed at higher temperature suggesting the complex formation. The results provided here supply a better understanding of the binding of CSB to α-LA, which can be further exploited in designing new healthy food applications.

  18. Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein.

    Science.gov (United States)

    Canoa, Pilar; Rivadulla, Marcos L; Popplewell, Jonathan; van Oosten, René; Gómez, Generosa; Fall, Yagamare

    2017-04-01

    Vitamin D3 and its metabolites are lipophilic molecules with low aqueous solubility and must be transported bound to plasma carrier proteins, primarily to vitamin D binding protein (DBP). The biological functions of vitamin D3 metabolites are intimately dependent on the protein, hence the importance of determining their affinity for DBP. In this study, we developed a novel procedure for measuring the kinetic and equilibrium constants of human-DBP with vitamin D3 and three metabolites: 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 25-hydroxyvitamin D3 (25OHD3) and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] by surface plasmon resonance (SPR). At the same time, five different analogues, synthetized in our laboratory, were evaluated in order to compare the affinity values with the metabolites. Real-time SPR measurements showed that 25OHD3 and 24,25(OH)2D3 had higher affinity (0.3 μM) than 1,25(OH)2D3 (5 μM), with the higher affinity of 25OHD3 and 24,25(OH)2D3 due to dissociation constants 1 order of magnitude slower. In the case of the analogues, the affinity values were lower, with 1-hydroxy-25-nitro-vitamin D3 (NO2-446), structurally closer to 1,25(OH)2D3, showing the highest value with a K D of 50 μM. (24R)-1,25-dihydroxyvitamin-24-buthyl-28-norvitamin D2 (Bu-471) and (24R)-1,25-dihydroxyvitamin-24-phenyl-28-norvitamin D2 (Ph-491), structurally similar, had affinities of 180 and 170 μM, respectively. (22R,23E)-1-hydroxy-22-ethenyl-25-methoxy-23-dehydrovitamin D3 (MeO-455) and 1-hydroxy-20(R)-[5(S)-(2,2-dimethyltetrahydropyran-5-yl)]-22,23-dinor vitamin D3 (Oxan-429) had affinities of 310 and 100 μM, respectively. The binding of the metabolites and analogues was reversible allowing the rapid capture of data for replicates. The kinetic and equilibrium data for both the metabolites and the analogues fitted to the Langmuir model describing a 1:1 interaction. Graphical Abstract Label-free, real time binding study between vitamin D binding protein immmobilized on the

  19. Binding of benzodiazepine drugs to bovine serum albumin: A second derivative spectrophotometric study

    Science.gov (United States)

    Omran, Ahmed A.; El-Sayed, Abdel-Aziz; Shehata, Ahmed

    2011-12-01

    The binding constants ( K values) of three benzodiazepine drugs to bovine serum albumin were determined by a second derivative spectrophotometric method. Despite the sample and reference samples were prepared in the same way to maintain the same albumin content in each sample and reference pair, the absorption spectra show that the baseline compensation was incomplete because of the strong background signals caused by bovine serum albumin. Accordingly, further quantitative spectral information could not be obtained from these absorption spectra. On the other hand, the calculated second derivative spectra clearly show isosbestic points indicating the complete removal of the residual background signal effects. Using the derivative intensity differences (Δ D values) of the studied benzodiazepine drugs before and after the addition of albumin, the binding constants were calculated and obtained with R.S.D. of less than 8%. The interactions of drugs with bovine serum albumin were investigated using Scatchard's plot. In addition, the consistency between the fractions of bound benzodiazepine calculated from the obtained K values and the experimental values were established. The results indicate that the second derivative method can be advantageously applicable to the determination of binding constants of drugs to serum albumin without prior separation. Moreover, the validity of the proposed method was confirmed.

  20. Study on the binding interaction of chromium(VI) with humic acid using UV-vis, fluorescence spectroscopy and molecular modeling

    Science.gov (United States)

    Gu, Yun-Lan; Yin, Ming-Xing; Zhang, Hong-Mei; Wang, Yan-Qing; Shi, Jing-hua

    2015-02-01

    In this report, the binding interaction of chromium(VI), as Cr2O72-, with humic acid was studied by using UV-visible absorption, fluorescence spectroscopy, and molecular modeling method. The fluorescence spectral data indicated that the binding interaction existed between Cr2O72- and humic acid and the order of magnitude of binding constants were 103. The rise in temperature caused a decrease in the values of the binding constant of humic acid with Cr2O72-. Thermodynamic analysis presented that multi-intermolecular forces including hydrogen bonding, hydrophobic, and electrostatic forces were involved in the binding process at pH 6.5. The spectral data also indicated that Cr2O72- affected the aromatic ring structures in humic acid. Furthermore, the molecular modeling analysis indicated that a lot of reactive groups and binding cavities in HA played a key role in its binding with Cr2O72-.

  1. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    Cui, Yu Jun; Ding, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  2. Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods

    Science.gov (United States)

    Shahabadi, Nahid; Heidari, Leila

    2012-11-01

    Interaction between antidiabetic drug, Metformin and calf thymus DNA (CT-DNA) in (50 mM Tris-HCl) buffer were studied by UV-Visible absorption, fluorescence, CD spectroscopy and viscosity measurements. In fluorimetric studies, the enthalpy and entropy of the reaction between the drug and CT-DNA showed that the reaction is exothermic (ΔH = -35.4522 kJ mol-1; ΔS = -49.9523 J mol-1 K-1). The competitive binding studies showed that the drug could release Hoechst 33258 completely. The complex showed absorption hyperchromism in its UV-Vis spectrum with DNA. The calculated binding constant, Kb, obtained from UV-Vis absorption studies was 8.3 × 104 M-1. Moreover, the changes in the CD spectra in the presence of the drug show stabilization of the right-handed B form of CT-DNA. Finally, viscosity measurements revealed that the binding of the complex with CT-DNA could be surface binding, mainly due to groove binding.

  3. [Electron paramagnetic resonance study of the interactions between steroid hormones and binding proteins].

    Science.gov (United States)

    Basset, M; Chambaz, E M; Defaye, G; Metz, B

    1978-01-01

    Interaction of a spin labeled corticosteroid (desoxycorticosterone nitroxyde: DOC -NO) with three purified proteins (albumin, transcortin, progesterone binding protein: PBG) was studied by electron spin resonance (ESR) spectroscopy. DOC-NO was competitive with natural corticosteroids and therefore bound at the same site to specific binding proteins. ESR spectra in the presence of each of the proteins showed an immobilized (bound) form of the spin labeled steroid and allowed the calculation of the corresponding association constant (Ka) at equilibrium. The three binding proteins could be characterized by the ESR parameters of the DOC-NO bound form. The thermodynamic parameters (deltaH, deltaS) of the steroid-protein interactions were calculated from the ESR data obtained within a wide temperature range (3--40 degrees C). The ESR spectra width (2T) was used to evaluate the polarity of the spin label environment within the steroid binding site: a hydrophobic character was observed for transcortin whereas PBG exhibited a more hydrophilic steroid binding sits. The rotational correlation time of the three protein DOC-NO complexes at equilibrium were calculated from ESR data; the results were correlated with the protein molecular size and suggested a non spherical shape for the binding macromolecule in solution. Spin labelling of biologically active steroids thus provides a novel approach for the study of the interaction of these hormones with their binding protein. Providing a suitable spin label, the ESR parameters may allow the characterization of several types of binding sites of different biological significance for the same hormone, in biological fluids as well as in target tissues.

  4. Molecular modeling and competition binding study of Br-noscapine and colchicine provides insight into noscapinoid-tubulin binding site

    OpenAIRE

    Naik, Pradeep K.; Santoshi, Seneha; Rai, Ankit; Joshi, Harish C.

    2011-01-01

    We have previously discovered the tubulin-binding anti-cancer properties of noscapine and its derivatives (noscapinoids). Here, we present three lines of evidence that noscapinoids bind at or near the well studied colchicine binding site of tubulin: 1) In silico molecular docking studies of Br-noscapine and noscapine yield highest docking score with the well characterised colchicine-binding site from the co-crystal structure; 2) the molecular mechanics-generalized Born/surface area (MM-GB/SA)...

  5. Binding Equilibrium Studies Between Co2+ and HAS or BSA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction Up to now,the interactions of Cu2+,Ni2+ and Zn2+ with serum albumin have been extensively studied[1-3].However,the interaction of serum with Co2+ has rarely been studied.Our study of Co2+-HSA by means of charge transfer spectra indicated that the metal center took an octahedron configuration and the binding site was probably located at the tripeptide segment of the N-terminal of albumin[4].Sadler et al.[5]has reported that the binding site of Co2+ in HSA is located at the tripeptide segment of HSA involving the four nitrogen atoms and a carboxyl oxygen atom of Aspl.In this paper the interaction of HSA and BSA with Co2+ at physiological pH is further studied by equilibrium dialysis.The number of binding sites and the cooperation among the binding sites are reported.According to the equilibrium dialysis results and the study of competition between Co2+ and Cu2+,Ca2+ or Zn2+ to be bound to HSA or BSA,it is suggested that there are three strong binding sites in both HSA and BSA.The possible locations of the strong binding sites of Co2+ in HSA and BSA have also been determined.

  6. Binding equilibrium study of phosphotungstic acid and HSA or BSA with UV spectrum, fluorescence spectrum and equilibrium dialysis

    Institute of Scientific and Technical Information of China (English)

    HUANG; Jin(黄瑾); YUAN; Yuzhou(袁余洲); LIANG; Hong(梁宏)

    2002-01-01

    The binding equilibrium between phosphotungstic acid (H7[P(W2O7)6]@XH2O;PTA) and human serum albumin (HSA) or bovine serum albumin (BSA) has been studied by UV-Vis, fluorescence spectroscopies and equilibrium dialysis. It has been observed that UV absorption enhanced and the fluorescence quenched as the PTA binding to HSA or BSA at physiological pH 7.43( ± 0.02). The Scatchard analysis indicated that there exists a strong binding site of PTA in both HSA and BSA, and the successive stability constants of these two systems are obtained by nonlinear least-squares methods fitting Bjerrum formula.

  7. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    GUO; Ming(郭明); KONG; Liang(孔亮); MAO; Xiqin(毛希琴); LI; Xin(历欣); ZOU; Hanfa(邹汉法)

    2002-01-01

    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  8. A study of the formation constants of ternary and quaternary complexes of some bivalent transition metals

    Directory of Open Access Journals (Sweden)

    MADHURJYA NEOG

    2010-01-01

    Full Text Available The formation of hetero-ligand 1:1:1, M(II-Opda-Sal/Gly ternary and 1:1:1:1, M(II-Opda-Sal-Gly quaternary complexes, where M(II = Ni, Cu, Zn and Cd; Opda = o‑phenylenediamine, Sal = salicylic acid, Gly = glycine, was studied pH-metrically in aqueous medium. The formation constants for the resulting ternary and quaternary complexes were evaluated at a constant ionic strength, μ = 0.20 mol dm-3 and temperature, 30±0.1 °C. The order of the formation constants in terms of the metal ion for both type of complexes was found to be Cu(II > Ni(II > Zn(II > Cd(II. This order was explained based on the increasing number of fused rings, the coordination number of the metal ions, the Irving – William order and the stability of various species. The expected species formed in solution were pruned with the Fortran IV program SPEPLOT and the stability of the ternary and quaternary complexes is explained.

  9. Study of the behaviour of the dielectric constant in Cu, Fe: BaTiO3

    Institute of Scientific and Technical Information of China (English)

    Alioune OUEDRAOGO; Kalifa PALM; Issaka OUEDRAOGO; Guy CHANUSSOT

    2008-01-01

    In this work we study the behaviour of the dielectric constant of BaTiO3 single crystals doped with Cu and Fe for different ion percentages, particularly, the influence of these heterovalent substitutions on the ferroelectric-paraelectric phase transition whose temperature is found at Tc=120 ℃ for pure samples. The dielectric constant ε in terms of temperature shows that the Curie temperature decreases when the quantity of impurities increases and presents a broadening and flattering of the maximum of ε(T) within higher values, with the transition becoming more and more diffuse. It is interesting to have a material with very high permittivity (high-k) because of its capacity to store an important quantity of electric charges. The ε anisotropy and the Curie-Weiss law are also verified with a good ratio between the slopes ofε-1(T) from both sides of the transition, leading to a Curie constant: C= 13×104 K for BaTiO3:1.6%Fe in the polar phase. BaTiO3 is a displacive ferroelectric going through a first-order phase transition. The substitutions have an effect on the dynamics of the perovskite lattice. They induce charges transfer to Ti and a diminution of elastic forces in BaTiO3. Then we discuss the fact that the maximum of permittivity does not depend on the phase transition but on the nature of the material.

  10. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site.

    Science.gov (United States)

    Naik, Pradeep K; Santoshi, Seneha; Rai, Ankit; Joshi, Harish C

    2011-06-01

    We have previously discovered the tubulin-binding anti-cancer properties of noscapine and its derivatives (noscapinoids). Here, we present three lines of evidence that noscapinoids bind at or near the well studied colchicine binding site of tubulin: (1) in silico molecular docking studies of Br-noscapine and noscapine yield highest docking score with the well characterised colchicine-binding site from the co-crystal structure; (2) the molecular mechanics-generalized Born/surface area (MM-GB/SA) scoring results ΔΔG(bind-cald) for both noscapine and Br-noscapine (3.915 and 3.025 kcal/mol) are in reasonably good agreement with our experimentally determined binding affinity (ΔΔG(bind-Expt) of 3.570 and 2.988 kcal/mol, derived from K(d) values); and (3) Br-noscapine competes with colchicine binding to tubulin. The simplest interpretation of these collective data is that Br-noscapine binds tubulin at a site overlapping with, or very close to colchicine-binding site of tubulin. Although we cannot rule out a formal possibility that Br-noscapine might bind to a site distinct and distant from the colchicine-binding site that might negatively influence the colchicine binding to tubulin.

  11. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  12. Thermodynamic study of 5-(/sup 3/H)hydroxytryptamine binding to human cortex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, R.D.; Babinski, J.

    1987-11-01

    Kinetic and equilibrium measurements of (/sup 3/H)-serotonin (5-hydroxytryptamine) binding to human frontal cortex membranes have been made between 4 and 30 degrees C. The effects of spiperone and ascorbate on binding have also been determined. Under the conditions used, binding was saturable and reversible. Affinity constants derived from kinetic and equilibrium data were comparable. Serotonin binding to several sites had substantial enthalpic as well as entropic components.

  13. Study of binding glycyrrhetic acid to AT1 receptor

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Fengyun; (张凤云); YUE; Baozhen; (岳保珍); HE; Shipeng; (贺师鹏)

    2003-01-01

    To analyze the binding of glycyrrhetic acid (GA) to angiotensin II type I (AT1) receptor and to explore the mechanisms underlying the binding, primary cell culture of rat vascular smooth muscle cell (VSMC), radioactive ligand-receptor binding assay, lascer confocal scanning microscope (LCSM), Northern blot, 3H-TdR incorporation DNA assay were used in this study. The results suggest that specific binding of GA to AT1 receptor (IC50 value was 35.0 μmol/L) increases intracellular [Ca2+]i of VSMC, activates transcription factor c-myc and promotes the proliferation of VSMC, therefore GA was probably an agonist of AT1 receptor, providing a new target for GA's pharmaceutical effects.

  14. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    Science.gov (United States)

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  15. A facile method for studying interaction of rhodamine B and bovine serum albumin:Towards physical-binding mediated fluorescence labeling of proteins

    Institute of Scientific and Technical Information of China (English)

    马宇星; 钟睿博; 郭俊; 刘雨双; 袁鸣; 白志军; 刘涛涛; 赵欣敏; 张峰

    2015-01-01

    Strategies for labeling proteins with fluorophores are always important for biotechnology. Here we take a model protein (bovine serum albumin) and a typical fluorophore (rhodamine B) to demonstrate a direct labeling method just by physical adsorption. In combination with size exclusion chromatography and the Scartchard equation, we have developed a facile analysis method for calculating the binding constant and binding sites. The molecular docking method has been used to study the binding site in amino acid level.

  16. Proton and iodine-127 nuclear magnetic resonance studies on the binding of iodide by lactoperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, J.; Takahashi, S.; Shimizu, T.; Hatano, M.; Nakamura, S.; Hosoya, T.

    1987-10-06

    Interaction of an iodide ion with lactoperoxidase was studied by the use of /sup 1/H NMR, /sup 127/I NMR, and optical difference spectrum techniques. /sup 1/H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by /sup 127/I NMR, showing no competition with cyanide. Both /sup 1/H NMR and /sup 127/I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pK/sup a/ value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.

  17. Studies on chalcone derivatives: complex formation, thermal behavior, stability constant and antioxidant activity.

    Science.gov (United States)

    El-Sayed, Yusif S; Gaber, M

    2015-02-25

    The chalcone 3-[4'-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4'-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, (1)H NMR, (13)C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH=3.2 was determined to be 9.9×10(4) and 5.2×10(4) respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM(+) force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP.

  18. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    Science.gov (United States)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  19. Study of the systematic errors in the calculation of renormalization constants of the topological susceptibility on the lattice

    CERN Document Server

    Allès, B; Di Giacomo, Adriano; Pica, C

    2005-01-01

    We present a study of the systematic effects in the nonperturbative evaluation of the renormalization constants which appear in the field-theoretical determination of the topological susceptibility in pure Yang-Mills theory. The study is performed by computing the renormalization constants on configurations that have been calibrated by use of the Ginsparg-Wilson formalism and by cooling.

  20. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, Alyn [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a 13C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  1. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, A.

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a {sup 13}C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  2. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  3. Predictive QSPR study of the dissociation constants of diverse pharmaceutical compounds.

    Science.gov (United States)

    Mercader, Andrew G; Goodarzi, Mohammad; Duchowicz, Pablo R; Fernández, Francisco M; Castro, Eduardo A

    2010-11-01

    The objective of the article was to perform a predictive analysis, based on quantitative structure-property relationships, of the dissociation constants (pK(a)) of different medicinal compounds (e.g., salicylic acid, salbutamol, lidocaine). Given the importance of this property in medicinal chemistry, it is of interest to develop theoretical methods for its prediction. The descriptors selection from a pool containing more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors was performed using the enhanced replacement method. Genetic algorithm and the replacement method (RM) techniques were used as reference points. A new methodology for the selection of the optimal number of descriptors to include in a model was presented and successfully used, showing that the best model should contain four descriptors. The best quantitative structure-property relationships linear model constructed using 62 molecular structures not previously used in this type of quantitative structure-property study showed good predictive attributes. The root mean squared error of the 26 molecules test set was 0.5600. The analysis of the quantitative structure-property relationships model suggests that the dissociation constants depend significantly on the number of acceptor atoms for H-bonds and on the number of carboxylic acids present in the molecules.

  4. Co(III and Ni(II Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    Directory of Open Access Journals (Sweden)

    M. C. Prabhakara

    2007-02-01

    Full Text Available DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy2qbdp](PF6n⋅xH2O (where M=Co(III or Ni(II, bpy=2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n=3 or 2 and x=5 or 2 have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III and Ni(II complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3×106 and 3.1×105 M-1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease.

  5. Mechanistic studies of metal ion binding to water-soluble polymers using potentiometry.

    Science.gov (United States)

    Jarvis, N V; Wagener, J M

    1995-02-01

    A method for elucidating metal ion binding mechanisms with water-soluble polymers has been developed in which the polymer is treated as a collection of monomeric units. Data obtained from potentiometric titrations are analysed by the ESTA library of programs and apparent formation constants may be calculated. From this information, predictions may be made as to metal ion separation using complexation-ultrafiltration techniques. The polymer used in this study was Polymin Water-Free and its complexation with Hg(II), Cd(II), Pb(II), Co(II) and Ni(II) was successfully modelled.

  6. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution.

    Science.gov (United States)

    Singh, Amit K; Kumar, Ramasamy P; Pandey, Nisha; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2010-01-01

    Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.

  7. Spectroscopic Studies on the Binding of Bacteriophage Mequindox with Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    ZENG,Zhouhua; LIU,Yi; HU,Xianming; XU,Zhenqiang; ZENG,Kun

    2009-01-01

    Fluorescence spectra and UV-Vis absorption spectra have been used to study the binding of bacteriophage mequindox (MEQ) with bovine serum albumin (BSA),which performed a dynamic quenching process.The quenching constants and thermodynamic parameters at different temperatures were calculated.The binding was primarily driven by entropy,and hydrophobic forces also played a significant role.The distance between BSA and MEQ was estimated to be 4.5 nm based on the theory of F(o)rster's non-radioactive energy transfer.Furthermore,synchronous fluorescence spectra and 3-dimensional fluorescence spectra were used to figure out the configuration of BSA in the presence or absence of MEQ,which indicated that it was basically the same.

  8. Studies on binding interactions between clenbuterol hydrochloride and two serum albumins by multispectroscopic approaches in vitro.

    Science.gov (United States)

    Wang, Qin; Zhang, Shengrui

    2014-08-01

    In this study, binding properties of clenbuterol hydrochloride (CL) with human serum albumin (HSA) and bovine serum albumin (BSA) were examined using constant protein concentrations and various CL contents under physiological conditions. The binding parameters were confirmed using fluorescence quenching spectroscopy at various temperatures. The experimental results confirmed that the quenching mechanisms of CL and HSA/BSA were both static quenching processes. The thermodynamic parameters, namely, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to the van't Hoff equation, which suggested that the electrostatic interactions were the predominant intermolecular forces in stabilizing the CL-HSA complex, and hydrogen bonds and van der Waals force were the predominant intermolecular forces in stabilizing the CL-BSA complex. Furthermore, the conformational changes of HSA/BSA in the presence of CL were determined using the data obtained from three-dimensional fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy and circular dichroism spectroscopy.

  9. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  10. Average and equilibrium structures of methyl flouride studied by electron diffraction. A joint analysis with rotational constants and cubic force constants

    Science.gov (United States)

    Egawa, Toru; Yamamoto, Satoshi; Nakata, Munetaka; Kuchitsu, Kozo

    1987-02-01

    Electron diffraction intensity of methyl fluoride was measured and analyzed jointly with the rotational constants, Ao and Bo, of the normal species. The following structure was derived: rg(CF) = 1.391(1) Å, rg(CH) = 1.108(1) Å and β z(FCH) = 108.7(2)°, where the numbers in parentheses represent estimated limits of error. The effective anharmonic constants were derived using the rotational constants and the l-type doubling constants; the cubic force constants calculated by Kondo using a 6-311G** (MP2) basis set were also incorporated in the analysis. The following equilibrium structure was derived from the rz structure and the effective anharmonic constants: re(CF) = 1.383(1) Å, re(CH) = 1.086(2) Å and β e(FCH) = 108.8(3)°.

  11. Designing isothermal titration calorimetry experiments for the study of 1:1 binding: problems with the "standard protocol".

    Science.gov (United States)

    Tellinghuisen, Joel

    2012-05-15

    Literature recommendations for designing isothermal titration calorimetry (ITC) experiments to study 1:1 binding, M+X -->/applicability of the ITC technique. These deficiencies are discussed here along with other misconceptions. Whether a specific binding process can be studied by ITC is determined less by c (the product of binding constant K and titrand concentration [M](0)) than by the total detectable heat q(tot) and the extent to which M can be converted to MX. As guidelines, with 90% conversion to MX, K can be estimated within 5% over the range 10 to 10(8)M(-1) when q(tot)/σ(q)≈700, where σ(q) is the standard deviation for estimation of q. This ratio drops to ~150 when the stoichiometry parameter n is treated as known. A computer application for modeling 1:1 binding yields realistic estimates of parameter standard errors for use in protocol design and feasibility assessment.

  12. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  13. First-principles study of the elastic constants and optical properties of uranium metal

    Institute of Scientific and Technical Information of China (English)

    Chen Qiu-Yun; Tan Shi-Yong; Lai Xin-Chun; Chen Jun

    2012-01-01

    We perform first-principles calculations of the lattice constants,elastic constants,and optical properties for alphaand gamma-uranium based on the ultra-soft pseudopotential method.Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results.Some difference exists between our calculated elastic constants and the experimental data.Based on the satisfactory ground state electronic structure calculations,the optical conductivity,dielectric function,refractive index,and extinction coefficients are also obtained.These calculated optical properties are compared with our results and other published experimental data.

  14. Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant

    CERN Document Server

    Hanada, Masanori; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka

    2012-01-01

    We show that the ABJM theory, which is a N=6 superconformal U(N)\\times U(N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy, and confirm the N^{3/2} scaling in the M-theory limit predicted from the gravity side. We also find that the previously proposed analytical formula needs to be corrected by an additional term at each order of the string coupling expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.

  15. A study of wake development and structure in constant pressure gradients

    Science.gov (United States)

    Liu, Xiaofeng

    2001-07-01

    Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 × 106 based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional Laser Doppler Velocimetry and Hot Wire Anemometry flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.

  16. Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine.

    Science.gov (United States)

    Sychrovský, Vladimír; Sponer, Jirí; Hobza, Pavel

    2004-01-21

    The calculated intermolecular and intramolecular indirect NMR spin-spin coupling constants and NMR shifts were used for the discrimination between the inner-shell and the outer-shell binding motif of hydrated divalent cations Mg(2+) or Zn(2+) with a guanine base. The intermolecular coupling constants (1)J(X,O6) and (1)J(X,N7) (X = Mg(2+), Zn(2+)) can be unambiguously assigned to the specific inner-shell binding motif of the hydrated cation either with oxygen O6 or with nitrogen N7 of guanine. The calculated coupling constants (1)J(Mg,O6) and (1)J(Zn,O6) were 6.2 and -17.5 Hz, respectively, for the inner-shell complex of cation directly interacting with oxygen O6 of guanine. For the inner-shell coordination of the cation at nitrogen N7, the calculated coupling constants (1)J(Mg,N7) and (1)J(Zn,N7) were 5.6 and -36.5 Hz, respectively. When the binding of the cation is water-mediated, the coupling constant is zero. To obtain reliable shifts in NMR parameters, hydrated guanine was utilized as the reference state. The calculated change of NMR spin-spin coupling constants due to the hydration and coordination of the cation with guanine is caused mainly by the variation of Fermi-contact coupling contribution while the variation of diamagnetic spin-orbit, paramagnetic spin-orbit, and spin-dipolar coupling contributions is small. The change of s-character of guanine sigma bonding, sigma antibonding, and lone pair orbitals upon the hydration and cation coordination (calculated using the Natural Bond Orbital analysis) correlates with the variation of the Fermi-contact term. The calculated NMR shifts delta(N7) of -15.3 and -12.2 ppm upon the coordination of Mg(2+) and Zn(2+) ion are similar to the NMR shift of 19.6 ppm toward the high field measured by Tanaka for N7 of guanine upon the coordination of the Cd(2+) cation (Tanaka, Y.; Kojima, C.; Morita, E. H.; Kasai. Y.; Yamasaki, K.; Ono, A.; Kainosho, M.; Taira, K. J. Am. Chem. Soc. 2002, 124, 4595-4601). The present data

  17. Theoretical study of a screened Hartree–Fock exchange potential using position-dependent atomic dielectric constants

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Tomomi; Nakajima, Takahito [RIKEN, Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)

    2015-02-21

    Dielectric-dependent screened Hartree–Fock (HF) exchange potential and Slater-formula have been reported, where the ratio of the HF exchange term mixed into potentials is inversely proportional to the dielectric constant of the target semiconductor. This study introduces a position-dependent dielectric constant method in which the dielectric constant is partitioned between the atoms in a semiconductor. These partitioned values differ depending on the electrostatic environment surrounding the atoms and lead to position-dependent atomic dielectric constants. These atomic dielectric constants provide atomic orbital-based matrix elements for the screened exchange potentials. Energy band structures of several semiconductors and insulators are also presented to validate this approach.

  18. Study of Antigravity in an F(R) Model and in Brans-Dicke Theory with Cosmological Constant

    OpenAIRE

    2014-01-01

    We study antigravity, that is having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from $F(R)$-theory and in a Brans-Dicke model with cosmological constant. For the $F(R)$ theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate by using a specific $F(R)$ model, altho...

  19. Potentiometric Studies on the Protonation Constants and Protonation Energies of Some Diamines in Methanol + Water Mixtures

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2007-01-01

    Full Text Available The protonation constants of diamines such as ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, o-phenylenediamine, m-phenylene-diamine, p-phenylenediamine were determined on the basis of Bjerrum and Calvin method in methanol-water mixtures. A pH metric method was used for calculation of protonation constants. The effects of solvents on protonation constant have been determined at ionic strength 0.2 M dm-3 (NaClO4 and temperature 30±0.1oC under nitrogen atmosphere. FORTRAN (IV programs were used for calculation of protonation constants and distribution of species like H2L, HL, L in equilibrium state. The logarithm of the protonation constants decrease in aliphatic diamines and increase in aromatic diamines with increase in methanol content in mixed equilibria. The verification of constants are explained on the basis of solute-solvent interaction, solvation, proton transfer processes and dielectric constant of equilibria. Protonation energies have been calculated theoretically using computational methods and these protonation energies for aromatic diamines are higher than aliphatic diamines.

  20. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  1. Binding of the neuroleptic drug, gabapentin, to bovine serum albumin: Insights from experimental and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Fahimeh, E-mail: fahimehjalali@yahoo.com [Department of Chemistry, Razi University, 67346 Kermanshah (Iran, Islamic Republic of); Dorraji, Parisa S. [Department of Chemistry, Razi University, 67346 Kermanshah (Iran, Islamic Republic of); Mahdiuni, Hamid [Department of Biology, Razi University, 67346 Kermanshah (Iran, Islamic Republic of)

    2014-04-15

    The interaction between antiepileptic drug, gabapentin (GP), and bovin serum albumin (BSA) was studied by spectroscopic and computational methods. The native fluorescence of BSA was quenched by GP. Stern–Volmer quenching constant was calculated at different temperatures which suggested a static mechanism. The association constant (K{sub a}) was calculated from fluorescence quenching studies, which increased with temperature rising. GP competed well with warfarine for hydrophobic subdomain IIA (Sudlow's site I) on the protein. Enthalpy and entropy changes during the interaction of GP with BSA were obtained using van't Hoff plot, which showed an entropy-driven process and involvement of hydrophobic forces (ΔH>0 and ΔS>0). Synchronous fluorescence measurements of BSA solution in the presence of GP showed a considerable blue shift when Δλ=15 nm, therefore, GP interacts with tyrosine-rich sites on BSA. Optimized docked model of BSA–GP mixture confirmed the experimental results. -- Highlights: • Interaction of gabapentin and bovine serum albumin (BSA) is investigated by spectroscopic techniques. • Gabapentin can quench the fluorescence of BSA through a static quenching procedure. • The binding of gabapentin to BSA is driven mainly by hydrophobic interactions. • Subdomain IIA (Sudlow's site I) of BSA is found to be the main binding site for gabapentin. • Molecular docking modeling confirmed the experimental results.

  2. Varying Constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2003-01-01

    We review some string-inspired theoretical models which incorporate a correlated spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring unnatural fine-tunings of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP. Recent claims by Bekenstein that fine-structure-constant variability does not imply detectable violations of the equivalence principle are shown to be untenable.

  3. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    Science.gov (United States)

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism.

  4. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed.

  5. Calcium Binding Ability of Recombinant Buffalo Regucalcin: A Study Using Circular Dichroism Spectroscopy.

    Science.gov (United States)

    Harikrishna, P; Thomas, Jobin; Shende, A M; Bhure, S K

    2017-02-13

    Regucalcin is a calcium regulating multifunctional protein reported to have many important functions like calcium homeostasis, anti-oxidative, anti-apoptotic and anti-cancerous functions. Although it is demonstrated as a calcium regulating protein, the calcium binding ability of regucalcin is still a controversy. The main reason for the controversy is that it lacks a typical EF hand motif which is common to most of the calcium binding proteins. Even though many studies reported regucalcin as a calcium binding protein, there are some studies reporting regucalcin as non-calcium binding also. In the present study, we investigated the calcium binding ability of recombinant buffalo regucalcin by assessing the secondary structural changes of the protein using circular dichroism spectroscopy after adding Ca(2+) to the protein solution. Two types of calcium binding studies were done, one with different concentration of calcium chloride (0.5 mM CaCl2, 1 mM CaCl2, 2 mM CaCl2) and other at different time interval (no incubation and 10 min incubation) after addition of calcium chloride. Significant structural changes were observed in both studies which prove the calcium binding ability of recombinant regucalcin. A constant increase in the α-helix (1.1% with 0.5 mM CaCl2, 1.4% with 1 mM CaCl2, 3.5% with 2 mM CaCl2) and a decrease in β-sheets (78.5% with 0.5 mM CaCl2, 77.4% with 1 mM CaCl2, 75.7% with 2 mM CaCl2) were observed with the increase in calcium chloride concentration. There was a rapid increase in α-helix and decrease in β-sheets immediately after addition of calcium chloride, which subsides after 10 min incubation.

  6. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  7. A reassessment of the association between azulene and [60]fullerene. Possible pitfalls in the determination of binding constants through fluorescence spectroscopy.

    Science.gov (United States)

    Stella, Lorenzo; Capodilupo, Agostina L; Bietti, Massimo

    2008-10-21

    We show here that the recently reported surprisingly large association constant (K = 7.6 x 10(4) M(-1)) between azulene and [60]fullerene is due to experimental artifacts, pointing out potential errors in the characterization of association equilibria by fluorescence spectroscopy, and suggesting the best experimental practices.

  8. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    Science.gov (United States)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  9. Comprehensive Study of Lanthanum Aluminate High-Dielectric-Constant Gate Oxides for Advanced CMOS Devices

    Directory of Open Access Journals (Sweden)

    Masamichi Suzuki

    2012-03-01

    Full Text Available A comprehensive study of the electrical and physical characteristics of Lanthanum Aluminate (LaAlO3 high-dielectric-constant gate oxides for advanced CMOS devices was performed. The most distinctive feature of LaAlO3 as compared with Hf-based high-k materials is the thermal stability at the interface with Si, which suppresses the formation of a low-permittivity Si oxide interfacial layer. Careful selection of the film deposition conditions has enabled successful deposition of an LaAlO3 gate dielectric film with an equivalent oxide thickness (EOT of 0.31 nm. Direct contact with Si has been revealed to cause significant tensile strain to the Si in the interface region. The high stability of the effective work function with respect to the annealing conditions has been demonstrated through comparison with Hf-based dielectrics. It has also been shown that the effective work function can be tuned over a wide range by controlling the La/(La + Al atomic ratio. In addition, gate-first n-MOSFETs with ultrathin EOT that use sulfur-implanted Schottky source/drain technology have been fabricated using a low-temperature process.

  10. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods

    Science.gov (United States)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6 × 105 M- 1from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7 °C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.

  11. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  12. Spectrophotometric study on the binding of two water soluble Schiff base complexes of Mn(III) with ct-DNA.

    Science.gov (United States)

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khlegh; Mehrgardi, Masood Ayatolahi; Mirkhani, Valiolah

    2011-07-01

    In this work, binding of two water soluble Schiff base complexes: Bis sodium (5-sulfosalicylaldehyde) o-phenylendiiminato) Manganese (III) acetate (Salophen complex) and Bis sodium (5-sulfosalicylaldehyde) 1, 2 ethylendiiminato) Manganese (III) acetate (Salen complex) with calf thymus (ct) DNA were investigated by using different spectroscopic and electrometric techniques including UV-vis, Circular dichroism (CD) and fluorescence spectroscopy, viscommetry and cyclic voltammetry (CV). Both complexes have shown a hyperchromic and a small bathochromic shift in the visible region spectra. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by the addition of the two Schiff base complexes indicating that they displace EB from its binding site in DNA. Moreover structural changes in the CD spectra and an increase in the CV spectra with addition of DNA were observed. The results show that both complexes bind to DNA. The binding constants have been calculated using fluorescence data for two complexes also K(b) was calculated with fluorescence Scatchard plot for Salophen. Ultimately, the experimental results show that the dominant interactions are electrostatic while binding mode is surface binding then followed by hydrophobic interactions in grooves in high concentration of complexes.

  13. Calorimetric study of binding of some disaccharides with crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Davydova, Olga I.; Lebedeva, Nataliya Sh.; Parfenyuk, Elena V

    2004-11-01

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of {beta}-lactose, {alpha},{alpha}-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and {beta}-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between {alpha},{alpha}-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  14. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies.

    Science.gov (United States)

    Shammas, Sarah L; Crabtree, Michael D; Dahal, Liza; Wicky, Basile I M; Clarke, Jane

    2016-03-25

    Intrinsically disordered proteins (IDPs) are characterized by a lack of persistent structure. Since their identification more than a decade ago, many questions regarding their functional relevance and interaction mechanisms remain unanswered. Although most experiments have taken equilibrium and structural perspectives, fewer studies have investigated the kinetics of their interactions. Here we review and highlight the type of information that can be gained from kinetic studies. In particular, we show how kinetic studies of coupled folding and binding reactions, an important class of signaling event, are needed to determine mechanisms.

  15. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  16. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins.

    Science.gov (United States)

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2015-11-01

    4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.

  17. Studies of the binding of ethidium bromide to cells before and after enzyme treatment.

    Science.gov (United States)

    Eisenhut, M; Choné, B

    1979-08-01

    Binding of ethidium bromide (EB) to cells before and after HCl, pepsin and RNase treatment was investiaged by spectophotometric and fluorimetric methods. Binding isotherms, calculated with the McGheevon Hippel equation, taking EB as a non-interacting ligand, revealed the influcence of these treatments on the fluorescence characteristics of the cells which were measured by flow-through cytofluorimetry. Thus pepsin- and RNase-treated cells have a reduced intercalation capacity due to the loss of cytoplasmic RNA and RNA hydrolysis, respectively. HCl alone, or in association with pepsin, increased the equilibrium constant K considerably. Thus at low free EB concentrations the enchanced EB affinity of acid-pretreated cells generates a high fluorescence intensity, by comparison with treatments at neutral pH. This result contradicts the interpretation of high EB binding to acid pretreated cells which is commonly believed to be due to hydrolytic histone removal from potential intercalation sites. With increasing free EB concentrations the fluorescence intensities of RNase- and pepsin-treated cells culminate at the same level due to their amost identical intercalation capacities. Consequently, quantitative DNA analysis of pretreated cell suspensions with EB can only be performed if the alteration, induced by the pretreatment, has previously been studied.

  18. Influence of humic acid on plutonium sorption to gibbsite. Determination of Pu-humic acid complexation constants and ternary sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Trevor; Powell, Brian A. [Clemson Univ., Anderson, SC (United States). Environmental Engineering and Earth Sciences; Zavarin, Mavrik [Lawrence Livermore National Laboratory, Livermore, CA (United States). Glenn T. Seaborg Institute

    2014-10-01

    In this work stability constants describing Pu(IV), Th(IV), and Np(V) binding to Leonardite humic acid (HA) were determined using a discrete pK{sub a} model. A hybrid ultra-filtration/equilibrium dialysis, ligand exchange technique was used to generate the partitioning data. Ethylenediaminetetraacetic acid (EDTA) was used as a reference ligand to allow the aqueous chemistry of the Pu(IV)-HA system to be examined over a range of pH values, while minimizing the possibility of precipitation of Pu(IV). The conditional stability constant for Pu(IV) complexation with HA determined as part of this work is logβ{sub 112} = 6.76 ± 0.14 based on the equation: Pu{sup 4+} + HL3 + 2H{sub 2}O <-> Pu(OH){sub 2}L3{sup +} + 3H{sup +} where HA is represented by HL3 (a binding site on the HA with a pK{sub a} value of 7). This value is three orders of magnitude higher than the Th(IV)-HA constant and between six and eight orders of magnitude higher than the Np(V)-HA complex. The magnitude of the stability constants and the general trend of increasing complexation strength with increasing pH is consistent with previous observations. The Pu(IV)-HA stability constants were used to model sorption of Pu(IV) to gibbsite in the presence of HA. Assuming only aqueous Pu-HA complexes and AlOH-Pu surface complexes, the model was unable to predict the observed data which exhibited greater sorption at pH 4 relative to pH 6; a phenomenon which does not occur in the absence of HA. Therefore, this study demonstrates that ternary Pu-HA-gibbsite complexes may form under low pH conditions and exhibit greater sorption than that observed in the absence of HA. Although the presence of HA may increase the solubility/aqueous concentrations of Pu in the absence of a solid phase, formation of ternary complexes may indeed retard the subsurface migration of Pu. The corollary to this finding is that increased mobility may occur if the ternary surface complex forms on a mobile colloid rather than part of the

  19. Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch.

    Science.gov (United States)

    Warren, Frederick J; Butterworth, Peter J; Ellis, Peter R

    2012-09-01

    For a two phase system comprising an enzyme in solution acting on an insoluble substrate such as starch, adsorption of the enzyme is a key initial step in the reaction but few studies of agents affecting direct binding have been performed. The effect of maltose on the interaction of maize starch with porcine pancreatic α-amylase was studied by using a method in which the direct binding of starch to amylase is measured under conditions of negligible catalytic activity. The dissociation constant for starch binding increased with maltose concentration and analysis of the binding showed that the kinetic action of maltose was entirely competitive. This result accords with results described in the literature in which maltose was shown to be a competitive inhibitor of amylase action. If the maltose concentration is sufficiently high, a second molecule may bind at the active site but the affinity of the second binding step is approximately 6.5-fold weaker. Because of the relatively low affinity for maltose, it seems unlikely that inhibition by maltose of the initial stage of starch-amylase interaction normally plays any role in regulating intestinal digestion of starch.

  20. Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: Advances toward treatment of hepatitis B virus infections

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh

    The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.

  1. Binding studies of L-tryptophan to human serum albumin with nanogold-structured sensor by piezoelectric quartz crystal impedance analysis.

    Science.gov (United States)

    Long, Yumei; Yao, Shouzhuo; Chen, Jinhua

    2011-12-01

    Nanogold-modified sensor was constructed and applied to study the binding of L-tryptophan to human serum albumin (HSA) in situ by piezoelectric quartz crystal impedance (PQCI) analysis. It was interesting that the as-prepared nanogold modified sensor was more sensitive and biocompatible than bare gold electrode. The frequency changes due to protein adsorption on the nanogold-modified sensor might be described as a sum of two exponential functions and detailed explanation was given. Additionally, the kinetics of the binding process was also investigated. The binding constant (K) and the number of binding site (n) for the binding process without competitor are fitted to be 1.07 x 10(4) (mol l(-1))(-1) s(-1) and 1.13, respectively, and 2.24 x 10(3) (mol l-(1))(-1) s(-1) and 1.18, respectively for the binding process with competitor.

  2. Multispectroscopic DNA-binding studies of a terbium(III) complex containing 2,2'-bipyridine ligand.

    Science.gov (United States)

    Aramesh-Boroujeni, Zahra; Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam

    2016-01-01

    Agarose gel electrophoresis, absorption, fluorescence, viscosity, and circular dichroism (CD) have been used in exploring the interaction of terbium(III) complex, [Tb(bpy)2Cl3(OH2)] where bipy is 2,2'-bipyridine, with Fish salmon DNA. Agarose gel electrophoresis assay, along with absorption and fluorescence studies, reveal interaction between the corresponding complex and FS-DNA. Also, the binding constants (Kb) and the Stern-Volmer quenching constants (Ksv) of Tb(III) complex with FS-DNA were determined. The calculated thermodynamic parameters suggested that the binding of mentioned complex to FS-DNA was driven mainly by hydrophobic interactions. A comparative study of this complex with respect to the effect of iodide-induced quenching, ionic strength effect, and ethidium bromide exclusion assay reflects binding of explicit to the FS-DNA primarily in a groove fashion. CD and viscosity data also support the groove binding mode. Furthermore, Tb(III) complex have been simultaneously screened for their antibacterial and antifungal activities.

  3. Hemaka's constant

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.

  4. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  5. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  6. Pressure dependent elastic constants of alpha and gamma cyclotrimethylene trinitramine: A quantum mechanical study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, DeCarlos E., E-mail: decarlos.e.taylor.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-08-07

    The elastic constants of the α and γ polymorphs of cyclotrimethylene trinitramine (RDX) have been computed using dispersion corrected density functional theory (DFT). The DFT results validate the values obtained in several experiments using ultrasonic and impulsive stimulated thermal scattering techniques and disagree with those obtained using Brillouin scattering which, in general, exceed the other experimental and theoretical results. Compressibility diagrams at zero pressure are presented for the ab, ac, and bc crystallographic planes, and the anisotropic linear compressibility within the ac plane of α-RDX at 0 GPa, observed using ultrasonic and impulsive stimulated thermal scattering measurements, is verified using DFT. The pressure dependence of the elastic constants of α-RDX (0–4 GPa) and γ-RDX (4–8 GPa) is also presented.

  7. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method.

    Science.gov (United States)

    Ravichandran, R; Rajendran, M; Devapiriam, D

    2014-03-01

    Quercetin found chelate cadmium ions, scavenge free radicals produced by cadmium. Hence new complex, quercetin with cadmium was synthesised, and the synthesised complex structures were determined by UV-vis spectrophotometry, infrared spectroscopy, thermogravimetry and differential thermal analysis techniques (UV-vis, IR, TGA and DTA). The equilibrium stability constants of quercetin-cadmium complex were determined by Job's method. The determined stability constant value of quercetin-cadminum complex at pH 4.4 is 2.27×10(6) and at pH 7.4 is 7.80×10(6). It was found that the quercetin and cadmium ion form 1:1 complex in both pH 4.4 and pH 7.4. The structure of the compounds was elucidated on the basis of obtained results. Furthermore, the antioxidant activity of the free quercetin and quercetin-cadmium complexes were determined by DPPH and ABTS assays.

  8. Airflow study of pathologic larynges using a constant temperature anemometer: further experience.

    Science.gov (United States)

    Kitajima, K; Fujita, F

    1992-08-01

    Phonatory airflow was recorded in 361 laryngeal disease patients and 59 normal subjects by using a constant temperature anemometer to measure Isshiki's proposed parameter, the AC/DC percentage. The pathologic groups displayed AC/DC percentage values smaller than those of the normal group. The value differentials observed among the various diseases suggest that the AC/DC percentage may reflect the vibrational capacity of the vocal cords.

  9. Study on forming directivity with constant beam width in low frequency based on small sensor

    Institute of Scientific and Technical Information of China (English)

    HUI Junying; LIU Hong; YU Huabing; LIANG Guolong

    2001-01-01

    Based on a combined sensor with the size of 10 cm, a narrow beam with a constant receiving beam width of 20 degree has been formed in low frequency from several Hz to thousands of Hz by using simple adaptive algorithm. The results of theoretical simulation,laboratory experiment and lake experiment with one-dimension and two-dimension combined sensors have been given.

  10. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    Science.gov (United States)

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  11. Study of Antigravity in an F(R Model and in Brans-Dicke Theory with Cosmological Constant

    Directory of Open Access Journals (Sweden)

    V. K. Oikonomou

    2014-01-01

    Full Text Available We study antigravity, that is, having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from F(R theory and in a Brans-Dicke model with cosmological constant. For the F(R theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we will demonstrate by using a specific F(R model, although there is no antigravity in the initial model, it might occur or not in the scalar-tensor counterpart, mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model.

  12. Study of Antigravity in an F(R) Model and in Brans-Dicke Theory with Cosmological Constant

    CERN Document Server

    Oikonomou, V K

    2014-01-01

    We study antigravity, that is having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from $F(R)$-theory and in a Brans-Dicke model with cosmological constant. For the $F(R)$ theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate by using a specific $F(R)$ model, although there is no antigravity in the initial model, it might occur or not in the scalar-tensor counterpart, mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model.

  13. Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies

    Science.gov (United States)

    Asatkar, Ashish K.; Tripathi, Mamta; Panda, Snigdha; Pande, Rama; Zade, Sanjio S.

    2017-01-01

    Mononuclear cuprous complexes 1 and 2, [{CH3E(o-C6H4)CH = NCH2}2Cu]ClO4; E = S/Se, have been synthesized by the reaction of bis(methyl)(thia/selena) salen ligands and [Cu(CH3CN)4]ClO4. Both the products were characterized by elemental analysis, ESI-MS, FT-IR, 1H/13C/77Se NMR, and cyclic voltammetry. The complexes possess tetrahedral geometry around metal center with the N2S2/N2Se2 coordination core. Cyclic voltammograms of complexes 1 and 2 displayed reversible anodic waves at E1/2 = + 0.08 V and + 0.10 V, respectively, corresponding to the Cu(I)/Cu(II) redox couple. DNA binding studies of both the complexes were performed applying absorbance, fluorescence and molecular docking techniques. Competitive binding experiment of complexes with ct-DNA against ethidium bromide is performed to predict the mode of binding. The results indicate the groove binding mode of complexes 1 and 2 to DNA. The binding constants revealed the strong binding affinity of complexes towards ct-DNA.

  14. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun [College of Chemistry, Changchun Normal University, Changchun 130032 (China)], E-mail: sy_bi@sina.com; Sun Yantao [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Qiao Chunyu; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Chunming [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2009-05-15

    The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (K{sub A}) were 9.66x10{sup 3}, 2.08x10{sup 3}, 8.20x10{sup 2} and 7.50x10{sup 3} L mol{sup -1} for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 deg. C. The thermodynamic functions such as enthalpy change ({delta}H), entropy change ({delta}S) and Gibbs free-energy change ({delta}G) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Foester theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.

  15. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    Science.gov (United States)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  16. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Hanna E. [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands); Koning, Peter E. de; Wouter Drijfhout, Jan [Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion (Netherlands); Venezia, Brigida; Ubbink, Marcellus [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2008-07-15

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.

  17. An experimental study of constant-pressure steam injection and transient condensing flow in an air-saturated porous medium

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper the unsteady process of constant pressure steam injection into an air–saturated porous medium is studied experimentally. To this end, vertical glass tubes are packed with dry quartz sand and injected with dry steam. The propagation of the steam front appears to be proportional to t. It

  18. Synthesis, Characterization, and DNA Binding Studies of Nanoplumbagin

    Directory of Open Access Journals (Sweden)

    Sheik Dawood Shahida Parveen

    2014-01-01

    Full Text Available The traditional anticancer medicine plumbagin (PLN was prepared as nanostructured material (nanoplumbagin, NPn1 from its commercial counterparts, simultaneously coencapsulating with cetyltrimethylammonium bromide or cyclodextrin as stabilizers using ultrasonication technique. Surface morphology of NPn analysed from atomic force microscopy (AFM indicates that NPn has tunable size between 75 nm and 100 nm with narrow particle size distribution. Its binding efficiency with herring sperm DNA was studied using spectral and electrochemical techniques and its efficiency was found to be more compared to the commercial microcrystalline plumbagin (PLN. DNA cleavage was also studied by gel electrophoresis. The observed results indicate that NPn1 has better solubility in aqueous medium and hence showed better bioavailability compared to its commercial counterparts.

  19. Hydrocephalus associated with subarachnoid hemorrhage. Clinical study by computed tomography, radioisotope cisternography and constant infusion test

    Energy Technology Data Exchange (ETDEWEB)

    Nosaka, Y. (Okayama Univ. (Japan). School of Medicine)

    1981-02-01

    Thirteen patients exhibited a communicating hydrocephalus following subarachnoid hemorrhage secondary to ruptured intracranial aneurysms and were treated with shunt procedures. The interval between subarachnoid hemorrhage and surgery averaged 9 weeks. Seven of the patients showed improvement. The prognostic value for surgical management was evaluated on the basis of three different diagnostic examinations (computed tomography (CT), cisternography and constant infusion test). A correct diagnosis was obtained in 78 per cent in cisternography, and 63 per cent in infusion test and CT. All patients responding to surgery showed a typical pattern in cisternography, consisting of ventricular retention of radiopharmaceutical tracer for 48 h or longer in association with no radioactivity over the cerebral hemispheres. The constant infusion test correlated well with typical cisternographic patterns. CT is useful in demonstrating pathophysiological changes in hydrocephalus. Periventricular hypodensity was visible in patients with normal or slightly elevated intracranial pressure, accompanied by fairly rapid deterioration. All of them responded well to shunting. In most cases which benefited from the shunt, the postoperative CT showed not only normal-sized ventricles but also marked regression of the hypodensity over a short period.

  20. Hydrocephalus associated with subarachnoid hemorrhage: clinical study by computed tomography, radioisotope cisternography and constant infusion test.

    Directory of Open Access Journals (Sweden)

    Nosaka,Yoshiki

    1981-02-01

    Full Text Available Thirteen patients exhibited a communicating hydrocephalus following subarachnoid hemorrhage secondary to ruptured intracranial aneurysms and were treated with shunt procedures. The interval between subarachnoid hemorrhage and surgery averaged 9 weeks. Seven of the patients showed improvement. The prognostic value for surgical management was evaluated on the basis of three different diagnostic examinations (computed tomography(CT, cisternography and constant infusion test. A correct diagnosis was obtained in 78 per cent in cisternography, and 63 per cent in infusion test and CT. All patients responding to surgery showed a typical pattern in cisternography, consisting of ventricular retention of radiopharmaceutical tracer for 48 h or longer in association with no radioactivity over the cerebral hemispheres. The constant infusion test correlated well with typical cisternographic patterns. CT is useful in demonstrating pathophysiological changes in hydrocephalus. Periventricular hypodensity was visible in patients with normal or slightly elevated intracranial pressure, accompanied by fairly rapid deterioration. All of them responded well to shunting. In most cases which benefited from the shunt, the postoperative CT showed not only normal-sized ventricles but also marked regression of the hypodensity over a short period.

  1. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  2. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Science.gov (United States)

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  3. Effects of the binding of a dextran derivative on fibroblast growth factor 2: secondary structure and receptor-binding studies.

    Science.gov (United States)

    Bittoun, P; Bagheri-Yarmand, R; Chaubet, F; Crépin, M; Jozefonvicz, J; Fermandjian, S

    1999-06-15

    CMDB (carboxymethyldextran-benzylamide) are dextrans statistically substituted with carboxymethyl and benzylamide groups which can mimick some of the biological properties of heparin. It has previously been shown that CMDB inhibit autocrine growth of breast tumor cells (Bagheri-Yarmand et al., Biochem. Biophys. Res. Commun. 239: 424-428, 1997) and selectively displace fibroblast growth factor 2 (FGF-2) from its receptor. Here, we used circular dichroism and fluorescence anisotropy measurements to show that the conformation of FGF-2 was significantly altered upon its binding to CMDB and to short CMDB fragments prepared within this study. CMDB and fragments formed a stable 1:1 complex with FGF-2, with affinities being estimated as 20+/-10 nM from fluorescence anisotropy analysis. No such a complex was formed with insulin-like growth factor (IGF-1) or epidermal growth factor (EGF). CMDB competed with the FGF-2 receptor for binding to FGF-2 but did not disturb the binding of IGF-1 and EGF to their receptors. Thus, our results highlight the selectivity of CMDB and their fragments towards FGF-2. Heparin, however, competes with CMDB and their fragments for binding to FGF-2. The carboxymethyl and benzylamide groups of these molecules likely interact directly with a heparin-binding region of FGF-2. The resulting change in conformation disturbs the binding of FGF-2 to its receptor and consecutively its mitogenic activity.

  4. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA).

    Science.gov (United States)

    Shen, Guo-Feng; Liu, Ting-Ting; Wang, Qi; Jiang, Min; Shi, Jie-Hua

    2015-12-01

    The binding interactions of three kinds of tyrosine kinase inhibitors (TKIs), such as gefitinib, lapatinib and sunitinib, with bovine serum albumin (BSA) were studied using ultraviolet spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The experimental results showed that the intrinsic fluorescence quenching of BSA induced by the three TKIs resulted from the formation of stable TKIs-BSA complexes through the binding interaction of TKIs with BSA. The stoichiometry of three stable TKIs-BSA complexes was 1:1 and the binding constants (Kb) of the three TKIs-BSA complexes were in the order of 10(4)M(-1) at 310 K, indicating that there was a strong binding interaction of the three TKIs with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be deduced that the binding process of the three TKIs with BSA was spontaneous and enthalpy-driven process, and the main interaction forces between the three TKIs and BSA were van der Waals force and hydrogen bonding interaction. Moreover, from the results of CD, FT-IR and molecular docking, it can be concluded that there was a significant difference between the three TKIs in the binding site on BSA, lapatinib was located on site II (m) of BSA while gefitinib and sunitinib were bound on site I of BSA, and there were some changes in the BSA conformation when binding three TKIs to BSA but BSA still retains its secondary structure α-helicity.

  5. Experimental and molecular modeling studies on the DNA-binding of diazacyclam-based acrocyclic copper complex.

    Science.gov (United States)

    Shahabadi, Nahid; Hakimi, Mohammad; Morovati, Teimoor; Falsafi, Monireh; Fili, Soraya Moradi

    2017-02-01

    The interaction of a new macrocyclic copper complex, [CuL(NO3)2] in which L is 1,3,6,10,12,15-hexaaza tricyclo[13.3.1.1(6,10)] eicosane was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated the complex interacted with ct-DNA in a groove binding mode while the binding constant of UV-vis and the number of binding sites were 1.0±0.2×10(4)Lmol(-1) and 1.01, respectively. The fluorometric studies showed that the reaction between the complex with ct-DNA is exothermic (ΔH=14.85kJmol(-1); ΔS=109.54Jmol(-1)K(-1)). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of DNA in the presence of [CuL(NO3)2] complex. Furthermore, the complex induces detectable changes in the viscosity of DNA. The molecular modeling results illustrated that the complex strongly binds to groove of DNA. Experimental and molecular modeling results showed that Cu(II) complex bound to DNA by a groove binding mode.

  6. How does fatty acid influence anti-thyroid drugs binding and specificity toward protein human serum albumin? A blind docking simulation study

    Indian Academy of Sciences (India)

    Bijan K Paul; Nikhil Guchhait

    2014-11-01

    This study reports an AutoDock-based blind docking simulation investigation to characterize the binding interaction of a series of anti-thyroid drugs (2-mercapto-1-methylimidazole (MMI), 2-thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6--propyl-2-thiouracil (PTU) with a model plasma protein Human SerumAlbumin (HSA) in the presence and absence of fatty acid (FA). The drug-protein binding efficiency is characterized in terms of binding free energy and the association constant (Ka, which is estimated as the reciprocal of the inhibition constant, Ki) of the drugs to the transport protein. The study also unveils the substantial impact of the presence of fatty acid (FA) on the binding interaction process. It is shown that in the presence of FA the drug-protein binding efficiency is markedly enhanced (except for MTU) and the binding location is changed. Hydrogen bonding interaction appears to play a governing role in the process of FA-induced modifications of binding efficiency and location.

  7. Study on Absorption Heat transfer of Two-Dimensionally Constant Curvature Surface Tubes-1

    Science.gov (United States)

    Ogawa, Kiyoshi; Isshiki, Naotsugu

    In order to get better heat transfer coefficient of absorption in actual apparatus, it is considered that the wettability of the surface should be high, and that the thickness of liquid film should not be too thin or too thick all over the surface. So, new conception of two-dimensionally constant curvature surface (CCS) for absorption heat transfer has been introduced for the first time by the authors. First, theoretical CCS section curves of CCS tubes were calculated, and some of them were manufactured for the test. The wettability of CCS is tested and compared to the other finned tubes (radial fin tubes of triangular and rectangular profiles). As may be seen from photographs and compared to the other finned tubes, on the CCS surface, the thickness of liquid has shown to be even all over the surface without creating paticulary thick or thin place, so that, liquid films are very wettable on the CCS surface.

  8. Spectroscopic studies of low dielectric constant fluorinated amorphous carbon films for ULSI integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Yang, H. [Sharp Microelectronics Technology, Camas, WA (United States); Guo, J.; Sathe, C.; Agui, A.; Nordgren, J. [Uppsala Univ. (Sweden). Physics Dept.

    1998-12-31

    Performance of future generations of integrated circuits will be limited by the RC delay caused by on-chip interconnections. Overcoming this limitation requires the deployment of new high conductivity metals such as copper and low dielectric constant intermetal dielectrics (IMD). Fluorinated amorphous carbon (a-CFx) is a promising candidate for replacing SiO{sub 2} as the IMD. In this paper the authors investigated the structure and electronic properties of a-CFx thin films using high-resolution x-ray absorption, emission, and photoelectron spectroscopy. The composition and local bonding information were obtained and correlated with deposition conditions. The data suggest that the structure of the a-CFx is mostly of carbon rings and CF{sub 2} chains cross-linked with C atoms. The effects of growth temperature on the structure and the thermal stability of the film are discussed.

  9. Protein binding prodrugs : Synthesis and protein binding studies of didanonsine derivates

    OpenAIRE

    Olberg, Dag Erlend

    2004-01-01

    A novel series of 5 -O-ester prodrugs of the anti-HIV drug 2 ,3 -dideoxyinosine (ddI,didanosine) were synthesized for the purpose of increasing protein binding. Hope was that these derivates would exhibit superior pharmacodynamic and pharmacokinetic properties against HIV-infection than the parent drug, didanosine. Ten compounds were synthesized, five fatty acid derivates and five dicarboxylic acid monoester derivates. The fatty acid- and dicarboxylic acid derivates had the sam...

  10. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  11. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  12. Synthesis, spectroscopic characterization, potentiometric studies, cytotoxic studies and molecular docking studies of DNA binding of transition metal complexes with 1,1-diaminopropane-Schiff base

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M. A.; El-Sayed, Badr A.; El-Henawy, Ahmed A.; Ammar, Reda A. A.

    2013-03-01

    A new series of Schiff base transition metal complexes with N,N'-bis(2-hydroxybenzylidene)-1,1-diaminopropane (H2BHBDAP) have been prepared and characterized by elemental analysis, spectroscopic and magnetic measurements. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M sodium perchlorate. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the Docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity.

  13. Surface induced constant composition crystal growth kinetics studies. The brushite gypsum system

    Science.gov (United States)

    Hina, A.; Nancollas, G. H.; Grynpas, M.

    2001-02-01

    The possible oriented growth of one crystalline phase on the surface of another is especially important in systems containing both phosphate and sulfate salts of calcium. Whether the overgrowth results from a true epitaxial relationship is dependent on factors such as the thermodynamic driving forces and the free energies of the surfaces. Despite the fact that calcium sulfate dihydrate (CSD, gypsum) and calcium hydrogen phosphate dihydrate (DCPD, brushite) show many crystallographic and structural analogies, their surface reactions are quite different. The nucleation and growth of gypsum on brushite surfaces has been investigated in supersaturated solutions of calcium sulfate dihydrate at 25.0°C using the constant composition (CC) method. During the kinetics experiments, the harvested solid phases were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). Induction periods, τ, preceding the initial formation of gypsum crystals at the brushite surfaces, varied markedly with relative supersaturation, σ. A thin layer wicking method was used to investigate the interfacial free energies of the growing phases, and these data were also calculated from the kinetics results. The interfacial free energy, γ, estimated from initial growth rates was 8.4 mJ m -2, while that calculated from the induction times was 8.9 mJ m -2. These values were in agreement with those determined directly using thin layer wicking.

  14. Fluorescence-quenching study of glucose binding by yeast hexokinase isoenzymes

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, I.; Kramp, D.C.

    1978-04-18

    A study of the effect of varying ionic strength on the glucose-induced quenching of tryptophan fluorescence of hexokinase isoenzymes A(P-I) and B(P-II) was carried out at pH 8.3 and pH 5.5. At pH 8.3 both isoenzymes gave apparently linear Scatchard-type data plots even with protein concentrations and ionic strengths for which both dimeric and monomeric forms of hexokinase coexist in significant amounts. Taking into account a 1 percent accuracy in the experimental measurements, we concluded that the intrinsic dissociation constants, K/sub M/ and K/sub D/, for the binding of glucose to the monomeric and dimeric forms of HkB, are within a factor of two of each other, i.e., K/sub D//K/sub M/ equal to or less than 2. The values of K/sub M/, estimated from the apparent K, were so greatly influenced by ionic strength that it is clear that it is meaningless to compare K/sub M/ and K/sub D/ values measured at different ionic strengths as has been done in the literature. Curvature in the pH 5.5 fluorescence-quenching plots for relatively low ionic strengths demonstrates cooperativity for glucose-binding to the dimer, positive for HkA but negative for HkB. In contrast, the binding is relatively noncooperative at high ionic strength at this pH. These results were attributed to the well known effect of salt-neutralization of side chain electrical charges on the flexibility and compactness of proteins.

  15. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  16. Mechanistic studies of flux variability of neutral and ionic permeants during constant current dc iontophoresis with human epidermal membrane.

    Science.gov (United States)

    Li, S Kevin; Higuchi, William I; Kochambilli, Rajan P; Zhu, Honggang

    2004-04-01

    Although constant current iontophoresis is supposed to provide constant transdermal transport, significant flux variability and/or time-dependent flux drifts are observed during iontophoresis with human skin in vitro and human studies in vivo. The objectives of the present study were to determine (a) the causes of flux variability in constant current dc transdermal iontophoresis and (b) the relationships of flux variabilities among permeants of different physicochemical properties. Changes in the human epidermal membrane (HEM) effective pore size and/or electroosmosis during constant current dc iontophoresis were examined. Tetraethylammonium ion (TEA), urea, and mannitol were the model permeants. For the neutral permeants, the results in the present study showed a significant increase of fluxes with time in a given experiment and large HEM sample-to-sample variability. Although both effective pore size and pore charge density variations contributed to the time-dependent flux drifts observed in electroosmotic transport, the significant flux drifts observed were found to be primarily a result of the time-dependent increase in effective pore charge density. For the ionic permeant, the observed flux variability was smaller than that of the neutral permeants and was believed to be primarily due to effective pore size alteration in HEM during iontophoresis as suggested in a previous study. The different extents of flux variability observed between neutral and ionic permeants are consistent with the different iontophoretically enhanced transport mechanisms for the neutral and ionic permeants (i.e. electroosmosis and electrophoresis, respectively). The results of the present study also demonstrate that flux variability of two neutral permeants are inter-related, so the flux of one neutral permeant can be predicted if the permeability coefficient of the other neutral permeant is known.

  17. Interaction of zinc and cobalt with dipeptides and their DNA binding studies

    Indian Academy of Sciences (India)

    P Rabindra Reddy; M Radhika; K Srinivas Rao

    2004-06-01

    Interactions of zinc and cobalt with peptides cysteinylglycine and histidylglycine have been studied. The binding modes were identified and geometry assigned. Stabilities of these complexes and their ability to bind DNA have been investigated. It is demonstrated that only zinc complexes bind DNA as compared to cobalt complexes.

  18. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    Science.gov (United States)

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.

  19. New cobalt(II) and nickel(II) complexes of benzyl carbazate Schiff bases: Syntheses, crystal structures, in vitro DNA and HSA binding studies.

    Science.gov (United States)

    Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah

    2016-12-01

    In the present study, new Schiff base complexes with the composition [M(NCS)2(L1)2]·nH2O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS)2(L2)2], M=Co (3) and Ni (4) as well as [M(NCS)2(L3)2], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10(6)moldm(-3)) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations.

  20. DNA interaction studies of a platinum (II) complex containing an antiviral drug, ribavirin: the effect of metal on DNA binding.

    Science.gov (United States)

    Shahabadi, Nahid; Mirzaei kalar, Zeinab; Moghadam, Neda Hosseinpour

    2012-10-01

    The water-soluble Pt (II) complex, [PtCl (DMSO)(N(4)N(7)-ribavirin)]· H(2)O (ribavirin is an antiviral drug) has been synthesized and characterized by physico-chemical and spectroscopic methods. The binding interactions of this complex with calf thymus DNA (CT-DNA) were investigated using fluorimetry, spectrophotometry, circular dichroism and viscosimetry. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, K(b), was 7.2×10(5) M(-1). In fluorimetric studies, the enthalpy (ΔH0) changes of the reaction between the Pt (II) complex with CT-DNA showed hydrophobic interaction. In addition, CD study showed stabilization of the right-handed B form of CT-DNA. All these results prove that the complex interacts with CT-DNA via intercalative mode of binding. In comparison with the previous study of the DNA interaction with ribavirin, these results show that platinum complex has greater affinity to CT-DNA.

  1. Study on the Binding Mode of a Co(Ⅱ) Complex with DNA

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qing-Hua; YANG Pin

    2005-01-01

    The mode of binding of CoLCl2, here L=bis(2-benzimidazolylmethyl)amine, with calf thymus DNA has been investigated by fluorescence measurements, equilibrium dialysis, viscosity experiments and gel electrophoresis. The complex was found to bind but weakly to DNA, with binding constant of 1.96× 104 L/mol determind at 20 ℃ in a solution containing 5 mmol/L Tris-HCl (pH 7.1) and 50 mmol/L NaCl. Polyelectrolyte theory was applied to analyse these values. Viscosity experiments show that binding did not alter the relative viscosity of DNA with any complexes to an appreciable extent. Electrophoresis test displayed that the compound could not cleave the DNA.These results show that the complex is essentially electrostatically bound to DNA.

  2. Binding Interaction of Captopril with Metal Ions: A Fluorescence Quenching Study

    Institute of Scientific and Technical Information of China (English)

    SIDDIQI K.S.; BANO Shaista; MOHD Ayaz; KHAN Aslam Aftab Parwaz

    2009-01-01

    The binding interaction of captopril(CPL)with biologically active metal ions Mg2+,Ca2+,Mn2+,Co2+,Ni2+,Cu2+ and Zn2+ was investigated in an aqueous acidic medium by fluorescence spectroscopy.The experimental results showed that the metal ions quenched the intrinsic fluorescence of CPL by forming CPL-metal complexes.It was found that static quenching was the main reason for the fluorescence quenching.The quenching constant in the case of Cu2+ was highest among all quenchers,perhaps due to its high nuclear charge and small size.Quenching of CPL by metal ions follows the order Cu2+> Ni2+> Co2+> Ca2+>Zn2+ > Mn2+ > Mg2+.The quenching constant Ksv,bimolecular quenching constant Kq,binding constant K and the binding sites "n" were determined together with their thermodynamic parameters at 27 and 37℃.The positive entropy change indicated the gain in configurational entropy as a result of chelation.The process of interaction was spontaneous and mainly △S-driven.

  3. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  4. A tight-binding study of single-atom transistors.

    Science.gov (United States)

    Ryu, Hoon; Lee, Sunhee; Fuechsle, Martin; Miwa, Jill A; Mahapatra, Suddhasatta; Hollenberg, Lloyd C L; Simmons, Michelle Y; Klimeck, Gerhard

    2015-01-21

    A detailed theoretical study of the electronic and transport properties of a single atom transistor, where a single phosphorus atom is embedded within a single crystal transistor architecture, is presented. Using a recently reported deterministic single-atom transistor as a reference, the electronic structure of the device is represented atomistically with a tight-binding model, and the channel modulation is simulated self-consistently with a Thomas-Fermi method. The multi-scale modeling approach used allows confirmation of the charging energy of the one-electron donor charge state and explains how the electrostatic environments of the device electrodes affects the donor confinement potential and hence extent in gate voltage of the two-electron charge state. Importantly, whilst devices are relatively insensitive to dopant ordering in the highly doped leads, a ∼1% variation of the charging energy is observed when a dopant is moved just one lattice spacing within the device. The multi-scale modeling method presented here lays a strong foundation for the understanding of single-atom device structures: essential for both classical and quantum information processing.

  5. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    Science.gov (United States)

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein.

  6. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  7. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Abutalib, M.M. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); AlFaify, S. [Nano-Science & Semiconductor Labs, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Shkir, M. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-wahab, M.Sh.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); El-Naggar, A.M. [Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ{sup (1)}, nonlinear optical susceptibility χ{sup (3)}, nonlinear refractive index (n{sub 2}) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  8. Chronic insomnia and performance in a 24-h constant routine study.

    NARCIS (Netherlands)

    Varkevisser, M.; Kerkhof, G.A.

    2005-01-01

    Insomniacs report daytime functioning problems, but studies of neurobehavioral functioning in insomniacs have shown little objective evidence of impairment. In addition, very little is known about the influence of the circadian clock on performance in chronic insomniacs. In the present study, we inv

  9. Study on binding and fluorescence energy transfer efficiency of Rhodamine B with Pluronic F127-gold nanohybrid using optical spectroscopy methods

    Science.gov (United States)

    Antonisamy, Jenif Dsouza; Swain, Jitendriya; Dash, Sasmita

    2017-02-01

    This work focuses on the binding efficiency and fluorescence resonance energy transfer (FRET) of fluorescent dye Rhodamine B (Rh B) to Pluronic F127-gold nanohybrid. The formation of gold nanoparticles inside Rh B doped Pluronic F127 copolymer have been characterized using dynamic light scattering study, HR-TEM images, UV-visible spectra and fluorescence studies. Fluorescence quenching and the constant fluorescence lifetime of the Rhodamine B present in the cavity of Pluronic F127-gold nanohybrid suggested a strong binding ability (3.5 × 103 L mol- 1), static nature of quenching and better energy transfer efficiency of fluorescent dye towards Pluronic F127-gold (Au) nanohybrids.

  10. Experimental strategies for studying transcription factor-DNA binding specificities.

    Science.gov (United States)

    Geertz, Marcel; Maerkl, Sebastian J

    2010-12-01

    Specific binding of transcription factors (TFs) determines in a large part the connectivity of gene regulatory networks as well as the quantitative level of gene expression. A multiplicity of both experimental and computational methods is currently used to discover and characterize the underlying TF-DNA interactions. Experimental methods can be further subdivided into in vitro- and in vivo-based approaches, each accenting different aspects of TF-binding events. In this review we summarize the flexibility and performance of a selection of both types of experimental methods. In conclusion, we argue that a serial combination of methods with different throughput and data type constitutes an optimal experimental strategy.

  11. Studies on the contributions of steric and polarity effects to the H2S-binding properties of Vitreoscilla hemoglobin

    Science.gov (United States)

    Wang, Dandan; Wang, Hui; Li, Haichao; Liu, Li; Li, Zhengqiang

    2017-01-01

    We have reported recently that Vitreoscilla hemoglobin (VHb) is a potential H2S receptor and storage molecule in bacterial metabolism. In this study, molecular cloning and site-directed mutagenesis were employed to investigate the structural basis for H2S binding. Association and dissociation rate constants (kon and koff) were determined using stopped-flow rapid-scanning spectrophotometry and compared with those for wild type VHb. Several unanticipated factors were found to govern H2S binding properties, due to the distinct structure of VHb. The results presented in this paper show that: i) bulkier residues at positions E7 and E11 decrease H2S binding accessibility, while the residue located at position B10 blocks bound H2S from escaping. ii) hydroxyl sidechains within the distal heme pocket reduce H2S reactivity to VHb; iii) Pro(E8) is involved in moving the E7-E10 loop region to trigger opening of the distal heme pocket to facilitate H2S binding.

  12. EPSP synthase: binding studies using isothermal titration microcalorimetry and equilibrium dialysis and their implications for ligand recognition and kinetic mechanism.

    Science.gov (United States)

    Ream, J E; Yuen, H K; Frazier, R B; Sikorski, J A

    1992-06-23

    Isothermal titration calorimetry measurements are reported which give important new binding constant (Kd) information for various substrate and inhibitor complexes of Escherichia coli EPSP synthase (EPSPS). The validity of this technique was first verified by determining Kd's for the known binary complex with the substrate, shikimate 3-phosphate (S3P), as well as the herbicidal ternary complex with S3P and glyphosate (EPSPS.S3P.glyphosate). The observed Kd's agreed very well with those from previous independently determined kinetic and fluorescence binding measurements. Further applications unequivocally demonstrate for the first time a fairly tight interaction between phosphoenolpyruvate (PEP) and free enzyme (Kd = 390 microM) as well as a correspondingly weak affinity for glyphosate (Kd = 12 mM) alone with enzyme. The formation of the EPSPS.PEP binary complex was independently corroborated using equilibrium dialysis. These results strongly suggest that S3P synergizes glyphosate binding much more effectively than it does PEP binding. These observations add important new evidence to support the hypothesis that glyphosate acts as a transition-state analogue of PEP. However, the formation of a catalytically productive PEP binary complex is inconsistent with the previously reported compulsory binding order process required for catalysis and has led to new studies which completely revise the overall EPSPS kinetic mechanism. A previously postulated ternary complex between S3P and inorganic phosphate (EPSPS.S3P.Pi, Kd = 4 mM) was also detected for the first time. Quantitative binding enthalpies and entropies were also determined for each ligand complex from the microcalorimetry data. These values demonstrate a clear difference in thermodynamic parameters for recognition at the S3P site versus those observed for the PEP, Pi, and glyphosate sites.

  13. A methodology to study cyclic debond growth at constant mode-mixity and energy release rate

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    It is well known that face/core debond crack propagation is governed by the critical energy release rate (fracture toughness) and mode-mixity at the crack tip. Thus, the current study focuses on the developing of a methodology to perform fatigue crack growth experiments of debonded sandwich...... and better control of loading conditions at the crack tip will be the most relevant outcomes of using the proposed fatigue test method....

  14. Thermodynamic dissociation constant studies of caffeine at different temperatures and in organic water solvent mixture.

    Science.gov (United States)

    Saeeduddin; Khanzada, A W K

    2004-01-01

    Thermodynamic dissociation studies have been carried out potentiometrically at various temperatures from 25 to 50 degrees C and in 10, 20, 30 and 40% v/v dioxane-water solvent mixture at 25 degrees C. The influence of temperature and nature of solvent on dissociation equilibria of caffeine is being investigated. A computer program in GW-BASIC has been used to calculate the pK values.

  15. Calcium binding to the purple membrane : A molecular dynamics study

    NARCIS (Netherlands)

    Wassenaar, Tsjerk A.; Daura, Xavier; Padros, Esteve; Mark, Alan E.

    2009-01-01

    The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highl

  16. Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO

    2007-01-01

    Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.

  17. Transport behavior of hairless mouse skin during constant current DC iontophoresis I: baseline studies.

    Science.gov (United States)

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-04-01

    The fluxes of charged and nonionic molecules across hairless mouse skin (HMS) were induced by direct current iontophoresis and used to characterize the transport pathways of the epidermal membrane. Experimental data were used to determine permeability coefficients from which the effective pore radii (Rp) of the transport pathways were calculated. Permeants used in these experiments were nonionic permeants (urea, mannitol, and raffinose), monovalent cationic permeants (sodium, tetraethylammonium, and tetraphenylphosphonium ions), and monovalent anionic permeants (chloride, salicylate, and taurocholate ions). The Rp estimates obtained by the anionic permeant pairs were 49, 22, and 20 Å for the chloride/salicylate (Cl:SA), chloride/taurocholate (Cl:TC), and salicylate/taurocholate (SA:TC) pairs, respectively; with the cationic permeant pairs, the Rp values obtained were 19, 30, and 24 Å for the sodium/tetraethylammonium (Na:TEA), sodium/tetraphenylphosphonium (Na:TPP), and the tetraethylammonium/tetraphenylphosphonium (TEA:TPP) pairs, respectively. Rp estimates for HMS obtained from nonionic permeant experiments ranged from 6.7 to 13.4 Å. When plotted versus their respective diffusion coefficients, all of the permeability coefficients for the cationic permeants were greater than those of the anionic permeants. Additionally, the magnitudes of permeability coefficients determined in the current study with HMS were of the same order of magnitude as those previously determined in our laboratory using human epidermal membrane under similar iontophoresis conditions.

  18. Theoretical study of the pressure dependent rate constants of the thermal decomposition of β-propiolactone

    Directory of Open Access Journals (Sweden)

    Abolfazl Shiroudi

    2015-09-01

    Full Text Available A theoretical study of the thermal decomposition of β-propiolactone is carried out using ab initio molecular orbital (MO methods at the MP2/6-311+G∗∗ level and Rice–Ramsperger–Kassel–Marcus (RRKM theory. The reported experimental results showed that decomposition of β-propiolactone occurred by three competing homogeneous and first order reactions. For the three reactions, the calculation was also performed at the MP2/6-311+G∗∗ level of theory, as well as by single-point calculations at the B3LYP/6-311+G∗∗//MP2/6-311+G∗∗, and MP4/6-311+G∗∗//MP2/6-311+G∗∗ levels of theory. The fall-off pressures for the decomposition in these reactions are found to be 2.415, 9.423 × 10−2 and 3.676 × 10−3 mmHg, respectively.

  19. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Modi, S.; Behere, D.V.; Mitra, S. (Tata Institute of Fundamental Research, Bombay (India))

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  20. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  1. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    Science.gov (United States)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  2. Studies on a Novel Minor-groove Targeting Artificial Nuclease: Synthesis and DNA Binding Behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm of DNA from 80. 4 C to 84. 4 ℃ and that it possesses a high binding constant value(Kb = 3.05×104 L/mol).

  3. Comparative study of the binding of pepsin to four alkaloids by spectrofluorimetry

    Science.gov (United States)

    Wang, Ruiyong; Xie, Yuanzhe; Zhang, Yuhai; Kang, Xiaohui; Wang, Xiaogai; Ge, Baoyu; Chang, Junbiao

    2013-05-01

    The interactions between pepsin and four alkaloids, including caffeine (Caf), aminophylline (Ami), acefylline (Ace), diprophylline (Dip), were investigated by fluorescence, UV-visible absorption, resonance light scattering, synchronous fluorescence spectroscopy and 3D spectroscopy under mimic physiological conditions. The results revealed that Caf (Ami/Ace/Dip) caused the fluorescence quenching of pepsin by the formation of Caf (Ami/Ace/Dip)-pepsin complex. The binding constants and thermodynamic parameters at three different temperatures, the binding locality and the binding power were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. Results showed that aminophylline was the stronger quencher and bound to pepsin with higher affinity than other three alkaloids.

  4. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Kang, Xiaohui [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Wang, Ruiqiang [The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Rui; Dou, Huanjing; Wu, Jing; Song, Chuanjun [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China)

    2013-06-15

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported.

  5. Aptamer Binding Studies Using MicroScale Thermophoresis.

    Science.gov (United States)

    Breitsprecher, Dennis; Schlinck, Nina; Witte, David; Duhr, Stefan; Baaske, Philipp; Schubert, Thomas

    2016-01-01

    The characterization and development of highly specific aptamers requires the analysis of the interaction strength between aptamer and target. MicroScale Thermophoresis (MST) is a rapid and precise method to quantify biomolecular interactions in solution at microliter scale. The basis of this technology is a physical effect referred to as thermophoresis, which describes the directed movement of molecules through temperature gradients. The thermophoretic properties of a molecule depend on its size, charge, and hydration shell. Since at least one of these parameters is altered upon binding of a ligand, this method can be used to analyze virtually any biomolecular interaction in any buffer or complex bioliquid. This section provides a detailed protocol describing how MST is used to obtain quantitative binding parameters for aptamer-target interactions. The two DNA-aptamers HD1 and HD22, which are targeted against human thrombin, are used as model systems to demonstrate a rapid and straightforward screening approach to determine optimal buffer conditions.

  6. Studies of Reversible Hydrogen Binding in Nano- Sized Materials

    OpenAIRE

    Lesničenoks, Pēteris; Zemītis, Jānis; Kleperis, Jānis; Čikvaidze, Georgijs; Ignatāns, Reinis

    2015-01-01

    Experimental review of materials suitable for reversible hydrogen binding in nanoporous and nanosized structures of materials, based on natural zeolite (clinoptilolite) and graphene (exfoliated electrochemically from raw graphite), were analyzed. Characterization of materials with SEM, XRD, EDS and Raman spectroscopy methods and aspects of synthesis of a nanostructured zeolite and a few-layer graphite material was done in this work. It was established from gas analyzer results that hydrogen m...

  7. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    Science.gov (United States)

    2008-07-11

    cars on a parking lot designed for small vehicles. Apart from the binding size λ of the SSBs, two additional physical parameters come into play: the...full denaturation in the right plot of figure 14. Similar finite size effects were investigated for biopolymer translocation in references [74, 75...for example regarding diffusive processes. It appears that subdiffusion of biopolymers occurs in condi- tions of molecular crowding [83–85] this

  8. Synthesis, biological investigation, calf thymus DNA binding and docking studies of the sulfonyl hydrazides and their derivatives

    Science.gov (United States)

    Murtaza, Shahzad; Shamim, Saima; Kousar, Naghmana; Tahir, Muhammad Nawaz; Sirajuddin, Muhammad; Rana, Usman Ali

    2016-03-01

    The present study describes the syntheses and biological investigations of sulfonyl hydrazides and their novel derivatives. The detailed investigations involved the characterization of the newly synthesized compounds using FTIR, NMR, mass spectrometry and by single crystal X-Ray diffraction (XRD) analysis techniques. The binding tendencies of these compounds with CT-DNA (calf thymus DNA) have been explored by electronic absorption (UV) spectroscopy and viscosity measurement. The binding constant (K) and Gibb's free energy (ΔG) values were also calculated accordingly. In addition, we also investigated the biological activities such as antioxidant, antibacterial, enzyme inhibition and DNA interactions. The antioxidant activity was assayed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, while antibacterial activity was investigated against four bacterial strains (viz. Escherichia coli, Crynibacteria bovius, Staphylococcus auras and Bacillus antherasis) by employing the common disc diffusion method. Enzyme inhibition activity of the synthesized compounds was examined against butyrylcholinestrase. The results of enzyme inhibition activity and the DNA binding interaction studies were also collected through molecular docking program using computational analysis. Our study reveals that the newly synthesized compounds possess moderate to good biological activities.

  9. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.

    Science.gov (United States)

    Shin, Yun Kyung; Kwak, Hyunwook; Zou, Chenyu; Vasenkov, Alex V; van Duin, Adri C T

    2012-12-13

    We have developed a ReaxFF force field for Fe/Al/Ni binary alloys based on quantum mechanical (QM) calculations. In addition to the various bulk phases of the binary alloys, the (100), (110) and (111) surface energies and adatom binding energies were included in the training set for the force field parametrization of the Fe/Al/Ni binary alloys. To validate these optimized force fields, we studied (i) elastic constants of the binary alloys at finite temperatures, (ii) diffusivity of alloy components in Al/Ni alloy, and (iii) segregation on the binary alloy surfaces. First, we calculated linear elastic constants of FeAl, FeNi(3), and Ni(3)Al in the temperature range 300 to 1100 K. The temperature dependences of the elastic constants of these three alloys, showing a decrease in C(11), C(12), and C(44) as temperature increases, were in good agreement with the experimental results. We also performed ReaxFF molecular dynamics (MD) simulations for Al or Ni diffusion in the system modeled as Al/Ni mixed layers with the linear composition gradients. At 1000 K, Al diffusivity at the pure Al end was 2 orders of magnitude larger than that in the Al trace layers, probably explaining the nature of different diffusion behavior between molten metals and alloys. However, the diffusivity of Ni at the pure Ni end was only slightly larger than that in the Ni trace layers at the system temperature much lower than the melting temperature of Ni. Third, we investigated the surface segregation in L1(2)-Fe(3)Al, Fe(3)Ni, and Ni(3)Al clusters at high temperature (2500 K). From the analysis of composition distribution of the alloy components from the bulk to the surface layer, it was found that the degree of segregation depended on the chemical composition of the alloy. Al surface segregation occurred most strongly in Fe(3)Al, whereas it occurred most weakly in Ni(3)Al. These results may support the segregation mechanism that surface segregation results from the interplay between the

  10. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  11. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study.

    Science.gov (United States)

    Brovarets', Ol'ha O; Yurenko, Yevgen P; Dubey, Igor Ya; Hovorun, Dmytro M

    2012-01-01

    Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization. This result allows suggesting that hypothetically generated by DNA-binding proteins of replisome rare tautomers will have no impact on the total spontaneous mutation due to the low reverse barrier allowing a quick return to the canonical form.

  12. A screening study of xylitol binding in vitro to activated charcoal.

    Science.gov (United States)

    Cope, R B

    2004-12-01

    Ingestion of foods containing the sweetener xylitol by dogs results in a significant, and often sustained, insulin-mediated hypoglycemic crisis. The efficacy of activated charcoal for gastrointestinal decontamination following xylitol ingestion is unknown. This screening study examined the effect of pH and incubation time on the in vitro binding of xylitol to activated charcoal. The mean percentage activated charcoal binding ranged between 8 and 23%. Mean percentage binding of xylitol at pH 3 was significantly higher (p activated charcoal slurry. These results suggest binding of xylitol to activated charcoal is relatively low; however, activated charcoal administration may still be beneficial in some canine acute oral xylitol exposures.

  13. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes.

    Science.gov (United States)

    Durrant, Marcus C

    2014-07-01

    The search for novel anti-malarial drugs that can disrupt biomineralization of ferriprotoporphyrin IX to haemozoin requires an understanding of the fundamental chemistry of the porphyrin's iron(iii) centre at the water-lipid interface. Towards this end, the binding affinities for a diverse set of 31 small ligands with iron(iii) porphine have been calculated using density functional theory, in the gas phase and also with implicit solvent corrections for both water and n-octanol. In addition, the binding of hydroxide, chloride, acetate, methylamine and water to ferriprotoporphyrin IX has been studied, and very similar trends are observed for the smaller and larger models. Anionic ligands generally give stronger binding than neutral ones; the strongest binding is observed for RO(-) and OH(-) ligands, whilst acetate binds relatively weakly among the anions studied. Electron-rich nitrogen donors tend to bind more strongly than electron-deficient ones, and the weakest binding is found for neutral O and S donors such as oxazole and thiophene. In all cases, ligand binding is stronger in n-octanol than in water, and the differences in binding energies for the two solvents are greater for ionic ligands than for neutrals. Finally, dimerization of ferriprotoporphyrin IX by means of iron(iii)-carboxylate bond formation has been modelled. The results are discussed in terms of haemozoin crystal growth and its disruption by known anti-malarial drugs.

  14. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    Science.gov (United States)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  15. New high-pressure phase of MgH2: An ab initio constant-pressure study

    Science.gov (United States)

    Durandurdu, Murat

    2014-02-01

    The stability of magnesium hydride (MgH2) at high pressure is studied using a constant-pressure ab initio technique. Two phase transformations are successfully observed through the simulations. The rutile structure undergoes a phase transformation into a CaCl2-type phase. Further increase in pressure results into a first-order phase transition into an orthorhombic state within Pbcm symmetry. This phase can be considered as a distorted CaF2-type crystal and does not correspond to the previously proposed MgH2 phases. The transformation mechanism of the CaCl2-Pbcm phase change at the atomistic level is successfully characterized and it is found that the CaCl2-to-Pbcm phase change proceeds via an ideal CaF2-type intermediate phase. These phase transformations are also analyzed using total energy-volume calculations.

  16. Comparison of [11C]cocaine binding at tracer and pharmacological doses of baboon brain: A PET study

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Logan, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-05-01

    In vitro studies have shown that cocaine (C) binds to both high and low affinity sites on the dopamine transporter (DAT). We have previously characterized the binding of tracer doses of [{sup 11}C]cocaine (C*)to a high affinity site on the DAT. To assess if in vivo C also binds to low affinity sites we used PET to compare binding of tracer doses (17.8{plus_minus}12.2 {mu}g C) of C* to pharmacological doses (8 mg of C coadministered with C*). Sixteen paired studies were done to assess test/retest variability, specific versus non specific binding and to characterize binding profile. Dynamic scans were started immediately after injection of C* (5-8 mCi) for 50 min on the CTI-931 (6 x 6 x 6.5 mm FWHM). Time activity curves for tissue concentration and for unchanged tracer in plasma were used to calculate the transport constant between plasma and tissue (K1) and to obtain the distribution volume (DV). The ratio of the DV in striatum (ST) to that in cerebellum (CB) (which corresponds to Bmax/Kd-1) was used as model parameter. Peak brain uptake of C* was significantly higher for tracer than for pharmacological doses (0.041 versus 0.033 % dose/cc), as were the values for K1 (1.07{plus_minus}0.21 versus 0.68{plus_minus}0.26 (t=3.0 p<0.01)). Repeated measures were reproducible for tracer ({plus_minus}2%) and pharmacological doses of C* ({plus_minus}4%). Tracer dose C* showed highest binding and slowest clearance in ST which was reduced by C (0.5-2.0 mg/kg iv, -25 to -30%) and by drugs that inhibit DAT (2mg/kg nomifensine - 21%, 0.5 mg/kg methylphenidate -12%) and was increased by serotonin transporter inhibitors (5HT-Ti) (2 mg/kg citalopram +11%, 0.5 mg/kg fluoxetine +6%) and not changed by NE transporter inhibitors (0.5 mg/kg desipramine or 2 mg/kg tomoxetine). The increase with (5HT-Ti) may reflect neurotransmitter interactions or changes in bioavailability. At pharmacological doses C* showed homogeneous distribution and was not changed by C nor by any of the above drugs.

  17. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1 × 104 M-1, indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97 × 105 M-1, indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔHo, ΔSo and ΔGo) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔHo and ΔSo values indicate that the

  18. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1×10(4)M(-1), indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97×10(5)M(-1), indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔH(o), ΔS(o) and ΔG(o)) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔH(o) and ΔS(o) values indicate that

  19. Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.

    Science.gov (United States)

    Enlow, Mark A

    2012-03-01

    Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.

  20. A comparison of two methods for calculating CR (time constant) during studies of arterial blood flow in rats.

    Science.gov (United States)

    Sasaoka, K; Ogawa, K

    1990-11-01

    Some of our earlier reports have dealt with experiments on the central caudal arteries of a series of anesthetized rats. The results of these experiments were expressed by a relationship derived from the Windkessel theory where f(t) = alpha dz(t)/dt + beta z(t). When this theory is used, the measured blood flow forms f(t) and calculated wave forms alpha dz(t)/dt + beta z(t) agree closely. In these studies, we discovered that, when blood flow adz(t)/dt + beta z(t) agree closely. In these studies, we discovered that, when blood flow decreases, CR (time constant tau, the product of the blood vessel compliance C and the peripheral resistance R) values increase and vary widely. In the present study, 1) we investigated changes in CR when blood flow increases, and, 2) the method of least squares was used in calculating the formula given above. We achieved a better conformity between measured blood flow and calculated blood flow and perceived a clearer relationship between mean blood flow and CR than when they were calculated by the old method.

  1. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  2. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    Science.gov (United States)

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  3. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  4. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  5. Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

    Indian Academy of Sciences (India)

    Rambir Bhadouriya; Amit Agrawal; S V Prabhu

    2015-04-01

    The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range considered was 100-3000. Twist ratio used are 2.5, 5, 10 and 20. Fluids considered are in Prandtl number range of 0.7-20. Product of friction factor and Reynolds number is found to be a function of Reynolds number and maximum values are observed for a twist ratio of 2.5 and Reynolds number of 3000. Maximum Nusselt number is observed for the same values along with Prandtl number of 20. Correlations for friction factor and Nusselt number are developed involving swirl parameter. Local distribution of friction factor ratio and Nusselt number across a cross-section is presented. Based on constant pumping power criteria, enhancement factor is defined to compare twisted ducts with straight ducts. Selection of twisted square duct is presented in terms of enhancement factor. It is found that twisted duct performs well in the laminar region for range of parameters studied. Heat transfer enhancement for Reynolds number of 3000 and Prandtl number of 0.7 for twist ratio of 2.5, 5, 10, and 20 is 20%, 17.8%, 16.1% and 13.7%, respectively. The results are significant because it will contribute to development of energy efficient compact size heat exchangers.

  6. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, M.; Morteza, Izadifard [Faculty of Physics, Shahrood University of technology, Shahrood (Iran, Islamic Republic of); Arabshahi, H., E-mail: arabshahi@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Physics Department, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Reza, Sarkardehi Mohammad [Physics Department, Al-Zahra University, Vanak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al{sub x}Ga{sub (1-x)}As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: Black-Right-Pointing-Pointer OptiOptical Non-Linear. Black-Right-Pointing-Pointer Total Effective Length. Black-Right-Pointing-Pointer Multiple Quantum Wells System - genetic algorithm Black-Right-Pointing-Pointer Schroedinger equation solution. Black-Right-Pointing-Pointer Nanostructure.

  7. Calorimetric and thermal analysis studies on the binding of phenothiazinium dye thionine with DNA polynucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Puja; Hossain, Maidul [Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, CSIR, Kolkata 700 032 (India); Suresh Kumar, Gopinatha, E-mail: gskumar@iicb.res.in [Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, CSIR, Kolkata 700 032 (India)

    2011-07-15

    Research highlights: > Thionine binds to DNA exhibiting alternating guanine-cytosine sequence selectivity. > Exothermic bindings were favoured by negative enthalpy and positive entropy changes. > The binding was characterized by strong thermal stabilization of the polynucleotides. > Complete energetics revealed from the salt and temperature dependent data. - Abstract: Binding of the phenothaizinium dye thionine with four sequence specific deoxyribopolynucleotides, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) has been investigated by means of thermal helix melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. The binding affinity values evaluated from isothermal titration calorimetry suggests that thionine exhibits the highest binding affinity to poly(dG-dC).poly(dG-dC). The binding to poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and poly(dG).poly(dC) is exothermic and favoured by negative enthalpy changes while binding to poly(dA).poly(dT) is endothermic and anomalous. The values of heat capacity changes of the interaction are negative and in the range (-0.4 to -0.5) kJ . K{sup -1} . mol{sup -1}. The binding is characterized by strong stabilization of the polynucleotides against thermal strand separation. The binding affinity values derived from thermal melting data are in excellent agreement with those obtained from isothermal titration calorimetry data. Insights into the energetic aspects and guanine-cytosine selectivity of the DNA interaction of thionine have been obtained from these studies.

  8. Study on the binding mode of Mg(Sal2trien) with DNA

    Institute of Scientific and Technical Information of China (English)

    XI Xiaoli; YANG Manman; ZHOU Chengyong; ZHAO Jing; YANG Pin

    2006-01-01

    In this study the complex Mg(Sal2trien) was synthesized for the first time, the binding mode of which with CT DNA was studied by the methods of UV spectra, fluorescence spectra, viscosity and CV (cyclic voltammetry). It was found that after the complex acted with CT DNA, the Abs of UV spectra rose obviously; the fluorescence intensity of EB-DNA was almost not changed; viscosity decreased. Determination of cyclic voltammetry showed that DNA made the MgL's formal potential negatively shift. Scatchard plot showed that the addition of the binding mode of the complex to EB was uncompetitive inhibition compared with EB to DNA. So the binding mode of the complex with CT DNA was stable-electricity binding. Then the interaction of the complex with pBR322 was studied by the method of gel electrophoresis. The result showed that the complex could cleave pBR322 DNA effectively.

  9. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  10. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study

    Science.gov (United States)

    Gunathunge, B. G. C. M.; Wimalasiri, P. N.; Karunaratne, D. N.

    2017-01-01

    The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules.

  11. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2016-07-01

    Full Text Available This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2% and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8% are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data.

  12. Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids under Constant Wall Temperature Condition

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2015-01-01

    Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.

  13. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  14. DNA-binding Studies of Daunorubicin in the Presence of Methylene Blue by Spectroscopy and Voltammetry Techniques

    Institute of Scientific and Technical Information of China (English)

    HAJIAN Reza; SHAMS Nafiseh; PARVIN Afsaneh

    2009-01-01

    The interaction of daunorubicin with calf thymus DNA has been investigated with the use of methylene blue dye as a spectral probe by the application of UV-Vis spectrophotometry, spectrofluorometry and voltammetry. The voltammetric behavior of daunorubicin has been investigated at a glassy carbon electrode using cyclic and differen-tial pulse voitammetry. Both UV-vis spectrophotometry and cyclic voltammetry studies confirmed the intercalation reaction. The results showed that both daunorubicin and methylene blue molecules could intercalate into the double helix of DNA. The apparent binding constant of daunorubicin with DNA has been found to be 7.8 × 104 L˙mol-1.The fluorescence signal of daunorubicin and methylene blue was quenched with DNA addition. The Stern-Volmer equation was plotted based on the quenching fluorescence signal of daunorubicin.

  15. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    Science.gov (United States)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  16. Magnetic resonance studies of atomic hydrogen at zero field and low temperature. Recombination and binding on liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Morrow, M.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-07-01

    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T<1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T=0.06 K. The atom density nsub(H) (10/sup 9/..H/sub 2/+wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid /sup 4/He and /sup 3/He, and also the cross section for recombination on the surface.

  17. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  18. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-11-15

    Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process.

  19. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla, Diana, E-mail: Diana_Chinchilla@yahoo.com; Kilheeney, Heather, E-mail: raindropszoo@yahoo.com; Vitello, Lidia B., E-mail: lvitello@niu.edu; Erman, James E., E-mail: jerman@niu.edu

    2014-01-03

    Highlights: •Cytochrome c peroxidase (CcP) binds acrylonitrile in a pH-independent fashion. •The spectrum of the CcP/acrylonitrile complex is that of a 6c–ls ferric heme. •The acrylonitrile/CcP complex has a K{sub D} value of 1.1 ± 0.2 M. •CcP compound I oxidizes acrylonitrile with a maximum turnover rate of 0.61 min{sup −1}. -- Abstract: Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M{sup −1} s{sup −1} and 0.34 ± 0.15 s{sup −1}, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min{sup −1} at pH 6.0.

  20. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics.

    Science.gov (United States)

    Carvalheda, Catarina A; Campos, Sara R R; Baptista, António M

    2015-10-26

    Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.

  1. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    Science.gov (United States)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  2. Study on the characteristics of SOFC operating in constant fuel flow and constant fuel utilization%定燃料流量和定燃料利用率时SOFC发电系统特性研究

    Institute of Scientific and Technical Information of China (English)

    周念成; 李春艳; 王强钢; 邓浩

    2011-01-01

    The Solid Oxide Fuel Cell generation system model is established ,which operated in constant fuel flow and constant fuel utilization. The steady-state (V-I and P-I) characteristics of the SOFC stack model has been studied, and the effect of fuel flow on the characteristics of SOFC steady-state in constant fuel flow mode has been obtained. Then SOFC stack operated in two different typical modes are applied in the simulation of SOFC-based distributed generation system aiming at changing load and fault condition. By comparing the simulation results, the applicable application sphere of two operation mode are given.%在定燃料输入流量和定燃料利用率两种典型控制方式下,建立了固体氧化物燃料电池(SOFC)发电系统模型.研究了两种控制方式下的固体氧化物燃料电池堆的稳态特性,采用定燃料流量控制方式时考虑了燃料流量对SOFC稳态特性的影响.针对出现负荷改变和故障的情况,分别在两种典型控制模式下对SOFC发电系统进行了仿真,通过对仿真结果的比较,给出了两种控制方式的适用范围.

  3. The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins

    Institute of Scientific and Technical Information of China (English)

    Alice Y. Cheung; Qiao-hong Duan; Silvia Santos Costa; Barend H.J.de Graaf; Veronica S.Di Stilio; Jose Feijo; Hen-Ming Wu

    2008-01-01

    Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization.Growth occurs exclusively at the tube apex,rendering pollen tube elongation a most dramatic polar cell growth process.A hall-mark pollen tube feature is its cytoskeleton,which comprises elaborately organized and dynamic actin microfilaments and microtubules.Pollen tube growth is dependent on the actin cytoskeleton;its organization and regulation have been exalined extensively by various approaches.including fluorescent protein labeled actin-binding proteins in live cell studies.Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP,we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long,streaming actin cables along the pollen tube shank,and a subapical structure comprising shorter actin cables.The subapical collection of actin microfilaments undergoes dynamic changes,giving rise to the appearance of structures that range from basket-or funnel-shaped,mesh-like to a subtle ring.NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases,AtROP-GEF1,to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton.Contrary to the actin cytoskeleton,microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes.Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1,GFP-AtEB1,we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics.These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.

  4. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Munteanu

    2016-12-01

    Full Text Available In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III, Eu(III, Gd(III, Tb(III. The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H9O33(OH2(H2Ox]·nH2O, where Ln is the lanthanide cation and x = 0 for Sm(III, x = 1 for Eu(III, Gd(III, Tb(III and n = 0 for Sm(III, Gd(III, Tb(III, n = 1 for Eu(III, respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb ~ 104. Human serum albumin (HSA and transferrin (Tf binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra. The apparent association constants (Ka and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.

  5. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains

    OpenAIRE

    Nigmatullin, R.; Lovitt, R.; Wright, C; Linder, M.; Nakari-Setälä, T; Gama, F. M.

    2004-01-01

    Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reve...

  6. Didanosine Prodrugs : Synthesis, protein binding, bioanalytical method development and pharmacokinetic studies

    OpenAIRE

    Høyem, Sverre

    2008-01-01

    A series of prodrugs of 2´, 3´-dideoxyinosine (didanosine, ddI) were synthesized in an effort to alter different pharmacokinetic properties. The 5`OH function of ddI was esterified with three different carboxylic diacids. The diacids used was adipic acid, azelaic acid, dodecanedioic acid. The synthesis was optimized in order to develop a high yielding and regioselective synthesis. Protein binding studies, using ultrafiltration, showed an increased protein binding compared to ddI itself....

  7. Molecular dynamics study of DNA binding by INT-DBD under a polarized force field.

    Science.gov (United States)

    Yao, Xue X; Ji, Chang G; Xie, Dai Q; Zhang, John Z H

    2013-05-15

    The DNA binding domain of transposon Tn916 integrase (INT-DBD) binds to DNA target site by positioning the face of a three-stranded antiparallel β-sheet within the major groove. As the negatively charged DNA directly interacts with the positively charged residues (such as Arg and Lys) of INT-DBD, the electrostatic interaction is expected to play an important role in the dynamical stability of the protein-DNA binding complex. In the current work, the combined use of quantum-based polarized protein-specific charge (PPC) for protein and polarized nucleic acid-specific charge (PNC) for DNA were employed in molecular dynamics simulation to study the interaction dynamics between INT-DBD and DNA. Our study shows that the protein-DNA structure is stabilized by polarization and the calculated protein-DNA binding free energy is in good agreement with the experimental data. Furthermore, our study revealed a positive correlation between the measured binding energy difference in alanine mutation and the occupancy of the corresponding residue's hydrogen bond. This correlation relation directly relates the contribution of a specific residue to protein-DNA binding energy to the strength of the hydrogen bond formed between the specific residue and DNA.

  8. A comparative study of capillary zone electrophoresis and pH-potentiometry for determination of dissociation constants.

    Science.gov (United States)

    Andrasi, Melinda; Buglyo, Peter; Zekany, Laszlo; Gaspar, Attila

    2007-09-03

    Acidity constants of six cephalosporin antibiotics, cefalexin, cefaclor, cefadroxil, cefotaxim, cefoperazon and cefoxitin are determined using capillary zone electrophoresis (CZE) and pH-potentiometric titrations. Since CZE is a separation method, it is not necessary for the samples to be of high purity and known concentration because only mobilities are measured. The effect on determination of dissociation constants of different matrices (serum, 0.9% NaCl, fermentation matrix) was examined. The advantages of CZE can be utilized in those fields where potentiometry has limitations (sample quantity, solubility, purity, simultaneous determinations), although pK(a) values that are close to each other can be determined by potentiometry with more accuracy.

  9. Glycaemic responses to different types of bread in insulin-dependent diabetic subjects (IDDM): studies at constant insulinaemia.

    Science.gov (United States)

    Rasmussen, O; Winther, E; Hermansen, K

    1991-02-01

    To study the glycaemic effect of various Danish bread types in insulin-dependent diabetic subjects (IDDM) we looked at the incremental blood glucose areas after isocaloric meals of grained wholemeal rye bread, wholemeal bread (graham bread) and white bread in seven C-peptide negative diabetic subjects. Furthermore, we evaluated the glycaemic potency of dried fruits by exchanging 40 per cent of the starch of grained wholemeal rye bread as dried figs. Prior to the meal intake the patients had attained normoglycaemia and isoinsulinaemia by means of the artificial pancreas. The four test meals containing 50 g of available carbohydrate were taken in random order. The postprandial blood glucose response areas after whole-meal bread (1037 +/- 113 mM X 180 min) and white bread (1021 +/- 100 mM X 180 min) were significantly higher than that to grained wholemeal rye bread (786 +/- 66 mM X 180 min, P less than 0.05). Exchange of 40 per cent of the complex carbohydrate as grained wholemeal rye bread with simple sugars, such as figs, had no influence on the blood glucose response (786 +/- 66 mM X 180 min vs. 766 +/- 56 mM X 180 min). Constant and identical serum-free insulin levels at 30 mU/l and similar amounts of glucose lost in the urine were found after the four test meals. In conclusion, the difference in extraction rate of wheat in the form of white flour (0, 7) and wholemeal flour (1, 0) was not reflected in the glycaemic responses in IDDM subjects. Grained wholemeal rye bread is a fibre-rich, cheap nutrient which elicits a significantly lower glycaemic response compared to wholemeal and white bread and can be recommended to diabetic subjects.

  10. Mutual positional preference of IPMDH proteins for binding studied by coarse-grained molecular dynamics simulation

    Science.gov (United States)

    Ishioka, T.; Yamada, H.; Miyakawa, T.; Morikawa, R.; Akanuma, S.; Yamagishi, A.; Takasu, M.

    2016-12-01

    Proteins, which incorporate charged and hydrophobic amino acid residues, are useful as a material of nanotechnology. Among these proteins, IPMDH (3-isopropylmalate dehydrogenase), which has thermal stability, has potential as a material of nanofiber. In this study, we performed coarse-grained molecular dynamics simulation of IPMDH using MARTINI force fields, and we investigated the orientation for the binding of IPMDH. In simulation, we analyzed wild type of IPMDH and the mutated IPMDH proteins, where 13, 20, 27, 332, 335 and 338th amino acid residues are replaced by lysine residues which have positive charge and by glutamic acid residues which have negative charge. Since the binding of mutated IPMDH is advantageous compared with the binding of wild type for one orientation, we suggest that the Coulomb interaction for the binding of IPMDH is important.

  11. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yue, E-mail: tengyue@jiangnan.edu.cn; Wang, Xiang; Zou, Luyi; Huang, Ming; Du, Xianzheng

    2015-05-15

    2-Mercaptothiazoline (MTZ) is widely utilized as a brightening and stabilization agent, corrosion inhibitor and antifungal reagent. The residue of MTZ in the environment is potentially hazardous to human health. In this study, the binding mode of MTZ with bovine serum albumin (BSA) was investigated using spectroscopic and molecular docking methods under physiological conditions. MTZ could spontaneously bind with BSA through hydrogen bond and van der Waals interactions with one binding site. The site marker displacement experiments and the molecular docking revealed that MTZ bound into site II (subdomain IIIA) of BSA, which further resulted in some backbone structures and microenvironmental changes of BSA. This work is helpful for understanding the transportation, distribution and toxicity effects of MTZ in blood. - Highlights: • The mechanism was explored by multiple spectroscopic and molecular docking methods. • MTZ can spontaneously bind with BSA at subdomain IIIA (site II). • MTZ can lead to some conformational changes of BSA.

  12. Mivazerol, a novel compound with high specificity for alpha 2 adrenergic receptors: binding studies on different human and rat membrane preparations.

    Science.gov (United States)

    Noyer, M; de Laveleye, F; Vauquelin, G; Gobert, J; Wülfert, E

    1994-03-01

    Mivazerol, 3-[1(H-imidazol-4-yl)methyl]-2-hydroxybenzamide hydrochloride, a new potential anti-ischemic drug designed by UCB S.A. Pharma Sector, has been studied in binding experiments on adrenergic, dopaminergic, serotoninergic, muscarinic and idazoxan binding sites. Our results indicate that this compound displays high affinity and marked specificity for alpha 2 adrenoceptors. Mivazerol displaced the binding of the alpha 2 adrenoceptor antagonist [3H]RX 821002 to the alpha 2A adrenoceptors in human frontal cortex membranes with an apparent Ki value of 37 nM. The competition curve was shallow (nH = 0.55), suggesting that this compound acts as an alpha 2 adrenergic agonist. Mivazerol was also a potent competitor for [3H]RX 821002 binding to human platelet membranes (containing alpha 2A adrenoceptors) and rat kidney membranes (75% of the alpha 2 adrenoceptors of the alpha 2B subtype), indicating that this compound is not alpha 2 adrenoceptor subtype selective. Equilibrium dissociation constants for alpha 1 adrenoceptors (displacement of [3H]prazosin) and 5-HT1A receptors (displacement of [3H]rauwolscine) were respectively about 120 times (Ki = 4.4 microM) and 14 times (Ki = 530 nM) higher than that for the alpha 2 adrenoceptors. Equilibrium dissociation constants were approximately 1000 times higher for all other receptors tested in this study; namely beta 1 and beta 2 adrenoceptors, D1- and D2-dopamine receptors, M1-, M2- and M3-muscarinic receptors, 5-HT2 receptors and non-adrenergic idazoxan binding sites.

  13. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    Science.gov (United States)

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (Psex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (Pchromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean percentage of HA-bound spermatozoa in the normozoospermic group was significantly higher than the oligozoospermic, the asthenozoospermic and the oligoasthenozoospermic groups. Using FISH, disomy of sex

  14. Preparation of isolated bovine adipocytes: validation of use for studies characterizing insulin sensitivity and binding.

    Science.gov (United States)

    Vasilatos, R; Etherton, T D; Wangsness, P J

    1983-05-01

    The present study was undertaken to develop techniques to isolate bovine adipocytes, to compare their rates of glucose metabolism and insulin sensitivity with adipocytes in adipose tissue, and to determine if isolated bovine adipocytes specifically bind insulin. Cell size and diameter distributions were the same for adipocytes fixed with OsO4 after isolation with collagenase and adipocytes liberated from OsO4-fixed adipose tissue slices. On a per cell basis, lipogenic rates were greater for isolated adipocytes compared with intact adipose tissue. Similar differences were found for glucose oxidation. In short term incubations, glucose oxidation and lipid synthesis were not stimulated by insulin (0-100 ng/ml) in either isolated adipocytes or tissue. Specific binding of [125I]iodoinsulin at 30 C was low (0.8%) in the first group of six beef cattle sampled, but increased with increasing cell concentration. Insulin degradation after 90 min was less than 5%. The specificity of [125I]iodoinsulin binding was studied in a second group of six animals. There was no specific binding of insulin in this group. In summary, bovine adipocytes can be isolated which are metabolically active and provide a valid system for studying hormone binding and action. In the present study, glucose metabolism in bovine adipocytes was not stimulated by insulin in vitro. This insensitivity to insulin was associated with a negligible capacity for insulin binding. These findings suggest that the lack of insulin sensitivity in bovine adipose tissue may be due to an inability to specifically bind insulin. This may be related to the unique metabolism of ruminant adipose tissue, which is less dependent upon glucose for fatty acid synthesis than is adipose tissue from nonruminant species.

  15. Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin.

    Science.gov (United States)

    Wang, C L; Leavis, P C; Gergely, J

    1984-12-18

    The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.

  16. Chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D/sub 3/: a study of analog binding

    Energy Technology Data Exchange (ETDEWEB)

    Kream, B.E.; Jose, M.J.L.; DeLuca, H.F.

    1977-01-01

    The structural features of 1,25-dihydroxyvitamin D/sub 3/ that permit its high affinity binding to a 3.7 S protein from chick intestinal cytosol were determined in a series of binding and competition experiments analyzed by sucrose density gradient centrifugation. Optimal binding to the 3.7 S protein was achieved when both 1..cap alpha..- and 25-hydroxyls were present in the vitamin D/sub 3/ molecule. Modification of the side chain by the introduction of a methyl on C-24 and a double bond on C-22,23 (1,25-dihydroxyvitamin D/sub 2/) did not alter the binding of 1,25-dihydroxyvitamin D/sub 3/, but significantly diminished the binding of 25-hydroxyvitamin D/sub 3/. However, introduction of a hydroxyl on C-24 decreased the ability of either 1,25-dihydroxyvitamin D/sub 3/ or 25-hydroxyvitamin D/sub 3/ to compete, especially when the 24-hydroxyl was in the S configuration. These results reveal that the 3.7 S protein requires specific ligand structural features for binding and suggest that metabolite discrimination by the chick intestinal receptor system is likely located in the 3.7 S cytosol protein.

  17. Combinatorial Synthesis, Screening, and Binding Studies of Highly Functionalized Polyamino-amido Oligomers for Binding to Folded RNA

    Directory of Open Access Journals (Sweden)

    Jonathan K. Pokorski

    2012-01-01

    Full Text Available Folded RNA molecules have recently emerged as critical regulatory elements in biological pathways, serving not just as carriers of genetic information but also as key components in enzymatic assemblies. In particular, the transactivation response element (TAR of the HIV genome regulates transcriptional elongation by interacting specifically with the Tat protein, initiating the recruitment of the elongation complex. Preventing this interaction from occurring in vivo halts HIV replication, thus making RNA-binding molecules an intriguing pharmaceutical target. Using α-amino acids as starting materials, we have designed and synthesized a new class of polyamino-amido oligomers, called PAAs, specifically for binding to folded RNA structures. The PAA monomers were readily incorporated into a 125-member combinatorial library of PAA trimers. In order to rapidly assess RNA binding, a quantum dot-based fluorescent screen was developed to visualize RNA binding on-resin. The binding affinities of hits were quantified using a terbium footprinting assay, allowing us to identify a ligand (SFF with low micromolar affinity (kd=14 μM for TAR RNA. The work presented herein represents the development of a flexible scaffold that can be easily synthesized, screened, and subsequently modified to provide ligands specific for binding to folded RNAs.

  18. Mechanism of Auxin Interaction with Auxin Binding Protein (ABP1): A Molecular Dynamics Simulation Study

    Science.gov (United States)

    Bertoša, Branimir; Kojić-Prodić, Biserka; Wade, Rebecca C.; Tomić, Sanja

    2008-01-01

    Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site. PMID:17766341

  19. Photochemical and DFT studies on DNA-binding ability and antibacterial activity of lanthanum(III)-phenanthroline complex

    Science.gov (United States)

    Niroomand, Sona; Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Jahani, Shohreh; Moodi, Asieh

    2017-02-01

    The binding of the lanthanum(III) complex containing 1,10-phenanthroline (phen), [La(phen)3Cl3·OH2], to DNA is investigated by absorption and emission methods. This complex shows absorption decreasing in a charge transfer band, and fluorescence decrement when it binds to DNA. Electronic absorption spectroscopy (UV-Vis), fluorescence spectra, iodide quenching experiments, salt effect and viscosity measurements, ethidium bromide (EB) competition test, circular dichroism (CD) spectra as well as variable temperature experiments indicate that the La(III) complex binds to fish salmon (FS) DNA, presumably via groove binding mode. The binding constants (Kb) of the La(III) complex with DNA is (2.55 ± 0.02) × 106 M-1. Furthermore, the binding site size, n, the Stern-Volmer constant KSV and thermodynamic parameters; enthalpy change (ΔH0) and entropy change (ΔS0) and Gibb's free energy (ΔG0), are calculated according to relevant fluorescent data and the Van't Hoff equation. The La(III) complex has been screened for its antibacterial activities by the disc diffusion method. Also, in order to supplement the experimental findings, DFT computation and NBO analysis are carried out.

  20. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.

    Science.gov (United States)

    Gu, Kaiyun; Gao, Bin; Chang, Yu; Zeng, Yi

    2016-07-01

    BACKGROUND BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatile support mode on the aorta. MATERIAL AND METHODS Computational fluid dynamics (CFD) studies, based on a patient-specific aortic geometric model, were conducted. Wall shear stress (WSS), averaged WSS (avWSS), oscillatory shear index (OSI), and averaged helicity density (Ha) were calculated to compare the differences in hemodynamic effects between pulsatile support mode and constant speed mode. RESULTS The results show that avWSS under pulsatile support mode is significantly higher than that under constant speed mode (0.955Pa vs. 0.675Pa). Similarly, the OSI value under pulsatile mode is higher than that under constant speed mode (0.104 vs. 0.057). In addition, Ha under pulsatile mode for all selected cross-sections is larger than that under constant mode. CONCLUSIONS BJUT-II VAD, under pulsatile control mode, may prevent atherosclerosis lesions and aortic remodeling. The precise effects of pulsatile support mode on atherosclerosis and aortic remodeling need to be further studied in animal experiments.

  1. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  2. Raman, IR and DFT studies of mechanism of sodium binding to urea catalyst

    Science.gov (United States)

    Kundu, Partha P.; Kumari, Gayatri; Chittoory, Arjun K.; Rajaram, Sridhar; Narayana, Chandrabhas

    2015-12-01

    Bis-camphorsulfonyl urea, a newly developed hydrogen bonding catalyst, was evaluated in an enantioselective Friedel-Crafts reaction. We observed that complexation of the sulfonyl urea with a sodium cation enhanced the selectivity of reactions in comparison to reactions performed with urea alone. To understand the role of sodium cation, we performed Infrared and Raman spectroscopic studies. The detailed band assignment of the molecule was made by calculating spectra using Density Functional theory. Our studies suggest that the binding of the cation takes place through the oxygen atoms of carbonyl and sulfonyl groups. Natural Bond Orbital (NBO) analysis shows the expected charge distribution after sodium binding. The changes in the geometrical parameter and charge distribution are in line with the experimentally observed spectral changes. Based on these studies, we conclude that binding of the sodium cation changes the conformation of the sulfonyl urea to bring the chiral camphor groups closer to the incipient chiral center.

  3. Binding of an anticancer Rutaceae plant flavonoid glycoside with calf thymus DNA: Biophysical and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Sandhya; Jaldappagari, Seetharamappa, E-mail: jseetharam@yahoo.com

    2013-10-15

    In the present work, we report the interaction of a bioactive Rutaceae plant flavonoid glycoside, diosmin (DIO) with calf thymus DNA employing ethidium bromide as a fluorescence probe. The mode of binding between DIO and DNA was investigated by UV absorption, fluorescence, 3D-fluorescence, fluorescence polarization, FT-IR, circular dichroism, melting temperature (T{sub m}) measurements and differential pulse voltammogram studies. The results revealed the intercalative mode of binding between DIO and DNA. Further, the values of thermodynamic parameters, ∆H° (−388.32 kJ mol{sup −1}) and ∆S° (−1.22 kJ mol{sup −1} K{sup −1}) indicated that the van der Waals forces and hydrogen bond played a major role in the binding of DIO to DNA. The observed negative ∆G° values revealed the spontaneity of interaction process. The binding of DIO to DNA–EB was found to be stronger in the presence of coexisting substances. -- Highlights: • Mechanism of interaction of diosmin with DNA was studied by spectroscopic methods. • Ethidium bromide was used as a fluorescence probe in the present study. • The van der Waals forces and hydrogen bond played a significant role in the interaction. • Intercalative mode of binding was proposed between DIO and DNA.

  4. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study.

    Science.gov (United States)

    Sarkar, Deboleena; Das, Paramita; Basak, Soumen; Chattopadhyay, Nitin

    2008-07-31

    Absorption, steady-state fluorescence, steady-state fluorescence anisotropy, and intrinsic and induced circular dichroism (CD) have been exploited to explore the binding of calf thymus DNA (ctDNA) with three cationic phenazinium dyes, viz., phenosafranin (PSF), safranin-T (ST), and safranin-O (SO). The absorption and fluorescence spectra of all the three dyes reflect significant modifications upon interaction with the DNA. A comparative study of the dyes with respect to modification of fluorescence and fluorescence anisotropy upon binding, effect of urea, iodide-induced fluorescence quenching, and CD measurements reveal that the dyes bind to the ctDNA principally in an intercalative fashion. The effect of ionic strength indicates that electrostatic attraction between the cationic dyes and ctDNA is also an important component of the dye-DNA interaction. Intrinsic and induced CD studies help to assess the structural effects of dyes binding to DNA and confirm the intercalative mode of binding as suggested by fluorescence and other studies. Finally it is proposed that dyes with bulkier substitutions are intercalated into the DNA to a lesser extent.

  5. Density functional theory study of indirect nuclear spin-spin coupling constants with spin-orbit corrections

    Science.gov (United States)

    Oprea, Corneliu I.; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2005-07-01

    This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X =C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.

  6. Light scattering study of the "pseudo-layer" compression elastic constant in a twist-bend nematic liquid crystal

    CERN Document Server

    Parsouzi, Z; Welch, C; Ahmed, Z; Mehl, G H; Baldwin, A R; Gleeson, J T; Lavrentovich, O D; Allender, D W; Selinger, J V; Jakli, A; Sprunt, S

    2016-01-01

    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $\\sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic l...

  7. Tautomeric ratio and prototropic equilibrium constants of tenoxicam, a 1H and 13C NMR theoretical and experimental study.

    Science.gov (United States)

    Franco-Pérez, Marco; Moya-Hernández, Rosario; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Gómez-Balderas, Rodolfo

    2011-11-24

    The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug. A multivariate fitting of a fraction-mol-weighted contribution model, for the NMR chemical shifts of the species in solution, was used to find the populations of the tautomers of tenoxicam. To consider and evaluate the effect of the solvent polarity on the tautomers' populations, experimental determinations were carried out in DMSO-d(6), in an equimolar DMSO-H(2)O mixture of deuterated solvents and in D(2)O. Additionally, by employing HYPNMR, it has been possible to refine the acid-base macroscopic constants of tenoxicam.

  8. Computational study on the mechanisms and rate constants of the OH-initiated oxidation of ethyl vinyl ether in atmosphere.

    Science.gov (United States)

    Han, Dandan; Cao, Haijie; Li, Jing; Li, Mingyue; He, Maoxia; Hu, Jingtian

    2014-09-01

    The hydroxylation reactions of ethyl vinyl ether (EVE) in the present of O2 and NO are analyzed by using MPWB1K/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of theory. According to the calculated thermodynamic data, the detailed reaction mechanisms of EVE and OH are proposed. All of the ten possible reaction pathways are discussed. The major products of the title reaction are ethyl formate and formaldehyde, which is in accordance with experimental detection. The rate constants of the primary reactions over the temperature of 250-400K and the pressure range of 100-2000Torr are computed by employing MESMER program. At 298K and 760Torr, OH-addition channels are predominate and the total rate constant is ktot=4.53×10(-11)cm(3)molecule(-1)s(-1). The Arrhenius equation is obtained as ktot=6.27×10(-12)exp(611.5/T), according to the rate constants given at different temperatures. Finally, the atmospheric half life of EVE with respect to OH is estimated to be 2.13h.

  9. Personality and intentional binding: an exploratory study using the narcissistic personality inventory.

    Science.gov (United States)

    Hascalovitz, Ann Chen; Obhi, Sukhvinder S

    2015-01-01

    When an individual estimates the temporal interval between a voluntary action and a consequent effect, their estimates are shorter than the real duration. This perceived shortening has been termed "intentional binding", and is often due to a shift in the perception of a voluntary action forward towards the effect and a shift in the perception of the effect back towards the action. Despite much work on binding, there is virtually no consideration of individual/personality differences and how they affect it. Narcissism is a psychological trait associated with an inflated sense of self, and individuals higher in levels of subclinical narcissism tend to see themselves as highly effective agents. Conversely, lower levels of narcissism may be associated with a reduced sense of agency. In this exploratory study, to assess whether individuals with different scores on a narcissism scale are associated with differences in intentional binding, we compared perceived times of actions and effects (tones) between participants with high, middle, and low scores on the narcissistic personality inventory (NPI). We hypothesized that participants with higher scores would show increased binding compared to participants with lower scores. We found that participants in our middle and high groups showed a similar degree of binding, which was significantly greater than the level of binding shown by participants with the lowest scores. To our knowledge, these results are the first to demonstrate that different scores on a personality scale are associated with changes in the phenomenological experience of action, and therefore underscore the importance of considering individual/personality differences in the study of volition. Our results also reinforce the notion that intentional binding is related to agency experience.

  10. Study of V2 vasopressin receptor hormone binding site using in silico methods.

    Science.gov (United States)

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding.

  11. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  12. Nuclear binding energy using semi empirical mass formula

    Science.gov (United States)

    Ankita, Suthar, B.

    2016-05-01

    In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.

  13. Thermodynamic aspects of calcium binding by poly({alpha}-L-guluronate) chains. A molecular simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Plazinski, Wojciech, E-mail: wojtek@vega.umcs.lublin.pl [Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow (Poland); Drach, Mateusz [Department of Theoretical Chemistry, Faculty of Chemistry, UMCS, pl. M. Curie-Sklodowskiej 3, 20-031 Lublin (Poland)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer The molecular dynamics studies on binding of calcium ions by poly({alpha}-L-guluronate) chains were carried out. Black-Right-Pointing-Pointer The Gibbs free energy landscapes corresponding to the process of calcium binding were calculated. Black-Right-Pointing-Pointer The Effective coordination number parameter was introduced in order to describe the dynamic changes in the arrangement of water molecules coordinating calcium ions. - Abstract: The theoretical studies on binding of calcium ions by poly({alpha}-L-guluronate) chains were carried out to provide the insight into the molecular basis of this process. The three local minima of the Gibbs free energy (corresponding to the two distinct stable states and to the one short living, meta-stable state) were distinguished. The results emphasize the important role of water molecules. The ECN (effective coordination number) parameter was introduced in order to describe the dynamic changes in the arrangement of solvent molecules coordinating calcium ion.

  14. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  15. Cosmological constant and curved 5D geometry

    CERN Document Server

    Ito, M

    2002-01-01

    We study the value of cosmological constant in de Sitter brane embedded in five dimensions with positive, vanishing and negative bulk cosmological constant. In the case of negative bulk cosmological constant, we show that not zero but tiny four-dimensional cosmological constant can be realized by tiny deviation from bulk curvature of the Randall-Sundrum model.

  16. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    Science.gov (United States)

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  17. Study of the temperature dependence of the elastic constants of natural and deuterated (NH[sub 4])[sub 2]MCl[sub 6] compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.R.K.; Kawald, U.; Johannsmann, H.; Pelzl, J. (Bochum Univ. (Germany). Inst. fuer Experimentalphysik AG 6); Xu, Y.C. (Tongji Univ., Shanghai (China). Pohl Inst.)

    1992-08-17

    Experimental and theoretical investigations of the temperature dependence of the elastic constants in the cubic phases of (NH[sub 4])[sub 2]TeCl[sub 6], (ND[sub 4])[sub 2]TeCl[sub 6], (NH[sub 4])[sub 2]SnCl[sub 6] and (ND[sub 4])[sub 2]SnCl[sub 6] have been made in the range of temperatures from 4.2 to 300 K. The temperature variation in the elastic constants has been measured by Brillouin scattering and an interionic potential model has been used to interpret the experimental results. It has been found that the three-body interaction considered in the potential model plays an important and significant role in explaining the characteristic behaviour of the crystals under study. Good agreement between the experimental and theoretical values of the temperature derivatives of the elastic constants at room temperature has been obtained. (author).

  18. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  19. Spectroscopic studies on the binding of barbital to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ding Fei, E-mail: caudf@163.co [Department of Chemistry, China Agricultural University, Beijing 100193 (China); Pan Hong; Li Zhiyuan; Liu Feng [Department of Chemistry, China Agricultural University, Beijing 100193 (China); Sun Ying, E-mail: sunying@cau.edu.c [Department of Chemistry, China Agricultural University, Beijing 100193 (China)

    2009-06-15

    In this paper, the interaction between barbital and bovine serum albumin (BSA) was investigated by the method of fluorescence spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by barbital was the result of the formation of BSA-barbital complex, and the effective quenching constants (K{sub a}) were 1.468x10{sup 4}, 1.445x10{sup 4} and 1.403x10{sup 4} M{sup -1} at 297, 303 and 310 K, respectively. The thermodynamic parameters enthalpy change (DELTAH) and entropy change (DELTAS) for the reaction were calculated to be -2.679 kJ mol{sup -1} and 70.76 J mol{sup -1} K{sup -1}, respectively, according to the van't Hoff equation. The results indicated that hydrophobic and electrostatic interactions were the dominant intermolecular force in stabilizing the complex. The results of synchronous fluorescence spectra showed that binding of barbital with BSA can induce conformational changes in BSA. In addition, the effects of Cu{sup 2+} and Zn{sup 2+} on the constants of BSA-barbital complex were also discussed.

  20. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA.

    Science.gov (United States)

    Xue, Liang; Ranjan, Nihar; Arya, Dev P

    2011-04-12

    Synthesis of a novel perylene-neomycin conjugate (3) and the properties of its binding to human telomeric G-quadruplex DNA, 5'-d[AG3(T2AG3)3] (4), are reported. Various spectroscopic techniques were employed to characterize the binding of conjugate 3 to 4. A competition dialysis assay revealed that 3 preferentially binds to 4, in the presence of other nucleic acids, including DNA, RNA, DNA-RNA hybrids, and other higher-order structures (single strands, duplexes, triplexes, other G-quadruplexes, and the i-motif). UV thermal denaturation studies showed that thermal stabilization of 4 increases as a function of the increasing concentration of 3. The fluorescence intercalator displacement (FID) assay displayed a significantly tighter binding of 3 with 4 as compared to its parent constituents [220-fold stronger than neomycin (1) and 4.5-fold stronger than perylene diamine (2), respectively]. The binding of 3 with 4 resulted in pronounced changes in the molar ellipticity of the DNA absorption region as confirmed by circular dichroism. The UV-vis absorption studies of the binding of 3 to 4 resulted in a red shift in the spectrum of 3 as well as a marked hypochromic change in the perylene absorption region, suggesting that the ligand-quadruplex interaction involves stacking of the perylene moiety. Docking studies suggest that the perylene moiety serves as a bridge that end stacks on 4, making contacts with two thymine bases in the loop, while the two neomycin moieties branch into the grooves of 4.

  1. Synthesis and receptor binding studies of (+/-)1-iodo-MK-801

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.J.; Ciliax, B.J.; Van Dort, M.E.; Gildersleeve, D.; Pirat, J.L.; Young, A.B.; Wieland, D.M. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1989-06-01

    The glutamate analogue N-methyl-D-aspartate (NMDA) binds to a subset of glutamate receptors that are coupled to a voltage-sensitive cation channel. This NMDA-linked channel is the likely binding locus of the potent anticonvulsant MK-801. To develop single-photon emission computed tomography (SPECT) probes of this brain channel, we synthesized (+/)1-iodo-MK-801 and (+/-)1-({sup 125}I)iodo-MK-801. The effect of (+/-)1-iodo-MK-801 on ligand binding to the NMDA-linked glutamate receptor site was assessed using a rat brain homogenate assay. (+/-)1-Iodo-MK-801 displaced the dissociative anesthetic ligand ({sup 3}H)N-(1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP) binding with an IC50 of 1 microM, which is a 10-fold lower binding affinity than that of (+/-)MK-801. In in vivo autoradiographic studies, (+/-)MK-801 failed to block selective uptake of (+/-)1-iodo-MK-801 in rat brain. These results suggest that (+/-)1-iodo-MK-801 may not be a suitable ligand for mapping NMDA-linked glutamate receptor channels.

  2. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    Science.gov (United States)

    Ammazzalorso, Alessandra; De Filippis, Barbara; Campestre, Cristina; Laghezza, Antonio; Marrone, Alessandro; Amoroso, Rosa; Tortorella, Paolo; Agamennone, Mariangela

    2016-01-01

    Matrix metalloproteinases (MMPs) are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs) have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data. PMID:27782083

  3. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    Directory of Open Access Journals (Sweden)

    Alessandra Ammazzalorso

    2016-10-01

    Full Text Available Matrix metalloproteinases (MMPs are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.

  4. Kinetic studies of proton transfer in the microenvironment of a binding site.

    Science.gov (United States)

    Gutman, M; Huppert, D; Nachliel, E

    1982-01-01

    Excitation of 8-hydroxypyrene 1,3,6-trisulfonate to its first electronic singlet state converts the compound from weak base (pK degrees = 7.7) into a strong acid (pK* = 0.5). The dissociation of the proton in water or dilute salt solution is a very fast reaction, K12 = 1 X 10(10) S-1. In concentrated salt solutions the dissociation is slowed as an exponential function of the chemical activity of the water in the solution. This kinetic parameter has been used to gauge the properties of the microenvironment of the binding sites of bovine serum albumin at which this compound is bound. Time-resolved fluorometry reveals two distinct steps: a rapid dissociation of the proton with tau = 300 +/- 40 ps which lasts approximately 0.5 ns, followed by a slower reaction with tau = 3.3 ns. The first rapid phase represents proton dissociation taking place in the binding site. From the rate constant K = 3.3 X 10(9) s-1 we estimate that the ability of the water molecules in the site to hydrate the ejected proton is equivalent to a salt solution with water activity of 0.85. The slow phase represents the escape of the proton from the binding site. The rate of the escape, 1.4 X 10(8) s-1, is significantly slower than diffusion-controlled dissociation. It is concluded that the shape of the site or its lowered proton conductivity do not allow a rapid escape of the proton to the bulk. Still it should be remembered that the escape of the proton is 10(5)-10(6)-times faster than a typical turnover of an enzyme.U

  5. Protein binding studies with radiolabeled compounds containing radiochemical impurities. Equilibrium dialysis versus dialysis rate determination

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    The influence of radiochemical impurities in dialysis experiments with high-affinity ligands is investigated. Albumin binding of labeled decanoate (97% pure) is studied by two dialysis techniques. It is shown that equilibrium dialysis is very sensitive to the presence of impurities resulting...

  6. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies.

    Science.gov (United States)

    Sarwar, Tarique; Rehman, Sayeed Ur; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Tabish, Mohammad

    2015-02-01

    DNA is the major target for a wide range of therapeutic substances. Thus, there has been considerable interest in the binding studies of small molecules with DNA. Interaction between small molecules and DNA provides a structural guideline in rational drug designing and in the synthesis of new and improved drugs with enhanced selective activity and greater clinical efficacy. Plant derived polyphenolic compounds have a large number of biological and pharmacological properties. Coumarin is a polyphenolic compound which has been extensively studied for its diverse pharmacological properties. However, its mode of interaction with DNA has not been elucidated. In the present study, we have attempted to ascertain the mode of binding of coumarin with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of UV-visible absorbance spectra and fluorescence spectra indicates the formation of complex between coumarin and Ct-DNA. Several other experiments such as effect of ionic strength, iodide induced quenching, competitive binding assay with ethidium bromide, acridine orange and Hoechst 33258 reflected that coumarin possibly binds to the minor groove of the Ct-DNA. These observations were further supported by CD spectral analysis, viscosity measurements, DNA melting studies and in silico molecular docking.

  7. Evidence of DNA-Ligand Binding with Different Modes Studied by Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The binding behavior of several fluorescence dyes to calf thymus DNA has been studied by absorption, fluorescence and atomic force microscopy (AFM), which could provide direct evidence of formation modes and the corresponding nanostructural features of the ligand-DNA complexes.

  8. Self consistent tight binding molecular dynamics study of Ti02 nanoclusters in water.

    Energy Technology Data Exchange (ETDEWEB)

    Erdin, S.; Lin, Y.; Halley, J. W.; Zapol, P.; Redfern, P.; Curtiss, L.; Northern Illinois Univ.; Univ. of Minnesota

    2007-09-01

    Self-consistent tight binding molecular dynamics studies of TiO{sub 2}2 anatase and rutile nanoclusters in dissociable water are reported. It is found that the structure of the particle expands as a result of interaction between the particle's surface and water. Water molecules dissociate at the nanoparticle surface during simulation.

  9. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  10. Personality and Intentional Binding: An exploratory study using scores on the narcissistic personality inventory

    Directory of Open Access Journals (Sweden)

    Ann eHascalovitz

    2015-02-01

    Full Text Available When an individual estimates the temporal interval between a voluntary action and a consequent effect, their estimates are shorter than the real duration. This perceived shortening has been termed ‘intentional binding’, and is often due to a shift in the perception of a voluntary action forward towards the effect and a shift in the perception of the effect back towards the action. Despite much work on binding, there is virtually no consideration of individual/personality differences and how they affect it. Narcissism is a psychological trait associated with an inflated sense of self, and individuals higher in levels of subclinical narcissism tend to see themselves as highly effective agents. Conversely, lower levels of narcissism may be associated with a reduced sense of agency. In this exploratory study, to assess whether individuals with different scores on a narcissism scale are associated with differences in intentional binding, we compared perceived times of actions and effects (tones between participants with high, middle, and low scores on the Narcissistic Personality Inventory (NPI. We hypothesized that participants with higher scores would show increased binding compared to participants with lower scores. We found that participants in our middle and high groups showed a similar degree of binding, which was significantly greater than the level of binding shown by participants with the lowest scores. To our knowledge, these results are the first to demonstrate that different scores on a personality scale are associated with changes in the phenomenological experience of action, and therefore underscore the importance of considering individual/personality differences in the study of volition. Our results also reinforce the notion that intentional binding is related to agency experience.

  11. Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays.

    Science.gov (United States)

    Fuhrmann, U; Slater, E P; Fritzemeier, K H

    1995-01-01

    Gestodene is a novel progestin used in oral contraceptives with an increased separation of progestogenic versus androgenic activity and a distinct antimineralocorticoid activity. This specific pharmacological profile of gestodene is defined by its pattern of binding affinities to a variety of steroid hormone receptors. In the present study the affinity of gestodene to the progesterone receptor (PR), the androgen receptor (AR), the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR) and the estrogen receptor (ER) was re-evaluated by steroid binding assays and compared to those obtained for 3-keto-desogestrel and progesterone. The two synthetic progestins displayed identical high affinity to rabbit PR and similar marked binding to rat AR and GR, while progesterone showed high affinity to PR but only low binding to AR and GR. Furthermore, 3-keto-desogestrel exhibited almost no binding to MR, whereas gestodene, similar to progesterone, showed marked affinity to this receptor. In addition to receptor binding studies, transactivation assays were carried out to investigate the effects of gestodene on AR-, GR- and MR-mediated induction of transcription. In contrast to progesterone, which showed antiandrogenic activity, gestodene and 3-keto-desogestrel both exhibited androgenic activity. Furthermore, all three progestins exhibited weak GR-mediated antagonistic activity. In contrast to progesterone, which showed almost no glucocorticoid activity, gestodene and 3-keto-desogestrel showed weak glucocorticoid action. In addition, gestodene inhibited the aldosterone-induced reporter gene transcription, similar to progesterone, whereas unlike progesterone, gestodene did not induce reporter gene transcription. 3-Keto-desogestrel showed neither antimineralocorticoid nor mineralocorticoid action.

  12. Synthesis, characterization, molecular docking, DNA binding, cytotoxicity and DFT studies of 1-(4-methoxyphenyl)-3-(pyridine-3-ylmethyl)thiourea

    Science.gov (United States)

    Mushtaque, Md; Jahan, Meriyam; Ali, Murtaza; Khan, Md Shahzad; Khan, Mohd Shahid; Sahay, Preeti; Kesarwani, Ashwani

    2016-10-01

    A new compound 1-(4-methoxyphenyl)-3-(pyridine-3-ylmethyl)thiourea was synthesized and structure of compound (3) was elucidated by FT-IR, 1H-NMR, and mass spectrophotometer. The computational quantum chemical studies of compound (3) like, IR, UV, NBO analysis were performed by DFT with B3LYP exchange-correlation functional in combination with 6-311++G(d, p) basis sets. The compound (3) adopted syn-anti-configuration around sulphur atom, possessing stablization relative energy -740715 kcal/mol. The chemical potential of compound (3) is -3.37 eV and chemical hardness is -2.33 eV. However, ionization and electron affinity of compound (3) are -5.70 eV and -1.04 eV. The compound (3) was docked with B-DNA (1BNA) and the binding energy was found to be -7.41 kcal/mol. The nitrogen atom of thiourea of compound (3) binds with O3 and O4 of cytosine of A strand of DNA having bond lengths (1.92 Å) and (1.74 Å) respectively Furthermore, DNA binding constant was performed by UV-visible spectrophotometer. The binding constant was found 3.71 × 106 Lmol-1. In order to assess cytotoxic nature of the lead compound, MTT-assay was performed against MCF-7 cell line and IC50 value of compound (3) was observed at 160.97 μ M. Theoretical studies revealed that they are good agreement with experimental results.

  13. Study of band bending effect in Dye Sensitized Solar Cell through Constant-Current-Discharging Voltage Decay

    CERN Document Server

    Wang, Xiaoqi

    2012-01-01

    A measurement method of constant-current-discharging voltage decay is established to characterize the band bending effect in the heterojunction of conducting glass/TiO2 for typical dye-sensitized solar cells. Furthermore, a dark-state electron transport regarding the TiO2 conduction band bending is proposed based upon the viewpoints of thermionic emission mechanism, which suggests an origin of the band bending effect in a theoretical model. This model quantitatively agrees well with our experimental results and indicates that both the Fermi level decay in TiO2 and the potential difference across the heterojunction will lead to the TiO2 conduction band bending downwards.

  14. Fluorescence Correlation Spectroscopy in Drug Discovery: Study of Alexa532-Endothelin 1 Binding to the Endothelin ETA Receptor to Describe the Pharmacological Profile of Natural Products

    Directory of Open Access Journals (Sweden)

    Catherina Caballero-George

    2012-01-01

    Full Text Available Fluorescence correlation spectroscopy and the newly synthesized Alexa532-ET1 were used to study the dynamics of the endothelin ETA receptor-ligand complex alone and under the influence of a semisynthetic selective antagonist and a fungal extract on living A10 cells. Dose-dependent increase of inositol phosphate production was seen for Alexa532-ET1, and its binding was reduced to 8% by the selective endothelin ETA antagonist BQ-123, confirming the specific binding of Alexa532-ET1 to the endothelin ETA receptor. Two different lateral mobilities of the receptor-ligand complexes within the cell membrane were found allowing the discrimination of different states for this complex. BQ-123 showed a strong binding affinity to the “inactive” receptor state characterized by the slow diffusion time constant. A similar effect was observed for the fungal extract, which completely displaced Alexa532-ET1 from its binding to the “inactive” receptor state. These findings suggest that both BQ-123 and the fungal extract act as inverse agonists.

  15. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Science.gov (United States)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between

  16. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    Science.gov (United States)

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  17. Autolytic Activity and Plasma Binding Study of Aap, a Novel Minor Autolysin of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Ramina Mahboobi

    2016-04-01

    Full Text Available Pneumococcal autolysins are enzymes involved in cell wall turnover and cellular division physiologically. They have been found to be involved in the pneumococcus pathogenesis. The aim of this study was to identify the autolytic activity of Spr1754 as a novel protein of Streptococcus pneumoniae. Moreover, the binding of the recombinant protein to plasma proteins was also determined. The spr1754 gene was amplified by PCR and cloned into the pET21a(+ prokaryotic expression vector. The constructed pET21a(+/spr1754 recombinant plasmid was transformed into E. coli Origami (DE3 and induced using IPTG. The recombinant protein of Spr1754 was purified by Ni-NTA affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using anti-His tag monoclonal antibody. Autolytic activity and the ability of the recombinant protein in binding to plasma proteins were performed using zymogram analysis and western blot, respectively. The spr1754 with expected size was cloned and overexpressed in Escherichia coli Origami (DE3, successfully. After purification of the Spr1754 recombinant protein, the autolytic activity was observed by zymography. Of the four plasma proteins used in this study, binding of lactoferrin to Spr1754 recombinant protein was shown. The Spr1754 recombinant protein has a bifunctional activity, i.e., as being autolysin and lactoferrin binding and designated as Aap (autolytic/ adhesion/ pneumococcus. Nevertheless, characterization of the Aap needs to be followed using gene inactivation and cell wall localization.

  18. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.

    Science.gov (United States)

    Gogoi, Prerana; Chandravanshi, Monika; Mandal, Suraj Kumar; Srivastava, Ambuj; Kanaujia, Shankar Prasad

    2016-07-01

    About one-third of the existing proteins require metal ions as cofactors for their catalytic activities and structural complexities. While many of them bind only to a specific metal, others bind to multiple (different) metal ions. However, the exact mechanism of their metal preference has not been deduced to clarity. In this study, we used molecular dynamics (MD) simulations to investigate whether a cognate metal (bound to the structure) can be replaced with other similar metal ions. We have chosen seven different proteins (phospholipase A2, sucrose phosphatase, pyrazinamidase, cysteine dioxygenase (CDO), plastocyanin, monoclonal anti-CD4 antibody Q425, and synaptotagmin 1 C2B domain) bound to seven different divalent metal ions (Ca(2+), Mg(2+), Zn(2+), Fe(2+), Cu(2+), Ba(2+), and Sr(2+), respectively). In total, 49 MD simulations each of 50 ns were performed and each trajectory was analyzed independently. Results demonstrate that in some cases, cognate metal ions can be exchanged with similar metal ions. On the contrary, some proteins show binding affinity specifically to their cognate metal ions. Surprisingly, two proteins CDO and plastocyanin which are known to bind Fe(2+) and Cu(2+), respectively, do not exhibit binding affinity to any metal ion. Furthermore, the study reveals that in some cases, the active site topology remains rigid even without cognate metals, whereas, some require them for their active site stability. Thus, it will be interesting to experimentally verify the accuracy of these observations obtained computationally. Moreover, the study can help in designing novel active sites for proteins to sequester metal ions particularly of toxic nature.

  19. Synthesis, Characterization, and Saccharide Binding Studies of Bile Acid − Porphyrin Conjugates

    Directory of Open Access Journals (Sweden)

    Vladimír Král

    2007-01-01

    Full Text Available Synthesis and characterization of bile acid-porphyrin conjugates (BAPs are reported. Binding of saccharides with BAPs in aqueous methanol was studied by monitoring changes in the visible absorption spectral of the porphyrin-moieties. Although these studies clearly showed absorbance changes, suggesting quite high if non-selective binding, the mass spectral studies do not unambiguously support these results.

  20. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction

    CERN Document Server

    Babenko, V A

    2016-01-01

    We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.

  1. Quantifying the association constant and stoichiometry of the complexation between colloidal polyacrylate-coated gold nanoparticles and chymotrypsin.

    Science.gov (United States)

    Hou, Jie; Szaflarski, Diane M; Simon, John D

    2013-04-25

    Qualitative and quantitative insights into the capacity and association constant for the binding of chymotrypsin to polyacrylate-coated gold nanoparticles is determined using fluorescence quenching, optical absorption and circular dichroism spectroscopy, isothermal calorimetry, and gel electrophoresis. The collective data reveal a binding capacity and constant for this particular system of ~7 and ~2 × 10(6) M(-1), respectively. These values vary among the individual techniques, and not all techniques are able to provide quantitative information. The present study demonstrates that accurately quantifying the association between nanoparticles and biological materials requires using multiple approaches to ensure consistency among the binding parameters determined.

  2. The prion protein binds thiamine.

    Science.gov (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  3. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes.

    Science.gov (United States)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of K(b), 5.21×10(4)M(-1) that are higher than that obtained for 2 (red-shift, 2 nm; K(b), 1.73×10(4)M(-1)) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the E(pc) and E(0)' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HO()) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  4. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  5. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    Science.gov (United States)

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  6. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.

    Science.gov (United States)

    Furukawa-Hagiya, Tomoka; Furuta, Tadaomi; Chiba, Shuntaro; Sohma, Yoshiro; Sakurai, Minoru

    2013-01-10

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.

  7. Study on the drug resistance and the binding mode of HIV-1 integrase with LCA inhibitor

    Institute of Scientific and Technical Information of China (English)

    HU; JianPing; CHANG; Shan; CHEN; WeiZu; WANG; CunXin

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the lifecycle of this virus and also an important target for the study of anti-HIV drugs. The binding mode of the wild type IN core domain and its G140S mutant with L-Chicoric acid (LCA) inhibitor were investigated by using multiple conformation molecular docking and molecular dynamics (MD) simulation. Based on the binding modes, the drug resistance mechanism was explored for the G140S mutant of IN with LCA. The results indicate that the binding site of the G140S mutant of IN core domain with LCA is different from that of the core domain of the wild type IN, which leads to the partial loss of inhibition potency of LCA. The flexibility of the IN functional loop region and the interactions between Mg2+ ion and the three key residues (i.e., D64, D116, E152) stimulate the biological operation of IN. The drug resistance also lies in several other important effects, such as the repulsion between LCA and E152 in the G140S mutant core domain, the weakening of K159 binding with LCA and Y143 pointing to the pocket of the G140S mutant. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing the drug of anti-HIV based on the structure of IN.

  8. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    Science.gov (United States)

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  9. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains.

    Directory of Open Access Journals (Sweden)

    Peter M Jones

    Full Text Available ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs, which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration 'sandwich' dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD 'Switch' mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.

  10. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

    Science.gov (United States)

    Umer, Asim; Naveed, Shahid; Ramzan, Naveed

    2016-10-01

    Nanofluids, having 1-100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

  11. Generalized Pickands constants

    NARCIS (Netherlands)

    Debicki, K.G.

    2001-01-01

    Pickands constants play an important role in the exact asymptotic of extreme values for Gaussian stochastic processes. By the {it generalized Pickands constant ${cal H_{eta$ we mean the limit begin{eqnarray* {cal H_{eta= lim_{T to inftyfrac{ {cal H_{eta(T){T, end{eqnarray* where ${cal H_{eta(T)= Exp

  12. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    Science.gov (United States)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  13. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  14. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  15. Syntheses, crystal structures and DNA-binding studies of Cu(II) and Zn(II) complexes bearing asymmetrical aroylhydrazone ligand

    Science.gov (United States)

    Li, Yueqin; Yang, Zhiwei; Zhou, Minya; He, Jing; Wang, Xuehong; Wu, Yanlong; Wang, Zhuye

    2017-02-01

    Zn(II) and Cu(II) complexes with benzophenone benzoyl hydrazone (HBBH) and benzophenone salicylylhydrazone (HBSH) have been synthesized and characterized by different physico-chemical and spectroscopic techniques (UV-vis, IR and NMR). The molecular structures of these complexes [Zn(BBH)2, Cu(BBH)2 and Cu(BSH)2Cl2H2O] have also been determined by single X-ray diffraction technique. In Zn(BBH)2 and Cu(BBH)2 complexes, each ligand coordinates to metal through enol tautomeric form by azomethine-N and carbonylate-O resulting a 4-coordinate distorted tetrahedral geometry. While in Cu(BSH)2Cl2H2O, each ligand coordinates to metal through keto tautomeric form resulting distorted octahedral geometry in which two chlorine atoms occupy the axial positions. The DNA interaction propensity of the complexes with Herring sperm DNA, studied at physiological pH by spectrophotometric, spectrofluorometric, viscometric techniques and cyclic voltammetry, revealed intercalation as the possible binding mode. Fascinatingly, Cu(BSH)2Cl2H2O was found to exhibit greater binding strength than the others. A strong hyperchromism effect and a slight red shift were exhibited by all complexes. The intrinsic binding constants are of moderate values and are about 3.28 × 104 M-1, 4.73 × 104 M-1 and 5.80 × 104 M-1, respectively. Cyclic voltammetry studies of the complexes binding with DNA indicate quasireversible oxidation and reduction potentials. The results suggest that the binding affinity of complexes lies in the order Cu(BSH)2Cl2H2O > Cu(BBH)2 > Zn(BBH)2.

  16. Temporal variation of coupling constants and nucleosynthesis

    CERN Document Server

    Oberhummer, Heinz; Fairbairn, M; Schlattl, H; Sharma, M M

    2003-01-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  17. Temporal variation of coupling constants and nucleosynthesis

    Science.gov (United States)

    Oberhummer, H.; Csótó, A.; Fairbairn, M.; Schlattl, H.; Sharma, M. M.

    2003-05-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  18. Raman and surface-enhanced Raman scattering (SERS) studies of the thrombin-binding aptamer.

    Science.gov (United States)

    Wu, Tsai-Chin; Vasudev, Milana; Dutta, Mitra; Stroscio, Michael A

    2013-06-01

    Surface-enhanced Raman scattering is used to study the Raman spectra and peak shifts the thrombin-binding aptamer (TBA) on substrates having two different geometries; one with a single stranded sequence and one with double stranded sequence. The Raman signals of the deoxyribonucleic acids on both substrates are enhanced and specific peaks of bases are identified. These results are highly reproducible and have promising applications in low cost nucleic acid detection.

  19. Chemical integrity of ( sup 3 H)GABA used in binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Balcar, V.J. (Univ. of Sydney, N.S.W. (Australia))

    1989-07-01

    A method which is claimed to be able to determine the proportion of true GABA within radiolabeled GABA used in binding studies was tested using (3H)GABA. The method was found to be unsuitable for {sup 3}H-labeled GABA and, furthermore, both theoretical considerations and the present experimental data indicated that it could also produce misleading results with ({sup 14}C)GABA.

  20. Reaction rate constant of CH2O + H = HCO + H2 revisited: a combined study of direct shock tube measurement and transition state theory calculation.

    Science.gov (United States)

    Wang, Shengkai; Dames, Enoch E; Davidson, David F; Hanson, Ronald K

    2014-11-06

    The rate constant of the H-abstraction reaction of formaldehyde (CH2O) by hydrogen atoms (H), CH2O + H = H2 + HCO, has been studied behind reflected shock waves with use of a sensitive mid-IR laser absorption diagnostic for CO, over temperatures of 1304-2006 K and at pressures near 1 atm. C2H5I was used as an H atom precursor and 1,3,5-trioxane as the CH2O precursor, to generate a well-controlled CH2O/H reacting system. By designing the experiments to maintain relatively constant H atom concentrations, the current study significantly boosted the measurement sensitivity of the target reaction and suppressed the influence of interfering reactions. The measured CH2O + H rate constant can be expressed in modified Arrhenius from as kCH2O+H(1304-2006 K, 1 atm) = 1.97 × 10(11)(T/K)(1.06) exp(-3818 K/T) cm(3) mol(-1)s(-1), with uncertainty limits estimated to be +18%/-26%. A transition-state-theory (TST) calculation, using the CCSD(T)-F12/VTZ-F12 level of theory, is in good agreement with the shock tube measurement and extended the temperature range of the current study to 200-3000 K, over which a modified Arrhenius fit of the rate constant can be expressed as kCH2O+H(200-3000 K) = 5.86 × 10(3)(T/K)(3.13) exp(-762 K/T) cm(3) mol(-1)s(-1).

  1. Spectroscopic Studies on the Binding of Kaempferol-3,7-α-L- rhamnopyranoside to Bovine Serum Albumin%Spectroscopic Studies on the Binding of Kaempferol-3,7-α-L- rhamnopyranoside to Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    Yao, Di; Yu, Jing; Pan, Yingming; Huang, Fuping; Bian, Hedong; Yu, Qing; Liang, Hong; Chen, Zhenfeng

    2012-01-01

    The binding of kaempferol-3,7-α-L-rhamnopyranoside (KRR) with bovine serum albumin (BSA) was investi- gated by different spectroscopic methods under simulative physiological conditions. Analysis of fluorescence quenching data of BSA by KRR at different temperatures using Stern-Volmer methods revealed the formation of a ground state KRR-BSA complex with moderate binding constant of the order 10^4 Lomol-1. The existence of some metal ions could weaken the binding of KRR on BSA. The changes in the van't Hoff enthalpy (△H0) and entropy (△S0) of the interaction were estimated to be --26.53 kJ.mol-1 and 3.33 J.mol-l.K-1 and both hydrophobic and electrostatic forces contributed to stabilizing the BSA-KRR complex. According to the F6ster theory of non-radiation energy transfer, the distance r between the donor (BSA) and the acceptor (KRR) was obtained (r= 2.83 nm). Site marker competitive experiments showed that KRR could bind to Site I of BSA. In addition, synchronous fluorescence, UV-Vis absorption and circular dichroism (CD) results indicated that the KRR binding could cause conformational changes of BSA.

  2. Revisiting the streptavidin-biotin binding by using an aptamer and displacement isothermal calorimetry titration.

    Science.gov (United States)

    Kuo, Tai-Chih; Tsai, Ching-Wei; Lee, Peng-Chen; Chen, Wen-Yih

    2015-03-01

    The association constant of a well-known streptavidin-biotin binding has only been inferred from separately measured kinetic parameters. In a single experiment, we obtained Ka 1 × 10(12)  M(-1) by using a streptavidin-binding aptamer and ligand-displacement isothermal titration calorimetry. This study explores the challenges of determining thermodynamic parameters and the derived equilibrium binding affinity of tight ligand-receptor binding.

  3. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    Science.gov (United States)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  4. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  5. Free volume study on the origin of dielectric constant in a fluorine-containing polyimide blend: poly(vinylidene fluoride-co-hexafluoro propylene)/poly(ether imide).

    Science.gov (United States)

    Ramani, R; Das, V; Singh, A; Ramachandran, R; Amarendra, G; Alam, S

    2014-10-23

    The dielectric constant of fluorinated polymides, their blends, and composites is known to decrease with the increase in free volume due to a decrease in the number of polarizable groups per unit volume. Herein, we report an interesting finding on the origin of dielectric constant in a polymer blend prepared using a fluorine-containing polymer and a polyimide probed in terms of its available free volume, which is distinct from the generally observed behavior in fluorinated polyimides. For this study, a blend of poly(vinylidene fluoride-co-hexafluoro propylene) and poly(ether imide) was chosen and the interaction between them was studied using FTIR, XRD, TGA, and SEM. The blend was investigated by positron annihilation lifetime spectroscopy (PALS), Doppler broadening (DB), and dielectric analysis (DEA). With the increase in the free volume content in the blend, surprisingly, the dielectric constant also increases and is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field. The results obtained would pave the way for more effective design of polymeric electrical charge storage devices.

  6. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates.

    Science.gov (United States)

    Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P

    2010-07-01

    Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy

  7. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  8. The Binding of Roxarsone at the Silica/Water Interface Studied with Second Harmonic Generation

    Science.gov (United States)

    Konek, Christopher; Ostrowski, David; Geiger, Franz

    2005-03-01

    Arsenic is a carcinogen that can also cause chronic poisoning when ingested via drinking water in quantities as low as 10 micrograms/L. In the US, organic arsenicals such as Roxarsone are commonly used as feed additives in the poultry industry. The use of poultry litter as fertilizer results in environmental arsenic deposition rates of up to 50 metric tons per year; the subsequent environmental fate of Roxarsone is unknown. We use second harmonic generation (SHG) to study the thermodynamics and kinetics of Roxarsone binding to environmentally relevant mineral oxide/water interfaces. Roxarsone binding to water/SiO2 interfaces is fully reversible, consistent with high Roxarsone mobility. Results from Langmuir isotherm measurements and surface SHG spectra are presented as well.

  9. EO-199, a specific antagonist of antiarrhythmic drugs: Assessment by binding experiments and in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, E.; Harel, G.; Lipinsky, D.; Sarne, Y. (Tel-Aviv Univ. (Israel))

    1991-01-01

    EO-199, a demethylated analog of the novel class I antiarrhythmic drug EO-122 was found to antagonize the antiarrhythmic activity of EO-122 and that of procainamide (Class I{sub A}). EO-199 did not block significantly the activity of a class I{sub B} antiarrhythmic agent, lidocaine. EO-199 also displaced the specific binding of ({sup 3}H)EO-122 to rate heart membranes similarly to procainamide whereas lidocaine did not. The correlation between binding experiments and pharmacological effects points to a possible subclassification of these drugs; the two chemical analogs EO-199 and EO-122, as well as procainamide (I{sub A}) but not lidocaine (I{sub B}), compete at the same site or the same state of the sodium channel. The availability of a specific antagonist might be useful for studying the mechanism of action of antiarrhythmic drugs as well as an antidote in cases of antiarrhythmics overdose intoxication.

  10. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ruthenium-fluoroquinolone complexes

    Indian Academy of Sciences (India)

    Mohan N Patel; Hardik N Joshi; Chintan R Patel

    2014-05-01

    Six new Ru(II) and Ru(III) complexes have been synthesized and characterized by elemental analysis, LC-MS, electronic spectra, IR spectra and magnetic moment measurements. DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel electrophoresis. The experimental results show that all the complexes can bind to DNA via partial intercalative mode. The b values of complexes were found in the range 2.14 × 104 to 2.70 × 105 M-1. All the complexes show excellent efficiency of cleaving DNA than respective fluoroquinolones. Brine shrimp lethality bioassay has been performed to check the cytotoxic activity. The IC50 values of the complexes are in the range of 6.27 to 16.05 g mL-1.

  11. A longitudinal study of serum cobalamins and its binding proteins in lactating women

    DEFF Research Database (Denmark)

    Mørkbak, A L; Ramlau-Hansen, C H; Møller, U K;

    2006-01-01

    were analysed. RESULTS: No significant differences were observed in serum cobalamins or its binding proteins related to supplementation with vitamin B12 or the duration of lactation. Serum cobalamins remained unchanged from 3 weeks to 9 months post-partum. Total TC (holoTC) (median+/-s.e. pmol...... in HC during a 9-month period post-partum. No differences were observed between the vitamin B12-supplemented and the unsupplemented groups. Thus, supplementation with vitamin B12 has no impact on the circulating level of serum cobalamins or its binding proteins in a Danish population of lactating......OBJECTIVE: To examine longitudinal changes in serum cobalamins, transcobalamin (TC) and haptocorrin (HC) during lactation and to investigate the influence of vitamin B12 supplementation on these parameters. DESIGN: A 9-month follow-up study. SUBJECTS AND METHODS: Lactating mothers (N=89) including...

  12. Capping of Silybin with β-Cyclodextrin Influences its Binding with Bovine Serum Albumin: A Study by Fluorescence Spectroscopy and Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Sudha; Sowrirajan, Chandrasekaran; Dhanaraj, Premnath; Enoch, Israel V. M. V. [Karunya Univ., Tamil Nadu (India)

    2014-07-15

    The association of silybin with β-cyclodextrin and its influence on silybin's binding with bovine serum albumin are reported. The stoichiometry, binding constant, and the structure of silybin-β-cyclodextrin inclusion complex are reported. The titrations of silybin with bovine serum albumin in the absence and presence of β-cyclodextrin are carried out and the differences in binding strengths are discussed. Molecular modeling is used to optimize the sites and mode of binding of silybin with bovine serum albumin. Forster resonance energy transfer is calculated and the proximity of interacting molecules is reported in the presence and absence of β-cyclodextrin.

  13. Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry.

    Science.gov (United States)

    Shah, Afzal; Nosheen, Erum; Munir, Shamsa; Badshah, Amin; Qureshi, Rumana; Rehman, Zia-Ur-; Muhammad, Niaz; Hussain, Hidayat

    2013-03-05

    UV-Vis spectroscopic behavior of four imidazolidine derivatives i.e., [5-benzylideneimidazolidine-2,4-dione (NBI), 5-(2-hydroxybenzylidene)imidazolidine-2,4-dione (HBI), 5-(4-methoxybenzylidene)imidazolidine-2,4-dione (MBI) and 5-(3,4-di-methoxybenzylidene)imidazolidine-2,4-dione (DBI)] was studied in a wide pH range. Spectroscopic response of the studied compounds was found sensitive to pH and the attached substituents. Incited by anti-tumor activity, structural miscellany and biological applications of imidazolidines, the DNA binding affinity of some novel derivatives of this class of compounds was examined by cyclic voltammetry (CV) and UV-Vis spectroscopy at pH values of blood (7.4) and lysosomes (4.5). The CV results showed the following order of binding strength: KNBI (6.40×10(6)M(-1))>KHBI (1.77×10(5)M(-1))>KMBI (2.06×10(4)M(-1))>KDBI (1.01×10(4)M(-1)) at pH 7.4. The same order was also obtained from UV-Vis spectroscopy. The greater affinity of NBI justified its preferred candidature as an effective anti-cancer drug. The DNA binding propensity of these compounds was found comparable or greater than most of the clinically used anticancer drugs.

  14. Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an antiparallel folded human telomere sequence.

    Science.gov (United States)

    Wilson, Tom; Costa, Paulo J; Félix, Vítor; Williamson, Mike P; Thomas, Jim A

    2013-11-14

    We report DNA binding studies of the dinuclear ruthenium ligand [{Ru(phen)2}2tpphz](4+) in enantiomerically pure forms. As expected from previous studies of related complexes, both isomers bind with similar affinity to B-DNA and have enhanced luminescence. However, when tested against the G-quadruplex from human telomeres (which we show to form an antiparallel basket structure with a diagonal loop across one end), the ΛΛ isomer binds approximately 40 times more tightly than the ΔΔ, with a stronger luminescence. NMR studies show that the complex binds at both ends of the quadruplex. Modeling studies, based on experimentally derived restraints obtained for the closely related [{Ru(bipy)2}2tpphz](4+), show that the ΛΛ isomer fits neatly under the diagonal loop, whereas the ΔΔ isomer is unable to bind here and binds at the lateral loop end. Molecular dynamics simulations show that the ΔΔ isomer is prevented from binding under the diagonal loop by the rigidity of the loop. We thus present a novel enantioselective binding substrate for antiparallel basket G-quadruplexes, with features that make it a useful tool for quadruplex studies.

  15. Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone.

    Science.gov (United States)

    Arshad, Nasima; Ahmad, Mukhtar; Ashraf, Muhammad Zaman; Nadeem, Humaira

    2014-09-05

    4-Aminophenazone (Ap-1) Schiff bases i.e., 4-{(3,4,5-trimethoxybenzylidine) amino}phenazone (Ap-2), 4-{(2-chlorobenzylidine) amino}phenazone (Ap-3) and 4-{(4-chlorobenzylidine)amino} phenazone (Ap-4) were synthesized and characterized by different spectroscopic techniques. Interaction of these compounds with ds.DNA was investigated through UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry at stomach (4.7) and blood (7.4) pH under 37 °C (human body temperature). Instrumental findings were further quantified both kinetically and thermodynamically. Results obtained through these techniques inferred intercalative mode of binding of all the compounds with DNA. The binding constant data, "Kb", and free energy change, ΔG, indicated comparatively greater binding affinity and more spontaneity of binding of compounds with DNA at stomach pH (4.7), respectively. However, among these compounds, Ap-4 showed comparatively greater binding at both the pH. Formation of compound-DNA complex was further confirmed through the decrease in diffusion rates after the addition of DNA. The in vivo anti-inflammatory activity of the compounds was evaluated using the carrageenan-induced hind paw edema method. The results revealed that among all the compounds, Ap-4 showed greater percentage of edema inhibition compared to standard drug.

  16. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.

    Science.gov (United States)

    Steuber, Holger; Heine, Andreas; Klebe, Gerhard

    2007-05-04

    strongly favourable contribution to binding enthalpy in case the inhibitor is equipped with a nitro group at the corresponding position. To further investigate this phenomenon, we determined crystal structures and thermodynamic data of two similarly constituted IDD-type inhibitors addressing the specificity pocket with either a nitro or halogen-substituted aromatic moiety. As these data suggest, the nitro group provokes the enthalpic contribution, in addition to the H-bond mentioned above, by accepting two "non-classical" H-bonds donated by the aromatic tyrosine side-chain. In summary, this study provides the platform for further structure-guided design hypotheses of novel drug candidates with higher affinity and selectivity.

  17. QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites.

    Science.gov (United States)

    Correa-Basurto, J; Bello, M; Rosales-Hernández, M C; Hernández-Rodríguez, M; Nicolás-Vázquez, I; Rojo-Domínguez, A; Trujillo-Ferrara, J G; Miranda, René; Flores-Sandoval, C A

    2014-02-25

    A set of 84 known N-aryl-monosubstituted derivatives (42 amides: series 1 and 2, and 42 imides: series 3 an 4, from maleic and succinic anhydrides, respectively) that display inhibitory activity toward both acetylcholinesterase and butyrylcholinesterase (ChEs) was considered for Quantitative structure-activity relationship (QSAR) studies. These QSAR studies employed docking data from both ChEs that were previously submitted to molecular dynamics (MD) simulations. Donepezil and galanthamine stereoisomers were included to analyze their quantum mechanics properties and for validating the docking procedure. Quantum parameters such as frontier orbital energies, dipole moment, molecular volume, atomic charges, bond length and reactivity parameters were measured, as well as partition coefficients, molar refractivity and polarizability were also analyzed. In order to evaluate the obtained equations, four compounds: 1a (4-oxo-4-(phenylamino)butanoic acid), 2a ((2Z)-4-oxo-4-(phenylamino)but-2-enoic acid), 3a (2-phenylcyclopentane-1,3-dione) and 4a (2-phenylcyclopent-4-ene-1,3-dione) were employed as independent data set, using only equations with r(m(test))²>0.5. It was observed that residual values gave low value in almost all series, excepting in series 1 for compounds 3a and 4a, and in series 4 for compounds 1a, 2a and 3a, giving a low value for 4a. Consequently, equations seems to be specific according to the structure of the evaluated compound, that means, series 1 fits better for compound 1a, series 3 or 4 fits better for compounds 3a or 4a. Same behavior was observed in the butyrylcholinesterase (BChE). Therefore, obtained equations in this QSAR study could be employed to calculate the inhibition constant (Ki) value for compounds having a similar structure as N-aryl derivatives described here. The QSAR study showed that bond lengths, molecular electrostatic potential and frontier orbital energies are important in both ChE targets. Docking studies revealed that

  18. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J; Pomper, Martin G [Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hammoud, Dima A, E-mail: endres@jhmi.edu [Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD (United States)

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [{sup 11}C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k{sup r}{sub 2}) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP{sub ND}). Compared with standard SRTM, either coupling of k{sup r}{sub 2} across regions or constraining k{sup r}{sub 2} to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP{sub ND} between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k{sup r}{sub 2} to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the

  19. Dual binding mode in cohesin-dockerin complexes as assessed through stretching studies

    Science.gov (United States)

    Wojciechowski, Michał; Cieplak, Marek

    2016-10-01

    A recent experimental study by Jobst et al. of stretching of a wild-type (WT) cohesin-dockerin complex has identified two kinds of the force-displacement patterns, with a single or double-peaked final rupture, which are termed "short" and "long" here. This duality has been interpreted as arising from the existence of two kinds of binding. Here, we analyze the separation of two cohesin-dockerin complexes of C. thermocellum theoretically. We use a coarse-grained structure-based model and the values of the pulling speeds are nearly experimental. In their native states, the two systems differ in the mutual binding orientations of the molecules in the complex. We demonstrate that the WT complex (PDB:1OHZ) unravels along two possible pathways that are qualitatively consistent with the presence of the short and long patterns observed experimentally. On the other hand, the mutated complex (PDB:2CCL) leads only to short trajectories. The short and long stretching pathways also appear in the cohesin-dockerin-Xmodule complex (PDB:4IU3, WT) of R. flavefaciens. Thus the duality in the stretching patterns need not be necessarily due to the duality in binding.

  20. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans.

    Science.gov (United States)

    Brzezicka, Katarzyna; Echeverria, Begoña; Serna, Sonia; van Diepen, Angela; Hokke, Cornelis H; Reichardt, Niels-Christian

    2015-05-15

    The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.

  1. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  2. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  3. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10-phenanthroline family of ligands: DNA binding and photocleavage studies

    Indian Academy of Sciences (India)

    S Arounaguiri; D Easwaramoorthy; A Ashokkumar; Aparna Dattagupta; Bhaskar G Maiya

    2000-02-01

    DNA binding and photocleavage characteristics of a series of mixedligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) and = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants () have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz > phen < phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2 (dppz)]3+ have also been reported.

  4. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Energy Technology Data Exchange (ETDEWEB)

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  5. Comparative thermodynamic studies on substrate and product binding of O-Acetylserine Sulfhydrylase reveals two different ligand recognition modes†

    Directory of Open Access Journals (Sweden)

    Kumaran Sangaralingam

    2011-06-01

    Full Text Available Abstract Background The importance of understanding the detailed mechanism of cysteine biosynthesis in bacteria is underscored by the fact that cysteine is the only sulfur donor for all cellular components containing reduced sulfur. O-acetylserine sulfhydrylase (OASS catalyzes this crucial last step in the cysteine biosynthesis and has been recognized as an important gene for the survival and virulence of pathogenic bacteria. Structural and kinetic studies have contributed to the understanding of mechanistic aspects of OASS, but details of ligand recognition features of OASS are not available. In the absence of any detailed study on the energetics of ligand binding, we have studied the thermodynamics of OASS from Salmonella typhimurium (StOASS, Haemophilus influenzae (HiOASS, and Mycobacterium tuberculosis (MtOASS binding to their substrate O-acetylserine (OAS, substrate analogue (methionine, and product (cysteine. Results Ligand binding properties of three OASS enzymes are studied under defined solution conditions. Both substrate and product binding is an exothermic reaction, but their thermodynamic signatures are very different. Cysteine binding to OASS shows that both enthalpy and entropy contribute significantly to the binding free energy at all temperatures (10-30°C examined. The analyses of interaction between OASS with OAS (substrate or methionine (substrate analogue revealed a completely different mode of binding. Binding of both OAS and methionine to OASS is dominated by a favorable entropy change, with minor contribution from enthalpy change (ΔHSt-Met = -1.5 ± 0.1 kJ/mol; TΔSSt-Met = 8.2 kJ/mol at 20°C. Our salt dependent ligand binding studies indicate that methionine binding affinity is more sensitive to [NaCl] as compared to cysteine affinity. Conclusions We show that OASS from three different pathogenic bacteria bind substrate and product through two different mechanisms. Results indicate that predominantly entropy driven

  6. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    Science.gov (United States)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  7. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices

    Science.gov (United States)

    Xi, Hongjuan; Kumar, Sunil; Dosen-Micovic, Ljiljana; Arya, Dev P.

    2013-01-01

    Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5′-dA12-x-dT12-x-dT12-3′ intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the Tm for triplex decreases with increasing pH value in the presence of neomycin, while the Tm for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Δn) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5′-dA12-x-dT12-x-dT12-3′, respectively. (4) The specific heat capacity change (ΔCp) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the ΔCp ranges from −402 to −60 cal/(mol K) for neomycin. At pH 5.5, a more positive ΔCp is observed, with a value of −98 cal/(mol K) at 100 mM KCl. ΔCp is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC50 (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex

  8. Variation of Fundamental Constants

    Science.gov (United States)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  9. Sequence-selective binding of phenazinium dyes phenosafranin and safranin O to guanine-cytosine deoxyribopolynucleotides: spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Saha, Ishita; Hossain, Maidul; Suresh Kumar, Gopinatha

    2010-11-25

    The sequence selectivity of the DNA binding of the phenazinium dyes phenosafranin and safranin O have been investigated with four sequence-specific deoxyribopolynucleotides from spectroscopic and calorimetric studies. The alternating guanine-cytosine sequence selectivity of the dyes has been revealed from binding affinity values, circular dichroism, thermal melting, competition dialysis, and calorimetric results. The binding affinities of both the dyes to the polynucleotides were of the order of 10(5) M(-1), but the values were higher for the guanine-cytosine polynucleotides over adenine-thymine ones. Phenosafranin had a higher binding affinity compared to safranin O. Isothermal titration calorimetric studies revealed that the binding reactions were exothermic and favored by negative enthalpy and predominantly large positive entropy contributions in all cases except poly(dA)·poly(dT) where the profile was anomalous. Although charged, nonpolyelectrolytic contribution was revealed to be dominant to the free energy of binding. The negative heat capacity values obtained from the temperature dependence of enthalpy changes, which were higher for phenosafranin compared to safranin O, suggested significant hydrophobic contribution to the binding process. In aggregate, the data presents evidence for the alternating guanine-cytosine base pair selectivity of these phenazinium dyes and a stronger binding of phenosafranin over safranin O.

  10. Spectroscopic and molecular modeling study on the separate and simultaneous bindings of alprazolam and fluoxetine hydrochloride to human serum albumin (HSA): With the aim of the drug interactions probing

    Science.gov (United States)

    Dangkoob, Faeze; Housaindokht, Mohmmad Reza; Asoodeh, Ahmad; Rajabi, Omid; Rouhbakhsh Zaeri, Zeinab; Verdian Doghaei, Asma

    2015-02-01

    The objective of the present research is to study the interaction of separate and simultaneous of alprazolam (ALP) and fluoxetine hydrochloride (FLX) with human serum albumin (HSA) in phosphate buffer (pH 7.4) using different kinds of spectroscopic, cyclic voltammetry and molecular modeling techniques. The absorbance spectra of protein, drugs and protein-drug showed complex formation between the drugs and HSA. Fluorescence analysis demonstrated that ALP and FLX could quench the fluorescence spectrum of HSA and demonstrated the conformational change of HSA in the presence of both drugs. Also, fluorescence quenching mechanism of HSA-drug complexes both separately and simultaneously was suggested as static quenching. The analysis of UV absorption data and the fluorescence quenching of HSA in the binary and ternary systems showed that FLX decreased the binding affinity between ALP and HSA. On the contrary, ALP increased the binding affinity of FLX and HSA. The results of synchronous fluorescence and three-dimensional fluorescence spectra indicated that the binding of drugs to HSA would modify the microenvironment around the Trp and Tyr residues and the conformation of HSA. The distances between Trp residue and the binding sites of the drugs were estimated according to the Förster theory, and it was demonstrated that non-radiative energy transfer from HSA to the drugs occurred with a high probability. Moreover, according to CV measurements, the decrease of peak current in the cyclic voltammogram of the both drugs in the presence of HSA revealed that they interacted with albumin and binding constants were calculated for binary systems which were in agreement with the binding constants obtained from UV absorption and fluorescence spectroscopy. The prediction of the best binding sites of ALP and FLX in binary and ternary systems in molecular modeling approach was done using of Gibbs free energy.

  11. Study of the nearly constant dielectric loss regime in ionic conductors with pyrochlore-like structure; Estudio del regimen de perdidas dielectricas constantes en conductores ionicos con estructura de tipo pirocloro

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Guillen, M. r.; Fuentes, A. F.; Diaz-Guillen, J. a.; Santamaria, J.; Leon, C.

    2012-07-01

    We report on ac conductivity measurement of oxide ion conductors with composition Gd{sub 2}(ZryTi{sub 1}-y){sub 2}O{sub 7} and a pyrochlore type structure, at temperatures between -20 and 250 degree centigrade and in the frequency range from 1 Hz to 3 MHz by using impedance spectroscopy. Results show that a crossover from a power law dependence to a linear frequency dependence (or nearly constant loss behavior) in the ac conductivity can be clearly observed in a wide temperature range. This crossover is found to be thermally activated, and its activation energy ENCL to be much lower than the activation energy Edc for the dc conductivity. We also found that the values of ENCL are almost independent of composition, and therefore of the concentration of mobile oxygen vacancies, unlike those of Edc. Moreover, for each composition, the values of E{sub N}CL=0.67{+-}0.04 eV are very similar to those estimated for the energy barrier for the ions to leave their cages, E{sub {alpha}}=0.69{+-}0.05 eV. These results support that the nearly constant loss behavior, ubiquitous in ionic conductors, is originated from caged ion dynamics. (Author) 33 refs.

  12. Synaptosomal membrane-based Langmuir-Blodgett films: a platform for studies on γ-aminobutyric acid type A receptor binding properties.

    Science.gov (United States)

    Turina, Anahí V; Clop, Pedro D; Perillo, María A

    2015-02-10

    In this work we used Langmuir-Blodgett films (LB) as model membranes to study the effect of molecular packing on the flunitrazepam (FNZ) accessibility to the binding sites at the GABAA receptor (GABAA-R). Ligand binding data were correlated with film topography analysis by atomic force microscopy images (AFM) and SDS-PAGE. Langmuir films (LF) were prepared by the spreading of synaptosomal membranes (SM) from bovine brain cortex at the air-water interface. LBs were obtained by the transference, at 15 or 35 mN/m constant surface pressure (π), of one (LB15/1c and LB35/1c) or two (LB35/2c) LFs to a film-free hydrophobic alkylated substrate (CONglass). Transference was performed in a serial manner, which allowed the accumulation of a great number of samples. SDS-PAGE clearly showed a 55 kDa band characteristic of GABAA-R subunits. Detrended fluctuation analysis of topographic data from AFM images exhibited a single slope value (self-similarity parameter α) in CONglass and a discontinuous slope change in the α value at an autocorrelation length of ∼100 nm in all LB samples, supporting the LF transference to the substrate. AFM images of CONglass and LB15/1c exhibited roughness and average heights that were similar between measurements and significantly lower than those of LB35/1c and LB35/2c, suggesting that the substrate coverage in the latter was more stable than in LB15/1c. While [(3)H]FNZ binding in LB15/1c did not reach saturation, in LB35/1c the binding kinetics became sigmoid with a binding affinity lower than in the SM suspension. Our results highlight the π dependence of both binding and topological data and call to mind the receptor mechanosensitivity. Thus, LB films provide a tool for bionanosensing GABAA-R ligand binding as well as GABAA-R activity modulation induced by the environmental supramolecular organization.

  13. The screening and functional study of proteins binding with the BmNPV polyhedrin promoter

    Directory of Open Access Journals (Sweden)

    Yu Wei

    2012-05-01

    Full Text Available Abstract Background The polyhedrin gene promoter has an essential role in regulating foreign gene expression in baculovirus expression vector systems (BEVS; however, the high-level transcription mechanism is still unknown. One-hybrid screening in yeast is a powerful way of identifying rapidly heterologous transcription factors that can interact with the polyhedrin promoter DNA sequence. In the current study, total RNA was extracted from the fat bodies of fifth-instar silkworm larvae that had been infected with Bombyx mori nuclear polyhedrosis virus (BmNPV for 5 days; complementary DNA (cDNA was then generated using reverse-transcription (RT-PCR to construct a silkworm gene expression library. Key polyhedrin promoter bait sequences were synthesized to generate a bait yeast strain, which was used to screen the one-hybrid cDNA library. Results In total, 12 positive yeast colonies were obtained from the SD/-Leu/AbA plates; sequencing analysis showed that they belong to two different protein cDNA colonies. Positive colonies underwent bioinformatics analysis, which revealed one colony to be ribosomal proteins [B. mori ribosomal protein SA (BmRPSA] and the other to be NPV DNA-binding proteins (DBP. To further verify the regulatory function of these two protein groups, transient expression vectors (pSK-IE-dbp and pSK-IE-BmRPSA were constructed. The recombinant plasmids were then transfected into cultured B. mori N (BmN cells, which had been infected with a recombinant bacmid containing the gene encoding luciferase (luc. The results showed that overexpression of either dbp or BmRPSA upregulated the polh promoter-driven transcription of luc in BmN cells. In addition, dbp or BmRPSA RNA interference (RNAi resulted in the downregulation of luciferase reporter expression in BmN cells, demonstrating that DBP and BmRPSA are important for luc transcription. EMSA results further confirmed that DBP could directly bind to the conserved single-stranded polh

  14. Elastic constants of calcite

    Science.gov (United States)

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  15. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    Directory of Open Access Journals (Sweden)

    Xiliang Zheng

    2015-04-01

    Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  16. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    Science.gov (United States)

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  17. Decay Constants of Vector Mesons

    Institute of Scientific and Technical Information of China (English)

    LI Heng-Mei; WAN Shao-Long

    2008-01-01

    @@ The light vector mesons are studied within the framework of the Bethe-Salpeter equation with the vector-vectortype flat-bottom potential The Bethe-Salpeter wavefunctions and the decay constants of the vector mesons are obtained. All the obtained results, fρ, fφ, and fΚ* , are in agreement with the experimental values, respectively.

  18. Algorithm for structure constants

    CERN Document Server

    Paiva, F M

    2011-01-01

    In a $n$-dimensional Lie algebra, random numerical values are assigned by computer to $n(n-1)$ especially selected structure constants. An algorithm is then created, which calculates without ambiguity the remaining constants, obeying the Jacobi conditions. Differently from others, this algorithm is suitable even for poor personal computer. ------------- En $n$-dimensia algebro de Lie, hazardaj numeraj valoroj estas asignitaj per komputilo al $n(n-1)$ speciale elektitaj konstantoj de strukturo. Tiam algoritmo estas kreita, kalkulante senambigue la ceterajn konstantojn, obeante kondicxojn de Jacobi. Malsimile al aliaj algoritmoj, tiu cxi tauxgas ecx por malpotenca komputilo.

  19. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  20. The aliquot constant

    CERN Document Server

    Bosma, Wieb

    2009-01-01

    The average value of log s(n)/n taken over the first N even integers is shown to converge to a constant lambda when N tends to infinity; moreover, the value of this constant is approximated and proven to be less than 0. Here s(n) sums the divisors of n less than n. Thus the geometric mean of s(n)/n, the growth factor of the function s, in the long run tends to be less than 1. This could be interpreted as probabilistic evidence that aliquot sequences tend to remain bounded.

  1. Conventional and microwave-assisted synthesis, characterization, DFT calculations, in vitro DNA binding and cleavage studies of potential chemotherapeutic diorganotin(IV) mandelates.

    Science.gov (United States)

    Mridula; Nath, Mala

    2016-09-01

    Diorganotin(IV) complexes of the general formulae {[R2Sn(L)]2O}(R=Me (1), n-Bu (2), and n-Oct (3); L=anion of mandelic acid) and {[R2Sn(L)]2Cl2}(R=Ph (4)) have been synthesized by conventional thermal method (1a-3a), except 4a and by microwave-assisted reactions (1b-4b). The elemental analysis, IR, NMR ((1)H, (13)C and (119)Sn) and ESI-MS/DART-mass spectral studies revealed that dimeric 1:1 complexes with SnOSn bridges (1-3) are formed possessing distorted trigonal bipyramidal geometry around the Sn atoms, except 4b which exhibits octahedral geometry with SnClSn bridges. The proposed geometries have been validated by density functional theory calculations. Thermal behavior of 1b-4b, studied by using thermogravimetry (TG), differential thermal analysis (DTA) and derivative thermogravimetric (DTG) techniques, indicated that all except 4b are stable up to 200°C. In vitro interaction studies of 1b-4b with CT-DNA were performed by UV-Vis, fluorescence titrations and results suggest that the complexes are binding to DNA via an intercalative mode. The binding affinity and quenching ability were quantified in terms of intrinsic binding constant (Kb) (3.74×10(4)M(-1), 2b; >3.67×10(4)M(-1), 4b; >3.03×10(4)M(-1), 3b; >0.72×10(4)M(-1), 1b) and Stern-Volmer quenching constant (Ksv) (2.16×10(5), 2b; >1.73×10(5), 4b; >1.66×10(5)3b; >1.51×10(5), 1b) which showed high binding affinity of 2b with CT-DNA. The cleavage studies of 1b-4b with pBR322 plasmid DNA was ascertained by agarose gel electrophoresis. They exhibited effective cleavage of supercoiled plasmid DNA into its nicked form (1b, 3b, 4b) and even into its linear form in presence of 2b.

  2. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    Energy Technology Data Exchange (ETDEWEB)

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  3. Molecular modelling studies on the binding of some protides to the putative human phosphoramidase Hint1.

    Science.gov (United States)

    Congiatu, C; Brancale, A; McGuigan, C

    2007-01-01

    The aim of the present work is to investigate through molecular modelling the possible role of the human enzyme Hint1 in the final P-N bond cleavage of phosphoramidate ProTides, which would lead to the intracellular delivery of unmasked nucleoside analogue monophosphates. Herein, we report our preliminary analysis based on docking studies of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) related aminoacyl phosphates with Hint1 and the effect of the amino acid moiety on the enzyme-substrate binding affinity.

  4. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.

    Science.gov (United States)

    Dudev, Todor; Lim, Carmay

    2008-01-01

    This review highlights insights gained from computational studies on protein-metal recognition. We systematically dissect the various factors governing metal binding affinity and selectivity in proteins starting from (a) the intrinsic properties of the metal and neighboring metal cations (if present), to (b) the primary coordination sphere, (c) the second coordination shell, (d) the protein matrix, (e) the bulk solvent, and (f) competing non-protein ligands from the surrounding biological environment. The results herein reveal the fundamental principles and the molecular bases underlying protein-metal recognition, which serve as a guide to engineer novel metalloproteins with programmed properties.

  5. The Mode of Inhibitor Binding to Peptidyl-tRNA Hydrolase: Binding Studies and Structure Determination of Unbound and Bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii

    Science.gov (United States)

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024

  6. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Sanket Kaushik

    Full Text Available The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  7. A Study on Solubilization of Poorly Soluble Drugs by Cyclodextrins and Micelles: Complexation and Binding Characteristics of Sulfamethoxazole and Trimethoprim

    Directory of Open Access Journals (Sweden)

    Sinem Göktürk

    2012-01-01

    > α-CD. With taking into consideration of solubilization capacity of SDS micelles, it has been found that the solubility enhancement of TMP is much higher than that of SMX in the presence of SDS micelles. The binding constants of SMX and TMP obtained from the Benesi-Hildebrand equation are also confirmed by the estimated surface properties of SDS, employing the surface tension measurements. In order to elucidate the solubilization characteristics the surface tension measurements were also performed for nonionic surfactant Triton X-100. Polarity of the microenvironment and probable location of SMX and TMP were also discussed in the presence of various organic solvents.

  8. Synthesis, characterization, crystal structure and DNA-binding study of four cadmium(II) pyridine-carboxamide complexes

    Indian Academy of Sciences (India)

    BIPLAB MONDAL; BUDDHADEB SEN; SANDIPAN SARKAR; ENNIO ZANGRANDO; PABITRA CHATTOPADHYAY

    2017-01-01

    Treatment of perchlorate or nitrate salt of cadmium(II) with carboxamide derivatives (L) generated four novel mononuclear metal complexes, represented as [Cd(L)₄](ClO₄)₂ (1a and 1b) and [Cd(L)₂(ONO₂)₂] (2a and 2b) in appreciable yields (L = L¹ = N-(furan-2-ylmethyl)-2-pyridine carboxamide and L = L² = N-(thiophen-2-ylmethyl)-2-pyridine carboxamide). The complexes have been characterized by FT-IR, UVVisible, elemental analysis and single crystal X-ray crystallographic analysis which revealed eight coordinated cadmium ions, but in different coordination environments, depending on the counter anion used. In addition,electronic absorption, fluorescence spectroscopy and viscosity measurements revealed a significant interaction of the four complexes with CT-DNA via intercalative/groove binding mode. The intrinsic binding constant Kbobtained varies from 0.4 × 10⁴ to 1.11 × 10⁵ M⁻¹. The results suggest that neutral complexes 2a and 2b bind to DNA in an intercalative mode. On the other hand, cationic complexes 1a and 1b bind with DNA via weak electrostatic/covalent interaction.

  9. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS.

  10. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  11. Endo-S-c-di-GMP Analogues-Polymorphism and Binding Studies with Class I Riboswitch

    Directory of Open Access Journals (Sweden)

    Herman O. Sintim

    2012-11-01

    Full Text Available C-di-GMP, a cyclic guanine dinucleotide, has been shown to regulate biofilm formation as well as virulence gene expression in a variety of bacteria. Analogues of c-di-GMP have the potential to be used as chemical probes to study c-di-GMP signaling and could even become drug leads for the development of anti-biofilm compounds. Herein we report the synthesis and biophysical studies of a series of c-di-GMP analogues, which have both phosphate and sugar moieties simultaneously modified (called endo-S-c-di-GMP analogues. We used computational methods to predict the relative orientation of the guanine nucleobases in c-di-GMP and analogues. DOSY NMR of the endo-S-c-di-GMP series showed that the polymorphism of c-di-GMP can be tuned with conservative modifications to the phosphate and sugar moieties (conformational steering. Binding studies with Vc2 RNA (a class I c-di-GMP riboswitch revealed that conservative modifications to the phosphate and 2'-positions of c-di-GMP dramatically affected binding to class I riboswitch.

  12. Mineralocorticoid specificity of renal type I receptors: in vivo binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, K.; Funder, J.W.

    1987-02-01

    The authors have injected rats with (TH)aldosterone or (TH) corticosterone, plus 100-fold excess of the highly specific glucocorticoid RU 28362, with or without excess unlabeled aldosterone or corticosterone and compared type I receptor occupancy in kidney and hippocampus. Thirty minutes after subcutaneous injection (TH)aldosterone was well retained in renal papilla-inner medulla, renal cortex-outer medulla, and hippocampus; in contrast, (TH)corticosterone was well retained only in hippocampus. Competition studies for (TH)aldosterone binding sites showed corticosterone to be a poor competitor in the kidney compared with hippocampus. Time-course studies, with rats killed 10-180 min after tracer administration, showed very low uptake/retention of (TH)corticosterone by kidney; in hippocampus (TH)corticosterone retention was similar to that of (TH)aldosterone in kidney, and retention of (TH)aldosterone by hippocampus was much more prolonged than of either tracer in any other tissue. Studies in 10-day-old rats, with very low levels of corticosteroid binding globulin (CBG), showed a high degree of aldosterone selectivity in both zones of the kidney, whereas 9TH)aldosterone and (TH)corticosterone were equivalently bound in hippocampus. They interpret these data as evidenced for a mechanism unrelated to extravascular CBG conferring mineralocorticoid specificity on renal type I receptors and propose two models derived from their findings consistent with such differential selectivity.

  13. Development and Application of an HPLC Method for Erlotinib Protein Binding Studies

    Directory of Open Access Journals (Sweden)

    Soheila Bolandnazar

    2013-08-01

    Full Text Available Purpose: The aim of the present study was to develop a simple and rapid reversed-phase high performance liquid chromatographic method with UV detection for erlotinib hydrochloride quantification, which is applicable for protein binding studies. Methods: Ultrafilteration method was used for protein binding study of erlotinib hydrochloride. For sample analysis a simple and rapid reversed-phase high performance liquid chromatographic method with UV detection at 332 nm was developed. The mobile phase was a mixture of methanol, acetonitril and potassium dihydrogen phosphate buffer (15:45:40 %v/v set at flow rate of 1.3 ml/min. Results: The run time for erlotinib hydrochloride was approximately 6 minutes. The calibration curve was linear over the range of 320-20000 ng/ml with acceptable intra- and inter-day precision and accuracy. The intra-day and inter-day precisions were less than 10% and the accuracies of intra and inter-day assays were within the range of 97.20-104.83% and 98.8-102.2% respectively. Conclusion: Based on the obtained results, a simple, accurate and precise reversed-phase isocratic HPLC method with UV detection has been optimized and validated for the determination of erlotinib hydrochloride in biological samples.

  14. Compassion is a constant.

    Science.gov (United States)

    Scott, Tricia

    2015-11-01

    Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands.

  15. Origin of giant dielectric constant and magnetodielectric study in Ba(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} nanoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush Kumar [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Yadav, K.L., E-mail: klyadav35@yahoo.com [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Singh, Harishchandra [Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Yadav, A.K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400088 (India)

    2014-04-05

    Highlights: • High dielectric constant (∼33,000) with low loss (∼0.45) was found at room temperature. • Cole–Cole plot analysis confirmed the formation of barrier layers on grain–grain boundary interfaces. • XANES study confirms the mixed valence state of Fe ion. • Reporting first time about presence of magnetocapacitance (∼3.4%) in the system. -- Abstract: Lead free Ba(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (BFN) ceramics were synthesized by sol–gel method. X-ray diffraction pattern of the samples at room temperature shows a monoclinic structure. The influence of sintering temperature on microstructure and dielectric properties of BFN ceramics were analysed. Microstructure analysis shows well-grown and dense microstructure in 1200 °C sintered sample exhibiting enhanced dielectric and magnetodielectric properties. We report a very high dielectric constant (∼33,000) with low dielectric loss (∼0.45) at room temperature for 1200 °C sintered sample at 100 Hz frequency. Cole–Cole plot shows that the grain boundary effect (barrier layer formation) is responsible for such a high value of dielectric constant. The sample was also analyzed by Fe K-edge X-ray absorption near-edge structure spectroscopy to obtain the Fe oxidation state. This analysis confirms that Fe ions in BFN ceramics are in mixed valance state (Fe{sup 2+}/Fe{sup 3+}). Another interesting feature of BFN ceramics is the appearance of room temperature high magnetodielectric response (3.8%) at 7 kOe magnetic field and 100 Hz frequency.

  16. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  17. Variation of fundamental constants: theory

    Science.gov (United States)

    Flambaum, Victor

    2008-05-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. There are some hints for the variation of different fundamental constants in quasar absorption spectra and Big Bang nucleosynthesis data. A large number of publications (including atomic clocks) report limits on the variations. We want to study the variation of the main dimensionless parameters of the Standard Model: 1. Fine structure constant alpha (combination of speed of light, electron charge and Plank constant). 2. Ratio of the strong interaction scale (LambdaQCD) to a fundamental mass like electron mass or quark mass which are proportional to Higgs vacuum expectation value. The proton mass is propotional to LambdaQCD, therefore, the proton-to-electron mass ratio comes into this second category. We performed necessary atomic, nuclear and QCD calculations needed to study variation of the fundamental constants using the Big Bang Nucleosynthsis, quasar spectra, Oklo natural nuclear reactor and atomic clock data. The relative effects of the variation may be enhanced in transitions between narrow close levels in atoms, molecules and nuclei. If one will study an enhanced effect, the relative value of systematic effects (which are not enhanced) may be much smaller. Note also that the absolute magnitude of the variation effects in nuclei (e.g. in very narrow 7 eV transition in 229Th) may be 5 orders of magnitude larger than in atoms. A different possibility of enhancement comes from the inversion transitions in molecules where splitting between the levels is due to the quantum tunneling amplitude which has strong, exponential dependence on the electron to proton mass ratio. Our study of NH3 quasar spectra has already given the best limit on the variation of electron to proton mass ratio.

  18. Structural, vibrational, NMR, quantum chemical, DNA binding and protein docking studies of two flexible imine oximes

    Indian Academy of Sciences (India)

    YUNUS KAYA

    2016-09-01

    Two flexible imine oxime molecules, namely, 3-(pyridin-2-ylmethylimino)-butan-2-one oxime (HL¹) and 3-(pyridin-2-ylmethylimino)-pentan-2-one oxime (HL²) have been synthesized and characterized by elemental analysis, IR and NMR techniques. The conformational behavior was investigated using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, three stable molecules and the most stable conformer were determined for the both imine oximes. The spectroscopic properties such as vibrational and NMR were calculated for the most stable conformer of the HL¹ and HL². The calculation results were applied to simulate infrared spectra of the title compounds, which show good agreement with observed spectra. In addition, the stable three molecules of the both imine oximes have been used to carry out DNA binding and protein docking studies with DNA and protein structures (downloaded from Protein Data Bank) using Discovery Studio 3.5 to find the most preferred binding mode of the ligands inside the DNA and protein cavity.

  19. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  20. Binding Studies of Natural Product Berberine with DNA G-Quadruplex

    Directory of Open Access Journals (Sweden)

    Nagendra K. Sharma

    2011-01-01

    Full Text Available Problem statement: The ends of chromosome had highly repetitive short G and C-rich sequences of DNA. These sequences were known to form stable tetraplex type of secondary structures which help to maintain gene integratity after cell divison. Approach: Any reagent which controls the random cell division would be useful to design anticancer drugs. Therefore a many natural and synthesized molecules which stabilized tetraplex structures are targeted as anticancer drug entities. Results: Among them, Berberine hydrochloride natural product and its analogues are well studies as G-quadruplex stabilizing agent. In this report, DNA sequence 5’-G3-C5-G3-3’ has been designed which has probability to form i-motif and G-qua druplex types of secondary structures. Herein we studied the interaction between this DNA strands and Berberine hydrochloride by 1H-NMR techniques and UV in two different PH (4.7 and 7.4 conditions. Conclusion/Recommendations: Our preliminary results showed that Berberine bind with this DNA strand in both pH conditions which is further supported by UV melting experiments. In future this sequence can be used as probe to screen out tetraplex binding natural products which help to generate new anticancer drugs.

  1. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  2. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor.

    Science.gov (United States)

    Kausaite-Minkstimiene, A; Ramanaviciene, A; Kirlyte, J; Ramanavicius, A

    2010-08-01

    A comparative study of four different antibody immobilization techniques that are suitable for modification of surface plasmon resonance (SPR) chip (SPR-chip) is reported. Antibodies against human growth hormone (anti-HGH) were used as the model system. The evaluated SPR-chip modification techniques were (i) random immobilization of intact anti-HGH (intact-anti-HGH) via self-assembled monolayer (SAM) based on 11-mercaptoundecanoic acid (MUA); (ii) random immobilization of intact-anti-HGH within carboxymethyl dextran (CMD) hydrogel by direct covalent amine coupling technique; (iii) oriented coupling of intact-anti-HGH via Fc-fragment to protein-G layer assembled on SAM consisting of MUA (MUA/pG); (iv) oriented immobilization of fragmented anti-HGH antibodies (frag-anti-HGH) via their native thiol-groups directly coupled to the gold. To liberate these thiol groups, the intact-anti-HGH was chemically "divided" into two frag-anti-HGH fragments by chemical reduction with 2-mercaptoethylamine (2-MEA). Optimal concentration of 2-MEA for preparation of anti-HGH was 15 mM. The surface concentration of immobilized antibodies and the antigen binding capacity for all four differently modified SPR-chips was evaluated and compared. The maximum surface concentration of immobilized intact-anti-HGH was obtained by immobilizing the antibody within CMD-hydrogel. The maximal antigen binding capacity was obtained by SPR-chip based on intact-anti-HGH immobilized via MUA/pG. The immobilization based on application of frag-anti-HGH was found to be the most suitable for design of SPR-immunosensor for HGH detection, due to its sufficient antigen binding capacity, simplicity, and low cost in respect to the currently evaluated techniques.

  3. Immunological properties of prolactin and studies on a gonadotropin binding inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.S.

    1985-01-01

    The physiological role of prolactin in horses has not yet been well defined. With the availability of highly purified ePRL for inducing antibody formation in rabbits and for radiolabeling with Na/sup 125/I, a very sensitive (0.4-0.6 ng/ml) and highly specific homologous RIA for ePRL was developed. A heterologous RIA using /sup 125/I-labeled ovine PRL and anti-ePRL antiserum was also developed and compared to the homologous RIA for ePRL. Of the two systems, it is concluded that this homologous RIA system is more suitable and more reliable for measuring prolactin concentration in horse serum samples. Until now, biochemical information on PRL has not been available for reptilian species. Sea turtle (Chelonia mydas) prolactin was purified from pituitary extracts by selective precipitation, DEAE-cellulose chromatography and gel filtration. Similar to other species of PRL, sea turtle PRL is a 22,000-24,000 daltons protein and contains a high content of glutamic acid, aspartic acid, serine and leucine, the N-terminal amino acid residue. Gonadotropin (FSH) binding inhibitor was partially purified from sheep testes by ammonium sulfate fractionation and ion exchange chromatography. The FSH-BI (molecular weight: 50,000 daltons, estimated by gel filtration) contains a protein moiety necessary for binding inhibitory activity. The inhibition of the binding of /sup 125/I-labeled ovine FSH to its receptor by the FSH-BI is not competitive. Both in vivo and in vitro biological studies of FSH-BI preparations in rats indicated various effects on FSH and LH activities at the gonadal level. These findings suggest a physiological role for FSH-BI in the regulation of reproduction.

  4. Imidazole binding to human serum albumin.

    Science.gov (United States)

    Rodrigo, M C; Ceballos, A; Mariño, E; Cachaza, J M; Domínguez-Gil, A; Kuemmerle, H P

    1988-06-01

    Imidazole is a substance released by the organism when a new salicylate derivative, imidazole salicylate is administered. A study was made of the binding of imidazole to human serum albumin by an in vitro assay employing an ultrafiltration technique. For the concentration range that imidazole was found in plasma following administration of the drug to healthy volunteers, the mean binding percentages were: 12.1 +/- 1.8 and 19.7 +/- 3.1 at 37 degrees C and 25 degrees C, respectively. The results obtained in the study follow a model entailing three equal and independent binding sites of imidazole to serum albumin and the values of the corresponding constants were determined. Apparently, the presence in the plasma samples of sodium salicylate at a concentration of 100 micrograms/ml does not affect the binding of imidazole to human serum albumin.

  5. Estimation of association constants between oral malodor components and various native and derivatized cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Andrew W. [Department of Chemistry, Iowa State University, Ames, IA 50011-3111 (United States); Rodriguez, Michael A. [Department of Chemistry, Iowa State University, Ames, IA 50011-3111 (United States); Wetterer, Sean M. [GlaxoSmithKline, Parsippany, NJ 07054 (United States); Armstrong, Daniel W. [Department of Chemistry, Iowa State University, Ames, IA 50011-3111 (United States)]. E-mail: sec4dwa@iastate.edu

    2006-01-31

    The association constants of 33 oral malodorous compounds and odor precursors (9 organic acids, 7 amine-containing bases, 11 organic neutral and aromatic compounds, and 6 amino acids) with native and derivatized cyclodextrins were measured using one or more of a variety of techniques including affinity capillary electrophoresis, nuclear magnetic resonance titrations, and head-space gas chromatography. With the exception of formic acid and urea, which had binding constants that were too small to measure, all analytes showed significant binding to at least one of the cyclodextrins studied. In most cases, the native cyclodextrins exhibited the most stable complexes with these analytes. However, with cationic analytes under acidic conditions, the negatively charged sulfated and carboxymethyl cyclodextrins had higher association constants. The six amino acid precursor molecules only bound significantly with the sulfated cyclodextrins. In addition, several analyte-cyclodextrin combinations were observed to form insoluble complexes, indicating that these cyclodextrins are particularly effective at extracting these compounds from aqueous solution.

  6. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    Science.gov (United States)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  7. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus

    Science.gov (United States)

    Lybrand, Terry P.; McCammon, J. Andrew

    1989-01-01

    Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with experimental results. Possible origins of this discrepancy are outlined. Of particular importance is the apparent need for methods to systematically sample all significant conformations of the leucine side chain.

  8. Frequency Dependence of Attenuation Constant of Dielectric Materials

    Directory of Open Access Journals (Sweden)

    A. S. Zadgaonkar

    1975-01-01

    Full Text Available Different dielectric materials have been studied for frequency dependence of attenuation constant. The sensitive cathode ray oscillograph method has been used to evaluate to the dielectric constant and loss factor, and from these attenuation constants have been calculated. The temperature remaining constant, a regular increase has been observed in attenuation constant, at higher frequencies of electro-magnetic propagating wave.

  9. Variation of fundamental constants

    CERN Document Server

    Flambaum, V V

    2006-01-01

    We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.

  10. Study of Binding Interaction between Pif80 Protein Fragment and Aragonite

    Science.gov (United States)

    Du, Yuan-Peng; Chang, Hsun-Hui; Yang, Sheng-Yu; Huang, Shing-Jong; Tsai, Yu-Ju; Huang, Joseph Jen-Tse; Chan, Jerry Chun Chung

    2016-08-01

    Pif is a crucial protein for the formation of the nacreous layer in Pinctada fucata. Three non-acidic peptide fragments of the aragonite-binding domain (Pif80) are selected, which contain multiple copies of the repeat sequence DDRK, to study the interaction between non-acidic peptides and aragonite. The polypeptides DDRKDDRKGGK (Pif80-11) and DDRKDDRKGGKDDRKDDRKGGK (Pif80-22) have similar binding affinity to aragonite. Solid-state NMR data indicate that the backbones of Pif80-11 and Pif80-22 peptides bound on aragonite adopt a random-coil conformation. Pif80-11 is a lot more effective than Pif80-22 in promoting the nucleation of aragonite on the substrate of β-chitin. Our results suggest that the structural arrangement at a protein-mineral interface depends on the surface structure of the mineral substrate and the protein sequence. The side chains of the basic residues, which function as anchors to the aragonite surface, have uniform structures. The role of basic residues as anchors in protein-mineral interaction may play an important role in biomineralization.

  11. Binding and NMR structural studies on indoloquinoline-oligonucleotide conjugates targeting duplex DNA.

    Science.gov (United States)

    Eick, Andrea; Riechert-Krause, Fanny; Weisz, Klaus

    2012-06-20

    An 11-phenyl-indolo[3,2-b]quinoline (PIQ) was tethered through an aminoalkyl linker to the 5'-end of four pyrimidine oligonucleotides with T/C scrambled sequences at their two 5'-terminal positions. Binding to different double-helical DNA targets formed parallel triple helices with a PIQ-mediated stabilization that strongly depends on pH and the terminal base triad at the 5'-triplex-duplex junction. The most effective stabilization was observed with a TAT triplet at the 5'-junction under low pH conditions, pointing to a protonated ligand with a high triplex binding affinity and unfavorable charge repulsions in the case of a terminal C(+)GC triplet at the junction. The latter preference of the PIQ ligand for TAT over CGC is alleviated yet still preserved at higher pH. Intercalation of PIQ at the 5'-triplex-duplex junction as suggested by the triplex melting experiments was confirmed by homonuclear and heteronuclear NMR structural studies on a specifically isotope-labeled triplex. The NMR analysis revealed two coexisting species that only differ by a 180° rotation of the indoloquinoline within the intercalation pocket. NOE-derived molecular models indicate extensive stacking interactions of the indoloquinoline moiety with the TAT base triplet and CG base pair at the junction and a phenyl substituent that is positioned in the major groove and oriented almost perpendicular to the plane of the indoloquinoline.

  12. In vitro RNA-binding assay for studying trans-factors for RNA editing in chloroplasts.

    Science.gov (United States)

    Shikanai, Toshiharu; Okuda, Kenji

    2011-01-01

    In plant organelles, specific C residues are modified to U by RNA editing. Short RNA sequences surrounding the target site (i.e., cis-elements) are recognized by trans-factors, which were recently shown to be pentatricopeptide repeat (PPR) proteins. PPR proteins consist of tandem arrays of a highly degenerate unit of 35 (pentatrico) amino acids, and PPR motifs are believed to recognize specific RNA sequences. In Arabidopsis thaliana, more than 450 sites are edited in mitochondria and plastids, and a similar number of PPR proteins are encoded in the nuclear genome. To study how the tandem array of a PPR motif facilitates the recognition of RNA sequences, an efficient biochemical strategy is an in vitro binding assay of recombinant PPR proteins with target RNA. This analysis is especially powerful with a combination of in vivo analyses based on the phenotypes of mutants and transgenic plants. In this chapter, we describe methods for the expression of recombinant PPR proteins in Escherichia coli, preparation of probe RNAs, and RNA gel shift assays. These methods can also be utilized for other RNA-binding proteins.

  13. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    Science.gov (United States)

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  14. Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin.

    Science.gov (United States)

    Saito, Toru; Thiel, Walter

    2014-05-15

    We report a combined quantum mechanics/molecular mechanics (QM/MM) study on the mechanism of reversible dioxygen binding in the active site of hemocyanin (Hc). The QM region is treated by broken-symmetry density functional theory (DFT) with spin projection corrections. The X-ray structures of deoxygenated (deoxyHc) and oxygenated (oxyHc) hemocyanin are well reproduced by QM/MM geometry optimizations. The computed relative energies strongly depend on the chosen density functional. They are consistent with the available thermodynamic data for oxygen binding in hemocyanin and in synthetic model complexes when the BH&HLYP hybrid functional with 50% Hartree-Fock exchange is used. According to the QM(BH&HLYP)/MM results, the reaction proceeds stepwise with two sequential electron transfer (ET) processes in the triplet state followed by an intersystem crossing to the singlet product. The first ET step leads to a nonbridged superoxo CuB(II)-O2(•-) intermediate via a low-barrier transition state. The second ET step is even more facile and yields a side-on oxyHc complex with the characteristic Cu2O2 butterfly core, accompanied by triplet-singlet intersystem crossing. The computed barriers are very small so that the two ET processes are expected to very rapid and nearly simultaneous.

  15. The Target of β-Expansin EXPB1 in Maize Cell Walls from Binding and Solid-State NMR Studies.

    Science.gov (United States)

    Wang, Tuo; Chen, Yuning; Tabuchi, Akira; Cosgrove, Daniel J; Hong, Mei

    2016-12-01

    The wall-loosening actions of β-expansins are known primarily from studies of EXPB1 extracted from maize (Zea mays) pollen. EXPB1 selectively loosens cell walls (CWs) of grasses, but its specific binding target is unknown. We characterized EXPB1 binding to sequentially extracted maize CWs, finding that the protein primarily binds glucuronoarabinoxylan (GAX), the major matrix polysaccharide in grass CWs. This binding is strongly reduced by salts, indicating that it is predominantly electrostatic in nature. For direct molecular evidence of EXPB1 binding, we conducted solid-state nuclear magnetic resonance experiments using paramagnetic relaxation enhancement (PRE), which is sensitive to distances between unpaired electrons and nuclei. By mixing (13)C-enriched maize CWs with EXPB1 functionalized with a Mn(2+) tag, we measured Mn(2+)-induced PRE Strong (1)H and (13)C PREs were observed for the carboxyls of GAX, followed by more moderate PREs for carboxyl groups in homogalacturonan and rhamnogalacturonan-I, indicating that EXPB1 preferentially binds GAX In contrast, no PRE was observed for cellulose, indicating very weak interaction of EXPB1 with cellulose. Dynamics experiments show that EXPB1 changes GAX mobility in a complex manner: the rigid fraction of GAX became more rigid upon EXPB1 binding while the dynamic fraction became more mobile. Combining these data with previous results, we propose that EXPB1 loosens grass CWs by disrupting noncovalent junctions between highly substituted GAX and GAX of low substitution, which binds cellulose. This study provides molecular evidence of β-expansin's target in grass CWs and demonstrates a new strategy for investigating ligand binding for proteins that are difficult to express heterologously.

  16. Constant-pressure Blowers

    Science.gov (United States)

    Sorensen, E

    1940-01-01

    The conventional axial blowers operate on the high-pressure principle. One drawback of this type of blower is the relatively low pressure head, which one attempts to overcome with axial blowers producing very high pressure at a given circumferential speed. The Schicht constant-pressure blower affords pressure ratios considerably higher than those of axial blowers of conventional design with approximately the same efficiency.

  17. String Scale Cosmological Constant

    OpenAIRE

    Chalmers, Gordon

    2006-01-01

    The cosmological constant is an unexplained until now phenomena of nature that requires an explanation through string effects. The apparent discrepancy between theory and experiment is enourmous and has already been explained several times by the author including mechanisms. In this work the string theory theory of abolished string modes is documented and given perturbatively to all loop orders. The holographic underpinning is also exposed. The matching with the data of the LIGO and D0 experi...

  18. The Hubble Constant.

    Science.gov (United States)

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72-74 km s(-1) Mpc(-1), with typical errors of 2-3 km s(-1) Mpc(-1). This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s(-1) Mpc(-1) and typical errors of 1-2 km s(-1) Mpc(-1). The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  19. Universe of constant

    Science.gov (United States)

    Yongquan, Han

    2016-10-01

    The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan

  20. Mode of encapsulation of linezolid by β-cyclodextrin and its role in bovine serum albumin binding.

    Science.gov (United States)

    Natesan, Sudha; Sowrirajan, Chandrasekaran; Yousuf, Sameena; Enoch, Israel V M V

    2015-01-22

    We describe, in this article, the associative interaction between Linezolid and β-Cyclodextrin, and the influence of β-Cyclodextrin on Linezolid's binding to Bovine serum albumin. β-Cyclodextrin forms a 1:1 inclusion complex with Linezolid, with a binding constant value of 3.51×10(2)M(-1). The binding is studied using ultraviolet-visible absorption, fluorescence, nuclear magnetic resonance, and rotating-frame overhauser effect spectroscopic techniques. The amide substituent on the oxazolidinone ring of Linezolid is involved in its binding to β-Cyclodextrin. The binding of the Linezolid to bovine serum albumin, in the absence and the presence of β-Cyclodextrin, is studied by analyzing the fluorescence quenching and Förster resonance energy transfer. The Stern-Volmer quenching constant, the binding constant, and energy transfer occurring on the interaction of the Linezolid with BSA are found to be smaller in the presence of β-Cyclodextrin than in water.

  1. Empirical study of performance of data binding in ASP.NET web applications

    CERN Document Server

    Stojanovski, Toni; Velinov, Ivan

    2012-01-01

    Most developers use default properties of ASP.NET server controls when developing web applications. ASP.NET web applications typically employ server controls to provide dynamic web pages, and data-bound server controls to display and maintain database data. Though the default properties allow for fast creation of workable applications, creating a high-performance, multi-user, and scalable web application requires careful configuring of server controls and their enhancement using custom-made code. In providing commonly required functionality in data-driven ASP.NET web applications such as paging, sorting and filtering, our empirical study evaluated the impact of various technical approaches: automatic data binding in web server controls; data paging and sorting on web server; paging and sorting on database server; indexed and non-indexed database columns; clustered vs. non-clustered indices. The study observed significant performance differences between various technical approaches.

  2. Tight-binding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Corral, I.; German, E.; Brizuela, G.P.; Juan, A. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Volpe, M.A. [Planta Piloto de Ingenieria Quimica, Universidad Nacional del Sur-CONICET, camino de La Carrindanga Km. 7, 8000 Bahia Blanca (Argentina)

    2010-03-15

    In this work we report a theoretical study on the atomic and molecular hydrogen adsorption onto Pd-decorated graphene monolayer and carbon nanotubes by a semi-empirical tight-binding method. We first investigated the preferential adsorption geometry, considering different adsorption sites on the carbon surface, and then studied the evolution of the chemical bonding by evaluation of the overlap population (OP) and crystal orbital overlap population (COOP). Our results show that strong C-Pd and H-Pd bonds are formed during atomic hydrogen adsorption, with an important role in the bonding of C 2p{sub z} and Pd 5s, 5p{sub z} and 4d{sub z}{sup 2} orbitals. The hydrogen storage mechanism in Pd-doped carbon-based materials seems to involve the dissociation of H{sub 2} molecule on the decoration points and the bonding between resultant atomic hydrogen and the carbon surface. (author)

  3. The binding interactions of imidacloprid with earthworm fibrinolytic enzyme

    Science.gov (United States)

    Wang, Yan-Qing; Zhang, Hong-Mei; Chen, Tao

    2014-08-01

    In this paper, several studies were conducted to elucidate the binding mechanism of earthworm fibrinolytic enzyme (EFE) with imidocloprid (IMI) by using theoretical calculation, fluorescence, UV-vis, circular dichroism spectroscopy and an enzymatic inhibition assay. The spectral data showed that the binding interactions existed between IMI and EFE. The binding constants, binding site, thermodynamic parameters and binding forces were analyzed in detail. The results indicate a single class of binding sites for IMI in EFE and that this binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being 2.195 kJ mol-1 and 94.480 J mol-1 K-1, respectively. A single class of binding site existed for IMI in EFE. The tertiary or secondary structure of EFE was partly destroyed by IMI. The visualized binding details were also exhibited by the theoretical calculation and the results indicated that the interaction between IMI and Phe (Tyr, or Trp) or EFE occurred. Combining the experimental data with the theoretical calculation data, we showed that the binding forces between IMI and EFE were mainly hydrophobic force accompanied by hydrogen binding, and π-π stacking. In addition, IMI did not obviously influence the activity of EFE. In a word, the above analysis offered insights into the binding mechanism of IMI with EFE and could provide some important information for the molecular toxicity of IMI for earthworms.

  4. Binding studies of lophirone B with bovine serum albumin (BSA): Combination of spectroscopic and molecular docking techniques

    Science.gov (United States)

    Chaves, Otávio Augusto; da Silva, Veridiana A.; Sant'Anna, Carlos Maurício R.; Ferreira, Aurélio B. B.; Ribeiro, Tereza Auxiliadora N.; de Carvalho, Mário G.; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos

    2017-01-01

    The interaction between the transport protein bovine serum albumin (BSA) and the natural product lophirone B, was investigated by spectroscopic techniques combined with a computational method (molecular docking). From the KSV and kq values it was concluded that lophirone B quenches the fluorescence of BSA by dynamic and static mechanisms. The Ka values, of the order of 104 M-1, and the number of binding sites (n ≈ 1), indicate that the binding is moderate and there is just one main binding site in BSA for lophirone B. The negative ΔG° values are in accordance with the spontaneity of the process and the positive ΔH° and ΔS° values indicate that the binding is entropically driven; the main binding forces for the association BSA:lophirone B are probably lipophilic interactions. Circular dichroism (CD) studies show there is not a significant perturbation on the secondary structure of the albumin upon the binding process. In order to better understand the spectroscopic results, a computational method was applied: molecular docking suggests Trp-213 site, as the main binding site for the ligand. Lophirone B seems to be exposed to the aqueous media as well as accommodated inside the protein cavity, resulting in a moderate affinity for the albumin. The Arg-198, His-287, Lys-294 and Lys-439 residues are interacting via hydrogen bonding with lophirone B, whereas the interaction with Trp-213 residue occurs through a lipophilic interaction.

  5. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins

    Science.gov (United States)

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.

  6. Study of the binding between lysozyme and C10-TAB: determination and interpretation of the partial properties of protein and surfactant at infinite dilution.

    Science.gov (United States)

    Morgado, Jorge; Aquino-Olivos, Marco Antonio; Martínez-Hernández, Ranulfo; Corea, Mónica; Grolier, Jean Pierre E; del Río, José Manuel

    2008-06-01

    This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles.

  7. Melting Heat Transfer Characteristics of Latent Heat Microcapsule-Water Mixed Slurry Flowing in a Pipe with Constant Wall Heat Flux (Experimental Study)

    Science.gov (United States)

    Inaba, Hideo; Kim, Myoung-Jun; Horibe, Akihiko

    The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration,heat,flux,and the slurry velocity. The experimental results revealed that the mean heat transfer coefficient of latent microcapsule slurry was about l.3~l.8 times greater than that of the single phase of water. Moreover the effectiveness of heat transfer coefficient to friction factor had a maximum at latent heat material concentration of 25%.

  8. Studies on interaction of insect repellent compounds with odorant binding receptor proteins by in silico molecular docking approach.

    Science.gov (United States)

    Gopal, J Vinay; Kannabiran, K

    2013-12-01

    The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.

  9. In vitro study of the binding between chlorpyrfos and sex hormones using headspace solid-phase microextraction combined with high-performance liquid chromatography: A new aspect of pesticides and breast cancer risk.

    Science.gov (United States)

    Farhadi, K; Tahmasebi, R; Biparva, P; Maleki, R

    2015-08-01

    Endocrine-disrupting chemicals are compounds that alter the normal functioning of the endocrine system. Organophosphorus insecticides, as chlorpyrifos (CPS), receive an increasing consideration as potential endocrine disrupters. Physiological estrogens, including estrone (E1), 17β-estradiol (E2), and diethylstilbestrol (DES) fluctuate with life stage, suggesting specific roles for them in biological and disease processes. There has been great interest in whether certain organophosphorus pesticides can affect the risk of breast cancer. An understanding of the interaction processes is the key to describe the fate of CPS in biological media. The objectives of this study were to evaluate total, bound, and freely dissolved amount of CPS in the presence of three estrogenic sex hormones (ESHs). In vitro experiments were conducted utilizing a headspace solid phase microextraction (HS-SPME) combined with high-performance liquid chromatography (HPLC) method. The obtained Scatchard plot based on the proposed SPME-HPLC method was employed to determine CPS-ESHs binding constant and the number of binding sites as well as binding percentage of each hormone to CPS. The number of binding sites per studied hormone molecule was 1.10, 1, and 0.81 for E1, E2, and DES, respectively. The obtained results confirmed that CPS bound to one class of binding sites on sex hormones.

  10. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA.

  11. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  12. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies.

    Science.gov (United States)

    Sivaramakrishnan, R; Su, M-C; Michael, J V; Klippenstein, S J; Harding, L B; Ruscic, B

    2010-09-09

    The thermal decomposition of ethanol and its reactions with OH and D have been studied with both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for ethanol have been measured at high T in reflected shock waves using OH optical absorption and high-sensitivity H-atom ARAS detection. The three dissociation processes that are dominant at high T are C2H5OH--> C2H4+H2O (A) -->CH3+CH2OH (B) -->C2H5+OH (C).The rate coefficient for reaction C was measured directly with high sensitivity at 308 nm using a multipass optical White cell. Meanwhile, H-atom ARAS measurements yield the overall rate coefficient and that for the sum of reactions B and C , since H-atoms are instantaneously formed from the decompositions of CH(2)OH and C(2)H(5) into CH(2)O + H and C(2)H(4) + H, respectively. By difference, rate constants for reaction 1 could be obtained. One potential complication is the scavenging of OH by unreacted ethanol in the OH experiments, and therefore, rate constants for OH+C2H5OH-->products (D)were measured using tert-butyl hydroperoxide (tBH) as the thermal source for OH. The present experiments can be represented by the Arrhenius expression k=(2.5+/-0.43) x 10(-11) exp(-911+/-191 K/T) cm3 molecule(-1) s(-1) over the T range 857-1297 K. For completeness, we have also measured the rate coefficient for the reaction of D atoms with ethanol D+C2H5OH-->products (E) whose H analogue is another key reaction in the combustion of ethanol. Over the T range 1054-1359 K, the rate constants from the present experiments can be represented by the Arrhenius expression, k=(3.98+/-0.76) x10(-10) exp(-4494+/-235 K/T) cm3 molecule(-1) s(-1). The high-pressure rate coefficients for reactions B and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A , D , and E were studied with conventional transition state theory

  13. A molecular dynamics study of chloride binding by the cryptand SC24

    Science.gov (United States)

    Owenson, B.; MacElroy, R. D.; Pohorille, A.

    1988-01-01

    The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.

  14. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    Science.gov (United States)

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine.

  15. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    ., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus...... experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution...

  16. Radioligand-binding study of noribogaine, a likely metabolite of ibogaine.

    Science.gov (United States)

    Pearl, S M; Herrick-Davis, K; Teitler, M; Glick, S D

    1995-03-27

    Radioligand-binding studies were performed to ascertain the actions of noribogaine, a suspected metabolite of ibogaine, on opioid receptors. Consistent with previous results, ibogaine showed highest affinity for kappa opioid receptors (Ki = 3.77 +/- 0.81 microM), less affinity for mu receptors (Ki = 11.04 +/- 0.66 microM) and no affinity for delta receptors (Ki > 100 microM). Noribogaine showed a higher affinity than ibogaine for all of the opioid receptors: kappa Ki = 0.96 +/- 0.08 microM, mu Ki = 2.66 +/- 0.62 microM and delta Ki = 24.72 +/- 2.26 microM. These data suggest that noribogaine is active in vivo and that it may contribute to ibogaine's pharmacological effects.

  17. Mechanistic studies on the binding of Acid Yellow 99 on coir pith.

    Science.gov (United States)

    Khan, Md Motiar R; Ray, Manju; Guha, Arun K

    2011-02-01

    The interaction of Acid Yellow 99 (AY 99) with coir pith has been investigated in aqueous medium to understand the mechanism of adsorption and explore the potentiality of this biomass towards controlling pollution resulting from textile dyes. The obtained results establish that one gram of coir pith can adsorb 442.13 mg of AY 99. The adsorption process is found to be a function of pH of the solution, the optimum pH value being 2.0. The process follows Langmuir-Freundlich dual isotherm model. Scanning electron microscopic analysis demonstrates that on dye adsorption the biomass develops uneven and irregular surface. X-ray diffraction study indicates incorporation of the dye into the micropores and macropores of the adsorbent and thereby enhancing its degree of crystallinity. The results of Fourier transform infrared (FTIR) spectroscopy and chemical modification of the functional groups establish that binding of AY 99 on coir pith occurs through electrostatic and complexation reaction.

  18. Cycloalkane and alicyclic heterocycle complexation by new switchable resorcin[4]arene-based container molecules: NMR and ITC binding studies.

    Science.gov (United States)

    Hornung, Jens; Fankhauser, Daniel; Shirtcliff, Laura D; Praetorius, Antonia; Schweizer, W Bernd; Diederich, François

    2011-10-24

    The synthesis and structural characterization of novel, "molecular basket"-type bridged cavitands is reported. The resorcin[4]arene-based container molecules feature well-defined cavities that bind a wide variety of cycloalkanes and alicyclic heterocycles. Association constants (K(a)) of the 1:1 inclusion complexes were determined by both (1)H NMR and isothermal titration calorimetry (ITC). The obtained K(a) values in mesitylene ranged from 1.7×10(2) M(-1) for cycloheptane up to 1.7×10(7) M(-1) for morpholine. Host-guest complexation by the molecular baskets is generally driven by dispersion interactions, C-H···π interactions of the guests with the aromatic walls of the cavity, and optimal cavity filling. Correlations between NMR-based structural data and binding affinities support that the complexed heterocyclic guests undergo additional polar C-O···C=O, N-H···π, and S···π interactions. The first crystal structure of a cavitand-based molecular basket is reported, providing precise information on the geometry and volume of the inner cavity in the solid state. Molecular dynamic (MD) simulations provided information on the size and conformational preorganization of the cavity in the presence of encapsulated guests. The strongest binding of heterocyclic guests, engaging in polar interactions with the host, was observed at a cavity filling volume of 63 ± 9%.

  19. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    Science.gov (United States)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  20. Good use of fruit wastes: eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies.

    Science.gov (United States)

    Sreekanth, T V M; Ravikumar, Sambandam; Lee, Yong Rok

    2016-06-01

    A simple and eco-friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  2. Elevated serotonin transporter binding in depressed patients with Parkinson's disease: a preliminary PET study with [11C]DASB.

    Science.gov (United States)

    Boileau, Isabelle; Warsh, Jerry J; Guttman, Mark; Saint-Cyr, Jean A; McCluskey, Tina; Rusjan, Pablo; Houle, Sylvain; Wilson, Alan A; Meyer, Jeffrey H; Kish, Stephen J

    2008-09-15

    This study investigated whether abnormalities in serotonin transporter binding occur in Parkinson's disease (PD) patients with concurrent depression. We estimated serotonin transporter levels in seven clinically depressed early-stage PD patients and in seven healthy matched-control subjects during a single positron emission tomography (PET) scan with the serotonin transporter radioligand, [(11)C]DASB. Depressed PD patients displayed a wide-spread increase (8-68%) in [(11)C]DASB specific binding outside of the striatum, which was significant in dorsolateral (37%) and prefrontal (68%) cortices. Elevated [(11)C]DASB binding was positively correlated with depressive symptoms but not with disease severity or duration. Compatible with recent PET/[(11)C]DASB findings in major depression, the present preliminary data suggest that increased [(11)C]DASB binding, possibly reflecting greater serotonin transporter density (up-regulation), might be a pathological feature of depression in Parkinson's disease-and possibly a characteristic of depressive illness in general.

  3. Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Zhang, Yue; Zhong, Qixin

    2012-02-22

    Bixin is the major coloring component of annatto used in manufacturing colored cheeses, but its presence in liquid whey causes undesirable quality of the recovered whey protein ingredients. The objective of this work was to study molecular binding between bixin and three major whey proteins (β-lactoglobulin, α-lactalbumin, and bovine serum albumin) at pH 7.4 using UV-vis absorption spectroscopy, fluorescence spectroscopy, isothermal titration calorimetry, and circular dichroism. These complementary techniques illustrated that the binding is a spontaneous complexation process mainly driven by hydrophobic interactions. The complexation is favored at a lower temperature and a higher ionic strength. At a lower temperature, the binding is entropy-driven, while it changes to an enthalpy-driven process at higher temperatures. The binding also increases the percentage of unordered secondary structures of proteins. Findings from this work can be used to develop whey protein recovery processes for minimizing residual annatto content in whey protein ingredients.

  4. Influence of sulfhydryl sites on metal binding by bacteria

    Science.gov (United States)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  5. Binding of semenogelin I to intact human spermatozoa studied by flow cytometry and surface plasmon resonance.

    Science.gov (United States)

    Jonsson, Magnus; Frohm, Birgitta; Malm, Johan

    2010-01-01

    Approximately 1 in 10 couples is infertile. No definite cause can be found in about 25% of those cases. Studies have indicated that seminal vesicle secretion functions as an optimizer of fertilization. The Zn(2+) binding protein semenogelin I (SgI) represents a major fraction of the proteins present in seminal vesicle fluid, and it serves as a structural component of the coagulum that is formed after ejaculation. Cleavage of SgI by prostate-specific antigen results in liquefaction of the coagulum. Fragmented SgI has antibacterial effects and inhibits spermatozoa mobility. SgI has also been found complexed to eppin on spermatozoa, and this complex has been suggested to be of importance for fertility. Here, we used flow cytometry and surface plasmon resonance to study SgI regarding its association with spermatozoa and the interaction dependency on Zn(2+). The concentration of Zn(2+) in seminal plasma is approximately 100 times higher than in blood plasma, and the metal ion is known to change the structure of SgI. We found that SgI binds to spermatozoa in a concentration-dependent and saturable manner. In solution, SgI bound to spermatozoa in a non-Zn(2+)-dependent way, whereas immobilized SgI interacts with spermatozoa only in the presence of Zn(2+). It indicates that SgI must exhibit a specific structure or free flexibility to be able to interact with that ligand. Our results indicate that the association of SgI to spermatozoa is conformation dependent and specific. These findings could constitute a basis for the development of a male contraceptive.

  6. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E.

    Science.gov (United States)

    Siddiqui, Shoib; Schwarz, Flavio; Springer, Stevan; Khedri, Zahra; Yu, Hai; Deng, Lingquan; Verhagen, Andrea; Naito-Matsui, Yuko; Jiang, Weiping; Kim, Daniel; Zhou, Jie; Ding, Beibei; Chen, Xi; Varki, Nissi; Varki, Ajit

    2017-01-20

    CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.

  7. Fluorescence quenching studies of γ-butyrolactone binding protein (CprB) from Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Biswas, Anwesha; Swarnkar, Ravi K; Hussain, Bhukya; Sahoo, Suraj K; Pradeepkumar, P I; Patwari, G Naresh; Anand, Ruchi

    2014-08-28

    Quorum sensing is a cell density dependent phenomenon that utilizes small molecule inducers like γ-butyrolactones (GBLs) and their receptor proteins for adaptation to the environment. The cognate GBLs that bind to several of this GBL receptor family of proteins remain elusive. Here, using CprB protein from Streptomyces coelicolor A3(2) as a model system, we devise a method suited for ligand screening that would be applicable to the entire family of GBL receptors. Docking studies were performed to confirm the identity of the ligand binding pocket, and it was ascertained that the common γ-butyrolactone moiety interacts with the conserved tryptophan residue (W127) residing in the ligand binding pocket. The presence of W127 in the cavity was exploited to monitor its fluorescence quenching on the addition of two chemically synthesized GBLs. Analysis of the data with both the native and W185L mutant versions of the protein confirmed that the compounds used as quenchers reside in the ligand binding pocket. Furthermore, fluorescence lifetime and potassium iodide (KI) quenching studies established that the quenching is static in nature and that the tryptophan residue is buried and inaccessible to surface quenchers. Additionally, a combination of concentration dependent fluorescence quenching and dynamic light scattering experiments revealed that the binding properties of the protein are concentration dependent and it was concluded that the most efficient binding of the ligand is evoked by working at the lowest concentration of protein, providing a sufficient signal, where the aggregation effects are negligible.

  8. Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes

    Indian Academy of Sciences (India)

    Pidaran Murugan; Leelavinothan Pari; Chippada Appa Rao

    2008-03-01

    Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)–nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin–receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (Kd1), low affinity (Kd2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is

  9. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    Science.gov (United States)

    Shao, Qing; Hall, Carol K

    2016-08-09

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  10. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Directory of Open Access Journals (Sweden)

    Kaur R

    2012-07-01

    . These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized "diamoplexes".Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials.Keywords: disaggregation, spectroscopy, dispersion, electrophoresis, size, zeta potential

  11. Study on the Constant Temperature Stability of Poly Ethylene Glycol Fatty Alcohol%聚乙氧基化脂肪醇恒温稳定性研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Taking epoxy ethane and C12-14 natural fatty alcohol as raw materials, the second generation of ethoxylation device with Pressindustria (PI) process was used to synthesize different specification of poly ethylene oxygen radicals fatty alcohol products AEO-2, AEO-3, AEO-5, AEO-7, AEO-9.Then their constant temperature stabilities were respectively studied with sodium hydroxide and potassium hydroxide as catalysts. Experimental results show that using KOH as catalyst in different concentration and different process conditions, the temperature stability is better; using sodium hydroxide as catalyst in different concentration and different process conditions, influence on the temperature stability of AEO-9 products is bigger, other constant temperature stability is better.%以环氧乙烷和 C12-14天然脂肪醇为原料,通过 Pressindustria(普利斯)工艺第二代乙氧基化装置合成不同规格的聚乙氧基化脂肪醇产品 AEO-2、AEO-3、AEO-5、AEO-7、AEO-9,分别以氢氧化钠和氢氧化钾为催化剂研究其恒温稳定性。实验结果表明,以氢氧化钾为催化剂在不同浓度及不同的工艺条件下,恒温稳定性较好;以氢氧化钠为催化剂在不同浓度及不同的工艺条件下,对 AEO-9产品恒温稳定性影响较大,其它品种恒温稳定性较好。

  12. Tissue specificity of endothelin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. (BioMega, Inc., Laval, Quebec (Canada))

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  13. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.

    Science.gov (United States)

    Ruiz, Mario; Ganfornina, Maria D; Correnti, Colin; Strong, Roland K; Sanchez, Diego

    2014-04-01

    Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket.

  14. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  15. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    Science.gov (United States)

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  16. Kinetic analysis of transport and opioid receptor binding of ( sup 3 H)(-)-cyclofoxy in rat brain in vivo: Implications for human studies

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y.; Kawai, R.; McManaway, M.; Otsuki, H.; Rice, K.C.; Patlak, C.S.; Blasberg, R.G. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.

  17. NMr studies of the AMP binding site and mechanism of adenylate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, S.A.; Fry, D.C.; Mildvan, A.S.

    1986-05-01

    The authors recently located by NMR the MgATP binding site on adenylate kinase correcting the proposed location for this site based on X-ray studies of the binding of salicylate. To determine the conformation and location of the other substrate, they have determined distances from Cr/sup 3 +/ AMPPCP to 6 protons and to the phosphorus atom of AMP on adenylate kinase using the paramagnetic-probe-T/sub 1/ method. They have also used time-dependent NOEs to measure five interproton distances on AMP, permitting evaluation of the conformation of enzyme-bound AMP and its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high-anti glycosyl torsional angle (X = 110/sup 0/), a 3'-endo sugar pucker (delta = 105/sup 0/), and a gauche-trans orientation about the C/sub 4/'-C/sub 5/' bond (..gamma.. = 180/sup 0/). The distance from Cr/sup 3 +/ to the phosphorus of AMP is 6.4 +/- 0.3 A, indicating a reaction coordinate distance of greater than or equal to A which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP were detected. These constraints, together with the conformation of AMP and the X-ray structure of the enzyme, suggest proximity (less than or equal to A) of AMP to leu 116, arg 171, val 173, gln 185, thr 188, and asp 191.

  18. Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guowen, E-mail: gwzhang@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang, Jiangxi 330047 (China); Fu, Peng; Pan, Junhui [State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang, Jiangxi 330047 (China)

    2013-02-15

    The mechanism of paeoniflorin binding to calf thymus DNA in physiological buffer (pH 7.4) was investigated by multispectroscopic methods including UV-vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, coupled with viscosity measurements and DNA melting techniques. The results suggested that paeoniflorin molecules could bind to DNA via groove binding mode as evidenced by no significant change in iodide quenching effect, increase in single-stranded DNA (ssDNA) quenching effect, and almost unchanged relative viscosity and melting temperature of DNA. The observed changes in CD signals revealed that DNA remains in the B-conformation. Further, the displacement experiments with Hoechst 33258 probe and the results of FT-IR spectra indicated that paeoniflorin mainly binds in the region of rich A-T base pairs of DNA. The thermodynamic parameters, enthalpy change ({Delta}H Degree-Sign ) and entropy change ({Delta}S Degree-Sign ) were calculated to be -30.09{+-}0.18 kJ mol{sup -1} and -14.07{+-}0.61 J mol{sup -1} K{sup -1} by the van't Hoff equation, suggesting that hydrogen bond and van der Waals forces play a predominant role in the binding of paeoniflorin to DNA. - Highlights: Black-Right-Pointing-Pointer The binding mode of paeoniflorin to calf thymus DNA is the minor groove binding. Black-Right-Pointing-Pointer Paeoniflorin mainly binds in the region of rich A-T base pairs of DNA. Black-Right-Pointing-Pointer The binding does not alter the native B-conformation of DNA. Black-Right-Pointing-Pointer The binding is driven mainly by hydrogen bonds and van der Waals forces.

  19. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  20. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF6 molecules, X = S, Se, Te, Mo, and W

    Science.gov (United States)

    Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał

    2014-05-01

    We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin-rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin-rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin-rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  1. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Demissie, Taye B. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  2. Electrostatic interactions in the binding pathway of a transient protein complex studied by NMR and isothermal titration calorimetry.

    Science.gov (United States)

    Meneses, Erick; Mittermaier, Anthony

    2014-10-03

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes.

  3. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  4. Decay constants in geochronology

    Institute of Scientific and Technical Information of China (English)

    IgorM.Villa; PaulR.Renne

    2005-01-01

    Geologic time is fundamental to the Earth Sciences, and progress in many disciplines depends critically on our ability to measure time with increasing accuracy and precision. Isotopic geochronology makes use of the decay of radioactive nuclides as a help to quantify the histories of rock, minerals, and other materials. Both accuracy and precision of radioisotopic ages are, at present, limited by those of radioactive decay constants. Modem mass spectrometers can measure isotope ratios with a precision of 10-4 or better. On the other hand, the uncertainties associated with direct half-life determinations are, in most cases, still at the percent level. The present short note briefly summarizes progress and problems that have been encountered during the Working Group's activity.

  5. When constants are important

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  6. Constant Proportion Portfolio Insurance

    DEFF Research Database (Denmark)

    Jessen, Cathrine

    2014-01-01

    Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation...... on the theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio....... Frequent rebalancing limits how badly the position can go off track, but costs more than infrequent rebalancing. Gap risk resulting from a down jump that penetrates the floor adds another hard-to-manage risk. In this article, Jessen comparescommon hedging strategies for CPPI and explores how well each does...

  7. Kinetic flow dichroism study of conformational changes in supercoiled DNA induced by ethidium bromide and noncovalent and covalent binding of benz[a]pyrene diol epoxide.

    Science.gov (United States)

    Yoshida, H; Swenberg, C E; Geacintov, N E

    1987-03-10

    The dynamic conformational changes due to the noncovalent intercalative binding of ethidium bromide and racemic trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and the covalent binding of BPDE to supercoiled phi X174 DNA, have been studied by gel electrophoresis and a novel application of a kinetic flow linear dichroism technique. The magnitude of the linear dichroism (delta A) of the DNA oriented in the flow gradient is sensitive to the hydrodynamic shape of the DNA molecule which is affected by the binding of the drug or the carcinogen BPDE. While the linear dichroism of ethidium bromide supercoiled DNA is time independent, the delta A spectra of BPDE-DNA reaction mixtures vary on time scales of minutes, which correspond to the reaction rate constant of BPDE to form 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene hydrolysis products and covalent DNA adducts. The rapid noncovalent intercalation of BPDE causes an initial large increase in delta A (up to 250%, corresponding to the dichroism observed with relaxed circular DNA), followed by a slower decrease in the linear dichroism signal. This decrease in delta A is attributed to the removal of intercalated diol epoxide molecules and the resulting reversible increase in the number of superhelical turns. The kinetic flow dichroism spectra indicate that the noncovalent BPDE-DNA complexes are intercalative in nature, while the covalent adducts are characterized by a very different conformation in which the long axes of the pyrenyl residues are oriented at a large angle with respect to the average orientation of the planes of the DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Diniz, Carlos Roberto; Nascimento, Marta Cordeiro [FUNED, Belo Horizonte, MG (Brazil); Lima, Maria Elena de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia

    1996-07-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ({sup 125} I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na{sup 125} I by the lactoperoxidase method. {sup 125} I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10{sup -10} M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of {sup 125} I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  9. Molecular docking study investigating the possible mode of binding of C.I. Acid Red 73 with DNA.

    Science.gov (United States)

    Guo, Yumei; Yue, Qinyan; Gao, Baoyu

    2011-07-01

    C.I. Acid Red 73 is a reactive azo dye with a variable potential carcinogenicity. The mechanism mediating interactions that occur between the dye and DNA have not been completely understood thus far. In this study, molecular docking techniques were applied to describe the most probable mode of DNA binding as well as the sequence selectivity of the C.I. Acid Red 73 dye. These docking experiments revealed that the dye is capable of interacting with the minor groove of the DNA on the basis of its curved shape, which fits well with the topology of double-stranded DNA. In addition, the dye can bind selectively to the minor groove of the DNA by applying CGT sequence selectivity. Further, the minor groove can be recognized although DNA targets present intercalation gaps. However, intercalative binding can also occur when the DNA target possesses an appropriate intercalation gap. Compared with the other eight DNA sequences that were studied, the DNA dodecamer d(CGCGATATCGCG)(2) (PDB ID: 1DNE) presents a very favorable target for the binding of C.I. Acid Red 73 to the minor groove, with the lowest binding free energy -9.19 kcal/mol. Results reported from this study are expected to provide useful information for research involving further simulations of molecular dynamics and toxicology investigations of the dye.

  10. Influence of the gap size and dielectric constant of the packing on the plasma discharge in a packed bed dielectric barrier discharge reactor: a fluid modeling study

    Science.gov (United States)

    van Laer, Koen; Bogaerts, Annemie

    2016-09-01

    Packed bed dielectric barrier discharge (DBD) reactors have proven to be very useful sources of non-thermal plasma for a wide range of applications, of which the environmental applications have received most attention in recent years. Compared to an empty DBD reactor, a packing was introduced to either enhance the energy efficiency of the process, or, if the packing is catalytically active, steer the process towards a preferred end product. A wide range of geometries, bead sizes and bead materials have been tested experimentally in the past. However, since experimental diagnostics become more difficult with a packing present, a computational study is proposed to gain more insight. Using COMSOL's built in plasma module, a 2D axisymmetric fluid model is developed to study the influence of the gap size and the dielectric constant (ɛ) of the packing. Helium is used as discharge gas, at atmospheric pressure and room temperature. By decreasing the gas gap, the electric field strength is enhanced, resulting in a higher number of current peaks per half cycle of applied rf potential. Increasing ɛ also enhances the electric field strength. However, after a certain ɛ, its influence saturates. The electric field strength will no longer increase, leaving the discharge behavior unchanged.

  11. A first-principles study of cementite (Fe3C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Science.gov (United States)

    Ghosh, G.

    2015-08-01

    A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  12. A first-principles study of cementite (Fe3C and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Directory of Open Access Journals (Sweden)

    G. Ghosh

    2015-08-01

    Full Text Available A comprehensive computational study of elastic properties of cementite (Fe3C and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT, all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA. Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i single-crystal elastic constants, Cij, of above M3Cs; (ii anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii isotropic (polycrystalline elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio of M3Cs by homogenization of calculated Cijs; and (iv acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  13. Randomized crossover study comparing the phosphate-binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis

    DEFF Research Database (Denmark)

    Bro, S; Rasmussen, R A; Handberg, J

    1998-01-01

    The objective of the study was to evaluate the phosphate-binding efficacy, side effects, and cost of therapy of calcium ketoglutarate granulate as compared with calcium carbonate tablets in patients on chronic hemodialysis. The study design used was a randomized, crossover open trial, and the main...

  14. A comparative study of density functional and density functional tight binding calculations of defects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, Alberto [Laboratoire de Physique des Solides, Univ. Paris Sud, CNRS UMR, Orsay (France); Ivanovskaya, Viktoria; Wagner, Philipp; Yaya, Abu; Ewels, Chris P. [Institut des Materiaux Jean Rouxel (IMN), CNRS UMR, University of Nantes (France); Suarez-Martinez, Irene [Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia (Australia)

    2012-02-15

    The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb+ code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene. DFTB-MD derived sputtering energy threshold map for a carbon atom in a graphene plane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. 1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis

    Science.gov (United States)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2008-11-01

    Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].

  16. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    Science.gov (United States)

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program.

  17. Synthesis, characterization and DNA-binding studies of 2-carboxybenzaldehydeisonicotinoylhydrazone and its La(III), Sm(III) and Eu(III) complexes

    Science.gov (United States)

    Wang, Yuan; Wang, Yan; Yang, Zheng-Yin

    2007-02-01

    2-Carboxybenzaldehydeisonicotinoylhydrazone (HL), and its three lanthanide complexes, LnL 3·4H 2O [Ln = La( 1), Sm( 2), Eu( 3)], have been synthesized and characterized on the basis of elemental analyses, molar conductivities, IR spectra and thermal analyses. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence and viscosity measurements. The experimental results indicated that the complexes ( 2) and ( 3) can bind to DNA, but the ligand and the complex ( 1) cannot; the binding affinity of the complex ( 3) is higher than that of the complex ( 2) and the intrinsic binding constant Kb of the complex ( 3) is 7.86 × 10 4 M -1.

  18. Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes.

    Science.gov (United States)

    Arjmand, Farukh; Parveen, Shazia; Afzal, Mohd; Shahid, Mohd

    2012-09-03

    To explore the therapeutic potential of copper-based benzimidazole complexes, tetranuclear Cu(II) complex 1 and dinuclear ternary amino acid complexes 2 and 3 {L-trp and L-val, respectively} were synthesized and thoroughly characterized. In vitro DNA binding studies of complexes 1-3 were carried out employing UV-vis titrations, fluorescence, circular dichroic and viscosity measurements which revealed that the complexes 1-3 bind to CT DNA preferably via groove binding. Complex 1 cleaved pBR322 DNA via hydrolytic pathway (validated by T4 DNA ligase assay), accessible to major groove while 2 followed oxidative mechanism, binding to minor groove of DNA double helix; binding events were further validated by molecular docking studies. Additionally, the complexes 1 and 2 exhibit high Topo-I inhibitory activity at different concentrations. The complexes 1-3 were evaluated for antibacterial activity against Escherichia coli and Staphylococcus aureus, and 2 was found to be most effective against Gram-positive bacteria.

  19. Competitive binding of (-)-epigallocatechin-3-gallate and 5-fluorouracil to human serum albumin: A fluorescence and circular dichroism study

    Science.gov (United States)

    Yuan, Lixia; Liu, Min; Liu, Guiqin; Li, Dacheng; Wang, Zhengping; Wang, Bingquan; Han, Jun; Zhang, Min

    2017-02-01

    Combination therapy with more than one therapeutic agent can improve therapeutic efficiency and decrease drug resistance. In this study, the interactions of human serum albumin (HSA) with individual or combined anticancer drugs, (-)-epigallocatechin-3-gallate (EGCG) and 5-fluorouracil (FU), were investigated by fluorescence and circular dichroism (CD) spectroscopy. The results demonstrated that the interaction of EGCG or FU with HSA is a process of static quenching and EGCG formed a more stable complex. The competitive experiments of site markers suggested that both anti-carcinogens mainly bound to site I (subdomain IIA). The interaction forces which play important roles in the binding process were discussed based on enthalpy and entropy changes. Moreover, the competition binding model for a ternary system was proposed so as to precisely calculate the binding parameters. The results demonstrated that one drug decreased the binding affinity of another drug with HSA, resulting in the increasing free drug concentration at the action sites. CD studies indicated that there was an alteration in HSA secondary structure due to the binding of EGCG and FU. It can be concluded that the combination of EGCG with FU may enhance anticancer efficacy. This finding may provide a theoretical basis for clinical treatments.

  20. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    Science.gov (United States)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  1. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    [99mTc]DTPA has achieved widespread use for the measurement of glomerular filtration rate (GFR) with the single injection plasma clearance technique and for gamma-camera renography. However, the quality of the commercial preparations varies. The purpose of the present investigation was to study...... the quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...... filtration after incubation with human serum albumin and in vivo protein binding by filtration of human plasma. The accuracy of the plasma clearance values was investigated by comparison with the simultaneously measured plasma clearance of [51Cr]EDTA. There was no detectable free pertechnetate or hydrolysed...

  2. Investigations on Binding Pattern of Kinase Inhibitors with PPARγ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies

    Science.gov (United States)

    Mazumder, Mohit; Das, Umashankar; Gourinath, Samudrala

    2017-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a potential target for the treatment of several disorders. In view of several FDA approved kinase inhibitors, in the current study, we have investigated the interaction of selected kinase inhibitors with PPARγ using computational modeling, docking, and molecular dynamics simulations (MDS). The docked conformations and MDS studies suggest that the selected KIs interact with PPARγ in the ligand binding domain (LBD) with high positive predictive values. Hence, we have for the first time shown the plausible binding of KIs in the PPARγ ligand binding site. The results obtained from these in silico investigations warrant further evaluation of kinase inhibitors as PPARγ ligands in vitro and in vivo.

  3. Crystallization and preliminary structural studies of champedak galactose-binding lectin.

    Science.gov (United States)

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Abdul-Rahman, Puteri Shafinaz; Mohamed, Emida; Ibrahim, Wan Izlina Wan; Hashim, Onn Haji; Isaacs, Neil W; Cogdell, Richard J

    2009-09-01

    Galactose-binding lectin from champedak (Artocarpus integer) consists of two chains: alpha and beta (133 and 21 amino acids, respectively). It has been shown to recognize and bind to carbohydrates involved in IgA and C1 inhibitor molecules. The protein was purified and crystallized at 293 K. Crystals were observed in two space groups, P2(1) and P2(1)2(1)2, and diffracted to 1.65 and 2.6 A, respectively.

  4. Studies on the metabolism of chlorotrianisene to a reactive intermediate and subsequent covalent binding to microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Juedes, M.J.

    1989-01-01

    The studies on chlorotrianisene were conducted to determine whether metabolism of chlorotrianisene occurs via the cytochrome P450 monooxygenase system and whether a reactive intermediate is being formed that is capable of binding covalently to microsomal proteins. ({sup 3}H)-chlorotrianisene was incubated with liver microsomes supplemented with NADPH. At the termination of the incubation, the protein was trapped on a glass filter and the unbound chlorotrianisene was removed by extensive washing of the protein with organic solvent. A dramatic stimulation of covalent binding was demonstrated in microsomes from rats treated with methylcholanthrene (60 fold increase) versus control or phenobarbital treatment. Verification of covalent binding was achieved by localization of radiolabeled bands following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the macromolecules in the incubation mixture. Further analysis of the radiolabeled macromolecules separated on SDS-PAGE revealed that these macromolecules were degraded by protease degradation indicating that the macromolecules were proteins. Further investigations were done to determine the cause of the dramatic stimulation of covalent binding detected in microsomes from methylcholanthrene treated rats versus control or phenobarbital treated rats. Further evidence for the participation of P-450c was obtained with a reconstituted cytochrome P-450 system. Incubations of chlorotrianisene with reconstituted P-450c and NADPH-cytochrome P-450 reductase exhibited covalent binding characteristics comparable to those seen in microsomal incubations. Investigations into the nature of the binding site and the reactive intermediate are currently being conducted. By analyzing the BSA adduct, the author intends to isolate the specific amino acid binding site(s).

  5. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  6. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

  7. Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia

    Indian Academy of Sciences (India)

    Mohammad Bagherbandi; Robert Tenzer

    2013-04-01

    We compare three different numerical schemes of treating the Moho density contrast in gravimetric inverse problems for finding the Moho depths. The results are validated using the global crustal model CRUST2.0, which is determined based purely on seismic data. Firstly, the gravimetric recovery of the Moho depths is realized by solving Moritz’s generalization of the Vening-Meinesz inverse problem of isostasy while the constant Moho density contrast is adopted. The Pratt-Hayford isostatic model is then facilitated to estimate the variable Moho density contrast. This variable Moho density contrast is subsequently used to determine the Moho depths. Finally, the combined least-squares approach is applied to estimate jointly the Moho depths and density contract based on a priori error model. The EGM2008 global gravity model and the DTM2006.0 global topographic/bathymetric model are used to generate the isostatic gravity anomalies. The comparison of numerical results reveals that the optimal isostatic inverse scheme should take into consideration both the variable depth and density of compensation. This is achieved by applying the combined least-squares approach for a simultaneous estimation of both Moho parameters. We demonstrate that the result obtained using this method has the best agreement with the CRUST2.0 Moho depths. The numerical experiments are conducted at the regional study area of New Zealand’s continental shelf.

  8. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population.

    Directory of Open Access Journals (Sweden)

    Zhiyan Zhang

    Full Text Available Hematological traits are important indicators of immune function and have been commonly examined as biomarkers of disease and disease severity in humans. Pig is an ideal biomedical model for human diseases due to its high degree of similarity with human physiological characteristics. Here, we conducted genome-wide association studies (GWAS for 18 hematological traits at three growth stages (days 18, 46 and 240 in a White Duroc × Erhualian F2 intercross. In total, we identified 38 genome-wide significant regions containing 185 genome-wide significant SNPs by single-marker GWAS or LONG-GWAS. The significant regions are distributed on pig chromosomes (SSC 1, 4, 5, 7, 8, 10, 11, 12, 13, 17 and 18, and most of significant SNPs reside on SSC7 and SSC8. Of the 38 significant regions, 7 show constant effects on hematological traits across the whole life stages, and 6 regions have time-specific effects on the measured traits at early or late stages. The most prominent locus is the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid traits. The KIT gene in this region appears to be a promising candidate gene. The findings improve our understanding of the genetic architecture of hematological traits in pigs. Further investigations are warranted to characterize the responsible gene(s and causal variant(s especially for the major loci on SSC7 and SSC8.

  9. Structural effects of pH and deacylation on surfactant protein C in an organic solvent mixture: a constant-pH MD study.

    Science.gov (United States)

    Carvalheda, Catarina A; Campos, Sara R R; Machuqueiro, Miguel; Baptista, António M

    2013-11-25

    The pulmonary surfactant protein C (SP-C) is a small highly hydrophobic protein that adopts a mainly helical structure while associated with the membrane but misfolds into a β-rich metastable structure upon deacylation, membrane dissociation, and exposure to the neutral pH of the aqueous alveolar subphase, eventually leading to the formation of amyloid aggregates associated with pulmonary alveolar proteinosis. The present constant-pH MD study of the acylated and deacylated isoforms of SP-C in a chloroform/methanol/water mixture, often used to mimic the membrane environment, shows that the loss of the acyl groups has a structural destabilizing effect and that the increase of pH promotes intraprotein contacts which contribute to the loss of helical structure in solution. These contacts result from the poor solvation of charged groups by the solvent mixture, which exhibits a limited membrane-mimetic character. Although a single SP-C molecule was used in the simulations, we propose that analogous intermolecular interactions may play a role in the early stages of the protein misfolding and aggregation in this mixture.

  10. Study of pK values and effective dielectric constants of ionizable residues in pentapeptides and in staphylococcal nuclease (SNase) using a mean-field approach.

    Science.gov (United States)

    Bossa, Guilherme Volpe; Fahr, Alfred; Pereira de Souza, Tereza

    2014-04-17

    The determination of pK values of amino acid residues as a function of temperature and ionic concentration is crucial to understanding the dynamics of various biological processes such as adsorption of peptides and their interactions with active sites of enzymes. In this study we developed a mean-field model to calculate the position-dependent dielectric constants of ionizable groups and the mean electrostatic potential on the surface. Such potential, which takes into account the contributions exerted by neighboring groups and ions in solution, is responsible for the fine-tuning of the pK value of each residue. The proposed model was applied to the amino acids Asp, Glu, Lys, His, Tyr, and Cys, and since the results were consistent with experimentally obtained values, the model was extended and applied to computation of pK values of Gly and Ala pentapeptides and of ionizable residues of the enzyme staphylococcal nuclease (SNase). In this latter case, we used an approach similar to a first-neighbors approximation, and the results turned out to be in good agreement with previously reported data when considering only the interactions of charged groups located at distances of maximally 20 Å. These considerations and the little computational cost involved turn the suggested approach into a promising tool for the modeling of force fields in computational simulations.

  11. Numerical Study of Laminar Forced Convection of Water/Al2o3 Nanofluid in an Annulus with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Amin Kashani

    2013-04-01

    Full Text Available Laminar forced convection of a nanofluid consisting of water and Al2O3 in a horizontal annulus has been studied numerically. Two-phase mixture model has been used to investigate thermal behaviors of the nanofluid over constant temperature thermal boundary condition and with different volume concentration of nanoparticles. Comparisons with previously published experimental and analytical works on flow behavior in horizontal annulus show good agreements between the results as volume fraction is zero. In general convective heat transfer coefficient increases with nanoparticle concentration. ABSTRAK: Kertaskerja ini mengkaji secara numerik olakan paksa bendalir lamina yang menganduangi air dan Al2O3 didalam anulus mendatar. Model campuran dua fasa digunakan bagi mengkaji tingkah laku haba bendalir nano pada keadaan suhu malar dengan kepekatan nanopartikel berbeza. Perbandingan dengan karya eksperimen dan analitikal yang telah diterbitkan menunjukkan bahawa kelakuan aliran didalm anulus mendatar adalah baik apabila pecahan isipadu adalah sifar. Pada amnya, pekali pemindahan haba olakan meningkat dengan kepekatan nanopartikel. KEYWORDS: nanofluid; volume concentration; heat transfer enhancement; laminar flow convection; annulus

  12. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    Science.gov (United States)

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding.

  13. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    Science.gov (United States)

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  14. Studies of Fe-binding sites within multiwall carbon nanotubes using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luberda-Durnas, Katarzyna; Nieznalska, Magdalena; Matlak, Krzysztof; Korecki, Jozef; Burda, Kvetoslava [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Krakow (Poland); Mazurkiewicz, Marta; Malolepszy, Artur [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Khachataryan, Gohar; Khachataryan, Karen; Tomasik, Piotr; Michalski, Oskar [Department of Chemistry, Agricultural University, Krakow (Poland); Stobinski, Leszek [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw (Poland)

    2011-08-15

    The potential applications of carbon nanotubes (CNTs) are strongly related to their physical and chemical properties. In this work, results of different methods for the oxidation of crude CNTs are reported. These methods changed Fe binding sites within multiwall carbon nanotubes (MWCNTs). Moessbauer spectroscopy was used to detect the chemical properties of the Fe-phases in MWCNTs. Signals from the iron carbide Fe{sub 3}C were the main components in the Moessbauer spectra of unmodified MWCNTs revealing magnetic ordering even at 300 K. In oxidized MWCNTs, the amount of Fe{sub 3}C decreased and {gamma}-Fe and {alpha}-Fe, ferrihydrates of iron oxides and different forms of goethite appeared. In MWCNTs oxidized with HClO{sub 4}, a significant fraction ({proportional_to}24%) of magnetically ordered Fe{sub 2}O{sub 3} particles was detected. This study showed that traces of iron catalyst embedded in MWCNTs could be used as a sensitive probe to monitor various MWCNT modifications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Cryptography in constant parallel time

    CERN Document Server

    Applebaum, Benny

    2013-01-01

    Locally computable (NC0) functions are 'simple' functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simplicity and simultaneously provide a high level of security. Such constructions are highly parallelizable and they can be realized by Boolean circuits of constant depth.This book establishes, for the first time, the possibility of local implementations for many basic cryptographic primitives such as one-way func

  16. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    Science.gov (United States)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  17. The time constant of the somatogravic illusion.

    Science.gov (United States)

    Correia Grácio, B J; de Winkel, K N; Groen, E L; Wentink, M; Bos, J E

    2013-02-01

    Without visual feedback, humans perceive tilt when experiencing a sustained linear acceleration. This tilt illusion is commonly referred to as the somatogravic illusion. Although the physiological basis of the illusion seems to be well understood, the dynamic behavior is still subject to discussion. In this study, the dynamic behavior of the illusion was measured experimentally for three motion profiles with different frequency content. Subjects were exposed to pure centripetal accelerations in the lateral direction and were asked to indicate their tilt percept by means of a joystick. Variable-radius centrifugation during constant angular rotation was used to generate these motion profiles. Two self-motion perception models were fitted to the experimental data and were used to obtain the time constant of the somatogravic illusion. Results showed that the time constant of the somatogravic illusion was on the order of two seconds, in contrast to the higher time constant found in fixed-radius centrifugation studies. Furthermore, the time constant was significantly affected by the frequency content of the motion profiles. Motion profiles with higher frequency content revealed shorter time constants which cannot be explained by self-motion perception models that assume a fixed time constant. Therefore, these models need to be improved with a mechanism that deals with this variable time constant. Apart from the fundamental importance, these results also have practical consequences for the simulation of sustained accelerations in motion simulators.

  18. Measurement of serotonin transporter binding with PET and [11C]MADAM: a test-retest reproducibility study.

    Science.gov (United States)

    Lundberg, Johan; Halldin, Christer; Farde, Lars

    2006-09-01

    [(11)C]MADAM, or [(11)C]N,N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine, is a radioligand suitable for positron emission tomography (PET) studies of the serotonin transporter (5-HTT) in man. The purpose of this study was to examine the test-retest reproducibility using a design tailored for future applied studies. Nine healthy male subjects were examined with PET and [(11)C]MADAM under baseline conditions at two occasions 4-8 weeks apart. The subjects participated in a Phase 1 trial to which the present study was an addendum. Eight regions of interest were studied, including frontal cortex, hippocampal complex, and the raphe nuclei. All regions, but the raphe nuclei, were defined on MR-images to which the PET-images were coregistered using SPM2. Binding potentials were calculated using the simplified reference tissue model, with cerebellum as reference region. Test-retest data were calculated from the binding potentials, and included binding potential (BP) quotient, BP difference, and the intraclass correlation coefficient. The quotient was about one in all regions, and the mean difference varied between 0 and 11%. The intraclass correlation coefficient varied between 0.96 and 0.51 in the raphe nuclei and averaged bilateral regions. [(11)C]MADAM was shown to have good to excellent reliability in measurements of 5-HTT binding in brain regions of interest in research on psychiatric disorders.

  19. A structure-activity-relationship (SAR) study of somatostatin receptor-binding peptides radiolabeled with Tc-99m

    Energy Technology Data Exchange (ETDEWEB)

    Lister-James, J.; McBride, W.J.; Moyer, B.R. [Diatech, Inc, Londonderry, NH (United States)] [and others

    1994-05-01

    Somatostatin receptor (SSTR)-expressing tumors can be detected with high accuracy using In-111-[DTPA]octreotide. We sought a high-affinity SSTR-binding peptide labeled with the preferred radioisotope Tc-99m. We have prepared over 120 SSTR-binding peptides each containing a (N{sub 3}S or N{sub 2}S{sub 2}) chelator for Tc-99m in a SAR study in which peptide structure was systematically altered to optimize SSTR-binding affinity, in vivo rumor uptake and favorable biodistribution and pharmacokinetics. The HPLC-purified (>90% purity), chelator-containing peptides were characterized by FAB/ESMS and assayed in vitro for SSTR binding affinity by a competition assay (I-125 somatostatin-14 tracer and AR42J rat pancreatic tumor cell membranes). The oxo-rhenium complexes of the peptides were prepared by ligand exchange, characterized by FAB or ESMS and assayed for SSTR binding affinity as surrogates for the Tc-99m complexes. The Tc-99m complexes of peptides giving high-affinity oxo-rhenium complexes were also prepared by ligand exchange with specific activities of approx 300 mCi/mmol and examined in vivo for biodistribution and tumor uptake characteristics in CA20948 tumor-bearing rats.

  20. The Interacting and Non-constant Cosmological Constant

    CERN Document Server

    Verma, Murli Manohar

    2009-01-01

    We propose a time-varying cosmological constant with a fixed equation of state, which evolves mainly through its interaction with the background during most of the long history of the universe. However, such interaction does not exist in the very early and the late-time universe and produces the acceleration during these eras when it becomes very nearly a constant. It is found that after the initial inflationary phase, the cosmological constant, that we call as lambda parameter, rolls down from a large constant value to another but very small constant value and further dominates the present epoch showing up in form of the dark energy driving the acceleration.

  1. Quantum Theory without Planck's Constant

    CERN Document Server

    Ralston, John P

    2012-01-01

    Planck's constant was introduced as a fundamental scale in the early history of quantum mechanics. We find a modern approach where Planck's constant is absent: it is unobservable except as a constant of human convention. Despite long reference to experiment, review shows that Planck's constant cannot be obtained from the data of Ryberg, Davisson and Germer, Compton, or that used by Planck himself. In the new approach Planck's constant is tied to macroscopic conventions of Newtonian origin, which are dispensable. The precision of other fundamental constants is substantially improved by eliminating Planck's constant. The electron mass is determined about 67 times more precisely, and the unit of electric charge determined 139 times more precisely. Improvement in the experimental value of the fine structure constant allows new types of experiment to be compared towards finding "new physics." The long-standing goal of eliminating reliance on the artifact known as the International Prototype Kilogram can be accompl...

  2. Species-dependent stereoselective drug binding to albumin: a circular dichroism study.

    Science.gov (United States)

    Pistolozzi, Marco; Bertucci, Carlo

    2008-03-01

    Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.

  3. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  4. Application of a simple calorimetric data analysis on the binding study of cyanide ions by Jack bean urease

    Institute of Scientific and Technical Information of China (English)

    G.Rezaei; Behbehani; A.A.Saboury; M.Mohebbian; S.Ghammamy

    2010-01-01

    Cyanide ion was studied as an effector of Jack bean urease(JBU) at 300 K in 30 mmol/LTris buffer,pH 7 by isothermal titration calorimetry(ITC).The simple novel model was used for CN~- + JBU interaction over the whole range of CN~- concentrations.The binding parameters recovered from the simple novel model were attributed to the cyanide ion interaction.It was found that cyanide ion acted as a noncooperative inhibitor of JBU,and there is a set of 12 identical and independent binding sites for CN~- ions.The...

  5. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    Science.gov (United States)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA excess MEL.

  6. Structural and functional studies of a large winged Z-DNA-binding domain of Danio rerio protein kinase PKZ.

    Science.gov (United States)

    Subramani, Vinod Kumar; Kim, Doyoun; Yun, Kyunghee; Kim, Kyeong Kyu

    2016-07-01

    The Z-DNA-binding domain of PKZ from zebrafish (Danio rerio; drZαPKZ ) contains the largest β-wing among known Z-DNA-binding domains. To elucidate the functional implication of the β-wing, we solved the crystal structure of apo-drZαPKZ . Structural comparison with its Z-DNA-bound form revealed a large conformational change within the β-wing during Z-DNA binding. Biochemical studies of protein mutants revealed that two basic residues in the β-wing are responsible for Z-DNA recognition as well as fast B-Z transition. Therefore, the extra basic residues in the β-wing of drZαPKZ are necessary for the fast B-Z transition activity.

  7. Organometallic B12-DNA conjugate: synthesis, structure analysis, and studies of binding to human B12-transporter proteins.

    Science.gov (United States)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander; Enders, Barbara; Nexo, Ebba; Kräutler, Bernhard

    2014-10-06

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in humans and animals, through the endogenous B12 transport systems. Binding of the organometallic B12 octadecanucleotide to the three important human proteins of B12 transport was studied, to examine its structural suitability for the task of eventual in vivo oligonucleotide delivery. Binding was efficient with transcobalamin (TC), but not so efficient with the homologous glycoproteins intrinsic factor and haptocorrin. Binding of the B12 octadecanucleotide to TC suggests the capacity of the B12 moiety to serve as a natural vector for specific transport of single stranded, organometallic oligonucleotide loads from the blood stream into cells.

  8. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  9. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  10. Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun, E-mail: sy_bi@sina.com [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Yan Lili; Pang Bo; Wang Yu [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2012-01-15

    The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV-vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern-Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were K{sub A{sub (naringenin)}}=4.08x10{sup 4}binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Foerster theory of non-radiation energy transfer, the binding distances (r{sub 0}) were obtained as 3.36, 3.47 and 3.30 nm for naringenin-BSA, hesperetin-BSA and apigenin-BSA, respectively. The effect of some common ions such as Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Mn{sup 2+}, Zn{sup 2+} and Ca{sup 2+} on the binding was also studied in detail. The competition binding was also performed.