WorldWideScience

Sample records for binding constant studies

  1. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    Science.gov (United States)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  2. 13C and 17O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    International Nuclear Information System (INIS)

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U02(CO3)34- and (UO2)3(CO3)66- in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = -log(aH+) versus p[H] = -log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA

  3. ESTAC- a Novel Tool for Determination of Binding Constants

    Czech Academy of Sciences Publication Activity Database

    Bernauer, M.; Bernauer, B.; Cuřínová, Petra; Budka, J.

    Brno : Stuare, 2014 - (Novotný, J.; Foroutan-Nejad, C.; Marek, R.), C-31 ISBN 978-80-86441-45-0. [NMR Valtice /29./. Valtice (CZ), 27.04.2014-30.04.2014] Institutional support: RVO:67985858 Keywords : anion complexation * binding constants * H NMR titration Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Binding constant of thorium with gray humic acid

    International Nuclear Information System (INIS)

    Humic acid sample was separated from the bottom sediments of Lake Quarun, in Egypt. It was purified and characterized by elemental analysis, potentiometric titration, IR, UV-visible and 13C NMR spectroscopies. The product of humic acid was very low (0.009%), gray in color and has low carboxylate capacity (2.4 meq/g). The first derivative of the titration curve indicated one maximum only, which implies one kind of carboxylate groups. The binding constant of 234Th with Lake Quarun humic acid was determined by solvent extraction. Only one parameter, β1, was required to fit the binding as a function of carboxylate concentration: the Th4+ bound to the carboxylate sites in the gray humic acid forming 1:1 complex only. The binding constant increased with the degree of ionization and with the pKa of the humic acid. (author)

  5. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pang

    Full Text Available Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a = k(a0 e(-ΔG(el*/k(BT, where k(a0 is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  6. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay

    OpenAIRE

    Win, Maung Nyan; Klein, Joshua S.; Smolke, Christina D.

    2006-01-01

    RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer se...

  7. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe...

  8. Interaction Study of Certain Dyes like Ferric oxide Red, Brilliant Blue and Soy Food Stuffs with Statins and Its Influence on Protein Binding and Intrinsic Association Constant ‘K’ of Statins

    OpenAIRE

    Vijayaraj S; Bagyalakshmi J; Ravi TK

    2010-01-01

    Interaction of Atorvastatin, Simvastatin and Rosuvastatin with dyes like ferric oxide red, brilliant blue and soy food stuffs were carried out in BSA using RP-HPLC method. Developed method was validated as per ICH Guidelines. Protein binding and Intrinsic association constant ‘K’ of statin drugs were calculated in presence of dyes and food stuffs. The order of interaction in Atorvastatin, Simvastatin and Rosuvastatin were found to be ferric oxide > soy food stuffs > brilliant blue; Soy food s...

  9. Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex Mixtures

    DEFF Research Database (Denmark)

    Meier, Sebastian; Beeren, Sophie

    2014-01-01

    We describe a simple method for the simultaneous determination of association constants for a guest binding to seven different hosts in a mixture of more than 20 different oligosaccharides. If the binding parameters are known for one component in the mixture, a single NMR titration suffices to...

  10. A 1H NMR titration study on the binding constants for D- and L-tryptophan inclusion complexes with 6-O-α-D-glucosyl-β-cyclodextrin. Formation of 1:1 and 2:1 (host:guest) complexes

    Science.gov (United States)

    Akita, Tomoki; Matsui, Yoshihisa; Yamamoto, Tatsuyuki

    2014-02-01

    A 1H NMR titration study revealed that 6-O-α-D-glucosyl-β-cyclodextrin (G1-β-CD) forms 1:1 and 2:1 (host:guest) inclusion complexes with D- and L-tryptophan in alkaline D2O solutions (pD 11.0). The binding constants (K1's) for the 1:1 complexes of D-isomer at 298 K (59 mol-1 dm3) were virtually equal to that of L-isomer (54 mol-1 dm3). On the other hand, the K2 values for 2:1 complexes of D-isomer (42 mol-1 dm3) were larger than that of L-counterpart (12 mol-1 dm3). These facts suggest that the first CD molecule includes the indole ring moiety of tryptophan, followed by inclusion with the second CD molecule in the vicinity of chiral center, α-carbon of the guest, to result in the difference in K2's for two enantiomers. Two-dimensional NMR measurement (Rotating-frame nuclear Overhauser Effect SpectroscopY, ROESY) supported this interpretation.

  11. Binding constants of Eu and Th with humic acids in aqueous solutions

    International Nuclear Information System (INIS)

    The binding constants for Eu and Th fulvate complexes were measured by the solvent extraction technique. For comparison, the binding constant for the Eu humate complex was also investigated. The measurements were carried out radiometrically using 152,154Eu and 234Th. The results indicate that, in case of fulvic acid, one parameter, β1, was required to fit the binding as a function of carboxylate concentration. With humic acid, Eu3+ formed 1 : 1 and 1 : 2 complexes, and two parameters, β1 and β2, were required. In both cases, the strength of binding increased with pKa and degree of ionization of the ligands and with the valence of the metal ions

  12. Calculation of binding constants and concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites

    International Nuclear Information System (INIS)

    A method is presented for the calculation of association constants and the concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites. The Scatchard plot for such a system is curvelinear and the method employs previously established relationships between the parameters of the limiting slopes to such a curve and the above mentioned association constants and concentrations of binding sites. The special case of a system with two different and non-interacting groups of binding sites was solved. The expressions thus obtained were used to characterize the reaction of a polypeptide neurotoxin with its specific binding sites in a membranal preparation from insect central nervous system. Moreover it is evident from these expressions that the widely accepted method to analyze such system, by an intuitive generalization of the method applicable to homogeneous systems, is erroneous and should be avoided. (author)

  13. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    Science.gov (United States)

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  14. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    International Nuclear Information System (INIS)

    Research highlights: → PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. → The minimum distance between adjacent bound PD153035 ∼ 11 bp. → Binding affinity constant for PD153035 is 1.18(±0.09) x 104 (1/M). → The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol-1 at 23 ± 0.5 oC. -- Abstract: Accurately predicting binding affinity constant (KA) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining KA for PD153035, where KA is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that KA = 1.18(±0.09) x 104 (1/M) at 23 ± 0.5 oC and the minimum distance between adjacent bound PD153035 ∼ 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  15. Quantitative effects of antihydrophobic agents on binding constants and solubilities in water.

    OpenAIRE

    Breslow, R; Halfon, S.

    1992-01-01

    The effects of urea and of guanidinium chloride on binding constants in water for 6-(4-tert-butylanilino)-naphthalene-2-sulfonate and of bis(p-tert-butylphenyl) phosphate binding to beta-cyclodextrin and to N,N'-bis(6-beta-cyclo-dextrinyl)imidazolium ion have been determined. Their effects on the water solubility of p-tert-butylbenzyl alcohol and p-methylbenzyl alcohol have also been examined. Quantitative correlations show that the effects of these additives, which diminish hydrophobic effec...

  16. Determination of apparent binding constants of complexes of acyclic nucleoside phosphonates with cyclodextrins by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Kaiser, Martin Maxmilian; Lukáč, Miloš; Janeba, Zlatko; Kašička, Václav

    Salzburg: Society of Analytical Chemistry, 2014. P510. [ISC 2014. International Symposium on Chromatography /30./. 14.09.2014-18.09.2014, Salzburg] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S; GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * capillary electrophoresis * binding constant Subject RIV: CB - Analytical Chemistry, Separation

  17. Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Nielsen, Jesper Buus

    Canetti and Fischlin have recently proposed the security notion universal composability for commitment schemes and provided two examples. This new notion is very strong. It guarantees that security is maintained even when an unbounded number of copies of the scheme are running concurrently, also ...... versions. These are the rst schemes to show that constant expansion factor, perfect hiding, and perfect binding can be obtained for universally composable commitments....

  18. A method for measuring binding constants using unpurified in vivo biotinylated ligands.

    Science.gov (United States)

    Pogoutse, Anastassia K; Lai, Christine Chieh-Lin; Ostan, Nicholas; Yu, Rong-Hua; Schryvers, Anthony B; Moraes, Trevor F

    2016-05-15

    Obtaining accurate kinetics and steady-state binding constants for biomolecular interactions normally requires pure and homogeneous protein preparations. Furthermore, in many cases, one of the ligands must be labeled. Over the past decade, several technologies have been introduced that allow for the measurement of kinetics constants for multiple different interactions in parallel. One such technology is bio-layer interferometry (BLI), which has been used to develop systems that can measure up to 96 biomolecular interactions simultaneously. However, despite the ever-increasing throughput of the tools available for measuring protein-protein interactions, the preparation of pure protein still remains a bottleneck in the process of producing high-quality kinetics data. Here, we show that high-quality binding data can be obtained using soluble lysate fractions containing protein that has been biotinylated in vivo using BirA and then applied to BLI sensors without further purification. Furthermore, we show that BirA ligase does not necessarily need to be co-overexpressed with the protein of interest for biotinylation of the biotin acceptor peptide to occur, suggesting that the activity of endogenous BirA in Escherichia coli is sufficient for producing enough biotinylated protein for a binding experiment. PMID:26898305

  19. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Wen Yingying [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Liu Huitao, E-mail: liuht-ytu@163.co [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Luan Feng; Gao Yuan [Department of Applied Chemistry, Yantai University, Yantai 264005 (China)

    2011-01-15

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R{sup 2}=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R{sup 2}=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: QSAR models for binding constants of some compounds to HSA were developed. The models provide a simple and straightforward way to predict binding constant. QSAR can give some insight into structural features related to binding behavior.

  20. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    International Nuclear Information System (INIS)

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R2=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R2=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: → QSAR models for binding constants of some compounds to HSA were developed. → The models provide a simple and straightforward way to predict binding constant. → QSAR can give some insight into structural features related to binding behavior.

  1. Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity.

    Directory of Open Access Journals (Sweden)

    Marcela Torres

    Full Text Available Mouse-human chimeric antibodies composed of murine variable (V and human (C chains are useful therapeutic reagents. Consequently, we investigated whether heterologous C-regions from mice and humans affected specificity and affinity, and determined the contribution of C(H glycosylation to antigen binding. The interaction of a 12-mer peptide mimetic with monoclonal antibody (mAb 18B7 to Cryptococcus neoformans glucuronoxylomannan, and its chimeric (ch and deglycosylated forms were studied by surface plasmon resonance. The equilibrium and rate association constants for the chAb were higher than for mAb 18B7. V region affinity was not affected by C(H region glycosylation whereas heterologous C region of the same isotype altered the Ab binding affinity and the specificity for self-antigens. Structural models displayed local differences that implied changes on the connectivity of residues. These findings suggest that V region conformational changes can be dictated by the C(H domains through an allosteric effect involving networks of highly connected amino acids.

  2. An automatic system for crystal growth studies at constant supersaturation

    OpenAIRE

    March, J. G.; Costa-Bauzá, A.; F. Grases; Söhnel, O.

    1992-01-01

    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth.

  3. DNA unwinding induced by photoaddition of psoralen derivatives and determination of dark-binding equilibrium constants by gel electrophoresis

    International Nuclear Information System (INIS)

    Derivatives of furo[3,2-g]coumarin (psoralen) can bind to the DNA double helix and, in the presence of long-wavelength uv light, the bound psoralen may react covalently with pyrimidine residues on one or both strands of the helix. By using agarose gel electrophoresis, we have determined the unwinding angle associated with each of four different psoralen derivatives to be 280 +- 40. For 4,5',8-trimethylpsoralen (trioxsalen) the unwinding angle was found to be independent of the initial DNA superhelix density in the range that is accessible to agarose gel electrophoresis. Also by using agarose gel electrophoresis, we have determined the unwinding angle for ethidium intercalation. This was done by the total relaxation of supercoiled DNA in the presence of a series of ethidium concentrations. By using published values for the association constant for ethidium binding to DNA and evaluating the final superhelix density (after removal of ethidium) of the DNA on gels, we calculated an unwinding angle of 290 +- 30. Assuming an unwinding angle of 280 for the noncovalent intercalation of psoralen derivatives, we used the same procedure to determine intercalation binding constants. The association constants for 4'-aminomethyltrioxsalen were 300 to 1400 M-1 in NaCl at 0.2 to 0.05 M and 300 to 2500 M-1 in Mg2+ at 4 to 0.5 mM. The association constant for 4'-hydroxymethyltrioxsalen in 0.5 mM Mg2+ was determined to be 70 M-1

  4. Flavonoid-DNA binding studies and thermodynamic parameters

    Science.gov (United States)

    Janjua, Naveed Kausar; Shaheen, Amber; Yaqub, Azra; Perveen, Fouzia; Sabahat, Sana; Mumtaz, Misbah; Jacob, Claus; Ba, Lalla Aicha; Mohammed, Hamdoon A.

    2011-09-01

    Interactional studies of new flavonoid derivatives (Fl) with chicken blood ds.DNA were investigated spectrophotometrically in DMSO-H 2O (9:1 v/v) at various temperatures. Spectral parameters suggest considerable binding between the flavonoid derivatives studied and ds.DNA. The binding constant values lie in the enhanced-binding range. Thermodynamic parameters obtained from UV studies also point to strong spontaneous binding of Fl with ds.DNA. Viscometric studies complimented the UV results where a small linear increase in relative viscosity of the DNA solution was observed with added optimal flavonoid concentration. An overall mixed mode of interaction (intercalative plus groove binding) is proposed between DNA and flavonoids. Conclusively, investigated flavonoid derivatives are found to be strong DNA binders and seem to be promising drug candidates like their natural analogues.

  5. Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors.

    Science.gov (United States)

    Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis

    2016-07-01

    Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration. PMID:27278457

  6. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with -cyclodextrin by affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilian; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Roč. 37, č. 2 (2016), s. 239-247. ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * affinity capillary electrophoresis * binding constant * nucleotide analogs * beta-cyclodextrin Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014

  7. The binding of cytochrome c to neuroglobin: A docking and surface plasmon resonance study

    DEFF Research Database (Denmark)

    Bønding, Signe Helbo; Henty, K.; Dingley, A.J.; Brittain, T.

    2008-01-01

    . surface plasmon resonance studies provide a value of 45 μM for the equilibrium constant for cytochrome c binding to neuroglobin, which increases significantly as the ionic strength of the solution increases. The temperature dependence of the binding constant indicates that the complex formation is...

  8. Measurement of Nanomolar Dissociation Constants by Titration Calorimetry and Thermal Shift Assay – Radicicol Binding to Hsp90 and Ethoxzolamide Binding to CAII

    Directory of Open Access Journals (Sweden)

    Vilma Michailovienė

    2009-06-01

    Full Text Available The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC and thermal shift assay (TSA is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90aN and the binding of ethoxzolamide to human carbonic anhydrase (hCAII were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90aN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding.

  9. Thermodynamic characterization of proflavine–DNA binding through microcalorimetric studies

    International Nuclear Information System (INIS)

    Highlights: • Energetics of the interaction of proflavine with DNA has been studied. • The binding reaction was favored by both negative enthalpy and positive entropy. • Enthalpy–entropy compensation phenomenon was observed. • Non-polyelectrolytic forces played a dominant role in the binding process. • Proflavine enhanced the thermal stability of DNA remarkably. - Abstract: The interaction of an important acridine dye, proflavine hydrochloride, with double stranded DNA was investigated using isothermal titration calorimetry and differential scanning calorimetry. The equilibrium constant for the binding reaction was calculated to be (1.60 ± 0.04) · 105 · M−1 at T = 298.15 K. The binding of proflavine hydrochloride to DNA was favored by both negative enthalpy and positive entropy contributions to the Gibbs energy. The equilibrium constant for the binding reaction decreased with increasing temperature. The standard molar enthalpy change became increasingly negative while the standard molar entropy change became less positive with rise in temperature. However, the standard molar Gibbs free energy change varied marginally suggesting the occurrence of enthalpy–entropy compensation phenomenon. The binding reaction was dominated by non-polyelectrolytic forces which remained virtually unchanged at all the salt concentrations studied. The binding also significantly increased the thermal stability of DNA against thermal denaturation

  10. Development of a fluorescence model for the determination of constants associated with binding, quenching, and Förster resonance energy transfer efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Casciato, Shelly L. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 (United States); Sapling Learning, Austin, TX (United States); Liljestrand, Howard M. [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Holcombe, James A., E-mail: holcombe@mail.utexas.edu [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-02-01

    Graphical abstract: - Highlights: • The development of a FRET signal is modeled. • Absorbance of acceptor and donor and K{sub D} of the complex are accounted for. • The FRET efficiency and quenching are included as adjustable parameters. • Software provided for fitting the parameters to the experimental data. • Simulations can also be performed to study the impact of the various parameters. - Abstract: Determining accurate dissociation constants for equilibrium processes involving a fluorescent mechanism can prove to be quite challenging. Typically, titration curves and nonlinear least squares fitting of the data using computer programs are employed to obtain such constants. However, these approaches only consider the total fluorescence signal and often ignore other energy transfer processes within the system. The current model considers the impact on fluorescence from equilibrium binding (viz., metal-ligand, ligand-substrate, etc.), quenching, and resonance energy transfer. This model should provide more accurate binding constant as well as insights into other photonic processes. The equations developed for this model are discussed and are applied to experimental data from titrimetric experiments. Since the experimental data are generally in excess of the number of parameters that are needed to define the system, fitting is operated in an overdetermined mode and employs error minimization (either absolute or relative) to define goodness of fit. Examples of how changes in certain parameters affect the shape of the titrimetric curve are also presented. The current model does not consider chelation-enhanced fluorescence.

  11. The influence of experimental conditions on the association constant for binding of vitamin B12 by human intrinsic factor coupled to Sepharose 4B

    International Nuclear Information System (INIS)

    The association constant for binding of vitamin B12 (cyanocobalamin) by human intrinsic factor coupled to Sepharose 4B and the concentration of binding sites of the coupled intrinsic factor have been measured as a function of pH, temperature, ionic strength and the presence of various (ionic and non-ionic) components in the solution. (author)

  12. Study on cipher propertys of constant weight codes

    Institute of Scientific and Technical Information of China (English)

    Lin Bogang

    2006-01-01

    Constant weight code is an important error-correcting control code in communications. Basic structure of constant weight codes for some arriving at Johnson bound, A(n, 2u, w), is presented. Some correlative propertys of the codes, the solution of arriving at Johnson bound, and the results on the couple constant code and some constant weight codes are discussed. The conclusion is verified through four examples.

  13. Computational study on Kerr constants of neutral and ionized gases

    Science.gov (United States)

    Sato, M.; Kumada, A.; Hidaka, K.

    2015-08-01

    In order to quantitatively examine the measurement capability of Poisson's field using electro-optic Kerr-effect (EOKE), Kerr constants of neutral molecules and ions are examined by means of first principle calculations. We have systematically computed Kerr constants of neutral molecules and ions of several molecular symmetry groups, with consistent theory level and basis sets. Computed Kerr constants of neutral molecules (N2, CO2, SF6, and CF3I) ranging across two orders of magnitudes are within 50% error of the experimental values, which are comparable to the scattering between experimental values itself. The results show that SF6 has smaller Kerr constant due to its high molecular symmetry compared to those of N2 and CO2. In contrast, CF3I has large Kerr constant due to its permanent dipole. Computed Kerr constants for anions are larger by two orders of magnitude than those of neutral molecules, probably due to the shielding effect. For cations, the opposite holds true; however, due to anisotropic polarizability, computed Kerr constants for some cations are comparable to neutral molecules, while others show smaller values. The ratio of Kerr constants of ions to those of neutral molecules are at most 102; EOKE is valid for measuring electric field in weakly ionized gas whose ionization degree is smaller than 10-3.

  14. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations.

    Science.gov (United States)

    Shokri, Alireza; Wang, Xue-Bin; Wang, Yanping; O'Doherty, George A; Kass, Steven R

    2016-03-17

    Flexible acyclic alcohols with one to five hydroxyl groups were bound to a chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45-5.96 eV. These values are 0.84-2.35 eV larger than the adiabatic detachment energy of Cl(-) as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol-Cl(-) clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H-Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and nonionic hydrogen bonds (i.e., OH···Cl(-) and OH···OH···Cl(-)) form in the larger polyols complexes and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds, and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrabutylammonium chloride (TBACl) in acetonitrile at -24.2, +22.0, and +53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol(-1)). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with molecular

  15. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, Alireza; Wang, Xue B.; Wang, Yangping; O' Doherty, George A.; Kass, Steven R.

    2016-03-17

    Flexible acyclic alcohols with 1–5 hydroxyl groups were bound to chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45 – 5.96 eV. These values are 0.84 – 2.35 eV larger than the adiabatic detachment energy of Cl– as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol–Cl– clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H–Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and non-ionic hydrogen bonds (i.e., OH•••Cl– and OH•••OH•••Cl–) form in the larger polyols complexes, and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrrabuylammonium chloride (TBACl) in acetonitrile at -24.2, 22.0, and 53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol–1). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with

  16. Determination of apparent binding constants of drugs by capillary electrophoresis using beta-cyclodextrin as ligand and three different linear plotting methods

    Czech Academy of Sciences Publication Activity Database

    Bellini, M. S.; Deyl, Zdeněk; Manetto, G.; Kohlíčková, M.

    2001-01-01

    Roč. 924, 1-2 (2001), s. 483-491. ISSN 0021-9673 Institutional research plan: CEZ:AV0Z5011922 Keywords : binding constants * pharmaceutical analysis * cyclodextrins Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.793, year: 2001

  17. Binding Cooperativity Matters: A GM1-Like Ganglioside-Cholera Toxin B Subunit Binding Study Using a Nanocube-Based Lipid Bilayer Array.

    Science.gov (United States)

    Worstell, Nolan C; Krishnan, Pratik; Weatherston, Joshua D; Wu, Hung-Jen

    2016-01-01

    Protein-glycan recognition is often mediated by multivalent binding. These multivalent bindings can be further complicated by cooperative interactions between glycans and individual glycan binding subunits. Here we have demonstrated a nanocube-based lipid bilayer array capable of quantitatively elucidating binding dissociation constants, maximum binding capacity, and binding cooperativity in a high-throughput format. Taking cholera toxin B subunit (CTB) as a model cooperativity system, we studied both GM1 and GM1-like gangliosides binding to CTB. We confirmed the previously observed CTB-GM1 positive cooperativity. Surprisingly, we demonstrated fucosyl-GM1 has approximately 7 times higher CTB binding capacity than GM1. In order to explain this phenomenon, we hypothesized that the reduced binding cooperativity of fucosyl-GM1 caused the increased binding capacity. This was unintuitive, as GM1 exhibited higher binding avidity (16 times lower dissociation constant). We confirmed the hypothesis using a theoretical stepwise binding model of CTB. Moreover, by taking a mixture of fucosyl-GM1 and GM2, we observed the mild binding avidity fucosyl-GM1 activated GM2 receptors enhancing the binding capacity of the lipid bilayer surface. This was unexpected as GM2 receptors have negligible binding avidity in pure GM2 bilayers. These unexpected discoveries demonstrate the importance of binding cooperativity in multivalent binding mechanisms. Thus, quantitative analysis of multivalent protein-glycan interactions in heterogeneous glycan systems is of critical importance. Our user-friendly, robust, and high-throughput nanocube-based lipid bilayer array offers an attractive method for dissecting these complex mechanisms. PMID:27070150

  18. [Spectroscopic studies on the binding of phenazopyridine hydrochloride and bovine serum albumin].

    Science.gov (United States)

    Zhou, Hong; Chen, Chang-Yun; Xie, An-Jian

    2007-09-01

    The binding of phenazopyridine hydrochloride and bovine serum albumin under physiological conditions was studied by spectroscopic method. The quenching mechanism of the fluorescence of bovine serum albumin by phenazopyridine hydrochloride was studied with fluorescence and absorption spectroscopy. The binding constant Kb and the number of binding sites n were determined at different temperatures according to Scatchard equation, and the main binding force was discussed by thermodynamic equations. The effect of the drug on bovine serum albumin conformation was also studied by using synchronous fluorescence spectroscopy. The quenching mechanism of phenazopyridine hydrochloride to bovine serum albumin is static quenching and non-radiation energy transfer. The binding constants Kb at 15, 25 and 37 degrees C are 2.47 x 10(7), 9.15 x 10(6) and 4.36 x 10(6) mol(-1) with one binding site, respectively. The thermodynamic parameters of the reaction are DeltaH = -71.2 kJ x mol(-1), and DeltaS = 124.8 J x mol(-1) x K(-1). Binding phenazopyridine hydrochloride to bovine serum albumin is a spontaneous inter-molecular interaction in which entropy increases and Gibbs free energy decreases. The binding distance r between phenazopyridine hydrochloride and bovine serum albumin is 1.61 nm according to Forster theory of non-radiation energy transfer. The binding force is electrostatic interaction. Phenazopyridine hydrochloride can be deposited and transported by serum protein in vivo. Phenazopyridine hydrochloride does affect the serum protein conformation. PMID:18051539

  19. Binding of amifostine to human serum albumin: a biophysical study.

    Science.gov (United States)

    Sun, Yifu; Wu, Han; Zhao, Guoqing; Shi, Ying

    2015-02-01

    The aim of this present work is to investigate the interaction between amifostine and human serum albumin (HSA) in simulated physiological conditions by spectroscopic methods to reveal potential toxic effects of the drug. The results reflected that amifostine caused fluorescence quenching of HSA through a static quenching process, which was further confirmed by the electrochemical experiments. The binding constants at 290, 297 and 304 K were obtained as 2.53 × 10(5) /M, 8.13 × 10(4) /M and 3.59 × 10(4) /M, respectively. There may be one binding site of amifostine on HSA. The thermodynamic parameters indicated that the interaction between amifostine and HSA was driven mainly by hydrogen bonding and electrostatic forces. Synchronous fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy results showed amifostine binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with amifostine-Trp-214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of amifostine in vivo. PMID:24962599

  20. A model of mitochondrial creatine kinase binding to membranes: adsorption constants, essential amino acids and the effect of ionic strength

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Belousova, Lubov; Plesner, Igor

    1993-01-01

    The quantitative aspects of mitochondrial creatinekinase (mitCK) binding to mitochondrial membranes were investigated. A simple adsorption and binding model was used for data fitting, taking into account the influence of protein concentration, pH, ionic strength and substrate concentration on the...

  1. Study on the proteins-luminol binding by use of luminol as a fluorescence probe

    Science.gov (United States)

    He, Xili; Song, Zhenghua

    2013-10-01

    In this paper, a new mathematical equation of lg(F0 - F)/F = 1/nlg[P] + 1/nlgKa, which was used to obtain interaction parameters (the binding constant Ka and the number of binding sites n) between the protein and the small molecule ligand by using the ligand as a fluorescence (FL) probe, was constructed for the first time. The interaction parameters between myoglobin, catalase, lysozyme, bovine serum albumin (BSA) and luminol were obtained by this equation with luminol used as a FL probe, showing that the binding constants Ka were 8.78 × 105, 4.47 × 105, 4.21 × 104 and 3.95 × 104 respectively, and the number of binding sites n approximately equaled to 1.0 for myoglobin, catalase, and 2.0 for lysozyme, BSA. The interactions of ferritin, ovalbumin, aldolase, chymotrypsinogen and ribonuclease with luminol were also studied by this method. The binding constants Ka were at 104-105 level, and the number of binding sites n mostly approximately equaled to 2.0. The binding ability of luminol to the studied proteins followed the pattern: myoglobin > aldolase > ferritin > ovalbumin > catalase > ribonuclease > lysozyme > BSA > chymotrypsinoge.

  2. The spectroscopic constants and anharmonic force field of AgSH: An ab initio study.

    Science.gov (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Zhu, Ziliang

    2016-07-01

    The equilibrium structure, spectroscopy constants, and anharmonic force field of silver hydrosulfide (AgSH) have been calculated at B3P86, B3PW91 and MP2 methods employing two basis sets, TZP and QZP, respectively. The calculated geometries, ground state rotational constants, harmonic vibrational wave numbers, and quartic and sextic centrifugal distortion constants are compared with the available experimental and theoretical data. The equilibrium rotational constants, fundamental frequencies, anharmonic constants, and vibration-rotation interaction constants, Coriolis coupling constants, cubic and quartic force constants are predicted. The calculated results show that the MP2/TZP results are in good agreement with experiment observation and are also an advisable choice to study the anharmonic force field of AgSH. PMID:27085293

  3. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    Science.gov (United States)

    Zeng, Hua-jin; Yang, Ran; You, Jing; Qu, Ling-bo; Sun, Yan-jun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly through electrostatic and hydrophobic interactions with one binding site. Synchronous fluorescence, three-dimensional fluorescence, and molecular docking results revealed that liquiritigenin bound directly to the enzyme cavity site and this binding influenced the microenvironment of the hyaluronidase activity site, resulting in reduced hyaluronidase activity. The present study provides useful information for clinical applications of liquiritigenin as a hyaluronidase inhibitor. PMID:27313960

  4. Receptor binding studies of soft anticholinergic agents

    OpenAIRE

    Huang, Fenglei; Buchwald, Peter; Browne, Clinton E.; Farag, Hassan H.; Wu, Wnei-Mei; Ji, Fubao; Hochhaus, Guenther; Bodor, Nicholas

    2001-01-01

    Receptor binding studies were performed on 24 soft anticholinergic agents and 5 conventional anticholinergic agents using 4 cloned human muscarinic receptor subtypes. The measured pKi values of the soft anticholinergic agents ranged from 6.5 to 9.5, with the majority being in the range of 7.5 to 8.5. Strong correlation was observed between the pKis determined here and the pA2 values measured earlier in guinea pig ileum contraction assays. The corresponding correlation coefficients (r2) were 0...

  5. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins

    Indian Academy of Sciences (India)

    Beena Mishra; Atanu Barik; K Indira Priyadarsini; Hari Mohan

    2005-11-01

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime measurements of HSA showed decrease in the average lifetimes indicating binding at a location, near the tryptophan moiety, and the possibility of fluorescence energy transfer between excited tryptophan and quercetin. Critical transfer distance () was determined, from which the mean distance between tryptophan-214 in HSA and quercetin was calculated. The above studies were also carried out with bovine serum albumin (BSA).

  6. BDflex: A method for efficient treatment of molecular flexibility in calculating protein-ligand binding rate constants from Brownian dynamics simulations

    Science.gov (United States)

    Greives, Nicholas; Zhou, Huan-Xiang

    2012-10-01

    A method developed by Northrup et al. [J. Chem. Phys. 80, 1517 (1984)], 10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and bar η _d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. bar η _d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of bar η _d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid.

  7. Dimer self-association via hydrogen bonding: Measurement and comparison of binding constants with 2-amidopyrimidine derivatives

    Science.gov (United States)

    Bednar, Victor; Elliott, K. Wade; Byrd, Emily; Woodford, Jeffrey N.

    2012-09-01

    A method based on 1H NMR was used to measure the self-assembly equilibrium constants for three acylated derivatives of 2-aminopyrimidine: 2-acetamidopyrimidine (1), 2-isopropylamidopyrimidine (2), and 2-neopentylamidopyrimidine (3). The synthesis of the latter two compounds is described. The self-association constant decreases from 1 to 2 to 3, which is attributed to the syn/anti conformational preference of the amide bond. For 1, complexation with chloroform must be included in order to explain the observed chemical shift values. Complementary density functional theory calculations (MP2/cc-pVTZ//B3LYP-D/cc-pVDZ) suggest a direct relationship between conformational preference of the amide bond and the self-assembly constant.

  8. B-meson mass and decay constant from lattice QCD. A preliminary study

    International Nuclear Information System (INIS)

    We present the results of the first computation on large lattices of the B-meson binding energy and decay constant following the method proposed by Eichten. The results obtained at β=6 on a 20x102x40 lattice and at β=6.2 on a 162x48 lattice show that it is necessary to have a statistical sample which is much larger than in similar computations with light mesons in order to obtain results of comparable precision. (orig.)

  9. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    Science.gov (United States)

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  10. Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories

    OpenAIRE

    M. Valiskó; D. Boda

    2005-01-01

    A systematic Monte Carlo (MC) simulation and perturbation theoretical (PT) study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS) fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the diele...

  11. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  12. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    OpenAIRE

    Hua-jin Zeng; Ran Yang; Jing You; Ling-bo Qu; Yan-jun Sun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly thro...

  13. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  14. Study on Optical Constants and Refractive Index Dispersion of Neutral red Doped Polymer Film

    Directory of Open Access Journals (Sweden)

    Hussain A. Badran

    2012-01-01

    Full Text Available Problem statement: The some optical constants polymer thin film with red dye 3-amino-7-dimethylamino-2-methyl phenazine (NR as the guest material and Polyvinylpyrrolidone (PVP as the host material were prepared by adulteration and spin-coating methods. Approach: The values of some important parameters (refractive index n, extinction coefficient K and dielectric constant ε∞ of polymer thin film are determined from these spectra. Results: It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimation of the E0, Ed and ε∞ are 1.27, 3.175 and 3.5 eV respectively. Conclusion: The single oscillator model was used to calculate their optical constants from the transmittance and reflectance spectra. The dispersion of the refractive index in film follow the single electronic oscillator mode relation. The UV-Visible spectroscopic studies showed that, the NR film have high refractive index and high dielectric constant. The variation of the dielectric constant with the wavelength indicates that some interactions between photon and electrons in the films are produced in this wavelength range. These interactions are observed on the shapes of the real and imaginary parts of the dielectric constant and they cause the formation of peaks in the dielectric spectra which depends on the material type.

  15. A study of group constant generation method in fast reactor analysis

    International Nuclear Information System (INIS)

    The methods of generating group constants have been studied to predict accurately the nuclear characteristics of fast reactors. In resonance energy region, the accuracy of the group constants was investigated, which were calculated by the approximate weighting spectrum used for a conventional standards group constant set such as ABBN. It was shown that the basic assumption of constant collision density for group constant calculation was not always satisfactory. Moreover, a multilevel formula was derived without losing the useful characteristics of the Breit-Wigner single level formula. Using this formula, the interference effect between resonances was examined. In addition, the mutual interference between different resonant nuclides was calculated. The cause of a systematic dependence of effective multiplication factors on U-238 concentration ratio was studied, and the cross section adjustment was performed. In the unresolved resonance region, the average resonance parameters were searched. As a result, the JFS-2 set was generated, and several studies were performed to advance the concept of the group constant set JFS-2. (Kako, I.)

  16. AFM studies of nonspecific binding of enzyme on DNA

    Institute of Scientific and Technical Information of China (English)

    张益; 谢恒月; 等

    1996-01-01

    Atomic force microscope(AFM) is used to study restriction endonuclease digestion of plasmid DNA,pWRr plasmid DNA is digested by Hind Ⅲ,and the specific and the nonspecific binding of the restriction endonuclease are imaged,and the biological function of the enzyme binding to nonspecific sites is discussed.In addition,it is found that nonspecific binding of Hind ǚ could not induce the DNA characteristic bending angle.

  17. Novel chiral N4S2- and N6S3-donor macrocyclic ligands: synthesis, protonation constants, metal-ion binding and asymmetric catalysis in the Henry reaction.

    Science.gov (United States)

    Gao, Jian; Martell, A E

    2003-08-01

    New hydrophobic chiral macrocyclic ligands L1-L3 with chiral diamino and thiophene moieties have been synthesized by the Schiff base condensation approach. Protonation constants of L1 and L2 were determined by potentiometry titration. Metal-ion binding experiments exhibited that L1 and L3 are pronounced in selective recognition, Ag+, Cu2+ and Ca2+ ions among the surveyed metal ions (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+, Li+, Na+, K+, and Ca2+). L1 was found to spectroscopically detect the presence of Cu2+ and Ca2+ to function as a multiple readout sensor. The detection limit for Ca2+ ions was found to be 9.8 x 10(-5) M in CH2Cl2-MeOH solution. The trimeric chiral ligand L3 has been shown to be an efficient auxiliary in a Zn(II)-mediated enantioselective Henry reaction. PMID:12948208

  18. Study of MMLV RT- Binding with DNA using Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    Lei WU; Ming-Hui HUANG; Jian-Long ZHAO; Meng-Su YANG

    2005-01-01

    Surface plasmon resonance biosensor technique was used to study the binding of Moloney murine leukemia virus reverse transcriptase without RNase H domain (MMLV RT-) with DNA in the absence and in the presence of inhibitors. Different DNA substrates, including single-stranded DNA (ssDNA),DNA template-primer (T-P) duplex and gapped DNA, were immobilized on the biosensor chip surface using streptavidin-biotin, and MMLV RT--DNA binding kinetics were analyzed by different models. MMLV RT-could bind with ssDNA and the binding was involved in conformation change. MMLV RT- binding DNA T-P duplex and gapped DNA could be analyzed using the simple 1:1 Langmuir model. The lack of RNase H domain reduced the affinity between MMLV RT- and T-P duplex. The effects of RT inhibitors, including efavirenz, nevirapine and quercetin, on the interaction between MMLV RT- and gapped DNA were analyzed according to recovered kinetics parameters. Efavirenz slightly interfered with the binding between RT and DNA and the affinity constant in the presence of the inhibitor (KA=1.21× 106 M-1) was lower than in the absence of the inhibitor (KA=4.61× 106 M-1). Nevirapine induced relatively tight binding between RT and DNA and the affinity constant in the presence of the inhibsitor (KA=l.47×107 M-1) was approximately three folds higher than without nevirapine, mainly due to rapid association and slow dissociation. Quercetin, a flavonoid originating from plant which has previously shown strong inhibition of the activity of RT, was found to have minimal effect on the RT-DNA binding.

  19. DNA binding studies of Vinca alkaloids: experimental and computational evidence.

    Science.gov (United States)

    Pandya, Prateek; Gupta, Surendra P; Pandav, Kumud; Barthwal, Ritu; Jayaram, B; Kumar, Surat

    2012-03-01

    Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated. PMID:22545401

  20. Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Erika [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden)], E-mail: erika.nordberg@bms.uu.se; Friedman, Mikaela [Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Goestring, Lovisa [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden); Affibody AB, PO Box 20137, SE-161 02 Bromma (Sweden); Adams, Gregory P. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Brismar, Hjalmar [Department of Cell Physics, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Nilsson, Fredrik Y. [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden); Affibody AB, PO Box 20137, SE-161 02 Bromma (Sweden); Stahl, Stefan [Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Glimelius, Bengt [Rudbeck Laboratory, Oncology, Radiology and Clinical Immunology, Uppsala University, SE-751 85 Uppsala (Sweden); Carlsson, Joergen [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden)

    2007-08-15

    Introduction: The cellular binding and processing of an epidermal growth factor receptor (EGFR) targeting affibody molecule, (Z{sub EGFR:955}){sub 2}, was studied. This new and small molecule is aimed for applications in nuclear medicine. The natural ligand epidermal growth factor (EGF) and the antibody cetuximab were studied for comparison. Methods: All experiments were made with cultured A431 squamous carcinoma cells. Receptor specificity, binding time patterns, retention and preliminary receptor binding site localization studies were all made after {sup 125}I labeling. Internalization was studied using Oregon Green 488, Alexa Fluor 488 and CypHer5E markers. Results: [{sup 125}I](Z{sub EGFR:955}){sub 2} and [{sup 125}I]cetuximab gave a maximum cellular uptake of {sup 125}I within 4 to 8 h of incubation, while [{sup 125}I]EGF gave a maximum uptake already after 2 h. The retention studies showed that the cell-associated fraction of {sup 125}I after 48 h of incubation was {approx}20% when delivered as [{sup 125}I](Z{sub EGFR:955}){sub 2} and {approx}25% when delivered as [{sup 125}I]cetuximab. [{sup 125}I]EGF-mediated delivery gave a faster {sup 125}I release, where almost all cell-associated radioactivity had disappeared within 24 h. All three substances were internalized as demonstrated with confocal microscopy. Competitive binding studies showed that both EGF and cetuximab inhibited binding of (Z{sub EGFR:955}){sub 2} and indicated that the three substances competed for an overlapping binding site. Conclusion: The results gave information on cellular processing of radionuclides when delivered with (Z{sub EGFR:955}){sub 2} in comparison to delivery with EGF and cetuximab. Competition assays suggested that [{sup 125}I](Z{sub EGFR:955}){sub 2} bind to Domain III of EGFR. The affibody molecule (Z{sub EGFR:955}){sub 2} can be a candidate for EGFR imaging applications in nuclear medicine.

  1. Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories

    Directory of Open Access Journals (Sweden)

    M.Valiskó

    2005-01-01

    Full Text Available A systematic Monte Carlo (MC simulation and perturbation theoretical (PT study is reported for the dielectric constant of the polarizable dipolar hard sphere (PDHS fluid. We take the polarizability of the molecules into account in two different ways. In a continuum approach we place the permanent dipole of the molecule into a sphere of dielectric constant ε∞ in the spirit of Onsager. The high frequency dielectric constant ε∞ is calculated from the Clausius-Mosotti relation, while the dielectric constant of the polarizable fluid is obtained from the Kirkwood-Fröhlich equation. In the molecular approach, the polarizability is built into the model on the molecular level, which makes the interactions non-pairwise additive. Here we use Wertheim's renormalized PT method to calculate the induced dipole moment, while the dielectric constant is calculated from our recently introduced formula. We also apply a series expansion for the dielectric constant both in the continuum and the molecular approach. These series expansions ensure a better agreement with simulation results. The agreement between our MC data and the PT results in the molecular approach is excellent for low to moderate dipole moments and polarizabilities. At stronger dipolar interactions ergodicity problems and anizotropic behaviour appear where simulation results become uncertain and the theoretical approach becomes invalid.

  2. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  3. Direct zonal liquid chromatographic method for the kinetic study of actinomycin-DNA binding.

    Science.gov (United States)

    Vidal-Madjar, Claire; Florentina, Cañada-Cañada; Gherghi, Ioanna; Jaulmes, Alain; Pantazaki, Anastasia; Taverna, Myriam

    2004-07-01

    The binding of an anticancer drug (actinomycin D or ACTD) to double-stranded DNA (dsDNA) was studied by means of high-performance liquid chromatography (HPLC). ACTD is an antitumor antibiotic containing one chromophore group and two pentapeptidic lactone cycles that binds dsDNA. Incubations of ACTD with DNA were performed at physiological pH. The complexed and free ligand concentrations of the mixture were quantified at 440 nm from their separation on a size-exclusion chromatographic (SEC) column using the same buffer for the elution and the sample incubation. The DNA and the ACTD-DNA complexes were eluted at the column exclusion volume while the ligand was retained on the support. An apparent binding curve was obtained by plotting the amount emerging at the exclusion column volume against that eluted at free ACTD retention volume. A dissociating effect was evidenced and the binding parameters were significantly different from those obtained at equilibrium by visible absorbance titration. The equilibrium binding parameters determined by absorption spectroscopy were used as starting data in the numerical simulations of the chromatographic process. The results showed a strong dependency of the apparent binding parameters on the reaction kinetics. Finally the comparison of the apparent binding curve obtained from the HPLC experiments and from the numerical simulations permitted an evaluation of the dissociation rate constant (kd = 0.004 s(-1)). PMID:15296384

  4. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  5. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.

    Science.gov (United States)

    Rao, V S; Lam, K; Qasba, P K

    1998-11-01

    Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity. PMID:9849627

  6. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    Science.gov (United States)

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  7. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: a basis set and correlation study.

    Science.gov (United States)

    Kjaer, Hanna; Nielsen, Monia R; Pagola, Gabriel I; Ferraro, Marta B; Lazzeretti, Paolo; Sauer, Stephan P A

    2012-09-01

    In this article, we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the nuclear magnetic resonance (NMR) indirect nuclear spin-spin coupling constant with respect to an external electric field and play an important role for both chiral discrimination and solvation effects on NMR coupling constants. In this study, we illustrate the effects of one-electron basis sets and electron correlation both at the level of density functional theory as well as second-order polarization propagator approximation for the small molecule hydrogen peroxide, which allowed us to perform calculations with the largest available basis sets optimized for the calculation of NMR coupling constants. We find a systematic but rather slow convergence with the one-electron basis set and that augmentation functions are required. We observe also large and nonsystematic correlation effects with significant differences between the density functional and wave function theory methods. PMID:22618604

  8. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  9. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  10. A single center study of the effects of trained fathers' participation in constant breastfeeding.

    Directory of Open Access Journals (Sweden)

    Khadijeh Raeisi

    2014-09-01

    Full Text Available Constant breastfeeding that depends on the family support. Fathers' involvement is as an important factor of successful breastfeeding. The aim of this study was to evaluate the influence of fathers' participation in constant breastfeeding in Vali-E-Asr Hospital, Tehran, Iran. This interventional study was piloted on spouses of pregnant women participating in pregnancy courses. The case group consisted of fathers attending training courses of breastfeeding during pregnancy (Group A, and the control group was made up of fathers who did not take part in training courses (Group B. The courses were held three times from the 30th week of gestation to the end of pregnancy in a family health research center. Fathers attended three training sessions where they were trained by brochures. After delivery newborns were weighted and examined for jaundice (3-5 days, 30 days, three and six months after birth. According to mothers' views, spouses' participation, encouragement and support in group A, was 11 times more than group B. It means that 47 (94% of spouses in the group A participated in mothers' constant breastfeeding, but fathers' participation in group B was 60% (30 spouses. This study showed that breastfeeding was more constant in the group that fathers participated in breastfeeding training course. One of the reasons for such a significant difference was spouses' participation, encouragement and support in the trained group. This study showed that fathers' involvement in training programs may influence constancy of breastfeeding.

  11. Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences.

    Science.gov (United States)

    Marszałek, I; Krężel, A; Goch, W; Zhukov, I; Paczkowska, I; Bal, W

    2016-08-01

    2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxyphenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (FluoZin-3) is used very broadly in life sciences as intra- and extracellular Zn(II) sensor selective for Zn(II) over Co(II), Ca(II) and Mg(II) ions at their physiological concentrations. It has been used for determination of relative and absolute levels of exchangeable Zn(II) in cells and extracellular fluids. Despite its popularity, the knowledge of its acid/base and Zn(II) coordination abilities and of its spectroscopic properties remained very limited. Also the published conditional dissociation constant ((C)Kd) values at pH7.4 are slightly discrepant, (15nM or 8.9nM). In this work we determined the (C)Kd for Zn(II) complexation by FluoZin-3 at pH7.4 with nitrilotriacetic acid (NTA) as competitor using two independent methods: fluorimetry and UV-Vis spectroscopy. For the first time, we investigated FluoZin-3 alone and complexed with Zn(II) in the wide range of pH, determining the total of eight pKa values from fluorescence spectra and from various regions of UV-Vis spectra. The validated values of (C)Kd (9.1±0.4nM; -log (C)Kd=8.04) and of the absolute (pH-independent) stability constant log βZnL (8.16±0.05) were provided by fluorescence spectroscopy experiments performed at 1μM concentrations. Our experiments demonstrated that both of aminocarboxylate moieties of FluoZin-3 bind the Zn(II) ion synergistically. PMID:27216451

  12. [Electron paramagnetic resonance study of the interactions between steroid hormones and binding proteins].

    Science.gov (United States)

    Basset, M; Chambaz, E M; Defaye, G; Metz, B

    1978-01-01

    Interaction of a spin labeled corticosteroid (desoxycorticosterone nitroxyde: DOC -NO) with three purified proteins (albumin, transcortin, progesterone binding protein: PBG) was studied by electron spin resonance (ESR) spectroscopy. DOC-NO was competitive with natural corticosteroids and therefore bound at the same site to specific binding proteins. ESR spectra in the presence of each of the proteins showed an immobilized (bound) form of the spin labeled steroid and allowed the calculation of the corresponding association constant (Ka) at equilibrium. The three binding proteins could be characterized by the ESR parameters of the DOC-NO bound form. The thermodynamic parameters (deltaH, deltaS) of the steroid-protein interactions were calculated from the ESR data obtained within a wide temperature range (3--40 degrees C). The ESR spectra width (2T) was used to evaluate the polarity of the spin label environment within the steroid binding site: a hydrophobic character was observed for transcortin whereas PBG exhibited a more hydrophilic steroid binding sits. The rotational correlation time of the three protein DOC-NO complexes at equilibrium were calculated from ESR data; the results were correlated with the protein molecular size and suggested a non spherical shape for the binding macromolecule in solution. Spin labelling of biologically active steroids thus provides a novel approach for the study of the interaction of these hormones with their binding protein. Providing a suitable spin label, the ESR parameters may allow the characterization of several types of binding sites of different biological significance for the same hormone, in biological fluids as well as in target tissues. PMID:83166

  13. Binding equilibrium study of phosphotungstic acid and HSA or BSA with UV spectrum, fluorescence spectrum and equilibrium dialysis

    Institute of Scientific and Technical Information of China (English)

    黄瑾; 袁余洲; 梁宏

    2002-01-01

    The binding equilibrium between phosphotungstic acid (H7[P(W2O7)6]@XH2O;PTA) and human serum albumin (HSA) or bovine serum albumin (BSA) has been studied by UV-Vis, fluorescence spectroscopies and equilibrium dialysis. It has been observed that UV absorption enhanced and the fluorescence quenched as the PTA binding to HSA or BSA at physiological pH 7.43( ± 0.02). The Scatchard analysis indicated that there exists a strong binding site of PTA in both HSA and BSA, and the successive stability constants of these two systems are obtained by nonlinear least-squares methods fitting Bjerrum formula.

  14. Study on the Interaction of Zinc Ion Binding with Human Serum Albumin using Isothermal Titration Calorimetry

    International Nuclear Information System (INIS)

    The interaction between zinc ion and human serum albumin (HSA) was investigated by nano-Watt- scale isothermal titration calorimetry (ITC). From the analysis of the ITC data, the binding characteristics and thermodynamic properties of the system were obtained and the binding mechanism was discussed. It was found that the experimental data fit well with the Langmuir's binding theory and the system behaved as a system with two classes of binding sites (high-affinity and low-affinity binding site). The binding number of high-affinity binding site (N1) is 1.40 and the binding constant (K1) is 2.72*105 L/mol. For the low-affinity binding site, the binding number (N2) is 1.55 and the binding constant (K2) is 3.78*103 L/mol. Moreover, it was indicated by the thermodynamic analysis that the binding processes of both types of binding sites were exothermic and spontaneous. The high-affinity binding was an enthalpy-entropy synergically driven process and the electrostatic interaction was the main force, while the low-affinity binding was an enthalpy driven process and this process was mainly driven by the van der Waals forces. (author)

  15. Nonlinear optical constants of ionic conductors: a study based on the Sheik-Bahae equation

    International Nuclear Information System (INIS)

    Guided by the prediction of the bond fluctuation model of superionic conductors, the relation between the nonlinear optical constants and the ion transport properties in ionic conductors has been studied. Since the measured values of nonlinear optical constants in ionic conductors are very limited, they have been evaluated through the Sheik-Bahae equation. Using such values, it is shown that the activation energy of ion transport and the superionic transition temperature decrease with the increase of the nonlinear refractive index. It is also pointed out that the band gap energy and the linear refractive index in superionic conductors are relatively weakly correlated when compared with non-superionic materials. The development of a new field of study that could be called photoionics is suggested (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Nonlinear optical constants of ionic conductors: a study based on the Sheik-Bahae equation

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shosuke [HUREC, Kumamoto University, 860-8555 Kumamoto (Japan); Aniya, Masaru [Department of Physics, Graduate School of Science and Technology, Kumamoto University, 860-8555 Kumamoto (Japan)

    2012-12-15

    Guided by the prediction of the bond fluctuation model of superionic conductors, the relation between the nonlinear optical constants and the ion transport properties in ionic conductors has been studied. Since the measured values of nonlinear optical constants in ionic conductors are very limited, they have been evaluated through the Sheik-Bahae equation. Using such values, it is shown that the activation energy of ion transport and the superionic transition temperature decrease with the increase of the nonlinear refractive index. It is also pointed out that the band gap energy and the linear refractive index in superionic conductors are relatively weakly correlated when compared with non-superionic materials. The development of a new field of study that could be called photoionics is suggested (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. A STUDY ON CONTROL AFFINE SYSTEMS WITH POSITIVE HOMOGENEOUS COST AND NO CONSTANT RANK OF DISTRIBUTION*

    OpenAIRE

    Assoc. Prof. Popescu Liviu Ph.D

    2010-01-01

    The paper deals with the study of a drift less control affine system with positive homogeneous cost of Randers type in the case of bracket generating distribution of no constant rank. We use the Pontryagin Maximum Principle in order to find the general solution. In the particular case of quadratic cost the optimal trajectories of the distributional system are the geodesics of the so called sub-Riemannian geometry.

  18. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  19. Experimental study of prompt neutron decay constant α for 300# pool reactor under mixed core

    International Nuclear Information System (INIS)

    The experimental study of prompt neutron decay constant α for 300# pool reactor under mixed core was carried out through a suit of reactor power spectral density measurement system. The two channel continuous current signals of neutron in the reactor were acquired by ionization chamber DL129 which was symmetrically putted in reactor core. The power spectral density, for two channel signals, was computed using the application program of data acquirement and data process analysis. Finally, by using the non-linear least squares method, the prompt neutron decay constant α was fitted. By comparison, the experimental results well accord to the theory calculation within the error range. The deviation can meet the actual need of project. (authors)

  20. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    Science.gov (United States)

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  1. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ontko, A.

    1997-10-08

    The author`s group has previously shown that isocyanides are readily adsorbed from solutions to Au powder and bind to the Au surface in an end-on fashion through the terminal carbon. Later work demonstrated that the equilibrium constants for the reversible adsorption of electronically inequivalent isocyanides could be obtained using the Langmuir isotherm technique. This dissertation describes two projects completed which complement the initial findings of this group. Initially, several alkylisocyanides were synthesized to examine the effect of tail length on Au powder adsorption. It was observed that the length of the alkyl chain affected not only the Au surface binding affinity, but also the rate of surface saturation and saturation coverage values. Direct competition studies were also studied using a {sup 13}C-labeled isocyanide. These studies demonstrated the stabilization afforded by substrate-substrate packing forces in SAM`s formed by the longer chain isocyanides. In a second study, di and triisocyanides were synthesized to determine the effect that the length of the connecting link and the number of isocyanide groups (as points of attachment) have on Au adsorption stability. The work in this area describes the binding modes, relative binding affinities and surface coverage values for a series of flexible alkyl and xylyldiisocyanides on Au powder surfaces. This report contains only the introductory material, and general summary. Two chapters have been processed separately. 56 refs.

  2. Spectroscopic studies on Titanium ion binding to the apo lactoferrin

    International Nuclear Information System (INIS)

    Titanium is a relatively abundant element that has found growing applications in medical science and recently some of Titanium compounds are introduced as anticancer drugs. In spite of very limited data which exist on the Titanium metabolism, some proteins might be involved in the mechanism of action of Titanium up to our knowledge, there is not any report in the literature concerning binding of Titanium to apo lactoferrin. Binding of apo lactoferrin with Ti(IV)-citrate was studied by spectroflourimeterey and spectrophotometery techniques under physiological conditions. The spectroflourimeteric studies revealed a significant fluorescence quenching, that indicated binding of apo lactoferrin with Ti(IV). The same reaction was monitored through spectrophotometry technique; this represents a characteristic UV difference band at 267 nm, which is different from lac-Fe (III). Titration studies how that lactoferrin specifically binds two moles Ti(IV) as complex with citrate per mol protein. Spectroflourimeterey and spectrophotometery techniques indicated that Ti(IV) ions cause a reduction (13%-14%) in binding of Fe(III) to lactoferrin. In overall, we may come to this conclusion that this element might be involved in the iron metabolism

  3. A study of the formation constants of ternary and quaternary complexes of some bivalent transition metals

    Directory of Open Access Journals (Sweden)

    MADHURJYA NEOG

    2010-01-01

    Full Text Available The formation of hetero-ligand 1:1:1, M(II-Opda-Sal/Gly ternary and 1:1:1:1, M(II-Opda-Sal-Gly quaternary complexes, where M(II = Ni, Cu, Zn and Cd; Opda = o‑phenylenediamine, Sal = salicylic acid, Gly = glycine, was studied pH-metrically in aqueous medium. The formation constants for the resulting ternary and quaternary complexes were evaluated at a constant ionic strength, μ = 0.20 mol dm-3 and temperature, 30±0.1 °C. The order of the formation constants in terms of the metal ion for both type of complexes was found to be Cu(II > Ni(II > Zn(II > Cd(II. This order was explained based on the increasing number of fused rings, the coordination number of the metal ions, the Irving – William order and the stability of various species. The expected species formed in solution were pruned with the Fortran IV program SPEPLOT and the stability of the ternary and quaternary complexes is explained.

  4. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    Science.gov (United States)

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  5. Comparative studies on insulin binding human erythrocytes by immunoradiometric techniques

    International Nuclear Information System (INIS)

    Blood cells have been widely used to evaluate the status of the insulin receptor in man. The receptors exhibited competitive inhibition curves and nonlinear Scatchard plots similar to those reported for insulin target tissues, such as the hepatocyte and the adipocytes. This study demonstrated specific insulin binding by the erythrocytes (RBCs) of infants, children and adults. The total insulin bound by the RBCs from both children and adults gave a small difference over the physiologic range of insulin concentrations. blood RBCs of infants showed greater numbers of insulin receptors per cell and significant increase in the total amount of insulin binding than that in either children (ps for of infants, children and adults were similar to each other. It is clear that, the measurement of insulin binding by RBCs may be particularly useful in the study of infants and children with disorders of carbohydrate metabolism to elucidate the role, if any, of abnormal receptor function in their conditions

  6. Co(III and Ni(II Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    Directory of Open Access Journals (Sweden)

    M. C. Prabhakara

    2007-02-01

    Full Text Available DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy2qbdp](PF6n⋅xH2O (where M=Co(III or Ni(II, bpy=2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n=3 or 2 and x=5 or 2 have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III and Ni(II complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3×106 and 3.1×105 M-1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease.

  7. Using nonfluorescent Förster resonance energy transfer acceptors in protein binding studies.

    Science.gov (United States)

    Ruan, Qiaoqiao; Skinner, Joseph P; Tetin, Sergey Y

    2009-10-15

    The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5-13(C10A) and full-length BNP1-32 with the dissociation constants 0.26+/-0.01 and 0.05+/-0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs=1.9 and 3.8) of the nonfluorescent FRET acceptor, K(D) values of 0.04+/-0.02 and 0.059(-0.004)(+0.006) nM, respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded K(D) values of 1.26+/-0.04, 1.25+/-0.05, and 1.14+/-0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies. PMID:19563765

  8. A mineralogical study of the binding mechanisms in chromite briquettes

    International Nuclear Information System (INIS)

    Briquettes are made of chromite fines and a suitable binding material which are fed into a pillow-shaped mould, and pressure is applied to compact the material. The Council for Mineral Technology and Middelburg Steel and Alloys have taken out a provisional patent for the manufacturing of composite briquettes containing not only reducing agents but also fluxes, which will improve the efficiency of the reduction process. Briquettes were examined and the results were correlated with the strengths of the briquettes, which were measured in drop tests, compressive strength and abrasive resistance. The mineralogical procedures included differential thermal analysis, x-ray diffraction, infrared spectroscopy, scanning electron microscope, energy-dispersive spectroscopy and the use of the electron microprobe. The information obtained by these procedures enabled the determination of the nature of the binding mechanisms. Six different types of briquettes, with their respective binding mechanisms were studied

  9. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  10. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  11. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Science.gov (United States)

    Sanders, Jeffrey M; Wampole, Matthew E; Thakur, Mathew L; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  12. Basic study on relationship between estimated rate constants and noise in FDG kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Yuichi [Tokyo Medical and Dental Univ. (Japan). Inst. for Medical and Dental Engineering; Toyama, Hinako; Senda, Michio

    1996-02-01

    For accurate estimation of the rate constants in {sup 18}F-FDG dynamic study, the shape of the estimation function ({Phi}) is crucial. In this investigation, the relationship between the noise level in tissue time activity curve and the shape of the least squared estimation function which is the sum of squared error between a function of model parameters and a measured data is calculated in 3 parameter model of {sup 18}F-FDG. In the first simulation, by using actual plasma time activity curve, the true tissue curve was generated from known sets of rate constants ranging 0.05{<=}k{sub 1}{<=}0.15, 0.1{<=}k{sub 2}{<=}0.2 and 0.01{<=}k{sub 3}{<=}0.1 in 0.01 step. This procedure was repeated under various noise levels in the tissue time activity curve from 1 to 8% of the maximum value in the tissue activity. In the second simulation, plasma and tissue time activity curves from clinical {sup 18}F-FDG dynamic study were used to calculate the {Phi}. In the noise-free case, because the global minima is separated from neighboring local minimums, it was easy to find out the optimum point. However, with increasing noise level, the optimum point was buried in many neighboring local minima. Making it difficult to find out the optimum point. The optimum point was found within 20% of the convergence point by standard non-linear optimization method. The shape of {Phi} for the clinical data was similar to that with the noise level of 3 or 5% in the first simulation. Therefore direct search within the area extending 20% from the result of usual non-linear curve fitting procedure is recommended for accurate estimation of the constants. (author).

  13. Study on effects of development of reactor constant in fast reactor analysis

    International Nuclear Information System (INIS)

    Evaluation was carried out about an effect of development of the new generation reactor constant system that substitutes for the JFS library in fast reactor analysis. Analyzed cores were ZPPR in JUPITER critical experiment and several power reactor cores that were designed in the feasibility study. In the JUPITER analysis, large effects, over 10%, were observed in sodium void reactivity and sample Doppler reactivity. The former resulted from several factors, while the latter was due to an accurate of a resonance interaction effect between Doppler sample and core fuel. In the previous study, the effect had been evaluated in power reactor cores. The effect included an effect of corrosion of weighting spectrum because JFS-3-J3.2, which had been made with the incorrect weighting spectrum, was used in the evaluation. In the present study, JFS-3-J3.2R, which had been made with the correct weighting spectrum, was used. It was confirmed that the effect of development of reactor constant in power reactor was not as large as that in critical assembly. (author)

  14. Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study.

    Science.gov (United States)

    Cervoni, L; Lascu, I; Xu, Y; Gonin, P; Morr, M; Merouani, M; Janin, J; Giartosio, A

    2001-04-17

    The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications. PMID:11294625

  15. Hepatic binding and uptake kinetics of epidermal growth factor: studies with isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Hepatocytes are known to bind and internalize a variety of small molecular weight proteins by a process known as receptor-mediated endocytosis (RME). The purpose of this investigation was to characterize the binding and uptake kinetics of a small protein known to be taken up by the liver by RME, epidermal growth factor (EGF), using suspensions of freshly isolated rat hepatocytes. Rat hepatocytes accumulated 125I-EGF (90pM) in a temperature-dependent fashion. Isolated hepatocytes incubated at 370C with 125I-EGF began to release a TCA-soluble radiolabeled material into the incubation medium with a lag period of 20 min. EGF uptake by isolated hepatocytes was linear for only 60 seconds and displayed saturation kinetics. Hepatocytes incubated at 40C bound, but did not internalize, EGF. Under these conditions, EGF binding was saturable at concentrations above 8 nM. A Scatchard analysis revealed that the average number of receptors per hepatocyte was 7.7 x 104 with a dissociation constant of 2.6 nM. These data demonstrate that freshly isolated hepatocytes are capable of binding, internalizing and metabolizing EGF and thus are a good model to study RME of small molecular weight proteins. 15 references, 5 figures

  16. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  17. Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo-fei; Wang, Yu; Xi, Lei; Liu, Jin; Wang, Hao; Du, Lin-fang, E-mail: dulinfang@scu.edu.cn

    2015-03-15

    The interaction of propyl gallate (PG) with human serum albumin (HSA) was investigated by fluorescence, far-UV CD and FT-IR spectroscopic methods as well as molecular docking. Fluorescence emission spectra demonstrated that the HSA fluorescence was quenched by PG through static quenching and energy transfer with the binding constants in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−29.64 KJ mol{sup −1}, ΔS=2.7 J mol{sup −1} K{sup −1}) indicated that both hydrophobic force and hydrogen bond interactions played a leading role in the formation of PG–HSA complex. The results also showed the existence of a single binding site, which was located in subdomain IIA (site I) as revealed by molecular docking and competitive binding experiments. Molecular docking studies further showed the participation of several amino acids in PG–HSA complexation, which stabilized by H-bonding systems. The synchronous fluorescence spectra showed that the binding of drug caused the environment of tryptophan residues became more polar. FT-IR and CD spectroscopic further showed that drug complexation altered protein conformation by a major reduction of α-helix inducing a partial protein destabilization. - Highlights: • The interaction between propyl gallate and HSA has been investigated. • HSA fluorescence is quenched by propyl gallate through static quenching mechanism. • Both hydrophobic force and hydrogen bond play major role in the binding process. • Site I of the HSA is found to be the main binding site for propyl gallate. • The structure of HSA has been changed upon the interaction with propyl gallate.

  18. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  19. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies

    Science.gov (United States)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    The binding of acetaminophen to bovine serum albumin (BSA) was studied by the quenching fluorescence method and the proton nuclear magnetic resonance technique ( 1H NMR). For fluorescence measurements 1-anilino-9-naphthalene sulfonate (ANS) hydrophobic probe was used to verify subdomain IIIA as acetaminophen's likely binding site. Three binding sites of acetaminophen in subdomain IIA of bovine serum albumin were found. Quenching constants calculated by the Stern-Volmer modified method were used to estimate the influence of myristic acid (MYR) on the drug binding to the albumin. The influence of [fatty acid]/[albumin] molar ratios on the affinity of the protein towards acetaminophen was described. Changes of chemical shifts and relaxation times of the drug indicated that the presence of MYR inhibits interaction in the AA-albumin complex. It is suggested that the elevated level of fatty acids does not significantly influence the pharmacokinetics of acetaminophen.

  20. Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant

    Science.gov (United States)

    Hanada, Masanori; Honda, Masazumi; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka

    2012-05-01

    We show that the ABJM theory, which is an {N} = {6} superconformal U( N) × U( N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS4/CFT3 duality at the quantum level. Here we calculate the free energy, and confirm the N 3/2 scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.

  1. Binding of the neuroleptic drug, gabapentin, to bovine serum albumin: Insights from experimental and computational studies

    International Nuclear Information System (INIS)

    The interaction between antiepileptic drug, gabapentin (GP), and bovin serum albumin (BSA) was studied by spectroscopic and computational methods. The native fluorescence of BSA was quenched by GP. Stern–Volmer quenching constant was calculated at different temperatures which suggested a static mechanism. The association constant (Ka) was calculated from fluorescence quenching studies, which increased with temperature rising. GP competed well with warfarine for hydrophobic subdomain IIA (Sudlow's site I) on the protein. Enthalpy and entropy changes during the interaction of GP with BSA were obtained using van't Hoff plot, which showed an entropy-driven process and involvement of hydrophobic forces (ΔH>0 and ΔS>0). Synchronous fluorescence measurements of BSA solution in the presence of GP showed a considerable blue shift when Δλ=15 nm, therefore, GP interacts with tyrosine-rich sites on BSA. Optimized docked model of BSA–GP mixture confirmed the experimental results. -- Highlights: • Interaction of gabapentin and bovine serum albumin (BSA) is investigated by spectroscopic techniques. • Gabapentin can quench the fluorescence of BSA through a static quenching procedure. • The binding of gabapentin to BSA is driven mainly by hydrophobic interactions. • Subdomain IIA (Sudlow's site I) of BSA is found to be the main binding site for gabapentin. • Molecular docking modeling confirmed the experimental results

  2. XAS and Pulsed EPR Studies of the Copper Binding Site in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith,S.; Bencze, K.; Wasiukanis, K.; Benore-Parsons, T.; Stemmler, T.

    2008-01-01

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 Angstroms, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a CuO3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  3. A study on the binding interaction between the imidazole derivative and bovine serum albumin by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    The interaction between the imidazole derivative 2-(2,4-difluorophenyl)-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (dfppip) and bovine serum albumin (BSA) was investigated by fluorescence and UV–vis absorbance spectroscopy. From the experimental results, it was found that the imidazole derivative has strong ability to quench the intrinsic fluorescence of BSA by forming complexes. Electrostatic interactions play an important role to stabilize the complex. The binding constants and the number of binding sites have been determined in detail. The distance (r) between the donor and the acceptor was obtained according to fluorescence resonance energy transfer (FRET). Conformational changes of BSA were observed from synchronous fluorescence spectroscopy. The effect of metal ions such as Cu2+, Zn2+, Ca2+, Mg2+, Ni2+, Co2+ and Fe2+ on the binding constants between the imidazole derivative and BSA were also studied. - Highlights: ► Interactions between dfppip and BSA were investigated by fluorescence quenching. ► Quenching mechanism mainly arise from the formation of BSA-imidazole complex. ► D→A distance is <8 nm indicates that the energy transfer from BSA to dfppip. ► Synchronous fluorescence spectra to exploit the structural change of BSA. ► Effect of other ions on the binding constants between dfppip and BSA.

  4. Experimental Study and Modeling of Fouling in Immersed Membrane Bioreactor Operating in Constant Pressure Filtration

    Directory of Open Access Journals (Sweden)

    Mostafa Hosseinzadeh

    2013-01-01

    Full Text Available A new mathematical model is proposed based on filtration mechanisms for the prediction of fouling in airlift immersed membrane bioreactors (iMBRs. The cake formation on the membrane surface through constant pressure filtration process in the iMBR was explained by a proposed cake filtration mechanism which assumes that no particle enters the pores when forming the cake layer on the membrane surface. The cake porosity reduction due to diffusion of particles was described by an intermediate blocking mechanism. Experimental study of fouling was also performed in a lab-scale airlift flat-sheet iMBR operating at constant vacuum. The mixed liquor suspended solid (MLSS concentration was changed within the range of 5000 to 15000 mg/L, while the superficial air velocity was varied between 32 and 128 m3/m2/h. The presented model includes two parameters, that is, ultimate filtration resistance and initial rate of cake formation. The effect of the MLSS concentration and superficial air velocity on the parameters of the proposed model was studied. The results obtained from the model demonstrated that the ultimate filtration resistance and the initial rate of cake formation are more sensitive to the aeration rate at lower superficial velocities. It was also shown that the ultimate filtration resistance has a linear relation with MLSS concentration. A good agreement exists between the results of the model and the experimental data. The proposed model also showed a better compatibility with the experimental data compared to other fouling models available in the literature.

  5. Effect of the Experimental Design in Automatic Attention Shift Studies : A Comparison of Constant vs. Randmized Stimulus Onset Asynchrony (SOA)

    OpenAIRE

    Yuri, HASHIMOTO; Narisuke, Utsuki

    2011-01-01

    The present study compared two experimental designs used in response time (RT) studies: constant and randomized stimulus onset asynchrony (SOA). Both designs are commonly used in studies of automatic attention shifts. The results revealed that RTs at SOAs of 105 ms and 300 ms with a randomized SOA design were significantly longer than with a constant SOA design. The RT gain (i.e. RTs to uncued stimuli minus RTs to cued stimuli) measured in the constant SOA method was maximal when the SOA was ...

  6. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  7. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. PMID:26363471

  8. Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin

    Science.gov (United States)

    Kathiravan, A.; Paramaguru, G.; Renganathan, R.

    2009-09-01

    The interaction between colloidal zinc oxide (ZnO) nanoparticles and bovine serum albumin (BSA) was studied by using absorption, fluorescence, Fourier transform infrared, synchronous and time resolved fluorescence spectroscopic measurements. The apparent association constant has been deduced ( Kapp = 1.1 × 10 4 M -1) from the absorption spectral changes of BSA-colloidal ZnO nanoparticles using Benesi-Hildebrand equation. Addition of colloidal ZnO nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n = 1.06) and apparent binding constant ( K = 2.5 × 10 4 M -1) were calculated by relevant fluorescence data. Based on Forster's non-radiation energy transfer theory, distance between the donor (BSA) and acceptor (ZnO) ( r0 = 2.88 nm) as well as the critical energy transfer distance ( R0 = 2.49 nm) has also been calculated. The interaction between colloidal ZnO and BSA occurs through static quenching mechanism. The effect of colloidal ZnO nanoparticles on the conformation of BSA has been analyzed by means of UV-visible absorption spectra and synchronous fluorescence spectra.

  9. Calorimetric study of binding of some disaccharides with crown ethers

    International Nuclear Information System (INIS)

    Isothermal titration calorimetry has been applied to the determination of the thermodynamic parameters of binding of β-lactose, α,α-trehalose and sucrose with 15-crown-5 and 18-crown-6 in water at 298.15 K. The formation of 1:1 molecular associates has been found for the systems studied except 18-crown-6 and β-lactose. The associates are preferentially or completely entropy stabilized. The most stable associate is formed between α,α-trehalose and 18-crown-6. The obtained values of thermodynamic parameters of binding are discussed from the point of view of solute-solvent interactions as well as conformational and structural peculiarities of the disaccharides (DS) and crown ethers (CE)

  10. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods.

    Science.gov (United States)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6×10(5)M(-1)from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7°C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution. PMID:27367618

  11. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    International Nuclear Information System (INIS)

    Highlights: ► Natural and synthetic inhibitors of human phosphomevalonate kinase identified. ► Virtual screening yielded a hit rate of 15%, with inhibitor Kd’s of 10–60 μM. ► NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based 1H–15N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (Kd). Tight binding compounds with Kd’s ranging from 6–60 μM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  12. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  13. Study of Antigravity in an F(R) Model and in Brans-Dicke Theory with Cosmological Constant

    OpenAIRE

    Oikonomou, V. K.; Karagiannakis, N.

    2014-01-01

    We study antigravity, that is having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from $F(R)$-theory and in a Brans-Dicke model with cosmological constant. For the $F(R)$ theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate by using a specific $F(R)$ model, altho...

  14. Study on dopamine D2 binding capacity in vascular parkinsonism

    International Nuclear Information System (INIS)

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [11C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D2 receptor (k3) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D2 receptor binding [%k3] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k3 did not correspond to that of the parkinsonism. Thus, the striatal dopamine D2 receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D2 receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  15. Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases.

    Science.gov (United States)

    Klecker, Maria; Dissmeyer, Nico

    2016-01-01

    The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide's N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes. PMID:27424747

  16. Study on geometric models of non-numerically controlled machining revolving cutter with constant pitch

    Institute of Scientific and Technical Information of China (English)

    韩成顺; 尚元江; 王景贺; 唐余勇; 董申

    2004-01-01

    This paper presents a new approach of designing the revolving cutter with constant pitch, and pro-vides geometric models. The corresponding models in the non-numerically controlled manufacturing, such asdesigning the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of thecutting edge, are introduced. The examples are given to testify that the design approach is simple and readilyrealized in machining the revolving cutter with constant pitch. The effective design and manufacture method pro-vides general references for non-NC machining revolving cutter with constant pitch and reducing the equipmentsinput.

  17. Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load

    International Nuclear Information System (INIS)

    Highlights: • A 3D numerical model for NDDCTV under constant heat load was set and validated. • The ambient temperature effect on NDDCTV under constant heat load had been studied. • A suitable crosswind profile index was ascertained by sensitivity analysis. • The crosswind effect on NDDCTV under constant heat load has studied from columns. • The crosswind effect mechanism was clarified from the air inflow deviation angle. - Abstract: From the view of cooling system, the natural draft dry cooling tower with vertical delta radiators (NDDCTV) under constant heat load can be studied by keeping constant water temperature drop Δtw. With computed entry water temperature tw1 as the sum of tower exit water temperature tw2 and the constant Δtw, a three-dimensional (3D) numerical model for NDDCTV under constant heat load was established. Through analyses about mesh-independence, sensitivity about crosswind profile index and comparison with published results, the accuracy and credibility of the established numerical model for NDDCTV were confirmed. The aerodynamic field around cooling deltas was analyzed at windless and crosswind conditions, so as to clarify the impacts of ambient air temperature and air inflow deviation angle θd on the performance of cooling columns. With constant heat load and uniform entry water temperature, the cooling performance of each sector was analyzed under crosswind impact. With increasing crosswind velocity vc, the cooling performance of NDDCTV under constant heat load deteriorates sharply at low vc, but varies slightly at high vc, which can be improved by air deflectors

  18. Thermodynamic studies on protonation constant of adenosine and guanosine at different temperatures and ionic strengths

    International Nuclear Information System (INIS)

    Highlights: • Protonation constants of adenosine and guanosine were determined. • The dependence of temperature and ionic strength were characterized. • Potentiometric and spectrophotometric methods were used. - Abstract: Stepwise protonation constants of two purine nucleosides (adenosine and guanosine) were determined at different temperatures (293.15 to 308.15) and various ionic strengths (0.101 to 3.503 mol · kg−1 NaClO4) using a combination of potentiometric and spectrophotometric method. The thermodynamic parameters (i.e. enthalpy change, ΔH, and entropy change, ΔS) of the protonations were calculated at different temperatures using van’t Hoff and virial equations. The dependence of the protonation constant on ionic strength is modeled by a Debye–Hückel type equation and discussed. Finally, the protonation constants of the nucleosides and the enthalpy change of protonations were determined at zero ionic strength

  19. Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects

    International Nuclear Information System (INIS)

    The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value

  20. Varying Constants

    CERN Document Server

    Barrow, J D

    2005-01-01

    We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that are consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying-alpha cosmologies is outlined in the light of all the observational constraints.

  1. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    Science.gov (United States)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  2. Comprehensive Study of Lanthanum Aluminate High-Dielectric-Constant Gate Oxides for Advanced CMOS Devices

    Directory of Open Access Journals (Sweden)

    Masamichi Suzuki

    2012-03-01

    Full Text Available A comprehensive study of the electrical and physical characteristics of Lanthanum Aluminate (LaAlO3 high-dielectric-constant gate oxides for advanced CMOS devices was performed. The most distinctive feature of LaAlO3 as compared with Hf-based high-k materials is the thermal stability at the interface with Si, which suppresses the formation of a low-permittivity Si oxide interfacial layer. Careful selection of the film deposition conditions has enabled successful deposition of an LaAlO3 gate dielectric film with an equivalent oxide thickness (EOT of 0.31 nm. Direct contact with Si has been revealed to cause significant tensile strain to the Si in the interface region. The high stability of the effective work function with respect to the annealing conditions has been demonstrated through comparison with Hf-based dielectrics. It has also been shown that the effective work function can be tuned over a wide range by controlling the La/(La + Al atomic ratio. In addition, gate-first n-MOSFETs with ultrathin EOT that use sulfur-implanted Schottky source/drain technology have been fabricated using a low-temperature process.

  3. Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery.

    Directory of Open Access Journals (Sweden)

    Claude Nogues

    Full Text Available BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65 and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody

  4. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  5. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve

    International Nuclear Information System (INIS)

    The actions of tetrodotoxin (TTX) and saxitoxin (STX) in normal water and in deuterium oxide (D20) have been studied in frog myelinated nerve. Substitution of D20 for H20 in normal Ringer's solution has no effect on the potency of TTX in blocking action potentials but increases the potency of STX by approximately 50%. Under voltage clamp, the steady-state inhibition of sodium currents by 1 nM STX is doubled in D20 as a result of a halving of the rate of dissociation of STX from the sodium channel; the rate of block by STX is not measurably changed by D20. Neither steady-state inhibition nor the on- or off-rate constants of TTX are changed by D20 substitution. The isotopic effects on STX binding are observed less than 10 min after the toxin has been added to D20, thus eliminating the possibility that slow-exchange (t 1/2 greater than 10 h) hydrogen-binding sites on STX are involved. The results are consistent with a hypothesis that attributes receptor-toxin stabilization to isotopic changes of hydrogen bonding; this interpretation suggests that hydrogen bonds contribute more to the binding of STX than to that of TTX at the sodium channel

  6. A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sak; Lee, Dong Won; Kwon, Soon Bum [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Byung Ji [Catholic Sangji College, Andong (Korea, Republic of)

    2005-07-01

    Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small.

  7. A study on the jet characteristic by using of Coanda effect in constant expansion rate nozzle

    International Nuclear Information System (INIS)

    Jets issuing from a conventional nozzle and convergent nozzles of a constant expansion rates and a certain normal using an annular slit are compared to investigate the characteristics of the 3 jets. In experiments, to compare the characteristics between jets, the nozzle exit mean velocity is fixed as 90m/s. The pressures along the jet axis and radial directions is measured by scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution can be obtained by calculation from the measured static and total pressures. To obtain the highly stable and convergency jets, a nozzle has to be designed with an annular slit connected to an conical cylinder, furthermore, the flow through a constant expansion rate nozzle using annular slit is the most probable. And the pressure drop along the nozzle for the constant expansion rate nozzle is small

  8. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun [College of Chemistry, Changchun Normal University, Changchun 130032 (China)], E-mail: sy_bi@sina.com; Sun Yantao [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Qiao Chunyu; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Chunming [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2009-05-15

    The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (K{sub A}) were 9.66x10{sup 3}, 2.08x10{sup 3}, 8.20x10{sup 2} and 7.50x10{sup 3} L mol{sup -1} for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 deg. C. The thermodynamic functions such as enthalpy change ({delta}H), entropy change ({delta}S) and Gibbs free-energy change ({delta}G) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Foester theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.

  9. Influence of humic acid on plutonium sorption to gibbsite. Determination of Pu-humic acid complexation constants and ternary sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Trevor; Powell, Brian A. [Clemson Univ., Anderson, SC (United States). Environmental Engineering and Earth Sciences; Zavarin, Mavrik [Lawrence Livermore National Laboratory, Livermore, CA (United States). Glenn T. Seaborg Institute

    2014-10-01

    In this work stability constants describing Pu(IV), Th(IV), and Np(V) binding to Leonardite humic acid (HA) were determined using a discrete pK{sub a} model. A hybrid ultra-filtration/equilibrium dialysis, ligand exchange technique was used to generate the partitioning data. Ethylenediaminetetraacetic acid (EDTA) was used as a reference ligand to allow the aqueous chemistry of the Pu(IV)-HA system to be examined over a range of pH values, while minimizing the possibility of precipitation of Pu(IV). The conditional stability constant for Pu(IV) complexation with HA determined as part of this work is logβ{sub 112} = 6.76 ± 0.14 based on the equation: Pu{sup 4+} + HL3 + 2H{sub 2}O <-> Pu(OH){sub 2}L3{sup +} + 3H{sup +} where HA is represented by HL3 (a binding site on the HA with a pK{sub a} value of 7). This value is three orders of magnitude higher than the Th(IV)-HA constant and between six and eight orders of magnitude higher than the Np(V)-HA complex. The magnitude of the stability constants and the general trend of increasing complexation strength with increasing pH is consistent with previous observations. The Pu(IV)-HA stability constants were used to model sorption of Pu(IV) to gibbsite in the presence of HA. Assuming only aqueous Pu-HA complexes and AlOH-Pu surface complexes, the model was unable to predict the observed data which exhibited greater sorption at pH 4 relative to pH 6; a phenomenon which does not occur in the absence of HA. Therefore, this study demonstrates that ternary Pu-HA-gibbsite complexes may form under low pH conditions and exhibit greater sorption than that observed in the absence of HA. Although the presence of HA may increase the solubility/aqueous concentrations of Pu in the absence of a solid phase, formation of ternary complexes may indeed retard the subsurface migration of Pu. The corollary to this finding is that increased mobility may occur if the ternary surface complex forms on a mobile colloid rather than part of the

  10. Study of IV B elements carbonate complexes 1. Stability constant of thorium (IV) pentacarbonate complex

    International Nuclear Information System (INIS)

    A method for the solvent extraction of thorium (IV) by chelation and neutronic activation analysis, allows the determination of stability constant of thorium (IV) pentacarbonate complexe at an ionic strength of 1.0 and 2.5: log β = 26.2 ± 0.2 and 26.3 ± 0.2. 10 refs

  11. Use of Constant Time Delay in Small Group Instruction: A Study of Observational and Incidental Learning.

    Science.gov (United States)

    Doyle, Patricia Munson; And Others

    1990-01-01

    Constant time delay was found to be an effective strategy in teaching targeted facts to four secondary-age students with mild and moderate mental retardation. Students also learned other students' target facts through observation and learned incidental information embedded in the consequent event following correct responding. (Author/JDD)

  12. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

    OpenAIRE

    Hinton, J F; Koeppe, R E; Shungu, D; Whaley, W L; Paczkowski, J A; Millett, F S

    1986-01-01

    Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidi...

  13. Comparative study of methyl-CpG-binding domain proteins

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2003-01-01

    Full Text Available Abstract Background Methylation at CpG dinucleotides in genomic DNA is a fundamental epigenetic mechanism of gene expression control in vertebrates. Proteins with a methyl-CpG-binding domain (MBD can bind to single methylated CpGs and most of them are involved in transcription control. So far, five vertebrate MBD proteins have been described as MBD family members: MBD1, MBD2, MBD3, MBD4 and MECP2. Results We performed database searches for new proteins containing an MBD and identified six amino acid sequences which are different from the previously described ones. Here we present a comparison of their MBD sequences, additional protein motifs and the expression of the encoding genes. A calculated unrooted dendrogram indicates the existence of at least four different groups of MBDs within these proteins. Two of these polypeptides, KIAA1461 and KIAA1887, were only present as predicted amino acid sequences based on a partial human cDNA. We investigated their expression by Northern blot analysis and found transcripts of ~8 kb and ~5 kb respectively, in all eight normal tissues studied. Conclusions Eleven polypeptides with a MBD could be identified in mouse and man. The analysis of protein domains suggests a role in transcriptional regulation for most of them. The knowledge of additional existing MBD proteins and their expression pattern is important in the context of Rett syndrome.

  14. Multi-spectroscopic studies on the interaction of human serum albumin with astilbin: Binding characteristics and structural analysis

    International Nuclear Information System (INIS)

    Five spectroscopic techniques were used to investigate the interaction of astilbin (ASN) with human serum albumin (HSA). UV–vis absorption measurements prove that ASN–HSA complex can be formed. The analysis of fluorescence spectra reveal that in the presence of ASN, quenching mechanism of HSA is considered as static quenching. The quenching rate constant kq, KSV and the binding constant K were estimated. According to the van't Hoff equation, the thermodynamic parameters enthalpy change (ΔΗ) and entropy change (ΔS) were calculated to be −12.94 kJ mol−1 and 35.92 J mol−1 K−1, respectively. These indicate that the hydrophobic interaction is the major forces between ASN and HSA, but the hydrogen bond interaction cannot be excluded. The changes in the secondary structure of HSA which was induced by ASN were determined by circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. -- Graphical abstract: In this paper, the interaction of HSA with ASN was systematically studied under simulated physiological conditions by using UV–vis absorption, CD, FT-IR, fluorescence and Raman spectroscopic approaches. The quenching constant kq, KSV and the binding constant K were estimated. The changes in the secondary structure of HSA were studied by Circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The UV–visible absorption spectra of HSA in the absence and presence of different concentration of ASN (1) and fluorescence spectra of HSA in the absence and the presence of ASN (2). Highlights: ► Interaction of ASN and HSA has been studied by five spectroscopic techniques. ► Hydrophobic interaction is the major forces between ASN and HSA. ► Binding of ASN induced the changes in the secondary structure of HSA

  15. Pressure dependent elastic constants of alpha and gamma cyclotrimethylene trinitramine: A quantum mechanical study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, DeCarlos E., E-mail: decarlos.e.taylor.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-08-07

    The elastic constants of the α and γ polymorphs of cyclotrimethylene trinitramine (RDX) have been computed using dispersion corrected density functional theory (DFT). The DFT results validate the values obtained in several experiments using ultrasonic and impulsive stimulated thermal scattering techniques and disagree with those obtained using Brillouin scattering which, in general, exceed the other experimental and theoretical results. Compressibility diagrams at zero pressure are presented for the ab, ac, and bc crystallographic planes, and the anisotropic linear compressibility within the ac plane of α-RDX at 0 GPa, observed using ultrasonic and impulsive stimulated thermal scattering measurements, is verified using DFT. The pressure dependence of the elastic constants of α-RDX (0–4 GPa) and γ-RDX (4–8 GPa) is also presented.

  16. How does fatty acid influence anti-thyroid drugs binding and specificity toward protein human serum albumin? A blind docking simulation study

    Indian Academy of Sciences (India)

    Bijan K Paul; Nikhil Guchhait

    2014-11-01

    This study reports an AutoDock-based blind docking simulation investigation to characterize the binding interaction of a series of anti-thyroid drugs (2-mercapto-1-methylimidazole (MMI), 2-thiouracil (TU), 6-methyl-2-thiouracil (MTU), 6--propyl-2-thiouracil (PTU) with a model plasma protein Human SerumAlbumin (HSA) in the presence and absence of fatty acid (FA). The drug-protein binding efficiency is characterized in terms of binding free energy and the association constant (Ka, which is estimated as the reciprocal of the inhibition constant, Ki) of the drugs to the transport protein. The study also unveils the substantial impact of the presence of fatty acid (FA) on the binding interaction process. It is shown that in the presence of FA the drug-protein binding efficiency is markedly enhanced (except for MTU) and the binding location is changed. Hydrogen bonding interaction appears to play a governing role in the process of FA-induced modifications of binding efficiency and location.

  17. Study on the relationship between soil moisture and its dielectric constant obtained by space-borne microwave radiometers and scatterometers

    International Nuclear Information System (INIS)

    For obtaining spatial-temporal soil moisture information in large range, a study on the relationship of soil moisture and dielectric constant obtained by space-borne microwave radiometers and scatterometers data was performed. Microwave signal is much related to dielectric constant of object observed, and soil dielectric constant is decided by soil moisture, this is the basis of using microwave remote sensing technology for soil moisture monitoring. This study focuses on the transformation of soil moisture and soil dielectric constant. The Dobson semi-empirical model was used to build a simulated database, then, the coefficients calibrated of Hallikainen formula by the least square regression method at radiometer SMOS(1.4GHz), AMSR-E(6.9GHz), and scatterometer ERS-WCS and METOP-ASCAT (both at 5.3GHz) frequency-points were performed to set up the simplified models to related the real part of the dielectric constant and the soil volumetric moisture content. The validations are performed using both simulated data of the Dobson model and in-situ observations, the results show that the simplified models have good accuracy and practicality

  18. Study of Antigravity in an F(R) Model and in Brans-Dicke Theory with Cosmological Constant

    CERN Document Server

    Oikonomou, V K

    2014-01-01

    We study antigravity, that is having an effective gravitational constant with a negative sign, in scalar-tensor theories originating from $F(R)$-theory and in a Brans-Dicke model with cosmological constant. For the $F(R)$ theory case, we obtain the antigravity scalar-tensor theory in the Jordan frame by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate by using a specific $F(R)$ model, although there is no antigravity in the initial model, it might occur or not in the scalar-tensor counterpart, mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model.

  19. Hemaka's constant

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.

  20. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  1. PET physiological measurements using constant infusion

    International Nuclear Information System (INIS)

    A wide range of study designs can be used with positron emission tomography methods to provide quantitative measurements of physiological parameters. While bolus injection of tracer is the conventional approach, use of combined bolus plus constant infusion provides a number of advantages for receptor-binding tracers. Of recent interest is the use of this approach to dynamically follow the displacement of tracer during in vivo changes in neurotransmitter concentrations. This paper provides an overview of the tradeoffs in using bolus/infusion methods versus conventional bolus injection for receptor binding studies

  2. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  3. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  4. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies.

    Science.gov (United States)

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies. PMID:27036466

  5. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  6. Interaction of zinc and cobalt with dipeptides and their DNA binding studies

    Indian Academy of Sciences (India)

    P Rabindra Reddy; M Radhika; K Srinivas Rao

    2004-06-01

    Interactions of zinc and cobalt with peptides cysteinylglycine and histidylglycine have been studied. The binding modes were identified and geometry assigned. Stabilities of these complexes and their ability to bind DNA have been investigated. It is demonstrated that only zinc complexes bind DNA as compared to cobalt complexes.

  7. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  8. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    Science.gov (United States)

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26785703

  9. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  10. A Parametric Study of a Constant-Mach-Number MHD Generator with Nuclear Ionization

    International Nuclear Information System (INIS)

    The influence of electrical and gas dynamical parameters on the length, of a linear constant-Mach-number MHD duct has been investigated. The gas has been assumed to be ionized by neutron irradiation in the expansion nozzle preceding the MHD duct. Inside the duct the electron recombination is assumed to be governed, by volume recombination. It is found that there exists a distinct domain from which the parameters must be chosen, pressure and Mach number being the most critical ones. If power densities in the order of magnitude 100 MW/m3 are desired, high magnetic fields and Mach numbers in the supersonic range are needed. The influence of the variation of critical parameters on the channel length is given as a product of simple functions, each containing one parameter

  11. Study on the Binding Mode of a Co(Ⅱ) Complex with DNA

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qing-Hua; YANG Pin

    2005-01-01

    The mode of binding of CoLCl2, here L=bis(2-benzimidazolylmethyl)amine, with calf thymus DNA has been investigated by fluorescence measurements, equilibrium dialysis, viscosity experiments and gel electrophoresis. The complex was found to bind but weakly to DNA, with binding constant of 1.96× 104 L/mol determind at 20 ℃ in a solution containing 5 mmol/L Tris-HCl (pH 7.1) and 50 mmol/L NaCl. Polyelectrolyte theory was applied to analyse these values. Viscosity experiments show that binding did not alter the relative viscosity of DNA with any complexes to an appreciable extent. Electrophoresis test displayed that the compound could not cleave the DNA.These results show that the complex is essentially electrostatically bound to DNA.

  12. One-pot solvent free synthesis and DNA binding studies of thieno[2,3-b]-1,8-naphthyridines.

    Science.gov (United States)

    Naik, Tangali R Ravikumar; Naik, Halehatty S Bhojya; Prabhakara, Mustur C

    2008-01-01

    With the aim of evaluating interaction between double-stranded calf thymus (ds)DNA and sulphur containing fused planar rings, the derivatives of 1,8-naphthyridine containing thiono groups were synthesized by the condensation of 2-mercapto-3-formyl[1,8]naphthyridines using 1-chloroacetone, 2-chloroacetamide, chloroaceticacid, and 2-chloro-1-phenylethanone in the presence of anhydrous potassium carbonate as s catalyst under solvent free microwave irradiation. The structures of the compounds were elucidated on the basis of elemental analysis, IR, (1)H NMR, and mass spectra. The interaction of thieno[2,3-b]-1,8-naphthyridine-2-carboxylic acid (TNC) (3a) with ct-DNA was studied by UV-Vis spectrophotometry, viscosity, thermal denaturation, as well as cyclic voltammetry experiments. On binding to DNA, the absorption spectrum underwent bathochromic and hypochromic shifts. Binding parameters, determined from spectrophotometric measurements indicated a binding constant of Kb=2.1 x 10(6) M(-1). The thieno[2,3-b]-1,8-naphthyridine-2-carboxylic acid (3a) increases the viscosity of sonicated rod-like DNA fragments. The binding of TNC to DNA increased the melting temperature by about 4 degrees C. The decrease in peak current heights and shifts of peak potential values are observed by the addition of calf thymus DNA in cyclic voltammetry studies. PMID:18080916

  13. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer's Disease.

    Science.gov (United States)

    Viet, Man Hoang; Siposova, Katarina; Bednarikova, Zuzana; Antosova, Andrea; Nguyen, Truc Trang; Gazova, Zuzana; Li, Mai Suan

    2015-04-23

    Self-assembly of Aβ peptides into amyloid aggregates has been suggested as the major cause of Alzheimer's disease (AD). Nowadays, there is no medication for AD, but experimental data indicate that reversion of the process of amyloid aggregation reduces the symptoms of disease. In this paper, all 8000 tripeptides were studied for their ability to destroy Aβ fibrils. The docking method and the more sophisticated MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method were employed to calculate the binding affinity and mode of tripeptides to Aβ fibrils. The ability of these peptides to depolymerize Aβ fibrils was also investigated experimentally using atomic force microscopy and fluorescence spectroscopy (Thioflavin T assay). It was shown that tripeptides prefer to bind to hydrophobic regions of 6Aβ9-40 fibrils. Tripeptides WWW, WWP, WPW and PWW were found to be the most potent binders. In vitro experiments showed that tight-binding tripeptides have significant depolymerizing activities and their DC50 values determined from dose-response curves were in micromolar range. The ability of nonbinding (GAM, AAM) and weak-binding (IVL and VLA) tripeptides to destroy Aβ fibrils was negligible. In vitro data of tripeptide depolymerizing activities support the predictions obtained by molecular docking and all-atom simulation methods. Our results suggest that presence of multiple complexes of heterocycles forming by tryptophan and proline residues in tripeptides is crucial for their tight binding to Aβ fibrils as well as for extensive fibril depolymerization. We recommend PWW for further studies as it has the lowest experimental binding constant. PMID:25815792

  14. Proton NMR studies of aliphatic ligand binding to human plasminogen kringle 4

    International Nuclear Information System (INIS)

    A detailed 1H NMR analysis of ligand binding to the human plasminogen kringle 4 domain has been carried out at 300 MHz. The ligands that were investigated are Nα-acetyl-L-lysine, L-lysine methyl ester, Nα-acetyl-L-lysine methyl ester, L-lysine hydroxamic acid, trans-(aminomethyl)cyclohexanecarboxylic acid (AMCHA), and 4-(aminomethyl)bicyclo[2.2.2]octane-1-carboxylic acid (AMBOC). Specific ligand-binding effects were detected via two-dimensional COSY experiments. The side chains that are the most perturbed by ligand presence are those from Trp62, Phe64, and Trp72. Ligand-kringle saturation transfer (Overhauser) experiments show that the aromatic rings from these three residues are in direct contact with the ligand. These results add support to a previously reported model of the kringle 4 lysine-binding site by which these aromatic groups are assigned a key role in establishing hydrophobic interactions with the ligand molecule. Equilibrium association constants (Ka) and kinetic rate constants (kon, koff) were determined for the binding of the various linear and cyclic ligands to kringle 4. The numerical data are discussed in terms of optimal ligand structure and requirements for fibrin binding in vivo

  15. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    International Nuclear Information System (INIS)

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability

  16. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  17. Experimental studies on the multistage constant modulus array for the estimation of directions-of-arrival

    Institute of Scientific and Technical Information of China (English)

    ZHUO Jie; SUN Chao

    2004-01-01

    The performance of the multistage Constant Modulus (CM) array, one of the most striking blind beamforming algorithms, for the source Directions-of-Arrival (DOA) estimation was analyzed via computer simulations and water tank experiments, and was compared to that of other DOA estimation algorithms including the ‘non-blind' and the ‘blind'. Firstly, a nominal array model and an array model with gain and phase perturbations were established,respectively. Secondly, the multistage CM array algorithm was described and computer simulations were conducted. Simulation results showed that the multistage CM array could correctly estimate the DOA at the same time when the sources were blindly recovered, and the angle separating ability of the algorithm was beyond the Rayleigh resolution limit. By changing the variance of the array model errors, it was also verified that the multistage CM array was more robust to the errors than some other algorithms mentioned in this paper. Finally, water tank experiments and data processing results were provided. Situations with different array sizes and source angular separations were considered. It was shown that the results were in good agreement with computer simulations. Results of computer simulations and water tank experiments verified that the DOAs of the multiple independent sources could be blindly and robustly estimated with the multistage CM array.

  18. An experimental study of constant-pressure steam injection and transient condensing flow in an air-saturated porous medium

    OpenAIRE

    Brouwers, H.J.H.

    1996-01-01

    In this paper the unsteady process of constant pressure steam injection into an air–saturated porous medium is studied experimentally. To this end, vertical glass tubes are packed with dry quartz sand and injected with dry steam. The propagation of the steam front appears to be proportional to t. It is observed that the water saturation is homogeneously distributed and remains below the irreducible water saturation. Furthermore, the theoretical model of Brouwers and Li (1994) of the process i...

  19. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems

    Science.gov (United States)

    Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q.

    2011-03-01

    How to characterize the memory property of systems is a challenging issue in the modeling and analysis of complex systems. This study makes a comparative investigation of integer-order derivative, constant-order fractional derivative and two types of variable-order fractional derivatives in characterizing the memory property of systems. The advantages and potential applications of two variable-order derivative definitions are highlighted through a comparative analysis of anomalous relaxation process.

  20. Insulin binding to plastic bags: a methodologic study.

    Science.gov (United States)

    Twardowski, Z J; Nolph, K D; McGary, T J; Moore, H L; Collin, P; Ausman, R K; Slimack, W S

    1983-04-01

    A radiotracer method to assess insulin binding to commercially available plastic peritoneal dialysis solution containers was developed. A peritoneal dialysis bag (bag 2) was emptied and attached to another full bag (bag 1) of the same kind. In the syringe-to-bag method, bag 1 was symmetrically injected through the bag wall with four syringes containing dialysis solution and radioactive insulin, with or without regular insulin. The radioactivity in each syringe was measured with a gamma counter before injection, and all of the samples were counted afterwards directly in the syringes. Using a bag-to-bag transfer method, bag 1 was agitated, eight samples were taken from different parts through the wall, and then the contents were transferred to bag 2. Bag 2 was then agitated and eight samples were taken and counted. In the bag-pieces method, pieces of bag wall were cut and the radioactivity on the walls was measured to determine the amount of binding. The syringe-to-bag method gave negative results, severely underestimating the amount of insulin binding. The bag-to-bag transfer method yielded positive results in all instances. Increasing the amounts of regular insulin had no demonstrable impact on percent of binding. When the bag-to-bag method was compared with the bag-pieces method, it gave only slightly higher values; however, the bag-to-bag method was considered more reliable because the counting can be controlled more effectively. A 15-minute delay in sampling was not found to influence insulin binding. A reliable method of assessing insulin binding must be based on the following two principles: (1) The transfer of samples to intermediate containers should be avoided, and (2) radiotracer concentrations in the samples should be similar. PMID:6342377

  1. The spectral studies on the effect of Glu 101 to the metal binding characteristic of Euplotes octocarinatus centrin

    Science.gov (United States)

    Guoting, Li; Zhijun, Wang; Yaqin, Zhao; Liexiang, Ren; Aihua, Liang; Binsheng, Yang

    2007-08-01

    Glu is highly conserved as the first amino acid of E-helix of the EF-hand protein. In this paper, Glu 101, the first amino acid of E-helix of the third EF-hand motif in Euplotes octocarinatus centrin (EoCen) was mutated to be Lys by the method of site direct mutation. Tb 3+ and TNS were used as fluorescence probes in the study of the effect of this mutation to the metal binding characteristic of EoCen by fluorescence spectra. Results indicate that compared with EoCen, the mutation protein (E101K) displays a different Tb 3+ binding characteristic and an increased hydrophobic exposure surface. Polyacrylamide gels electrophoresis indicated that the electrophoretic mobilities of EoCen and E101K are distinctly different. It can be deduced that the conformation of EoCen has been altered by this mutation. The general conditional binding constant of Tb 3+ to the three loops of EF-hand sites I-III in E101K was calculated to be (5.64 ± 0.57) × 10 5 M -1 according to the modified equation of the single binding process.

  2. Adsorption Kinetics and Binding Studies of Protein Quantum Dots Interaction: A Spectroscopic Approach.

    Science.gov (United States)

    Vaishanav, Sandeep K; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K; Satnami, Manmohan L

    2016-05-01

    Protein Quantum dots interaction is crucial to investigate for better understanding of the biological interactions of QDs. Here in, the model protein Bovine serum albumin (BSA) was used to evaluate the process of protein QDs interaction and adsorption on QDs surface. The modified Stern-Volmer quenching constant (Ka), number of binding sites (n) at different temperatures (298 308 and 318 K ± 1) and corresponding thermodynamic parameters (ΔG  0) were calculated. The quenching constant (Ks) and number of binding sites (n) is found to be inversely proportional to temperature. It signified that static quenching mechanism is dominant over dynamic quenching. The standard free energy change (ΔG spontaneous, while the enthalpy change (ΔH  0) suggest that hydrophobic force played a pivotal role in the interaction process. The adsorption process were assessed and evaluated by pseudofirst-order, pseudosecond-order kinetic model, and intraparticle diffusion model. PMID:26825079

  3. Elastic constants and Fermi surface topology change in Calaverite AuTe{sub 2}: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Gudelli, Vijay Kumar, E-mail: kanchana@iith.ac.in; Kanchana, V., E-mail: kanchana@iith.ac.in [Department of Physics, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram-502205, Andhra Pradesh (India)

    2014-04-24

    Structural, elastic, electronic and Fermi surface studies of AuTe{sub 2} have been carried out by means of first principles calculations based on density functional theory. The calculated ground state properties agree well with the experiment. Fermi surface and elastic constants are predicted for the first time and from the calculated elastic constants we find the compound to be mechanically stable satisfying the stability criteria of monoclinic structure. In addition, we also find the c-axis to be more compressible than the other two which is also speculated from the present work. The metallic behaviour of this compound is confirmed from the electronic band structure calculation as we find the bands to cross the Fermi level (E{sub F}). In addition, we also observe a FS topology change under pressure which is also explained in the present work.

  4. Biological cell morphology studies by scanning electrochemical microscopy imagery at constant height: Contrast enhancement using biocompatible conductive substrates

    International Nuclear Information System (INIS)

    Scanning ElectroChemical Microscopy (SECM) has emerged as a very attractive method to image living cells activity due to its non invasive character and to the possibility of concomitant electro- and physico-chemical measurements. One of the difficulties when studying morphology of living cells in real time by SECM, using classical constant height mode, is the low contrast of the obtained images due to the insulating character of both the cells and of the underlying substrates. We propose here a technical approach to improve the contrast of SECM imagery obtained at constant height in the feedback mode without the need of Faraday cage. To this aim, a piece of biocompatible transparent conductive substrate (indium tin oxide, ITO coated PET) was attached into the bottom of cell culture well over which the cells were cultured. The transparency of ITO is intended to perform simultaneously SECM and optical microscopy measurements. The concept was applied to the study of endothelial cells, EA.hy926, whose morphology may be altered via an antivascular treatment. Our results show that the differences in the conductivity of the substrate and of the cells enhance the contrast of SECM image in feedback mode at constant height using highly charged redox mediator. In addition, differences in cell morphology are significantly observed by SECM after cell treatment with Combretastatin A4 antivascular agent

  5. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    Science.gov (United States)

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  6. Vibrational study on the cobalt binding mode of Carnosine

    Science.gov (United States)

    Torreggiani, Armida; Taddei, Paola; Tinti, Anna; Fini, Giancarlo

    2002-10-01

    The Co(II)- L-Carnosine (Carnos) system was investigated at different pH and metal/ligand molar ratios by Raman and IR spectroscopy. Raman spectra present some marker bands yielding information on the ability of the Co(II)/Carnos system to bind molecular oxygen and to identify the metal co-ordination site of the imidazole ring (N π or N τ atom) of Carnos. The existence of different oxygenated species is greatly affected by pH and the structure of the predominant complexes depends on the available nitrogen atoms. Under basic conditions, binuclear complexes binding molecular oxygen are the predominant species and two forms (monobridged and dibridged) were identified by the Raman νO-O band (750-850 cm -1). Decreasing pH to 7, the species present in the system are less able to bind oxygen. Hydrogen peroxide and a Co(III) chelate not binding O 2, were formed with a significant conversion of peroxo into superoxo complexes. A slight excess of Carnos does not enhance metal chelation. In slightly acidic conditions, the formation of H 2O 2 and superoxo species is more enhanced than at pH 7 and another Co(III) chelate is probably formed.

  7. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    Science.gov (United States)

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  8. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  9. Chronic insomnia and performance in a 24-h constant routine study.

    NARCIS (Netherlands)

    M. Varkevisser; G.A. Kerkhof

    2005-01-01

    Insomniacs report daytime functioning problems, but studies of neurobehavioral functioning in insomniacs have shown little objective evidence of impairment. In addition, very little is known about the influence of the circadian clock on performance in chronic insomniacs. In the present study, we inv

  10. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    Science.gov (United States)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  11. Studies on folate binding and a radioassay for serum and whole blood folate using goat milk as binding agent

    International Nuclear Information System (INIS)

    Preparations of cow, goat, buffalo, and human milk in addition to pig plasma were tested for folate binding properties. Of these, only pig plasma and goat milk showed sufficient binding to enable use as binding agents in a radioassay for serum and whole blood folate. The binding of folate by cow mild preparations in particular was found to be very poor. (orig.)

  12. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    Science.gov (United States)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  13. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Kang, Xiaohui [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Wang, Ruiqiang [The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Rui; Dou, Huanjing; Wu, Jing; Song, Chuanjun [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China)

    2013-06-15

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported.

  14. Studies on a Novel Minor-groove Targeting Artificial Nuclease: Synthesis and DNA Binding Behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nucleases play an important role in molecular biology, for example, in DNA sequencing. Synthetic polyamide conjugates can be considered as a novel tool for the selective inhibition of gene expressions and also as potential drugs in anticancer or antiviral chemotherapy. In this article, the synthesis of a novel minor-groove targeting artificial nuclease, an oligopyrrol-containing compound, has been reported. It was found that this novel compound can bind DNA in AT-rich minor groove with high affinity and site specificity. DNA binding behavior was determined by using UV-Vis and CD. It is indicated that compound 6 can enhance the Tm of DNA from 80. 4 C to 84. 4 ℃ and that it possesses a high binding constant value(Kb = 3.05×104 L/mol).

  15. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    International Nuclear Information System (INIS)

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported

  16. Experimental and theoretical studies on the DNA-binding of cationic yttrium(III) complex containing 2,2‧-bipyridine

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Akbari, Alireza; Mirkazehi-Rigi, Sohaila

    2015-03-01

    The interaction of DNA with [Y(bpy)(OH2)6]+3, where bpy is 2,2‧-bipyridine has been studied at physiological pH in Tris-HCl buffer. Fluorescence and absorption spectroscopy, agarose gel electrophoresis as well as EB quenching experiments are used to study DNA binding of the complex. The results reveal that DNA have the strong ability to bind with Y(III) complex. The binding constant, Kb and the Stern-Volmer quenching constant, KSV are determined. For characterization of the binding mode between the Y(III) complex and DNA various procedures such as: iodide quenching assay, salt effect and thermodynamical investigation are used. The results suggest that minor groove binding should be the interaction mode of complex to DNA. A gel electrophoresis assay demonstrates the ability of the complex to cleave the DNA via oxidative pathway. Electronic structure of [Y(bpy)(OH2)6]+3 was also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.

  17. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A.

    2013-07-01

    Tamoxifen (TMX) is widely used for the breast cancer treatment and is known as chemopreventive agent. Curcumin (CUR) is natural phenolic compound with broad spectrum of biological activity e.g. anti-inflammatory, antimicrobial, antiviral, antifungal and chemopreventive. Combination of tamoxifen and curcumin could be more effective with lower toxicity than each agent alone in use for the treatment or chemoprevention of breast cancer. Binding of drugs to serum albumin is an important factor, which determines toxicity and therapeutic dosage of the drugs. When two drugs are administered together the competition between them for the binding site on albumin can result in a decrease in bound fraction and an increase in the concentration of free biologically active fraction of drug.

  18. Structural study of LEDGF/p75 binding partners

    Czech Academy of Sciences Publication Activity Database

    Těšina, Petr; Čermáková, Kateřina; Procházková, Kateřina; Hořejší, Magdalena; Christ, F.; De Rijck, J.; Veverka, Václav; Řezáčová, Pavlína

    2013-01-01

    Roč. 20, č. 1 (2013), s. 12-12. ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] R&D Projects: GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : LEDGF/p75 * HIV * integrase-binding domain Subject RIV: EB - Genetics ; Molecular Biology

  19. EPR studies of cooperative binding of Cu (II) to hemoglobin

    International Nuclear Information System (INIS)

    The investigation of the relative affinities of the two pairs of hemoglobin copper sites by monitoring the EPR spectra of the complexes formed by the reaction of copper with deoxyhemoglobin is reported. A model in which two sites are assumed to accept copper ions in a noncooperative way is not able to predict the experimental results. Thus it is conclude that the binding of these ions to hemoglobin is a cooperative phenomenon. (Author)

  20. Tight-binding study of bilayer graphene Josephson junctions

    OpenAIRE

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2012-01-01

    Using highly efficient simulations of the tight-binding Bogoliubov-de Gennes model we solved self-consistently for the pair correlation and the Josephson current in a Superconducting-Bilayer graphene-Superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short and long junction regime. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single layer graphene except in th...

  1. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation.

    Science.gov (United States)

    Agarwal, Shweta; Chadha, Deepti; Mehrotra, Ranjana

    2015-01-01

    Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine-DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine-DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-time-drug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53 × 10(3) M(-1) and 8.12 × 10(3) M(-1), respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects. PMID:25350567

  2. Biophysical characterization and functional studies on calbindin-D28K: A vitamin D-induced calcium-binding protein

    International Nuclear Information System (INIS)

    Vitamin D dependent calcium binding protein, or calbindin-D, is the principal protein induced in the intestine in response to the steroid hormone 1,25(OH)2-vitamin D3. A definitive role for calbindin-D in vitamin D3 mediated biological responses remains unclear. Biophysical and functional studies on chick intestinal calbindin-D28K (CaBP) were initiated so that some insight might be gained into its relevance to the process of intestinal calcium transport. Calbindin-D belongs to a class of high affinity calcium binding proteins which includes calmodulin, parvalbumin and troponin C. The Ca 2+ binding stoichiometry and binding constants for calbindin-D28K were quantitated by Quin 2 titration analysis. The protein was found to bind 5-6 Ca 2+ ions with a KD on the order of 10-8, in agreement with the 6 domains identified from the amino acid sequence. A slow Ca 2+ exchange rate (80 s-1) as assessed by 43Ca NMR and extensive calcium dependent conformational changes in 1H NMR spectra were also observed. Functional studies on chick intestinal CaBP were carried out by two different methods. Interactions between CaBP and intestinal cellular components were assessed via photoaffinity labeling techniques. Specific calcium dependent complexes for CaBP were identified with bovine intestinal alkaline phosphatase and brush border membrane proteins of 60 and 150 kD. CaBP was also found to co-migrate with the alkaline phosphatase activity of chick intestinal brush border membranes as evaluated by gel filtration chromatography. The second procedure for evaluating CaBP functionality has involved the quantitation of CaBP association with vesicular transport components as assessed by ELISA. CaBP, immunoreactivity was observed in purified lysosomes, microsomes and microtubules

  3. Studies on a novel macrophage-specific calmodulin binding glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Orlow, S.J.

    1986-01-01

    The murine macrophage-like cell line J774 and peritoneal exudate cells elicited with thioglycollate or starch contain a major calmodulin-binding protein which is absent in trifluoperazine-resistant variants of J774, resident peritoneal macrophages and these elicited with concanavalin A, lipopolysaccharide, proteose peptone or Bacillus Clamette Guerin. Resident murine peritoneal cells maintained in tissue culture for 3 days begin to accumulate this protein as do human peripheral blood monocytes after 7 days of culture. A specific competitive displacement radioimmunoassay was developed using a rabbit antiserum raised to the partially purified calmodulin binding protein and (/sup 125/I) calmodulin covalently crosslinked to the principal calmodulin binding protein in the preparation. The radioimmunoassay confirmed the unique cellular distribution of this protein suggesting that it may be a marker for certain stages of macrophage differentiation. Monoclonal antibodies were prepared and one of these was used to further purify the protein by immunoaffinity chromatography. A protein of molecular weight 50,000 to 60,000 was isolated. It could be selectively adsorbed to wheat germ agglutinin agarose and subsequently eluted with N-acetyl glucosamine. This property plus its sensitivity to endoglycosidase F led to the conclusion that it is a glycoprotein. The cellular distribution, subcellular localization and evidence of glycosylation suggest that this protein may be a macrophage-specific receptor with a high affinity for calcium-calmodulin.

  4. Studies on a novel macrophage-specific calmodulin binding glycoprotein

    International Nuclear Information System (INIS)

    The murine macrophage-like cell line J774 and peritoneal exudate cells elicited with thioglycollate or starch contain a major calmodulin-binding protein which is absent in trifluoperazine-resistant variants of J774, resident peritoneal macrophages and these elicited with concanavalin A, lipopolysaccharide, proteose peptone or Bacillus Clamette Guerin. Resident murine peritoneal cells maintained in tissue culture for 3 days begin to accumulate this protein as do human peripheral blood monocytes after 7 days of culture. A specific competitive displacement radioimmunoassay was developed using a rabbit antiserum raised to the partially purified calmodulin binding protein and (125I) calmodulin covalently crosslinked to the principal calmodulin binding protein in the preparation. The radioimmunoassay confirmed the unique cellular distribution of this protein suggesting that it may be a marker for certain stages of macrophage differentiation. Monoclonal antibodies were prepared and one of these was used to further purify the protein by immunoaffinity chromatography. A protein of molecular weight 50,000 to 60,000 was isolated. It could be selectively adsorbed to wheat germ agglutinin agarose and subsequently eluted with N-acetyl glucosamine. This property plus its sensitivity to endoglycosidase F led to the conclusion that it is a glycoprotein. The cellular distribution, subcellular localization and evidence of glycosylation suggest that this protein may be a macrophage-specific receptor with a high affinity for calcium-calmodulin

  5. Synthesis, biological investigation, calf thymus DNA binding and docking studies of the sulfonyl hydrazides and their derivatives

    Science.gov (United States)

    Murtaza, Shahzad; Shamim, Saima; Kousar, Naghmana; Tahir, Muhammad Nawaz; Sirajuddin, Muhammad; Rana, Usman Ali

    2016-03-01

    The present study describes the syntheses and biological investigations of sulfonyl hydrazides and their novel derivatives. The detailed investigations involved the characterization of the newly synthesized compounds using FTIR, NMR, mass spectrometry and by single crystal X-Ray diffraction (XRD) analysis techniques. The binding tendencies of these compounds with CT-DNA (calf thymus DNA) have been explored by electronic absorption (UV) spectroscopy and viscosity measurement. The binding constant (K) and Gibb's free energy (ΔG) values were also calculated accordingly. In addition, we also investigated the biological activities such as antioxidant, antibacterial, enzyme inhibition and DNA interactions. The antioxidant activity was assayed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, while antibacterial activity was investigated against four bacterial strains (viz. Escherichia coli, Crynibacteria bovius, Staphylococcus auras and Bacillus antherasis) by employing the common disc diffusion method. Enzyme inhibition activity of the synthesized compounds was examined against butyrylcholinestrase. The results of enzyme inhibition activity and the DNA binding interaction studies were also collected through molecular docking program using computational analysis. Our study reveals that the newly synthesized compounds possess moderate to good biological activities.

  6. Study of Constant Voltage Control on Small Steam Generator Based on PID Algorithm

    Directory of Open Access Journals (Sweden)

    Yanjun Xiao

    2014-03-01

    Full Text Available The object of this study is a kind of 3 kW small steam generator, which can recover waste heat through making use of 0.1~0.3 MPa steam. This can exploit secondary energy efficiently. The electricity generated can be commonly used as factory lighting, heating, fan and emergency power supply. But the generation voltage of the existed steam turbine is instable, especially when the steam pressure and the load of the generator changes suddenly. This can pose a threat to electrical safety and greatly limit the market of small steam generator. In this study, PID control algorithm is used to control the amount of steam into the turbine of generator system. And the closed-loop control system can make a real-time feedback regulation to the steam, so that the generator voltage can be stable. The user's electrical safety requirements are satisfied as well.

  7. Perturbed angular correlation studies of Hf binding to cyanocobalamin (vitamin B12)

    International Nuclear Information System (INIS)

    Gamma ray perturbed angular correlation (PAC) experiments have been carried out with 181Hf labeled cyanocobalamin. Evidence is presented which strongly indicates that Hf binds to vitamin B12 at the phosphate group linking the sugar residue to a side chain of the corrin ring system. Analysis of the time-differential PAC spectra for the crystalline Hf--B12 complex indicates a static electric quadrupole interaction at the Hf nucleus, corresponding to the electric field gradient generated by the chemical bonding. The magnitudes of the derived interaction parameters are similar to those found in Hf phosphate compounds. In aqueous solution, the Hf--B12 complex exhibits PAC spectra which appear to originate from two sources. Approximately 3/4 of the Hf nuclei experience a static electric quadrupole interaction with the same characteristic interaction frequency as in the solid, but with an increased asymmetry parameter. Approximately 1/4 of the Hf signal strength is attributable to a time-dependent quadrupole interaction with a relaxation constant indicative of an effective molecular entity comparable in size to the B12 molecule. This effect may be related to molecular motion in the solution. These results demonstrate the utility of the PAC experimental method for the study of macromolecular species in both the solid and solution forms, and opens possibilities for obtaining new information concerning the structure, orientation, and behavior of macromolecules

  8. Study of Constant Voltage Control on Small Steam Generator Based on PID Algorithm

    OpenAIRE

    Yanjun Xiao; Xuewei Ma; Wei Shao; Yuming Guan

    2014-01-01

    The object of this study is a kind of 3 kW small steam generator, which can recover waste heat through making use of 0.1~0.3 MPa steam. This can exploit secondary energy efficiently. The electricity generated can be commonly used as factory lighting, heating, fan and emergency power supply. But the generation voltage of the existed steam turbine is instable, especially when the steam pressure and the load of the generator changes suddenly. This can pose a threat to electrical safety and great...

  9. Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids under Constant Wall Temperature Condition

    OpenAIRE

    Hsien-Hung Ting; Shuhn-Shyurng Hou

    2015-01-01

    This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that h...

  10. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    Science.gov (United States)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  11. Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO

    2007-01-01

    Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.

  12. Thermodynamic study in modified f(T) gravity with cosmological constant regime

    Science.gov (United States)

    Zubair, M.; Waheed, Saira

    2015-12-01

    This study is conducted to examine the validity of thermodynamical laws in a modified f(T) gravity involving a direct coupling of torsion scalar with matter contents. For this purpose, we consider spatially flat FRW geometry with matter contents as perfect fluid and formulate the first thermodynamical law in this gravity at apparent horizon. It is found that equilibrium description of thermodynamics exists in this modified gravity in a similar way to Einstein and other gravities. Further we discuss generalized second law of thermodynamics at apparent horizon of FRW universe for three different f(T) models using Gibbs law as well as the assumption that temperature of matter within apparent horizon is similar to that of horizon. It is found that for some particular cosmologically consistent values of coupling parameters, GSLT remains valid in observationally consistent cosmic eras.

  13. Theoretical study of the pressure dependent rate constants of the thermal decomposition of β-propiolactone

    Directory of Open Access Journals (Sweden)

    Abolfazl Shiroudi

    2015-09-01

    Full Text Available A theoretical study of the thermal decomposition of β-propiolactone is carried out using ab initio molecular orbital (MO methods at the MP2/6-311+G∗∗ level and Rice–Ramsperger–Kassel–Marcus (RRKM theory. The reported experimental results showed that decomposition of β-propiolactone occurred by three competing homogeneous and first order reactions. For the three reactions, the calculation was also performed at the MP2/6-311+G∗∗ level of theory, as well as by single-point calculations at the B3LYP/6-311+G∗∗//MP2/6-311+G∗∗, and MP4/6-311+G∗∗//MP2/6-311+G∗∗ levels of theory. The fall-off pressures for the decomposition in these reactions are found to be 2.415, 9.423 × 10−2 and 3.676 × 10−3 mmHg, respectively.

  14. Theoretical study of a weakly ionised gas in a uniform constant electric field

    International Nuclear Information System (INIS)

    The collision operators of the Boltzmann equation are expressed in terms of the transition probabilities for a Lorentz gas and inelastic type collisions in the case of conservation and non-conservation of the initial number of particles. These operators are approximately expressed when the mass ratio of the present particles is weak. The expressions obtained are valid for any particle distribution functions. A series expansion in spherical harmonics is effected for these operators. The Boltzmann equation is then solved for the case of a steady homogeneous medium when the electric field effect is lower than that of collisions. A resolving method is then proposed for the case where the electric field and collisions play comparable roles. Analytical expressions are given for the distribution functions in terms of asymptotic solutions valid for any type of cross section. A steady heterogenous medium is then studied by a direct numerical solution of the Boltzmann equation, for high values of the electric field/ pressure ratio. The existence of a single lattice of characteristic directions is established as well as a distribution function representing in phase space a band structure characteristic of the presence of inelastic collisions. The electron motion is simulated using a Monte-Carlo method. The calculations being effected in helium, a bibliography of the cross sections for this gas is given

  15. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  16. Study on complex formation of cadmium (II) ions, 9. Formation constants on cadmium (II) complexes with dicarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Haruo (Government Industrial Research Inst., Nagoya (Japan))

    1984-03-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm/sup -3/ LiClO/sub 4/ as a constant ionic medium at 25/sup 0/C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log ..beta..sub(pr)= log((Cdsub(p)Lsub(r)sup((2p-2r)+))/((Cd/sup 2 +/)sup(p)(L/sup 2 -/)sup(r))), of the complexes were: log ..beta../sub 11/ = 1.98, log ..beta../sub 12/ = 3.05 for cadmium (11)-malonic acid; log ..beta../sub 11/ = 2.28, log ..beta../sub 12/ = 3.06 for cadmium (11)-methylmalonic acid; log ..beta../sub 11/ = 1.78, log ..beta../sub 12/ = 3.08 for cadmium (11)-succinic acid; log ..beta../sub 11/ = 1.85, log ..beta../sub 12/ = 3.28 for cadmium (11)-glutaric acid complexes.

  17. Comparison of [11C]cocaine binding at tracer and pharmacological doses of baboon brain: A PET study

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Logan, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-05-01

    In vitro studies have shown that cocaine (C) binds to both high and low affinity sites on the dopamine transporter (DAT). We have previously characterized the binding of tracer doses of [{sup 11}C]cocaine (C*)to a high affinity site on the DAT. To assess if in vivo C also binds to low affinity sites we used PET to compare binding of tracer doses (17.8{plus_minus}12.2 {mu}g C) of C* to pharmacological doses (8 mg of C coadministered with C*). Sixteen paired studies were done to assess test/retest variability, specific versus non specific binding and to characterize binding profile. Dynamic scans were started immediately after injection of C* (5-8 mCi) for 50 min on the CTI-931 (6 x 6 x 6.5 mm FWHM). Time activity curves for tissue concentration and for unchanged tracer in plasma were used to calculate the transport constant between plasma and tissue (K1) and to obtain the distribution volume (DV). The ratio of the DV in striatum (ST) to that in cerebellum (CB) (which corresponds to Bmax/Kd-1) was used as model parameter. Peak brain uptake of C* was significantly higher for tracer than for pharmacological doses (0.041 versus 0.033 % dose/cc), as were the values for K1 (1.07{plus_minus}0.21 versus 0.68{plus_minus}0.26 (t=3.0 p<0.01)). Repeated measures were reproducible for tracer ({plus_minus}2%) and pharmacological doses of C* ({plus_minus}4%). Tracer dose C* showed highest binding and slowest clearance in ST which was reduced by C (0.5-2.0 mg/kg iv, -25 to -30%) and by drugs that inhibit DAT (2mg/kg nomifensine - 21%, 0.5 mg/kg methylphenidate -12%) and was increased by serotonin transporter inhibitors (5HT-Ti) (2 mg/kg citalopram +11%, 0.5 mg/kg fluoxetine +6%) and not changed by NE transporter inhibitors (0.5 mg/kg desipramine or 2 mg/kg tomoxetine). The increase with (5HT-Ti) may reflect neurotransmitter interactions or changes in bioavailability. At pharmacological doses C* showed homogeneous distribution and was not changed by C nor by any of the above drugs.

  18. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    Science.gov (United States)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1 × 104 M-1, indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97 × 105 M-1, indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔHo, ΔSo and ΔGo) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔHo and ΔSo values indicate that the

  19. Tight-binding study of bilayer graphene Josephson junctions

    Science.gov (United States)

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2012-11-01

    Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length.

  20. Full quantum mechanical study of binding of HIV-1 protease drugs

    Science.gov (United States)

    Zhang, Da W.; Zhang, John Z. H.

    Fully quantum mechanical studies of detailed binding interactions between HIV-1 protease and six FDA (Food and Drug Administration)-approved drugs (saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, and lopinavir) are carried out using a recently developed MFCC (molecular fractionation with conjugate caps) method. The MFCC calculation produces a quantum mechanical interaction spectrum for any protease drug binding complex. Detailed quantitative analysis on binding of lopinavir to specific residues of the protease is given from the current study. The present calculation shows that the dominant binding of lopinavir to the protease is through the formation of a strong hydrogen bond between the central hydroxyl group of the drug to the aspartate oxygen of Asp25 in one of the two chains of the protease (A chain). This is closely followed by hydrogen binding of the drug to Asp29 in the B chain and somewhat weak hydrogen bonding to Asp30, Gly27, Gly48, and Ile50 in both chains. By partitioning all six drugs into four building blocks besides the central component containing the hydroxyl group, MFCC calculation finds that block III has essentially no binding interaction with the protease and the major binding interactions of these drugs are from blocks II and IV, in addition to the dominant central hydroxyl group. This detailed quantitative information on drug binding to the protease is very useful in rational design of new and improved inhibitors of HIV-1 protease and its mutants.

  1. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    Science.gov (United States)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  2. Study of formation constant of molybdophosphate and it's application in the product of xenotime sand, tooth and bone

    International Nuclear Information System (INIS)

    The formation constant of molybdophosphate complex and it's application in the product of xenotime sand, tooth and bone have been studied by spectrophotometric method. The molybdophosphate complex were formed from reaction between phosphate and molybdate on several of pH in the strong acid condition (pH = 0.45 - 0.71) and several of phosphate mole fraction (0.01 - 0.08). The several of complex formation reactions were determined by matrix disintegration technique. Molybdophosphate complex were founded three forms i.e. (P2Mo18O62)6- or 9 MPA, (PMo11O39)7- or 11 MPA and (PMo12O40)3- or 12 MPA. The formation constant of (PMo12O40)3- complex was found β = 1046.95 ± 103.7, while for (P2Mo18O62)6- and (PMo11O39)7- were not detected. The application in samples were found the concentration of P in product of xenotime sand : 5.37±0.08 μg/ml, in canine-tooth: 10.40 - 19.49 % in cutting-tooth : 11.08 - 18.05 % and in bone 10.94 - 14.29 %. (author)

  3. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  4. Theoretical study of short-range and long-range electron-nucleus coupling constants in hydrocarbon radicals

    International Nuclear Information System (INIS)

    A study of the hyperfine structure of organic radicals is developed by means of quantum chemistry methods. It is shown that SCF semi-empirical methods can give hydrogen hyperfine splittings in good agreement with experimental results, but are unable to explain the actual nature of the coupling. On the other hand, the stereo selectivity of β and γ hydrogen couplings constants can be understood in terms of chemical bonds interactions using a perturbative configuration interaction development of the energy and wave function (PCILO) with localized orbitals. An 'ab initio' study of methyl, vinyl, ethyl and n-propyl radicals, developed in a basis of a gaussian-type atomic functions (9s, 5 p/4s), confirms the PCILO results and underlines the inadequacy of semi-empirical methods on fitting the hyperfine splittings of the heavy atoms. (author)

  5. Ligand binding studies in the mouse olfactory bulb: identification and characterisation of a L-[3H]carnosine binding site

    International Nuclear Information System (INIS)

    Binding sites for the dipeptide L-carnosine (β-alanyl-t-histidine) have been detected in membranes prepared from mouse olfactory bulbs. The binding of L-[3H]- carnosine was saturable, reversible and stereospecific and had a Ksub(d) of about 770 nM. The stereospecific binding of L-carnosine represented about 30% of the totoal binding at pH 6.8, and decreased markedly with increasing pH. Binding was stimulated by calcium, unaffected by zinc, magnesium or manganese and inhibted by sodium and potassium. Carnosine binding was sensitive to trypsin and phospholipases A and C, but not to neuraminidase. Nystatin and filipin, which interact with membrane lipids, also interfered with binding. Some peptide analogues of carnosine were potent inhibitors of binding, but a variety of drugs serving as potent inhibitors in other binding systems had no effect on carnosine binding. Carnosine binding to mouse olfactory bulb membranes was 15-fold higher than that seen in membranes prepared from cerebral hemispheres, 5-fold higher than in cerebellum membranes and 3-fold higher than in membranes from spinal medulla and the olfactory tubercle-lateral olfactory tract area. (Auth.)

  6. Preliminary study of the metal binding site of an anti-DTPA-indium antibody by equilibrium binding immunoassays and immobilized metal ion affinity chromatography.

    Science.gov (United States)

    Boden, V; Colin, C; Barbet, J; Le Doussal, J M; Vijayalakshmi, M

    1995-01-01

    Creating metal coordination sites by modifying an existing enzyme or by eliciting antibodies against metal chelate haptens is of great interest in biotechnology to create enzyme catalysts with novel specificities. Here, we investigate the metal binding potential of a monoclonal antibody raised against a DTPA-In(III) hapten (mAb 734). We study its relative binding efficiency to metals of biological relevance by equilibrium binding immunoassays and immobilized metal ion affinity chromatography, two approaches which can give complementary information regarding composition and/or structure of the metal binding site(s). Fe(III), Fe(II), Cu(II), Mg(II), Ca(II), and Zn(II) binding was compared to In(III). All of them were shown to displace indium, but their affinity for mAb 734 decreased by 100-fold compared to indium. Competitive metal binding immunoassays between Zn(II) and In(III) revealed an unusual behavior by Zn(II) which remains to be explained. Moreover, IMAC allowed us to predict the metal binding amino acids involved in the antibody paratope. The antibody metal binding site was shown to contain at least two histidine residues in a cluster, and the presence of aspartic and glutamic acid as well as cysteine residues could not be excluded. Thus, simple competition studies allows us to obtain some partial information on the metal binding structural features of this anti-metal chelate antibody and to guide our screening of its catalytic potential. PMID:7578356

  7. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    Directory of Open Access Journals (Sweden)

    Xiongwu Wu

    2015-10-01

    Full Text Available Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  8. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  9. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  10. Multispectral studies of DNA binding, antioxidant and cytotoxic activities of a new pyranochromene derivative

    Science.gov (United States)

    Dehkordi, Mahvash Farajzadeh; Dehghan, Gholamreza; Mahdavi, Majid; Hosseinpour Feizi, Mohammad Ali

    2015-06-01

    The binding properties of a new pyranochromene derivative, 2-amino-4-(3-hydroxyphenyl)-5-oxo-4H, 5H-pyrano-[3, 2-c] chromene-3-carbonitrile (3-HC) with calf thymus DNA (ctDNA) have been investigated by UV-vis absorption, circular dichroism, fluorescence spectroscopy and viscosity measurement. These results indicated that 3-HC can interact with DNA through non-intercalative mode and the intrinsic binding constant (Kb) for 3-HC with DNA was estimated to be 3.6 × 103 M-1. The antioxidant activity experiments show that 3-HC also exhibit good antioxidant activity in DPPH free radical scavenging and ferric reducing ability methods. Moreover, 3-HC exhibited cytotoxic activity against K562, human chronic myelogenous leukemia cells, with IC50 value of 146 μM and the cells responded to the treatment with mostly through apoptosis.

  11. Studies on the Synthesis, Characterization, DNA Binding, Cytotoxicity and Antioxidant activity of 2-methyl-4-nitrophenylferrocene

    International Nuclear Information System (INIS)

    We report herein the synthesis, structural characterization, DNA binding, BamH1 digestion, cytotoxicity and antioxidant activity of 2-methyl-4-nitrophenylferrocene. Structural characterization is based on multinuclear (1H and 13C) NMR, FT-IR spectroscopy and elemental analysis. Interaction of 2-methyl-4-nitrophenylferrocene with pBR322 plasmid DNA shows noncovalent interactions however these noncovalent interactions reveal the prevention of BamH1 restriction site (g/ggtcc). In the voltammogram, a negative shift in peak potential has been observed on addition of increasing concentration of CT-DNA, which shows electrostatic interaction for 2-methyl-4-nitrophenylferro with negatively charged phosphate of DNA backbone. The binding ratio, binding constant, binding free energy and diffusion coefficient of free and bound drug were calculated to understand the mechanism. The high negative value of -delta G signifies the spontaneity and high conformational stability of 2-methyl-4-nitrophenylferro with CT-DNA. The compound has the ability to scavenge free radicals as have been revealed by DPPH findings. (author)

  12. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  13. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  14. Comparative study of the binding of Trypsin with bifendate and analogs by spectrofluorimetry

    Science.gov (United States)

    Li, Hua; Pu, Juanjuan; Wang, Yi; Liu, Chuang; Yu, Jie; Li, Tao; Wang, Ruiqiang

    2013-11-01

    The interactions between Trypsin and bifendate (DDB) or analogs (I, II and III) were investigated by fluorescence, UV-visible absorption, resonance light scattering, synchronous fluorescence and 3D spectroscopy under mimic physiological conditions. The results revealed that DDB and analogs caused the fluorescence quenching of Trypsin by the formation of DDB/I/II/III-Trypsin complex. The quenching and energy transfer mechanisms were discussed. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that DDB was the stronger quencher and bound to Trypsin with higher affinity than other three analogs.

  15. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    Science.gov (United States)

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. PMID:27079489

  16. Study on the thermodynamics of the binding of iminium and alkanolamine forms of the anticancer agent sanguinarine to human serum albumin

    International Nuclear Information System (INIS)

    Highlights: ► Energetics of sanguinarine–human serum albumin has been elucidated. ► The alkanolamine binds stronger than iminium. ► Enthalpy driven binding for iminium was revealed. ► Alkanolamine form binding was favored by negative enthalpy and entropy changes. ► Spectroscopic results support calorimetry data. - Abstract: Sanguinarine is an anticancer plant alkaloid that can exist in the charged iminium and neutral alkanolamine forms. The thermodynamics of the interaction of the two forms with human serum albumin was investigated using calorimetric techniques, and the data supplemented with circular dichroism and spectrofluorimetric studies. The thermodynamic results show that there is only one class of binding for sanguinarine on HSA. The equilibrium constant was four times higher for the alkanolamine (Ka = 2.18 · 105 M−1) than for iminium (Ka = 5.97 · 104 M−1). The binding was enthalpy driven for iminium and favoured by both a negative enthalpy and a stronger favourable entropy contribution for the alkanolamine. Temperature dependent calorimetric data yielded values of ΔCp∘ that are consistent with the involvement of different molecular forces in the complexation of the two forms of sanguinarine to HSA. The fluorescence quenching data suggest a static quenching mechanism. Synchronous fluorescence and circular dichroic data are consistent with a conformational change in the protein on binding that was also higher for the alkanolamine form.

  17. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    OpenAIRE

    Endres, Christopher J.; Dima A. Hammoud; Pomper, Martin G.

    2011-01-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined th...

  18. Systematic Study of Binding of μ-Conotoxins to the Sodium Channel NaV1.4

    Directory of Open Access Journals (Sweden)

    Somayeh Mahdavi

    2014-12-01

    Full Text Available Voltage-gated sodium channels (NaV are fundamental components of the nervous system. Their dysfunction is implicated in a number of neurological disorders, such as chronic pain, making them potential targets for the treatment of such disorders. The prominence of the NaV channels in the nervous system has been exploited by venomous animals for preying purposes, which have developed toxins that can block the NaV channels, thereby disabling their function. Because of their potency, such toxins could provide drug leads for the treatment of neurological disorders associated with NaV channels. However, most toxins lack selectivity for a given target NaV channel, and improving their selectivity profile among the NaV1 isoforms is essential for their development as drug leads. Computational methods will be very useful in the solution of such design problems, provided accurate models of the protein-ligand complex can be constructed. Using docking and molecular dynamics simulations, we have recently constructed a model for the NaV1.4-μ-conotoxin-GIIIA complex and validated it with the ample mutational data available for this complex. Here, we use the validated NaV1.4 model in a systematic study of binding other μ-conotoxins (PIIIA, KIIIA and BuIIIB to NaV1.4. The binding mode obtained for each complex is shown to be consistent with the available mutation data and binding constants. We compare the binding modes of PIIIA, KIIIA and BuIIIB to that of GIIIA and point out the similarities and differences among them. The detailed information about NaV1.4-μ-conotoxin interactions provided here will be useful in the design of new NaV channel blocking peptides.

  19. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, P A [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  20. Potentiometric study of equilibrium constants of a novel triazine--thione derivative and its stability constants with Hg2+, Cu2+, Ni2+, Pb2+, and Zn2+ metal ions in ethanol and water mixed

    OpenAIRE

    Polat, Fatih; ATABEY, Hasan; SARI, Hayati; Çukurovali, Alaaddin

    2013-01-01

    The deprotonation constants of 5-hydroxy-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione (HPT) and the stability constants of its Hg2+, Ni2+, Cu2+, Pb2+, and Zn2+ ion complexes were studied in 20% ethanol and water mixed at 25 \\pm 0.1 °C and ionic strength (I) of 0.1 M supported by NaCl. Four pKa values of HPT were determined: 3.58, 6.30, 9.23, and 9.69. In various pH conditions, the different complex forms were formulated as ML, MHL, MH2L, MH3L, MH4L, and MH-2L between ...

  1. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  2. New bipolar tissue ligator combines constant tissue compression and temperature guidance: histologic study and implications for treatment of hemorrhoids

    Directory of Open Access Journals (Sweden)

    Piskun G

    2012-10-01

    Full Text Available Gregory Piskun,1 Robert Tucker21Department of Surgery, New York Methodist Hospital, Brooklyn, NY, USA; 2Department of Pathology, University of Iowa College of Medicine, Iowa City, IA, USABackground: Several minimally invasive technologies are available to treat common soft tissue lesions including symptomatic hemorrhoids. The use of energy to deliver heat and coagulate target lesions is commonly practiced. This study compares the histologic effects produced on intestinal tissues by two energy-based systems which employ different approaches of heat delivery.Methods: Two heat delivery systems were evaluated in vivo in a single porcine subject: infrared coagulator and bipolar tissue ligator utilizing constant tissue compression and temperature guidance. Eighteen treatment sites divided into three groups of six were assessed. Treatment site temperature was measured and the effects of thermal treatment in the mucosa, submucosa, submucosal vessels, and muscularis layer were scored. Lateral thermal spread beyond the energy application site was also assessed.Results: Treatment site temperatures were much lower in the bipolar ligator group than in the infrared coagulator group. The mucosal and submucosal tissue changes observed in tissues treated with infrared energy and bipolar energy at 55°C were similar. Both the mucosal and submucosal tissue changes with bipolar energy at 50°C were significantly less.Conclusion: Both devices achieved similar histologic results. However, the unique design of the bipolar ligator, which allows consistent capture, constant compression, and temperature monitoring of target tissue, accomplished the desired histologic changes with less muscular damage at much lower temperatures than the infrared coagulator. The use of bipolar ligation could offer clinical advantages such as reduced patient pain and a minimized chance of heat-related collateral tissue damage.Keywords: bipolar ligator, internal hemorrhoids, tissue

  3. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla, Diana, E-mail: Diana_Chinchilla@yahoo.com; Kilheeney, Heather, E-mail: raindropszoo@yahoo.com; Vitello, Lidia B., E-mail: lvitello@niu.edu; Erman, James E., E-mail: jerman@niu.edu

    2014-01-03

    Highlights: •Cytochrome c peroxidase (CcP) binds acrylonitrile in a pH-independent fashion. •The spectrum of the CcP/acrylonitrile complex is that of a 6c–ls ferric heme. •The acrylonitrile/CcP complex has a K{sub D} value of 1.1 ± 0.2 M. •CcP compound I oxidizes acrylonitrile with a maximum turnover rate of 0.61 min{sup −1}. -- Abstract: Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M{sup −1} s{sup −1} and 0.34 ± 0.15 s{sup −1}, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min{sup −1} at pH 6.0.

  4. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    Science.gov (United States)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  5. Cosmological Constant, Fine Structure Constant and Beyond

    OpenAIRE

    Wei, Hao; Zou, Xiao-Bo; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view...

  6. Lectin interactions with the Jurkat leukemic T-cell line: quantitative binding studies and interleukin-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, G.; Bastin, B.

    1988-03-01

    Phytohemagglutinin (PHA), concanavalin A (Con A), pea lectin, and wheat germ agglutinin (WGA) have been used to investigate their binding properties to Jurkat 77 6.8 leukemic human T cells and their ability to induce these cells to produce interleukin-2 (IL-2). Binding studies showed that the Jurkat cells fixed 0.82 +/- 0.11 microgram pea lectin, 2.02 +/- 0.17 micrograms Con A, 1.85 +/- 0.07 micrograms PHA and 8.88 +/- 0.61 micrograms WGA. Scatchard plots were linear, indicating that the binding process was homogeneous with respect to the binding constant. PHA and Con A bound with the highest affinity (Kass (apparent) approximately equal to 9 x 10(9) M-1), followed by pea lectin and WGA (Kass (apparent) approximately equal to 3 x 10(9) M-1). The number of lectin binding sites was in agreement with the results of saturation experiments. We also evaluated the effect of the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the binding process. Results show that there were no gross alterations in the value of (apparent) Kass in the case of PHA and WGA. In contrast, the presence of TPA decreased the affinity of Con A and modified the Scatchard profile for pea lectin, which was curvilinear with a concavity turned upward. In this case, data were (apparent) K1 = 17.7 x 10(9) M-1 (high-affinity sites) and (apparent) K2 = 2.6 x 10(9) M-1 (low-affinity sites). The four lectins shared the ability to stimulate Jurkat 77 6.8 cells to secrete IL-2. Optimal lectin concentrations were 20 micrograms/ml (PHA) and 50 micrograms/ml (WGA and Con A). Pea lectin failed to display a dose-response relationship, and IL-2 production increased proportionally with lectin concentration. Con A was the most efficient stimulator (250 U/ml), followed by WGA (160 U/ml) and PHA (108 U/ml).

  7. Affinity capillary electrophoresis applied for study of solvent effect on stability constant of dibenzo-18-crown-6 complex with potassium ion

    Czech Academy of Sciences Publication Activity Database

    Konášová, Renáta; Jaklová Dytrtová, Jana; Kašička, Václav

    Brno: Institute of Analytical Chemistry AS CR, 2014 - (Foret, F.; Křenková, J.; Drobníková, I.; Guttman, A.; Klepárník, K.), s. 284-288 ISBN 978-80-904959-2-0. [CECE 2014. International Interdisciplinary Meeting on Bioanalysis /11./. Brno (CZ), 20.10.2014-22.10.2014] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S; GA ČR GP13-21409P Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * solvent effect * binding constant Subject RIV: CB - Analytical Chemistry, Separation

  8. Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors

    International Nuclear Information System (INIS)

    Graphical abstract: The work aimed at studying the performance of a steam jet refrigeration system with (i) a constant area ejector and (ii) a variable area ejector under different operating conditions both experimentally and computationally. The boiler temperature was varied from 90 °C to 120 °C, the evaporator temperature was varied from 5 °C to 15 °C and the entertainment ratio, variation of Mach number along the ejector and the Coefficient of Performance were obtained. With proper design, the shock phenomenon in the variable area ejector was eliminated as shown in the left figure, which resulted in a better performance of the variable area ejector over a range of evaporator temperatures. The study also confirmed that the system can operate steadily at a boiler temperature of 90 °C which can be obtained from waste heat. - Highlights: • Experimental and computational studies on steam jet refrigeration system carried out. • Constant area and variable area ejectors were designed for low heat input. • Evaporator temperature was varied from 5 °C to 15 °C and the boiler temperature from 90 °C to 120 °C. • At the lower boiler temperature, no shock formed in the variable area ejector resulting in better performance. • A steam jet refrigeration system can operate steadily at boiler temperature of 90 °C. - Abstract: This paper first presents the results from an experimental study of a conventional steam jet ejector refrigeration system and compares the performance with the computational fluid dynamics (CFD) results of the same. Secondly, it describes a method of developing a variable area supersonic ejector and presents experimental results of the operating performance of the variable area ejector over the same operating conditions. The two ejectors were experimentally tested for boiler temperatures below 120 °C and an evaporator temperature below 15 °C. It was found that the steam jet refrigeration system can operate with stability at low boiler

  9. Protein binding studies with radiolabeled compounds containing radiochemical impurities. Equilibrium dialysis versus dialysis rate determination

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    The influence of radiochemical impurities in dialysis experiments with high-affinity ligands is investigated. Albumin binding of labeled decanoate (97% pure) is studied by two dialysis techniques. It is shown that equilibrium dialysis is very sensitive to the presence of impurities resulting...... in erroneously low estimates of the binding affinity and in inconsistent results at varying albumin concentrations. Dialysis rate determination (R. Brodersen et al. (1982) Anal. Biochem. 121, 395-408) is less sensitive to impurities. Udgivelsesdato: 1987-Apr...

  10. Study of the influence of actin-binding proteins using linear analyses of cell deformability.

    Science.gov (United States)

    Plaza, Gustavo R; Uyeda, Taro Q P; Mirzaei, Zahra; Simmons, Craig A

    2015-07-21

    The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing. PMID:26059185

  11. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    Science.gov (United States)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  12. The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins

    Institute of Scientific and Technical Information of China (English)

    Alice Y. Cheung; Qiao-hong Duan; Silvia Santos Costa; Barend H.J.de Graaf; Veronica S.Di Stilio; Jose Feijo; Hen-Ming Wu

    2008-01-01

    Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization.Growth occurs exclusively at the tube apex,rendering pollen tube elongation a most dramatic polar cell growth process.A hall-mark pollen tube feature is its cytoskeleton,which comprises elaborately organized and dynamic actin microfilaments and microtubules.Pollen tube growth is dependent on the actin cytoskeleton;its organization and regulation have been exalined extensively by various approaches.including fluorescent protein labeled actin-binding proteins in live cell studies.Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP,we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long,streaming actin cables along the pollen tube shank,and a subapical structure comprising shorter actin cables.The subapical collection of actin microfilaments undergoes dynamic changes,giving rise to the appearance of structures that range from basket-or funnel-shaped,mesh-like to a subtle ring.NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases,AtROP-GEF1,to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton.Contrary to the actin cytoskeleton,microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes.Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1,GFP-AtEB1,we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics.These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.

  13. Structural and binding studies of C-terminal half (C-lobe) of lactoferrin protein with COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs).

    Science.gov (United States)

    Mir, Rafia; Singh, Nagendra; Vikram, Gopalakrishnapillai; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2010-08-15

    Three COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs), etoricoxib, parecoxib, and nimesulide are widely prescribed against inflammatory conditions. However, their long term administration leads to severe conditions of cardiovascular complications and gastric ulceration. In order to minimize these side effects, C-terminal half (C-lobe) of colostrum protein lactoferrin has been indicated to be useful if co-administered with NSAIDs. Lactoferrin is an 80kDa glycoprotein with two similar halves designated as N- and C-lobes. Since NSAID-binding site is located in the C-terminal half of lactoferrin, C-lobe was prepared from lactoferrin by limited proteolysis using proteinase K. The incubation of lactoferrin with serine proteases for extended periods showed that N-lobe was completely digested but C-lobe was resistant for more than 72h indicating its long half life in the animal gut. The solution studies have shown that COX-2-specific NSAIDs bind to C-lobe with binding constants ranging from 10(-4) to 10(-5)M showing significant affinities for sequestering these compounds. In order to understand the mode of binding and sequestering properties, the complexes of C-lobe with all these three compounds, etoricoxib, parecoxib, and nimesulide were prepared and the structures of their complexes with C-lobe were determined at 2.2, 2.9, and 2.7A resolutions, respectively. The analysis of the structures of complexes of C-lobe with NSAIDs clearly show that all the three compounds bind firmly at the same ligand-binding site in the C-lobe revealing the details of the interactions between C-lobe and NSAIDs. The mode of binding of COX-2-specific NSAIDs to C-lobe is similar to that of the binding of COX-2 non-specific NSAIDs to C-lobe. PMID:20515646

  14. Binding of (/sup 125/I)-N-(p-aminophenethyl)spiroperidol to the D-2 dopamine receptor in the neurointermediate lobe of the rat pituitary gland: a thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Agui, T.; Amlaiky, N.; Caron, M.G.; Kebabian, J.W.

    1988-02-01

    The novel iodinated ligand (/sup 125/I)-N-(p-aminophenethyl)spiroperidol ((/sup 125/I)NAPS) was used to identify the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. The binding of (/sup 125/I)NAPS was of high affinity and saturable, given that the dissociation constant and the maximal binding were 34.7 +/- 4.8 pM and 21.1 +/- 2.5 fmol/mg of protein, respectively. The ability of dopaminergic agonists and antagonists to compete with (/sup 125/I)NAPS varied markedly with incubation temperature. The marked decrease of the molar potency associated with increasing incubation temperature in the competitive displacement curve suggested that the binding of five agonists, dopamine, (-)-apomorphine, (-)-n-propylnorapomorphine, N-0434, and LY-171555, to the D-2 dopamine receptor was enthalpy-driven, with a negative change in entropy. In contrast, the binding of three antagonists, fluphenazine, (+)-butaclamol, and domperidone, was entropy-driven, with positive change in entropy, suggesting less temperature-sensitive change in the molar potency. Several molecules gave unanticipated results; the molar potency of two dopamine agonists, bromocriptine and lisuride, was much less temperature-sensitive than the other agonists used in this study. The thermodynamic parameters for the atypical agonists indicated entropy-driven binding. Conversely, the molar potency of (+)-apomorphine, a dopamine receptor antagonist, was markedly affected by incubation temperature, indicating enthalpy-driven binding. Another antagonist, YM-09151-2, was affected by the inclusion of sodium chloride in the assay system: in the absence of sodium chloride, the drug was relatively weak and displayed enthalpy-driven binding; in the presence of sodium chloride, its molar potency was increased and its binding manner turned into entropy-driven.

  15. Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

    Indian Academy of Sciences (India)

    Rambir Bhadouriya; Amit Agrawal; S V Prabhu

    2015-04-01

    The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range considered was 100-3000. Twist ratio used are 2.5, 5, 10 and 20. Fluids considered are in Prandtl number range of 0.7-20. Product of friction factor and Reynolds number is found to be a function of Reynolds number and maximum values are observed for a twist ratio of 2.5 and Reynolds number of 3000. Maximum Nusselt number is observed for the same values along with Prandtl number of 20. Correlations for friction factor and Nusselt number are developed involving swirl parameter. Local distribution of friction factor ratio and Nusselt number across a cross-section is presented. Based on constant pumping power criteria, enhancement factor is defined to compare twisted ducts with straight ducts. Selection of twisted square duct is presented in terms of enhancement factor. It is found that twisted duct performs well in the laminar region for range of parameters studied. Heat transfer enhancement for Reynolds number of 3000 and Prandtl number of 0.7 for twist ratio of 2.5, 5, 10, and 20 is 20%, 17.8%, 16.1% and 13.7%, respectively. The results are significant because it will contribute to development of energy efficient compact size heat exchangers.

  16. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, M.; Morteza, Izadifard [Faculty of Physics, Shahrood University of technology, Shahrood (Iran, Islamic Republic of); Arabshahi, H., E-mail: arabshahi@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Physics Department, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Reza, Sarkardehi Mohammad [Physics Department, Al-Zahra University, Vanak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al{sub x}Ga{sub (1-x)}As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: Black-Right-Pointing-Pointer OptiOptical Non-Linear. Black-Right-Pointing-Pointer Total Effective Length. Black-Right-Pointing-Pointer Multiple Quantum Wells System - genetic algorithm Black-Right-Pointing-Pointer Schroedinger equation solution. Black-Right-Pointing-Pointer Nanostructure.

  17. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin

    International Nuclear Information System (INIS)

    2-Mercaptothiazoline (MTZ) is widely utilized as a brightening and stabilization agent, corrosion inhibitor and antifungal reagent. The residue of MTZ in the environment is potentially hazardous to human health. In this study, the binding mode of MTZ with bovine serum albumin (BSA) was investigated using spectroscopic and molecular docking methods under physiological conditions. MTZ could spontaneously bind with BSA through hydrogen bond and van der Waals interactions with one binding site. The site marker displacement experiments and the molecular docking revealed that MTZ bound into site II (subdomain IIIA) of BSA, which further resulted in some backbone structures and microenvironmental changes of BSA. This work is helpful for understanding the transportation, distribution and toxicity effects of MTZ in blood. - Highlights: • The mechanism was explored by multiple spectroscopic and molecular docking methods. • MTZ can spontaneously bind with BSA at subdomain IIIA (site II). • MTZ can lead to some conformational changes of BSA

  18. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yue, E-mail: tengyue@jiangnan.edu.cn; Wang, Xiang; Zou, Luyi; Huang, Ming; Du, Xianzheng

    2015-05-15

    2-Mercaptothiazoline (MTZ) is widely utilized as a brightening and stabilization agent, corrosion inhibitor and antifungal reagent. The residue of MTZ in the environment is potentially hazardous to human health. In this study, the binding mode of MTZ with bovine serum albumin (BSA) was investigated using spectroscopic and molecular docking methods under physiological conditions. MTZ could spontaneously bind with BSA through hydrogen bond and van der Waals interactions with one binding site. The site marker displacement experiments and the molecular docking revealed that MTZ bound into site II (subdomain IIIA) of BSA, which further resulted in some backbone structures and microenvironmental changes of BSA. This work is helpful for understanding the transportation, distribution and toxicity effects of MTZ in blood. - Highlights: • The mechanism was explored by multiple spectroscopic and molecular docking methods. • MTZ can spontaneously bind with BSA at subdomain IIIA (site II). • MTZ can lead to some conformational changes of BSA.

  19. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.T.; Borchardt, R.T.

    1987-05-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of (/sup 125/I)-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23/sup 0/C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37/sup 0/C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37/sup 0/C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation.

  20. Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies.

    Science.gov (United States)

    Ploux, O; Breyne, O; Carillon, S; Marquet, A

    1999-01-01

    8-Amino-7-oxopelargonate synthase catalyzes the first committed step of biotin biosynthesis in micro-organisms and plants. Because inhibitors of this pathway might lead to antibacterials or herbicides, we have undertaken an inhibition study on 8-amino-7-oxopelargonate synthase using six different compounds. d-Alanine, the enantiomer of the substrate of this pyridoxal-5'-phosphate-dependent enzyme was found to be a competitive inhibitor with respect to l-alanine with a Ki of 0.59 mm. The fact that this inhibition constant was four times lower than the Km for l-alanine was interpreted as the consequence of the inversion-retention stereochemistry of the catalyzed reaction. Schiff base formation between l or d-alanine and pyridoxal-5'-phosphate, in the active site of the enzyme, was studied using ultraviolet/visible spectroscopy. It was found that l and d-alanine form an external aldimine with equilibrium constants K = 4.1 mm and K = 37.8 mm, respectively. However, the equilibrium constant for d-alanine aldimine formation dramatically decreased to 1.3 mm in the presence of saturating concentration of pimeloyl-CoA, the second substrate. This result strongly suggests that the binding of pimeloyl-CoA induces a conformational change in the active site, and we propose that this new topology is complementary to d-alanine and to the putative reaction intermediate since they both have the same configuration. (+/-)-8-Amino-7-oxo-8-phosphonononaoic acid (1), the phosphonate derivative of the intermediate formed during the reaction, was our most potent inhibitor with a Ki of 7 microm. This compound behaved as a reversible slow-binding inhibitor, competitive with respect to l-alanine. Kinetic investigation showed that this slow process was best described by a one-step mechanism (mechanism A) with the following rate constants: k1 = 0.27 x 103 m-1.s-1, k2 = 1.8 s-1 and half-life for dissociation t1/2 = 6.3 min. The binding of compound 1 to the enzyme was also studied using

  1. Tritium from ecosystem to man. Study of mechanisms and constants controlling the equilibria and the different transfer pathways

    International Nuclear Information System (INIS)

    Tritium is the radioactive isotope of hydrogen. It can be integrated in most of the biological molecules. Even if its radiotoxicity is weak, effects of tritium could be increased if it can concentrate in some critical compartments of beings. In order to better understand the tritium circulation in the environment and highlight constants of transfer between compartments, we have studied the tritiation of different agricultural matrices chronically exposed to tritium. The first step of our study is the validation of the different techniques used to prepare our sample. We have also demonstrated that it was possible to store environmental samples in the Valduc centre and have underlined some biases due to the extraction of free water. Some ways of improvements are proposed. A hypothesis has also been formulated on the origin of an original isotopic fractionation effect during the extraction of the free water of milk. In the environmental study, the specific activities measured on plants confirm the importance of the atmospheric exposure on their tritiation. No difference in the tritiation has been measured between wheat, barley and colza. Some differences have been measured in the tritiation of some organic components of vegetal matrices. These results underline the interest of continuing this kind of study. We have also compared the tritiation of the main hydrogenated components of milk, first, component to component, then, sample to sample. Some origins of the measured differences have been shown. We have demonstrated the correlation between the specific activities of drinking water and the free water of milk as between the tritiations of dry matter of cattle's food and of the main organic components of milk. Our results show also the importance of the metabolism on the distribution of tritium in the different compartments. The overall synthesis of our results show the importance of the dilution of hydrogen in the considered environmental compartments, above the

  2. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Arthur G.,Roberts; M. Dolores,Díaz; Jed N.,Lampe; Laura M.,Shireman; Jeffrey S.,Grinstead; Michael J.,Dabrowski; Josh T.,Pearson; Michael K.,Bowman; William M.,Atkins; A. Patricia,Campbell

    2006-02-01

    Cytochrome P450's (P450's) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450's demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS = 4 and 200 μM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hill-equation-derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands ''contact'' the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the low-affinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is

  3. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Arthur G.; Diaz, Maria D.; Lampe, Jed N.; Shireman, Laura; Grinstead, Jeffrey S.; Dabrowski, Michael J.; Pearson, Josh T.; Bowman, Michael K.; Atkins, William M.; Campbell, Ann P.

    2006-02-14

    Cytochrome P450’s (P450’s) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450’s demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS ) 4 and 200 íM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hillequation- derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands “contact” the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the lowaffinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is presented that combines the energetics and structural aspects of 9-AP and TST binding derived from these observations.

  4. J-convexity constants

    OpenAIRE

    Jincai Wang

    2007-01-01

    We introduce the \\(J\\)-convexity constants on Banach spaces and give some properties of the constants. We give the relations between the \\(J\\)-convexity constants and the \\(n\\)-th von Neumann-Jordan constants. Using the quantitative indices we estimate the value of \\(J\\)-convexity constants in Orlicz spaces.

  5. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2016-07-01

    Full Text Available This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2% and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8% are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data.

  6. Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids under Constant Wall Temperature Condition

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2015-01-01

    Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.

  7. Measurement of the strong interaction coupling constant αs by jet study in the H1 experiment

    International Nuclear Information System (INIS)

    The H1 experiment allows to study hadronic jets produced in deep inelastic lepton (27.5 GeV) scattering off protons (820 GeV). The coupling constant of the strong interaction αs can be extracted from the measurement of the 2-jets rate in the final state. The use of the JADE algorithm is optimal for events with high energy transfer (100-4,000 GeV2), corresponding to the 1994 and 1995 data. The error on αs (MZ02) is dominated by the uncertainty from the hadronic energy measurement and the experimental resolution effects on jets. The theoretical error is dominated by the renormalization scale dependence. The final result is (MZ02) 0.118 -0.008+0.008. This analysis is extended to smaller momentum transfers (25-100 GeV 2) using the factorizable Kt algorithm, taking the transferred momentum as energy scale of the particle re-clustering. The result αs (MZ02) 0.117 -0.008+0.009 is compatible with the previous one. The precision of the measurement performed in this thesis is 7%. A precision of 4% could be achieved after progresses in the theoretical framework and/or after a significant increase of the luminosity. (author)

  8. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  9. Semi-analytical approach for the study of linear static behaviour and buckling of shells with single constant curvature

    Science.gov (United States)

    de Leo, Andrea Matteo; Contento, Alessandro; Di Egidio, Angelo

    2015-09-01

    A model of linear, internally constrained shell with single, constant curvature is used to describe the behaviour of existing structures, such as barrel shells. A linear, elastic, isotropic material is considered. Observing that in the shell two families of mono-dimensional interacting beams can be recognized: straight longitudinal beams and transversal arches, a non-conventional semi-analytical approximate solution, which uses the method of separation of variables, is proposed. By using an integral procedure, reduced differential, ordinary equations, capable of describing the behaviour of the shell, are obtained. Both linear static behaviour and longitudinal buckling of the shell are investigated. The approximate solution proposed leads to results that match those of a finite element model and permits to give a description of shells similar to that of beams on elastic soil. With regard to the linear static behaviour of the shell, a "short" and a "long" characterization is proposed and original graphical abaci are obtained with the purpose of facilitating the classification. An extensive study is then performed in order to analyse the buckling of the shells.

  10. Molecular docking studies in factor XIa binding site

    Science.gov (United States)

    Balaji, Govardhan A.; Balaji, Vitukudi N.; Rao, Shashidhar N.

    2016-03-01

    Factor XIa inhibitors have been identified to have potential as anticoagulants with robust efficacy and low bleeding risks. In light of their significance and the availability of their 3-D X-ray data in the PDB, we present molecular docking studies carried out with a view to obtain docking protocols that will successfully reproduce the experimentally observed protein-ligand interactions in the case of various X-ray ligands. In this context, we have specifically investigated the efficacy of various cross-docking protocols in reproducing experimental data. Our studies demonstrate that an ensemble of the three apo proteins is capable of accurately docking a majority of the X-ray ligands accurately without invoking any additional conformational flexibility than that present in their experimental structures. Further, we demonstrate that such an ensemble is successfully able to enrich a collection of known active factor XIa inhibitors embedded in a decoy database of drug-like molecules.

  11. In vivo and in vitro studies of hafnium-binding to rat serum transferrin

    Energy Technology Data Exchange (ETDEWEB)

    Then, G.M.; Appel, H.; Duffield, J.; Taylor, D.M.; Thies, W.G.

    1986-08-01

    The binding of hafnium to rat serum transferrin was studied using the time differential perturbed angular correlation (TDPAC) technique. Hafnium is interesting as a toxic metal binding to transferrin because it behaves metabolically similarly to plutonium. The isotope 181Hf offers favorable access to the TDPAC-method. Samples were prepared in vivo by intravenous injection of Hf-NTA, Hf-citrate, and Hf-oxalate solutions, respectively, into Sprague-Dawley rats and in vitro by adding Hf-NTA solution to fresh rat serum. In both cases two specific electric quadrupole interactions were observed, which correspond to two well-defined binding configurations. They may be attributed to the N-terminal and the C-terminal binding site in the transferrin molecule. The 181Hf-distribution between these two binding states depends on pH, salt and hafnium concentrations, temperature, and incubation time. With a fast TDPAC-setup of four BaF2-detectors a time resolution of about 600 ps could be achieved. The specific binding configurations of 181Hf and the comparatively slow relaxation times lead to spectra of considerable accuracy.

  12. Studies of vitamin E binding and transfer by a rat liver cytosolic protein

    Energy Technology Data Exchange (ETDEWEB)

    Posch, K.C.; Mavis, R.D.

    1986-05-01

    In vitro vitamin E binding and transfer were examined using a semipurified (sephadex G-75 fraction) vitamin E binding and transfer protein (VE-TBP) from the rat liver cytosol. Binding and transfer studies thus far indicate that the protein is very specific for d-..cap alpha..-tocopherol. Among the other lipophilic ligands examined only d-..gamma..-tocopherol at high concentrations was competitive with d-..cap alpha..-tocopherol binding. Specificity studies also indicate the protein to be stereospecific in nature since dl-..cap alpha..-tocopherol was only partially competitive. Studies using PMSF and NEM also indicate that neither a hydroxyl nor a sulfhydryl functional group on the protein is required for vitamin E binding. Transfer studies show that the VE-TBP is capable of specifically transferring equal amounts of vitamin E from liposomes to both mitochondria and microsomes when comparable protein concentrations are used. This indicates that no preferential transfer to one membrane type occurs. Pretreatment of mitochondria and microsomes with heat, pronase or trypsin also does not affect transfer of vitamin E. Thus, transfer of vitamin E is not dependent on a membrane protein. Finally, the VE-TBP is capable of unidirectional transport of vitamin E from prelabelled microsomes to vitamin E free liposomes.

  13. Combinatorial Synthesis, Screening, and Binding Studies of Highly Functionalized Polyamino-amido Oligomers for Binding to Folded RNA

    Directory of Open Access Journals (Sweden)

    Jonathan K. Pokorski

    2012-01-01

    Full Text Available Folded RNA molecules have recently emerged as critical regulatory elements in biological pathways, serving not just as carriers of genetic information but also as key components in enzymatic assemblies. In particular, the transactivation response element (TAR of the HIV genome regulates transcriptional elongation by interacting specifically with the Tat protein, initiating the recruitment of the elongation complex. Preventing this interaction from occurring in vivo halts HIV replication, thus making RNA-binding molecules an intriguing pharmaceutical target. Using α-amino acids as starting materials, we have designed and synthesized a new class of polyamino-amido oligomers, called PAAs, specifically for binding to folded RNA structures. The PAA monomers were readily incorporated into a 125-member combinatorial library of PAA trimers. In order to rapidly assess RNA binding, a quantum dot-based fluorescent screen was developed to visualize RNA binding on-resin. The binding affinities of hits were quantified using a terbium footprinting assay, allowing us to identify a ligand (SFF with low micromolar affinity (kd=14 μM for TAR RNA. The work presented herein represents the development of a flexible scaffold that can be easily synthesized, screened, and subsequently modified to provide ligands specific for binding to folded RNAs.

  14. Interference of anaesthetics with radioligand binding in neuroreceptor studies

    Energy Technology Data Exchange (ETDEWEB)

    Elfving, Betina; Knudsen, Gitte Moos [Neurobiology Research Unit N9201, University hospital Rigshospitalet, 9 Blegdamsvej, 2100, Copenhagen (Denmark); Bjoernholm, Berith [Department of Computational Chemistry, H. Lundbeck A/S, Copenhagen-Valby (Denmark)

    2003-06-01

    Evaluations of new emission tomography ligands are usually carried out in animals. In order to keep the animals in a restricted position during the scan session, anaesthesia is almost inevitable. In ex vivo rat studies we investigated the interference of ketamine/xylazine, zoletile mixture, isoflurane and halothane with the serotonin re-uptake site, the serotonin{sub 2A} receptor and the dopamine re-uptake site by use of [{sup 3}H]-(S)-citalopram, [{sup 18}F]altanserin and [{sup 125}I]PE2I, respectively. Ketamine/xylazine decreased the target-to-background ratio (mean {+-} SD) of [{sup 3}H]-(S)-citalopram from 1.5{+-}0.19 to 0.81{+-}0.19 (P<0.05), whereas isoflurane and halothane increased the ratio from 1.5{+-}0.19 to 1.9{+-}0.24 and 2.1{+-}0.13 (P<0.05), respectively. Only with the zoletile mixture did the ratio remain unaltered. None of the tested anaesthetics affected the target-to-background ratio of [{sup 18}F]altanserin. The [{sup 125}I]PE2I target-to-background ratio decreased with both ketamine/xylazine (from 12.4{+-}0.81 to 10.1{+-}1.4, P<0.05) and isoflurane (from 12.4{+-}0.81 to 9.5{+-}1.1, P<0.05) treated rats, whereas treatment with zoletile mixture and halothane left the ratio unaltered. It is concluded that prior to performance of neuroreceptor radioligand studies, the possible interaction between radioligands and anaesthetics should be carefully evaluated. (orig.)

  15. Study on the characteristics of SOFC operating in constant fuel flow and constant fuel utilization%定燃料流量和定燃料利用率时SOFC发电系统特性研究

    Institute of Scientific and Technical Information of China (English)

    周念成; 李春艳; 王强钢; 邓浩

    2011-01-01

    The Solid Oxide Fuel Cell generation system model is established ,which operated in constant fuel flow and constant fuel utilization. The steady-state (V-I and P-I) characteristics of the SOFC stack model has been studied, and the effect of fuel flow on the characteristics of SOFC steady-state in constant fuel flow mode has been obtained. Then SOFC stack operated in two different typical modes are applied in the simulation of SOFC-based distributed generation system aiming at changing load and fault condition. By comparing the simulation results, the applicable application sphere of two operation mode are given.%在定燃料输入流量和定燃料利用率两种典型控制方式下,建立了固体氧化物燃料电池(SOFC)发电系统模型.研究了两种控制方式下的固体氧化物燃料电池堆的稳态特性,采用定燃料流量控制方式时考虑了燃料流量对SOFC稳态特性的影响.针对出现负荷改变和故障的情况,分别在两种典型控制模式下对SOFC发电系统进行了仿真,通过对仿真结果的比较,给出了两种控制方式的适用范围.

  16. Raman, IR and DFT studies of mechanism of sodium binding to urea catalyst

    Science.gov (United States)

    Kundu, Partha P.; Kumari, Gayatri; Chittoory, Arjun K.; Rajaram, Sridhar; Narayana, Chandrabhas

    2015-12-01

    Bis-camphorsulfonyl urea, a newly developed hydrogen bonding catalyst, was evaluated in an enantioselective Friedel-Crafts reaction. We observed that complexation of the sulfonyl urea with a sodium cation enhanced the selectivity of reactions in comparison to reactions performed with urea alone. To understand the role of sodium cation, we performed Infrared and Raman spectroscopic studies. The detailed band assignment of the molecule was made by calculating spectra using Density Functional theory. Our studies suggest that the binding of the cation takes place through the oxygen atoms of carbonyl and sulfonyl groups. Natural Bond Orbital (NBO) analysis shows the expected charge distribution after sodium binding. The changes in the geometrical parameter and charge distribution are in line with the experimentally observed spectral changes. Based on these studies, we conclude that binding of the sodium cation changes the conformation of the sulfonyl urea to bring the chiral camphor groups closer to the incipient chiral center.

  17. Binding of an anticancer Rutaceae plant flavonoid glycoside with calf thymus DNA: Biophysical and electrochemical studies

    International Nuclear Information System (INIS)

    In the present work, we report the interaction of a bioactive Rutaceae plant flavonoid glycoside, diosmin (DIO) with calf thymus DNA employing ethidium bromide as a fluorescence probe. The mode of binding between DIO and DNA was investigated by UV absorption, fluorescence, 3D-fluorescence, fluorescence polarization, FT-IR, circular dichroism, melting temperature (Tm) measurements and differential pulse voltammogram studies. The results revealed the intercalative mode of binding between DIO and DNA. Further, the values of thermodynamic parameters, ∆H° (−388.32 kJ mol−1) and ∆S° (−1.22 kJ mol−1 K−1) indicated that the van der Waals forces and hydrogen bond played a major role in the binding of DIO to DNA. The observed negative ∆G° values revealed the spontaneity of interaction process. The binding of DIO to DNA–EB was found to be stronger in the presence of coexisting substances. -- Highlights: • Mechanism of interaction of diosmin with DNA was studied by spectroscopic methods. • Ethidium bromide was used as a fluorescence probe in the present study. • The van der Waals forces and hydrogen bond played a significant role in the interaction. • Intercalative mode of binding was proposed between DIO and DNA

  18. Binding of an anticancer Rutaceae plant flavonoid glycoside with calf thymus DNA: Biophysical and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Sandhya; Jaldappagari, Seetharamappa, E-mail: jseetharam@yahoo.com

    2013-10-15

    In the present work, we report the interaction of a bioactive Rutaceae plant flavonoid glycoside, diosmin (DIO) with calf thymus DNA employing ethidium bromide as a fluorescence probe. The mode of binding between DIO and DNA was investigated by UV absorption, fluorescence, 3D-fluorescence, fluorescence polarization, FT-IR, circular dichroism, melting temperature (T{sub m}) measurements and differential pulse voltammogram studies. The results revealed the intercalative mode of binding between DIO and DNA. Further, the values of thermodynamic parameters, ∆H° (−388.32 kJ mol{sup −1}) and ∆S° (−1.22 kJ mol{sup −1} K{sup −1}) indicated that the van der Waals forces and hydrogen bond played a major role in the binding of DIO to DNA. The observed negative ∆G° values revealed the spontaneity of interaction process. The binding of DIO to DNA–EB was found to be stronger in the presence of coexisting substances. -- Highlights: • Mechanism of interaction of diosmin with DNA was studied by spectroscopic methods. • Ethidium bromide was used as a fluorescence probe in the present study. • The van der Waals forces and hydrogen bond played a significant role in the interaction. • Intercalative mode of binding was proposed between DIO and DNA.

  19. Intact brain cells: a novel model system for studying opioid receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, N.F.; El-Fakahany, E.E.

    1985-07-29

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using (/sup 3/H)naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. (/sup 3/H)Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date.

  20. Intact brain cells: a novel model system for studying opioid receptor binding

    International Nuclear Information System (INIS)

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using [3H]naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. [3H]Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date

  1. Study on the resonance and antibound states on the basis of analytical continuation by the coupling constant. General approach

    International Nuclear Information System (INIS)

    Resonance and antibound states for both real and complex finite range potentials are tried by analytical continuation method using the second kind Pade approximant in a coupling constant. The complex eigenvalues (zeros of the Jost function or poles of the S-matrix) and corresponding wave functions are determined. The ways of determination of coupling constant threshold value are also worked out. The possibilities of the method are illustrated taking as an example an exactly solvable model of rectangular hole potential; the efficiency of approach is shown to determine positions and wave functions of broad and distant resonance and antibound states. Pole behaviour as functions are the coupling constant obtained are compared to exact ones

  2. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies.

    Science.gov (United States)

    Bokori-Brown, Monika; Kokkinidou, Maria C; Savva, Christos G; Fernandes da Costa, Sérgio; Naylor, Claire E; Cole, Ambrose R; Moss, David S; Basak, Ajit K; Titball, Richard W

    2013-05-01

    Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity. PMID:23504825

  3. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  4. Novel bioluminescent binding assays for interaction studies of protein/peptide hormones with their receptors.

    Science.gov (United States)

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-05-01

    Protein/peptide hormones are the largest group of endogenous signaling molecules and exert various biological functions by binding to specific cell membrane receptors. To study the interactions between these hormones and their receptors, quantitative ligand-receptor binding assays have been widely used for decades. However, the assays conventionally relied on the use of radioligands, which have some major drawbacks and can only be used in laboratories with a radioactive material license. We recently developed novel bioluminescent binding assays for several protein/peptide hormones using the brightest bioluminescent reporter known to date, nanoluciferase (NanoLuc). The NanoLuc reporter can be either chemically conjugated to an appropriate position, or genetically fused at one terminus, of protein/peptide hormones. Compared to conventional radioligands, these bioluminescent ligands have higher sensitivity, better safety, and longer shelf lives, and thus, represent a novel class of non-radioactive tracers for quantitative receptor binding assays. In the present review, we provide some general considerations and specific examples for setting up the bioluminescent binding assays. Such techniques can be applied to other protein/peptide hormones in future to facilitate their interaction studies with their receptors. PMID:27020777

  5. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  6. Nuclear binding energy using semi empirical mass formula

    Science.gov (United States)

    Ankita, Suthar, B.

    2016-05-01

    In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.

  7. Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane.

    Science.gov (United States)

    Sridhar, Akshay; Kumar, Amit; Dasmahapatra, Ashok Kumar

    2016-07-01

    The AB5 type toxin produced by the Vibrio cholerae bacterium is the causative agent of the cholera disease. The cholera toxin (CT) has been shown to bind specifically to GM1 glycolipids on the membrane surface. This binding of CT to the membrane is the initial step in its endocytosis and has been postulated to cause significant disruption to the membrane structure. In this work, we have carried out a combination of coarse-grain and atomistic simulations to study the binding of CT to a membrane modelled as an asymmetrical GM1-DPPC bilayer. Simulation results indicate that the toxin binds to the membrane through only three of its five B subunits, in effect resulting in a tilted bound configuration. Additionally, the binding of the CT can increase the area per lipid of GM1 leaflet, which in turn can cause the membrane regions interacting with the bound subunits to experience significant bilayer thinning and lipid tail disorder across both the leaflets. PMID:27474868

  8. Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors.

    Science.gov (United States)

    Ohno, Kazuki; Mitsui, Takashi; Tanida, Yoshiaki; Matsuura, Azuma; Fujitani, Hideaki; Niimi, Tatsuya; Orita, Masaya

    2011-02-01

    Recently, the massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed. The present study aimed to determine whether the MP-CAFEE method is useful for drug discovery research. In the drug discovery process, it is important for computational chemists to predict the binding affinity accurately without detailed structural information for protein/ligand complex. We investigated the absolute binding free energies for Poly (ADP-ribose) polymerase-1 (PARP-1)/inhibitor complexes, using the MP-CAFEE method. Although each docking model was used as an input structure, it was found that the absolute binding free energies calculated by MP-CAFEE are well consistent with the experimental ones. The accuracy of this method is much higher than that using molecular mechanics Poisson-Boltzmann/surface area (MM/PBSA). Although the simulation time is quite extensive, the reliable predictor of binding free energies would be a useful tool for drug discovery projects. PMID:20480380

  9. {\\it Ab initio} study of correlation and Gaunt interaction in ionization potentials and hyperfine constants of ground and first excited states of boron isoelectronic sequence

    CERN Document Server

    Dutta, Narendra Nath

    2011-01-01

    In this paper, we have studied correlation and Gaunt interaction effects in the ionization potentials (I.P.) and magnetic dipole hyperfine (A) constants of 2p$^2P_{1/2}$ and 2p$^2P_{3/2}$ states along with the fine structure separations between them for boron isoelectronic sequence by relativistic coupled-cluster (RCC) method. The range of Z has been taken from 8 to 21. Gaunt operator is reformulated explicitly both in Dirac-Fock (DF) and CC level. The I.P.'s and the fine structure splittings are compared with the results of National Institute of Standards and Technology (NIST). Important correlation contributions like core correlation, core polarisation, pair correlation etc. are studied for hyperfine A constants. Many distinct features of correlation and relativistic effects are observed in these studies. With best of our knowledge, except O IV, hyperfine A constants of all the other elements are reported for the first time in the literature.

  10. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  11. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.

    Science.gov (United States)

    Gu, Kaiyun; Gao, Bin; Chang, Yu; Zeng, Yi

    2016-01-01

    BACKGROUND BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatile support mode on the aorta. MATERIAL AND METHODS Computational fluid dynamics (CFD) studies, based on a patient-specific aortic geometric model, were conducted. Wall shear stress (WSS), averaged WSS (avWSS), oscillatory shear index (OSI), and averaged helicity density (Ha) were calculated to compare the differences in hemodynamic effects between pulsatile support mode and constant speed mode. RESULTS The results show that avWSS under pulsatile support mode is significantly higher than that under constant speed mode (0.955Pa vs. 0.675Pa). Similarly, the OSI value under pulsatile mode is higher than that under constant speed mode (0.104 vs. 0.057). In addition, Ha under pulsatile mode for all selected cross-sections is larger than that under constant mode. CONCLUSIONS BJUT-II VAD, under pulsatile control mode, may prevent atherosclerosis lesions and aortic remodeling. The precise effects of pulsatile support mode on atherosclerosis and aortic remodeling need to be further studied in animal experiments. PMID:27363758

  12. Computational study of small molecule binding for both tethered and free conditions

    CERN Document Server

    Ytreberg, F Marty

    2009-01-01

    Using a calix[4]arene-benzene complex as a test system we compare the potential of mean force for when the calix[4]arene is tethered versus free. When the complex is in vacuum our results show that the difference between tethered and free is primarily due to the entropic contribution to the potential of mean force resulting in a binding free energy difference of 6.5 kJ/mol. By contrast, when the complex is in water our results suggest that the difference between tethered and free is due to the enthalpic contribution resulting in a binding free energy difference of 1.6 kJ/mol. This study elucidates the roles of entropy and enthalpy for this small molecule system and emphasizes the point that tethering the receptor has the potential to dramatically impact the binding properties. These findings should be taken into consideration when using calixarene molecules in nanosensor design.

  13. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  14. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    International Nuclear Information System (INIS)

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented

  15. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    Science.gov (United States)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. PMID:27089183

  16. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    Science.gov (United States)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  17. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  18. Spectroscopic and docking studies of the binding of two stereoisomeric antioxidant catechins to serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Durba; Dutta, Samrajnee; Maity, Shyam Sundar [Department of Chemistry, Presidency University, Kolkata 700 073 (India); Ghosh, Sanjib, E-mail: sanjibg@cal2.vsnl.net.in [Department of Chemistry, Presidency University, Kolkata 700 073 (India); Singha Roy, Atanu; Ghosh, Kalyan Sundar [Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302 (India); Dasgupta, Swagata, E-mail: swagata@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302 (India)

    2012-06-15

    The interactions of two stereoisomeric antioxidant flavonoids, catechin (C) and epicatechin (EC) with bovine serum albumin (BSA) and human serum albumin (HSA), have been investigated by steady state and time resolved fluorescence, phosphorescence, circular dichroism (CD), FTIR and protein-ligand docking studies. The steady-state fluorescence studies indicate a single binding site for both the ligands. FTIR spectra suggest that in both the albumins, C and EC stabilize the {alpha}-helix at the cost of a corresponding loss in the {beta}-sheet structure. CD studies have been carried out using ({+-})C, and both the epimers (+)C and (-)C. The low temperature phosphorescence and protein-ligand [(+), (-) and ({+-}) forms of C and EC] docking studies indicate that the ligands bind in the proximity of Trp 134 of BSA and Trp 214 of HSA, thereby changing their solvent accessible surface areas (ASA). Asn 158 and Glu 130 side chains are found to be within the hydrogen bonding distance from the phenolic -OH groups of C and EC in the case of BSA complex. C and EC are located within the binding pocket of sub-domain IIa of HSA. - Highlights: Black-Right-Pointing-Pointer Binding of two biologically important stereoisomeric antioxidants. Black-Right-Pointing-Pointer To find a significant role in pharmacology. Black-Right-Pointing-Pointer To find the conformational changes of the protein leading to the perturbation of Trp residues.

  19. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules.

    Directory of Open Access Journals (Sweden)

    Sagar Darvekar

    Full Text Available Our genome is assembled into and array of highly dynamic nucleosome structures allowing spatial and temporal access to DNA. The nucleosomes are subject to a wide array of post-translational modifications, altering the DNA-histone interaction and serving as docking sites for proteins exhibiting effector or "reader" modules. The nuclear proteins SPBP and RAI1 are composed of several putative "reader" modules which may have ability to recognise a set of histone modification marks. Here we have performed a phylogenetic study of their putative reader modules, the C-terminal ePHD/ADD like domain, a novel nucleosome binding region and an AT-hook motif. Interactions studies in vitro and in yeast cells suggested that despite the extraordinary long loop region in their ePHD/ADD-like chromatin binding domains, the C-terminal region of both proteins seem to adopt a cross-braced topology of zinc finger interactions similar to other structurally determined ePHD/ADD structures. Both their ePHD/ADD-like domain and their novel nucleosome binding domain are highly conserved in vertebrate evolution, and construction of a phylogenetic tree displayed two well supported clusters representing SPBP and RAI1, respectively. Their genome and domain organisation suggest that SPBP and RAI1 have occurred from a gene duplication event. The phylogenetic tree suggests that this duplication has happened early in vertebrate evolution, since only one gene was identified in insects and lancelet. Finally, experimental data confirm that the conserved novel nucleosome binding region of RAI1 has the ability to bind the nucleosome core and histones. However, an adjacent conserved AT-hook motif as identified in SPBP is not present in RAI1, and deletion of the novel nucleosome binding region of RAI1 did not significantly affect its nuclear localisation.

  20. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  1. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    International Nuclear Information System (INIS)

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with eaq- at neutral pH were measured. The results suggest that C4 keto group is the active site for eaq- to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C2,3 double bond, the C3-OH group and glycosylation have little effects on the eaq- scavenging activities. (author)

  2. Conductometric studies of dissociation constants of benzoic acid in water and 2-propanol mixtures at different temperatures

    International Nuclear Information System (INIS)

    The molar conductance of dilute solutions of benzoic acid in binary mixtures of water and 2-propanol has been measured at temperatures ranging from 298.15 K to 313.15 K. The experimental data were analyzed by means of the Fuoss-Kraus equation (1933) for the derivation of the thermodynamic dissociation constants and limiting molar conductance. The results were compared with those available in literature pertaining to analogue media. (author)

  3. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    OpenAIRE

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2008-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support expe...

  4. Light scattering study of the "pseudo-layer" compression elastic constant in a twist-bend nematic liquid crystal

    CERN Document Server

    Parsouzi, Z; Welch, C; Ahmed, Z; Mehl, G H; Baldwin, A R; Gleeson, J T; Lavrentovich, O D; Allender, D W; Selinger, J V; Jakli, A; Sprunt, S

    2016-01-01

    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $\\sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic l...

  5. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  6. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    Science.gov (United States)

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  7. Synthesis, characterization, DNA binding and cleavage studies of chiral Ru(II) salen complexes

    Science.gov (United States)

    Khan, Noor-ul H.; Pandya, Nirali; Kureshy, Rukhsana I.; Abdi, Sayed H. R.; Agrawal, Santosh; Bajaj, Hari C.; Pandya, Jagruti; Gupte, Akashya

    2009-09-01

    Interaction of chiral Ru(II) salen complexes (S)-1 and (R)-1 with Calf Thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, CD measurements, thermal denaturation study and cleavage studies by agarose gel electrophoresis. The DNA binding affinity of (S)-1 (6.25 × 10 3 M -1) was found to be greater than (R)-1 (3.0 × 10 3 M -1). The antimicrobial studies of these complexes on five different gram (+)/(-) bacteria and three different fungal organisms showed selective inhibition of the growth of gram (+) bacteria and were not affective against gram (-) and fungal organisms. Further, the (S)-1 enantiomer inhibited the growth of organisms to a greater extent as compared to (R)-1 enantiomer.

  8. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV.

    Science.gov (United States)

    Endres, Christopher J; Hammoud, Dima A; Pomper, Martin G

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [(11)C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k(r)(2)) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP(ND)). Compared with standard SRTM, either coupling of k(r)(2) across regions or constraining k(r)(2) to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP(ND) between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k(r)(2) to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better

  9. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    International Nuclear Information System (INIS)

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between

  10. Recombinant preparation and functional studies of EspI ATP binding domain from Mycobacterium tuberculosis.

    Science.gov (United States)

    Chen, Hanyu; Wang, Huilin; Sun, Tao; Tian, Shuangliang; Lin, Donghai; Guo, Chenyun

    2016-07-01

    The ESX-1 secretion system of Mycobacterium tuberculosis is required for the virulence of tubercle bacillus. EspI, the ESX-1 secretion-associated protein in Mycobacterium tuberculosis (MtEspI), is involved in repressing the activity of ESX-1-mediated secretion when the cellular ATP level is low. The ATP binding domain of MtEspI plays a crucial role in this regulatory process. However, further structural and functional studies of MtEspI are hindered due to the bottleneck of obtaining stable and pure recombinant protein. In this study, we systematically analyzed the structure and function of MtEspI using bioinformatics tools and tried various expression constructs to recombinantly express full-length and truncated MtEspI ATP binding domain. Finally, we prepared pure and stable MtEspI ATP binding domain, MtEspI415-493, in Escherichia coli by fusion expression and purification with dual tag, Glutathione S-transferase (GST) tag and (His)6 tag. (31)P NMR titration assay indicated that MtEspI415-493 possessed a moderate affinity (∼μM) for ATP and the residue K425 was located at the binding site. The protocol described here may provide a train of thought for recombinant preparation of other ESX-1 secretion-associated proteins. PMID:27017992

  11. Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modelling studies.

    Science.gov (United States)

    Karthikeyan, Subramani; Bharanidharan, Ganesan; Kesherwani, Manish; Mani, Karthik Ananth; Srinivasan, Narasimhan; Velmurugan, Devadasan; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-06-01

    4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl acetate [Ace semi],4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl propanoate [Pro semi] from the family of thiosemicarbazones derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and it is also less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiosemicarbazone derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiosemicarbazone derivative) was estimated according to Forster's theory of non-radiative energy transfer using fluorescence spectroscopy. The binding dynamics has been elaborated using synchronous fluorescence spectroscopy, and the feature of thiosemicarbazone derivative induced structural changes of HSA has been studied by circular dichorism, Fourier transform infrared spectroscopy. Molecular modelling simulations explore the hydrophobic interaction and hydrogen bonding which stabilizes the interaction. PMID:26368536

  12. Studies of ruthenium(II) polypyridyl complexes on cytotoxicity in vitro, apoptosis, DNA-binding and antioxidant activity

    Science.gov (United States)

    Huang, Hong-Liang; Liu, Yun-Jun; Zeng, Cheng-Hui; Yao, Jun-Hua; Liang, Zhen-Hua; Li, Zheng-Zheng; Wu, Fu-Hai

    2010-03-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb) 2(maip)](ClO 4) 21 (maip = 2-(3-aminophenyl)imizado[4,5-f][1,10]phenanthroline and [Ru(dmb) 2(maip)](ClO 4) 22 (paip = 2-(4-aminophenyl)imidazo[4,5-f][1,10]phenanthroline, dmb = 4,4'-dimethyl-2,2'-bipyridine) have been synthesized and characterized. The DNA-binding behaviors of complexes 1 and 2 were studied by viscosity measurements, thermal denaturation, photocleavage, absorption titration and luminescence spectra. The results show that the two complexes intercalate between the base pairs of DNA. The DNA-binding constants Kb for complexes 1 and 2 were determined to be 1.12 ± 0.11 × 10 5 M -1 ( s = 2.17) and 3.46 ± 0.59 × 10 5 M -1 ( s = 2.11) M -1. The studies on the mechanism of photocleavage demonstrate that superoxide anion radical (O 2rad - ) and singlet oxygen ( 1O 2) may play an important role. The cytotoxicity of these complexes has been evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The IC 50 values are 19.21, 33.15, 38.57 and 21.15 for complex 1 and 41.77, 123.58, 255.44 and 49.11 for complex 2 against BEL-7402, C-6, HepG-2 and MCF-7 cell lines, respectively. The apoptosis assay was carried out with acridine orange/ethidium bromide (AO/EB) staining methods and the results indicate that complexes can induce the apoptosis of BEL-7402 cells. The experiments on antioxidant activity show these complexes exhibit good antioxidant activity against hydroxyl radical (OH rad ).

  13. Approximations to Euler's constant

    International Nuclear Information System (INIS)

    We study a problem of finding good approximations to Euler's constant γ=lim→∞ Sn, where Sn = Σk=Ln (1)/k-log(n+1), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence Sn can be significantly improved if Sn is replaced by linear combinations of Sn with integer coefficients. In this paper, considering more general linear transformations of the sequence Sn we establish new accelerating convergence formulae for γ. Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results. (author)

  14. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.

    Science.gov (United States)

    Gogoi, Prerana; Chandravanshi, Monika; Mandal, Suraj Kumar; Srivastava, Ambuj; Kanaujia, Shankar Prasad

    2016-07-01

    About one-third of the existing proteins require metal ions as cofactors for their catalytic activities and structural complexities. While many of them bind only to a specific metal, others bind to multiple (different) metal ions. However, the exact mechanism of their metal preference has not been deduced to clarity. In this study, we used molecular dynamics (MD) simulations to investigate whether a cognate metal (bound to the structure) can be replaced with other similar metal ions. We have chosen seven different proteins (phospholipase A2, sucrose phosphatase, pyrazinamidase, cysteine dioxygenase (CDO), plastocyanin, monoclonal anti-CD4 antibody Q425, and synaptotagmin 1 C2B domain) bound to seven different divalent metal ions (Ca(2+), Mg(2+), Zn(2+), Fe(2+), Cu(2+), Ba(2+), and Sr(2+), respectively). In total, 49 MD simulations each of 50 ns were performed and each trajectory was analyzed independently. Results demonstrate that in some cases, cognate metal ions can be exchanged with similar metal ions. On the contrary, some proteins show binding affinity specifically to their cognate metal ions. Surprisingly, two proteins CDO and plastocyanin which are known to bind Fe(2+) and Cu(2+), respectively, do not exhibit binding affinity to any metal ion. Furthermore, the study reveals that in some cases, the active site topology remains rigid even without cognate metals, whereas, some require them for their active site stability. Thus, it will be interesting to experimentally verify the accuracy of these observations obtained computationally. Moreover, the study can help in designing novel active sites for proteins to sequester metal ions particularly of toxic nature. PMID:26248730

  15. Measurement of the radial diffusion constant at AQUILON 2 by means of the study of the distortion of the fine structure

    International Nuclear Information System (INIS)

    This report gives several measurements of the radial diffusion constant of thermal neutrons by means of the study of the interaction of macroscopic flux and of fine structure in Aquilon II. The use of two type of clusters allows to compare the effect of the fuel distribution on the radial diffusion constant. Two types of measurement have been used: - macroscopic or 'amont-aval' method in which the perturbation brought by the microscopic flux on the macroscopic flux is measured; - microscopic or 'fine structure' method, which analyses the distortion of the fine structure of a cell under the effect of the macroscopic flux. (authors)

  16. Synthesis, stability constants and electronic spectral studies of ternary complexes of Pr(III) with histidine and diols

    International Nuclear Information System (INIS)

    The mixed ligand complexes of the type MAB, MA2B and MaB2 where M = Pr(III), A = histidine and B = ethanediol, prop-1,2-diol, 2-butene-1, 4-diol, but-2,3-diol, pent-1,5-diol and hex-1,6-diol have been investigated by alkalimetric titrations. The overall stability constants have been evaluated at 30+1degC (μ = 0.2MKNO3). The absorption spectra of some praseodymium(III) ternary complexes in solution have been used to calculate energy interaction and intensity parameters. The low intensity of the pseudohypersensitive transition suggests higher coordination number. (author)

  17. Measurement of the strong coupling constant αs from a study of W bosons produced in association with jets

    International Nuclear Information System (INIS)

    The UA2 experiment at the CERN anti pp Collider has identified a total sample of 251 W → eν events. Among this sample 221 events are found without jets and 29 with one jet. The yield of one-jet events relative to that of zero-jet events provides a measurement of the strong coupling constant: αs(MW2) = 0.13±0.03(stat)±0.03(syst1)±0.02(syst2), where syst1 represents the experimental systematic error and syst2 is an estimate of the theoretical uncertainty. (orig.)

  18. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)

  19. Buffer Interference with Protein Dynamics: A Case Study on Human Liver Fatty Acid Binding Protein

    OpenAIRE

    Long, Dong; Yang, Daiwen

    2009-01-01

    Selection of suitable buffer types is often a crucial step for generating appropriate protein samples for NMR and x-ray crystallographic studies. Although the possible interaction between MES buffer (2-(N-morpholino)ethanesulfonic acid) and proteins has been discussed previously, the interaction is usually thought to have no significant effects on the structures of proteins. In this study, we demonstrate the direct, albeit weak, interaction between MES and human liver fatty acid binding prote...

  20. Crossed laser and molecular beam study of multiphoton dissociation of C/sub 2/F/sub 5/Cl. [Rate constants, angular and velocity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Krajnovich, D.J.; Giardini-Guidoni, A.; Sudboe, A.S.; Schulz, P.A.; Shen, Y.R.; Lee, Y.T.

    1978-09-01

    Rate constants for the photodissociation of C/sub 2/F/sub 5/Cl as well as the yield of C/sub 2/F/sub 4//sup +/ were measured. The dynamics of the two dissociation channels was studied by measuring the angular and velocity distributions of the products. 2 references. (JFP)

  1. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  2. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  3. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects

    International Nuclear Information System (INIS)

    A graphical method of analysis applicable to ligands that bind reversibly to receptors or enzymes requiring the simultaneous measurement of plasma and tissue radioactivities for multiple times after the injection of a radiolabeled tracer is presented. It is shown that there is a time t after which a plot of integral of t0ROI(t')dt'/ROI(t) versus integral of t0Cp(t')dt'/ROI(t) (where ROI and Cp are functions of time describing the variation of tissue radioactivity and plasma radioactivity, respectively) is linear with a slope that corresponds to the steady-state space of the ligand plus the plasma volume,.Vp. For a two-compartment model, the slope is given by lambda + Vp, where lambda is the partition coefficient and the intercept is -1/[kappa 2(1 + Vp/lambda)]. For a three-compartment model, the slope is lambda(1 + Bmax/Kd) + Vp and the intercept is -(1 + Bmax/Kd)/k2 + [koff(1 + Kd/Bmax)]-1 [1 + Vp/lambda(1 + Bmax/Kd)]-1 (where Bmax represents the concentration of ligand binding sites and Kd the equilibrium dissociation constant of the ligand-binding site complex, koff (k4) the ligand-binding site dissociation constant, and k2 is the transfer constant from tissue to plasma). This graphical method provides the ratio Bmax/Kd from the slope for comparison with in vitro measures of the same parameter. It also provides an easy, rapid method for comparison of the reproducibility of repeated measures in a single subject, for longitudinal or drug intervention protocols, or for comparing experimental results between subjects. Although the linearity of this plot holds when ROI/Cp is constant, it can be shown that, for many systems, linearity is effectively reached some time before this. This analysis has been applied to data from [N-methyl-11C]-(-)-cocaine studies in normal human volunteers and the results are compared to the standard nonlinear least-squares analysis

  4. Spectroscopic and biological activity studies of the chromium-binding peptide EEEEGDD.

    Science.gov (United States)

    Arakawa, Hirohumi; Kandadi, Machender R; Panzhinskiy, Evgeniy; Belmore, Kenneth; Deng, Ge; Love, Ebony; Robertson, Preshus M; Commodore, Juliette J; Cassady, Carolyn J; Nair, Sreejayan; Vincent, John B

    2016-06-01

    While trivalent chromium has been shown at high doses to have pharmacological effects improving insulin resistance in rodent models of insulin resistance, the mechanism of action of chromium at a molecular level is not known. The chromium-binding and transport agent low-molecular-weight chromium-binding substance (LMWCr) has been proposed to be the biologically active form of chromium. LMWCr has recently been shown to be comprised of a heptapeptide of the sequence EEEEDGG. The binding of Cr(3+) to this heptapeptide has been examined. Mass spectrometric and a variety of spectroscopic studies have shown that multiple chromic ions bind to the peptide in an octahedral fashion through carboxylate groups and potentially small anionic ligands such as oxide and hydroxide. A complex of Cr and the peptide when administered intravenously to mice is able to decrease area under the curve in intravenous glucose tolerance tests. It can also restore insulin-stimulated glucose uptake in myotubes rendered insulin resistant by treating them with a high-glucose media. PMID:26898644

  5. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms.

    Science.gov (United States)

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-09-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  6. Cloning, purification, crystallization and preliminary crystallographic study of calcium-binding protein 5 from Entamoeba histolytica

    International Nuclear Information System (INIS)

    Calcium-binding protein 5 from E. histolytica was cloned, expressed in E. coli and purified. The purified protein crystallized in space group C222 and the crystals diffracted to 2 Å resolution. Entamoeba histolytica is the causative agent of human amoebiasis. Phagocytosis is the major route of food intake by this parasite and is responsible for its virulence. Calcium and calcium-binding proteins play major roles in its phagocytosis. Calcium-binding protein 5 from E. histolytica (EhCaBP5) is a cytoplasmic protein; its expression is very sensitive to serum starvation and it seems to be involved in binding to myosin I. In this study, EhCaBP5 was cloned, expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. The purified protein crystallized in space group C222 and the crystals diffracted to 2 Å resolution. The Matthews coefficient indicated the presence of one molecule in the asymmetric unit, with a VM of 2.35 Å3 Da−1 and a solvent content of 47.7%

  7. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.

    Science.gov (United States)

    Furukawa-Hagiya, Tomoka; Furuta, Tadaomi; Chiba, Shuntaro; Sohma, Yoshiro; Sakurai, Minoru

    2013-01-10

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions. PMID:23214920

  8. Seasonal variations in the heterologous binding of viscacha spermatozoa. A scanning electron microscope study.

    Science.gov (United States)

    Merlo, Claudia Aguilera; Muñoz, Estela; Dominguez, Susana; Fóscolo, Mabel; Scardapane, Luis; de Rosas, Juan Carlos

    2005-12-01

    Seasonal changes in the reproductive activity of the adult male viscacha (Lagostomus maximus maximus) were investigated during the annual reproductive cycle. Assays of heterologous in vitro binding between compatible gametes were used to evaluate the ability of viscacha spermatozoa to achieve primary binding during its annual reproductive cycle. Sperm were collected by mincing cauda epididymis in HECM-3 medium and the sperm concentration and motility were evaluated. Cumulus-free and zona-free oocytes obtained from superovulated hamsters were inseminated in vitro with capacitated sperm suspensions, incubated at 37 degrees C, 5% CO2 for 3 h, and then processed for studies by scanning electronic microscopy. Statistical analysis was used to compare the quantitative differences. The number of spermatozoa significantly decreases during the regression period, while sperm motility was progressive speed in both periods. During the active period elevated sperm binding to cumulus-free and zona-free oocytes was observed, while the binding during the regression period decreased drastically. In both periods, oocyte microvilli covered sperm heads and tails. These results suggest that the ability of viscacha spermatozoa to participate in gamete recognition is profoundly affected. This would likely be related to different functional stages of the spermatozoa and their epididymal microenvironment during the annual reproductive cycle of viscacha. PMID:16524245

  9. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  10. Variational implicit-solvent modeling of host-guest binding: A case study on cucurbit[7]uril

    OpenAIRE

    S. Zhou; Rogers, KE; De Oliveira, CAF; Baron, R; Cheng, LT; Dzubiella, J.; Li, B.; McCammon, JA

    2013-01-01

    The synthetic host cucurbit[7]uril (CB[7]) binds aromatic guests or metal complexes with ultrahigh affinity compared with that typically displayed in protein-ligand binding. Due to its small size, CB[7] serves as an ideal receptor-ligand system for developing computational methods for molecular recognition. Here, we apply the recently developed variational implicit-solvent model (VISM), numerically evaluated by the level-set method, to study hydration effects in the high-affinity binding of t...

  11. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  12. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Santos, Raquel G. dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Consuelo L. Fortes [Fundacao Ezequiel Dias (FUNED), Belo Horizonte, MG (Brazil)], e-mail: consuelo@pq.cnpq.br; Cassali, Geovanni D. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Patologia Comparada], e-mail: cassalig@icb.ufmg.br

    2009-07-01

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  13. Binding studies of the antitumoral radiopharmaceutical 125I-Crotoxin to Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    The development of tools for functional diagnostic imaging is mainly based on radiopharmaceuticals that specifically target membrane receptors. Crotoxin (Crtx), a polypeptide isolated from Crotalus durissus terrificus venom, has been shown to have an antitumoral activity and is a promising bioactive tracer for tumor detection. More specific radiopharmaceuticals are being studied to complement the techniques applied in the conventional medicine against breast cancer, the most frequent cause of death from malignant disease in women. Crtx's effect has been shown to be related with the overexpression of epidermal growth factor receptor (EGFR), present in high levels in 30 to 60% of breast tumor cells. Our objective was to evaluate Crtx as a tracer for cancer diagnosis, investigating its properties as an EGFR-targeting agent. Ehrlich ascites tumor cells (EAT cells) were used due to its origin and similar characteristics to breast tumor cells, specially the presence of EGFR. Crtx was labeled with 125I and binding experiments were performed. To evaluate the specific binding in vitro of Crtx, competition binding assay was carried out in the presence of increasing concentrations of non-labelled crotoxin and epidermal growth factor (EGF). Specific binding of 125I-Crtx to EAT cells was determined and the binding was considered saturable, with approximately 70% of specificity, high affinity (Kd = 19.7 nM) and IC50 = 1.6 x 10-11 M. Our results indicate that Crtx's interaction with EAT cells is partially related with EGFR and increases the biotechnological potential of Crtx as a template for radiopharmaceutical design for cancer diagnosis. (author)

  14. Binding study of tetracyclines to human serum albumin using difference spectrophotometry.

    Science.gov (United States)

    Zia, H; Price, J C

    1976-02-01

    The binding of several tetracyclines to human serum albumin was studied using difference spectrophotometry and a spectrophotometric probe, 2-(4'-hydroxybenzeneazo)benzoic acid. Difference spectra observed for the interaction between the probe and human serum albumin were similar to probe-bovine serum albumin spectra but were less intense for a given concentration of probe and did not reach saturation as quickly. Difference spectra for the tetracyclines were dependent on the characteristics of the ring substituents. More hydrophobic substituents on the D and C rings tended to give more intense difference spectra, but charge-transfer complexing may also have been involved since methacycline with a methylene group in the 6-position showed the most intense spectra of the compounds studied. Solvent perturbation, pH, and urea studies tended to confirm that something other than hydrophobic binding of the tetracyclines was involved. Drug-probe displacement studies showed that methacycline gave the greatest probe displacement followed by doxycycline, chlortetracycline, oxytetracycline, and tetracycline. This order of displacement of the anionic probe indicates that both hydrophobic and charge-transfer binding are involved. Experiments with calcium ion and ethylenediaminetetraacetic acid showed that the difference spectra obtained with the tetracyclines and human serum albumin were not the result of metallic bridge-chelate formation. PMID:3641

  15. Improved assay for measuring heparin binding to bull sperm

    International Nuclear Information System (INIS)

    The binding of heparin to sperm has been used to study capacitation and to rank relative fertility of bulls. Previous binding assays were laborious, used 107 sperm per assay point, and required large amounts of radiolabeled heparin. A modified heparin-binding assay is described that used only 5 x 104 cells per incubation well and required reduced amounts of [3H] heparin. The assay was performed in 96-well Millititer plates, enabling easy incubation and filtering. Dissociation constants and concentrations of binding sites did not differ if analyzed by Scatchard plots, Woolf plots, or by log-logit transformed weighted nonlinear least squares regression, except in the case of outliers. In such cases, Scatchard analysis was more sensitive to outliers. Nonspecific binding was insignificant using nonlinear logistic fit regression and a proportion graph. The effects were tested of multiple free-thawing of sperm in either a commercial egg yolk extender, 40 mM Tris buffer with 8% glycerol, or 40 mM Tris buffer without glycerol. Freeze-thawing in extender did not affect the dissociation constant or the concentration of binding sites. However, freeze-thawing three times in 40 mM Tris reduced the concentration of binding sites and lowered the dissociation constant (raised the affinity). The inclusion of glycerol in the 40 mM Tris did not significantly affect the estimated dissociation constant or the concentration of binding sites as compared to 40 mM Tris without glycerol

  16. First-principles study of the Gilbert damping constants of Heusler alloys based on the torque correlation model

    International Nuclear Information System (INIS)

    On the basis of the torque correlation model for the Gilbert damping constant α, we perform the first principles calculation for α for Co-based Heusler alloys, Co2MnAl (CMA), Co2MnSi (CMS), and Co2FeSi (CFS). In the ordered (L21) and partially disordered (B2) structures, the calculated values of α reflect half-metallicity or the gap structure around the Fermi level, EF, i.e. CMS with 100% spin-polarization has the smallest value. The valence electron number dependence of α follows the experimental trend. However, the calculated values are almost a factor of ten smaller than the measured ones. Although the α values are larger in the completely disordered (A2) structure, they are not as large as the experimental results. Therefore, the decreasing degree of order or the breakdown of the half-metallicity is not responsible for the discrepancy. (paper)

  17. Study on spectroscopic parameters and molecular constants of HC1(X1Σ+) molecule by using multireference configuration interaction approach

    International Nuclear Information System (INIS)

    Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HC1(X1Σ+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell–Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, D0, ωeχe, αe and Be). Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants D0, De, Re, ωe, ωeχe, αe and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 nm, 2993.33 cm−1, 52.6273 cm−1, 0.2981 cm−1 and 10.5841 cm−1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg–Klein–Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge. (atomic and molecular physics)

  18. Conformational study of C8 diazocine turn mimics using 3JCH coupling constants with 13C in natural abundance

    International Nuclear Information System (INIS)

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-ω-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-ω-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, 3JHH values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the Hα1 and Hγ1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central Hβ1 and Hβ2 protons made it impossible to measure 3JHH values from the P.E.COSY spectrum. We therefore used a 13C-filtered TOCSY experiment to measure the 3JCH values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with 13C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation

  19. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  20. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.

    Science.gov (United States)

    Gabra, Nazar Mohammed; Mustafa, Bakheit; Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Reddy, P Venkat; Reddy, Kotha Laxma; Satyanarayana, S

    2014-01-01

    A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, (1)H-NMR,(13)C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9 × 10(5) M(-1), 6.7 × 10(5) M(-1) and 2.9 × 10(5) M(-1). The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form І to nicked form ІІ. Further in the presence of Co(2+), the emission of DNA-Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the "on-off-on" properties of molecular "light switch". The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding. PMID:23982735

  1. Comparative study on ChIP-seq data: normalization and binding pattern characterization

    OpenAIRE

    Taslim, Cenny; Wu, Jiejun; Yan, Pearlly; Singer, Greg; Parvin, Jeffrey; Huang, Tim; Lin, Shili; Huang, Kun

    2009-01-01

    Motivation: Antibody-based Chromatin Immunoprecipitation assay followed by high-throughput sequencing technology (ChIP-seq) is a relatively new method to study the binding patterns of specific protein molecules over the entire genome. ChIP-seq technology allows scientist to get more comprehensive results in shorter time. Here, we present a non-linear normalization algorithm and a mixture modeling method for comparing ChIP-seq data from multiple samples and characterizing genes based on their ...

  2. Constant Communities in Complex Networks

    CERN Document Server

    Chakraborty, Tanmoy; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-01-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been very less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core func...

  3. Study of dynamic properties for NaK binary liquid alloy using first principle and theoretical predictions of isothermal bulk modulus using elastic constants

    International Nuclear Information System (INIS)

    Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values

  4. Study of dynamic properties for NaK binary liquid alloy using first principle and theoretical predictions of isothermal bulk modulus using elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Anil, E-mail: anil-t2001@yahoo.com; Kashyap, Rajinder [Department of Physics, Govt. P. G. College Solan-173212, Himachal Pradesh (India); Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University Shimla-171005, Himachal Pradesh (India)

    2014-04-24

    Study of atomic motions in the binary liquid alloys have been studied in terms of dynamical variables like velocity auto correlation, power spectrum and mean square displacement. Elastic constants and isothermal bulk modulus have been calculated to see the effeectiveness of ab-initio pseudopotentials which has been used in this paper. This appraoch is free from the fitting parameters and results obtained using this appraoch have been found very close to the average values.

  5. Structural-functional insights and studies on saccharide binding of Sophora japonica seed lectin.

    Science.gov (United States)

    Yadav, Priya; Shahane, Ganesh; Ramasamy, Sureshkumar; Sengupta, Durba; Gaikwad, Sushama

    2016-10-01

    Functional and conformational transitions of the Sophora japonica seed lectin (SJL) were studied in detail using bioinformatics and biophysical tools. Homology model of the lectin displayed all the characteristics of the legume lectin monomer and the experimental observations correlated well with the structural information. In silico studies were performed by protein-ligand docking, calculating the respective binding energies and the residues involved in the interactions were derived from LigPlot(+) analysis. Fluorescence titrations showed three times higher affinity of T-antigen disaccharide than N-acetyl galactosamine (GalNAc) towards SJL indicating extended sugar binding site of the lectin. Thermodynamic parameters of T-antigen binding to SJL indicated the process to be endothermic and entropically driven while those of GalNAc showed biphasic process. SDS-PAGE showed post-translationally modified homotetrameric species of the lectin under native conditions. In presence of guanidine hydrochloride (0.5-5.0M), the tetramer first dissociated into dimers followed by unfolding of the protein as indicated by size exclusion chromatography, fluorescence and CD spectroscopy. Different structural rearrangements were observed during thermal denaturation of SJL at physiological pH 7.2, native pH 8.5 and molten globule inducing pH 1.0. Topological information revealed by solute quenching studies at respective pH indicated differential hydrophobic environment and charge density around tryptophan residues. PMID:27185070

  6. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction

    CERN Document Server

    Babenko, V A

    2016-01-01

    We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.

  7. Synthesis of 4,4-ditritio-(+)-nicotine: comparative binding and distribution studies with natural enantiomer

    International Nuclear Information System (INIS)

    The preparation of 4,4-ditritio-(+)-nicotine (Vb) (specific activity 10.3 Ci/mmole)from (+)-nicotine (Ib) via (-) 4,4-dibromocotinine (IIIb) is described. Although Ib is 10-30 times less potent than (-)-nicotine (Ia) in the CNS, its binding affinity for the crude mitochondrial or nuclear fraction of whole rat brain is only three times less than that of Ia. However, distribution studies showed that the maximum brain levels of (-)-[3H] nicotine are nearly twice those of (+)-[3H]-nicotine following administration of a 2-micrograms/kg dose. Binding affinity and disposition of the stereoisomers account for a portion of the pharmacological stereospecificity of nicotine

  8. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ruthenium-fluoroquinolone complexes

    Indian Academy of Sciences (India)

    Mohan N Patel; Hardik N Joshi; Chintan R Patel

    2014-05-01

    Six new Ru(II) and Ru(III) complexes have been synthesized and characterized by elemental analysis, LC-MS, electronic spectra, IR spectra and magnetic moment measurements. DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel electrophoresis. The experimental results show that all the complexes can bind to DNA via partial intercalative mode. The b values of complexes were found in the range 2.14 × 104 to 2.70 × 105 M-1. All the complexes show excellent efficiency of cleaving DNA than respective fluoroquinolones. Brine shrimp lethality bioassay has been performed to check the cytotoxic activity. The IC50 values of the complexes are in the range of 6.27 to 16.05 g mL-1.

  9. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains.

    Directory of Open Access Journals (Sweden)

    Peter M Jones

    Full Text Available ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs, which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration 'sandwich' dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD 'Switch' mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.

  10. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    Science.gov (United States)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. PMID:26572235

  11. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    International Nuclear Information System (INIS)

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×103, 3.8×103 and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry

  12. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  13. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    International Nuclear Information System (INIS)

    The localization of [3H]-d-lysergic acid diethylamide ([3H]LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with [3H]LSD in vitro revealed substantial specific [3H]LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received [3H]LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies of brain areas from mice that received injections of [3H]LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free [3H]LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of [3H]LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of [3H]LSD binding in hippocampus was attributable to a lower density of sites labeled by [3H]LSD. The pharmacological identify of [3H]LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens

  14. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  15. Capping of Silybin with β-Cyclodextrin Influences its Binding with Bovine Serum Albumin: A Study by Fluorescence Spectroscopy and Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, Sudha; Sowrirajan, Chandrasekaran; Dhanaraj, Premnath; Enoch, Israel V. M. V. [Karunya Univ., Tamil Nadu (India)

    2014-07-15

    The association of silybin with β-cyclodextrin and its influence on silybin's binding with bovine serum albumin are reported. The stoichiometry, binding constant, and the structure of silybin-β-cyclodextrin inclusion complex are reported. The titrations of silybin with bovine serum albumin in the absence and presence of β-cyclodextrin are carried out and the differences in binding strengths are discussed. Molecular modeling is used to optimize the sites and mode of binding of silybin with bovine serum albumin. Forster resonance energy transfer is calculated and the proximity of interacting molecules is reported in the presence and absence of β-cyclodextrin.

  16. Capping of Silybin with β-Cyclodextrin Influences its Binding with Bovine Serum Albumin: A Study by Fluorescence Spectroscopy and Molecular Modeling

    International Nuclear Information System (INIS)

    The association of silybin with β-cyclodextrin and its influence on silybin's binding with bovine serum albumin are reported. The stoichiometry, binding constant, and the structure of silybin-β-cyclodextrin inclusion complex are reported. The titrations of silybin with bovine serum albumin in the absence and presence of β-cyclodextrin are carried out and the differences in binding strengths are discussed. Molecular modeling is used to optimize the sites and mode of binding of silybin with bovine serum albumin. Forster resonance energy transfer is calculated and the proximity of interacting molecules is reported in the presence and absence of β-cyclodextrin

  17. Physics without physical constants

    International Nuclear Information System (INIS)

    Following the general principles of both Newton's mechanics and Maxwell's electrodynamics, a new approach to basic equations of physics is presented. The new basic equations express fundamental laws of physics and are free from any physical constants. The necessary constants appear only through some kind of constitutive relations and by considering special solutions of the basic equations. The presented approach admits a new interpretation of fundamental physical constants, such as the Planck gravitational ones. 4 refs. (author)

  18. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Christopher J; Pomper, Martin G [Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231 (United States); Hammoud, Dima A, E-mail: endres@jhmi.edu [Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD (United States)

    2011-04-21

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [{sup 11}C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (k{sup r}{sub 2}) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BP{sub ND}). Compared with standard SRTM, either coupling of k{sup r}{sub 2} across regions or constraining k{sup r}{sub 2} to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BP{sub ND} between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining k{sup r}{sub 2} to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the

  19. 35Cl and 1H NMR study of anion binding to reduced bovine copper-zinc superoxide dismutase

    International Nuclear Information System (INIS)

    Binding of chloride to reduced bovine copper-zinc superoxide dismutase (Cu2Zn2SOD) and chemically modified derivatives was monitored by the line width at half-height of the Cl- resonance as measured by 35Cl nuclear magnetic resonance (NMR) spectroscopy. Reduced arginine-modified and reduced lysine-modified Cu2Zn2SOD (at concentrations of 2.14 x 10-4 M) caused less broadening of the Cl- resonance line width of 0.1 M NaCl solutions than did reduced native protein when measured under the same conditions; Cl- broadening with all protein derivatives decreased drastically in the presence of 0.05 M phosphate. The C-H and N-H proton resonances of histidyl imidazoles of reduced native and reduced lysine-modified Cu2Zn2SOD were shifted by addition of Cl- (with apparent affinity constants of 12 and ∼ 2 M-1, respectively) whereas this anion had less effect in the 1H NMR spectrum of reduced arginine-modified Cu2Zn2SOD (affinity constant -1) under the same conditions. phosphate caused relatively smaller changes on the 1H NMR resonances of all reduced protein derivatives. The competition measured by 1H NMR spectroscopy between chloride and phosphate for anion binding sites in the neighborhood of the Cu1 ion was much less than that for nonspecific Cl- binding monitored by 35Cl NMR spectroscopy. It is concluded from these experiments that, in addition to the weak anion binding at or near the CuI ion, Arg-141, Lys-120, and Lys-134 serve as major anion binding sites in the reduced native protein. 57 refs., 5 figs., 2 tabs

  20. Equilibrium dialysis studies of WR-33278 and WR-1065 binding to calf thymus DNA

    International Nuclear Information System (INIS)

    Radioprotection by WR-2721, S-2-(3-aminopropylamino) ethyl phosphorothioate, is thought to involve its corresponding thiol (WR-1065) or symmetrical disulfide (WR-33278). It has been suggested that these metabolites concentrate close to the DNA target molecule. As one test of this hypothesis the authors measured the ability of these metabolites to bind or concentrate with DNA in vitro in order to achieve a high local concentration. The binding of WR-33278 (0.05-0.4mM) to calf thymus DNA (6mM, with respect to phosphate) was determined at 50, 100, and 150mM-KCl in 1mM-Tris, pH 7.0, by equilibrium dialysis. Drug levels were analyzed by derivatization with monobrombimane, and quantitated by Fluoresence HPLC, (samples were reduced with dithiothreitol prior to analysis). Preliminary studies with WR-1065 indicate that it also binds to DNA but with larger Kd values. Results suggest that concentration of WR-33278 and WR-1065 by electrostatic attraction to DNA phosphate can be a significant factor in the mechanism of radioprotection by WR-2721

  1. Binding of piano-stool Ru(II) complexes to DNA; QM/MM study.

    Science.gov (United States)

    Futera, Zdeněk; Platts, James A; Burda, Jaroslav V

    2012-10-01

    Ru(II) "piano-stool" complexes belong to group of biologically active metallocomplexes with promising anticancer activity. In this study, we investigate the reaction mechanism of [(η(6)-benzene)Ru(II)(en)(H(2)O)](2+) (en = ethylenediamine) complex binding to DNA by hybrid QM/MM computational techniques. The reaction when the Ru(II) complex is coordinated on N7-guanine from major groove is explored. Two reaction pathways, direct binding to N7 position and two-step mechanism passing through O6 position, are considered. It was found that the reaction is exothermic and the direct binding process is preferred kinetically. In analogy to cisplatin, we also explored the possibility of intrastrand cross-link formation where the Ru(II) complex makes a bridge between two adjacent guanines. Two different pathways were found, leading to a final structure with released benzene ligand. This process is exothermic; however, one pathway is blocked by relatively high initial activation barrier. Geometries, energies, and electronic properties analyzed by atoms in molecules and natural population analysis methods are discussed. PMID:22707416

  2. Study of the influence of chemical binding on resonant absorption and scattering of neutrons

    International Nuclear Information System (INIS)

    At present time the problem of taking into account of the crystalline binding in the heavy nuclei resonance range is not correctly treated in nuclear data processing codes. The present work deals separately with resonant absorption and scattering of neutrons. The influence of crystalline binding is considered for both types of reactions in the harmonic crystal frame work. The harmonic crystal model is applied to the study of resonant absorption cross sections to show the inconsistency of the free gas model widely in use in reactor neutronics. The errors due to the use of the latter were found to be non negligible. These errors should be corrected by introducing a more elaborated harmonic crystal model in codes for resonances analysis and on the nuclear data processing stage. Currently the influence of crystalline binding on transfer cross section in the resonance domain is taken into account in a naive manner using the model of the free nucleus at rest in the laboratory system. In this work I present a formalism (Uncoupled Phonon Approximation) which permits to consider in more detail the crystalline structure of the nuclear fuel. This formalism shows new features in comparison with the static model. (author)

  3. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR.

    Science.gov (United States)

    Bartova, Simona; Pechlaner, Maria; Donghi, Daniela; Sigel, Roland K O

    2016-06-01

    Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be. PMID:26880094

  4. Europium chelate-loaded liposomes: a tool for the study of binding and integrity of liposomes.

    Science.gov (United States)

    Orellana, A; Laukkanen, M L; Keinänen, K

    1996-10-01

    Using the biotin-streptavidin interaction as a model, we investigated the suitability of lanthanide chelates as encapsulated liposomal labels in liposome-based binding assays. Large unilamellar phospholipid:cholesterol liposomes containing europium-DTPA chelate and biotinylated phosphatidylethanolamine were prepared by detergent dialysis. The resulting Eu-liposomes ([symbol: see text] 120 nm) bound specifically to streptavidin in microtiter wells as measured by time-resolved fluorometric assay (TRF). The intensity of fluorescence released from the bound liposomes was dependent on the concentration of biotin in the liposome membrane, the concentration of europium entrapped in the liposomes, the incubation time and the amount of liposomes used in the assay. The sensitivity of the TRF assay allowed the detection of binding of attomole quantities of liposomes. The streptavidin-immobilised liposomes subjected to porcine pancreatic phospholipase A2 (EC 3.1.1.4) and detergents displayed a dose-dependent release of the encapsulated europium. Lanthanide-chelate-liposomes should prove useful for studies addressing binding and stability of liposomes. PMID:8865811

  5. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    Science.gov (United States)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  6. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  7. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  8. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    International Nuclear Information System (INIS)

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm−1, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp

  9. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  10. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding

    OpenAIRE

    Bonache de Marcos, María Ángeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-01-01

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenien...

  11. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Energy Technology Data Exchange (ETDEWEB)

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  12. Cobalt(III), nickel(II) and ruthenium(II) complexes of 1,10-phenanthroline family of ligands: DNA binding and photocleavage studies

    Indian Academy of Sciences (India)

    S Arounaguiri; D Easwaramoorthy; A Ashokkumar; Aparna Dattagupta; Bhaskar G Maiya

    2000-02-01

    DNA binding and photocleavage characteristics of a series of mixedligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) and = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants () have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz > phen < phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2 (dppz)]3+ have also been reported.

  13. The Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Carroll Sean M.

    2001-01-01

    Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.

  14. Surfaces of a Constant Negative Curvature

    Directory of Open Access Journals (Sweden)

    G. M. Gharib

    2012-01-01

    Full Text Available I study the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the nonlinear partial differential equations with constant Gaussian curvature .

  15. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.

    Science.gov (United States)

    Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-04-01

    Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1. PMID:26767372

  16. Rotational constants of linear and/or bent Cn+1H+ and CnN+(n = 1-6): A DFT study

    Science.gov (United States)

    Aoki, Kozo

    2014-10-01

    The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1-6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.

  17. Substance P: binding properties and studies on cellular responses in guinea pig macrophages

    International Nuclear Information System (INIS)

    The neuropeptide Substance P (SP) has been recognized to modulate functional activities of inflammatory cells. The authors have previously shown that it mediates macrophage activation. In this study they examined binding characteristics of SP and searched for additional evidence of heightened metabolic activity of guinea pig peritoneal macrophages upon challenge with this peptide. Radioligand studies indicated the existence of a homogeneous class of specific binding sites with high affinity for SP on macrophages. Scatchard analysis yielded an apparent K/sub D/ of 1.9 +/- 0.4 x 10-8 M (range: 1.4 to 2.4 x 10-8 M), which was confirmed by kinetic studies. Binding was dose related, saturable, reversible, and could be inhibited by the SP antagonist (D-Pro2, D-Phe7, D-Trp9)-SP. Examination of peptide structural requirements revealed that both the COOH- and NH2-terminus contribute to receptor-ligand interaction. Other members of the tachykinin group of peptides were devoid of stimulatory action on macrophages. Cellular responses after engagement of the receptor sites by SP included downregulation of the membrane-associated enzyme 5'-nucleotidase and stimulation of synthesis and release of arachidonic acid metabolites, as well as of the lysosomal enzyme ADGase. These actions were specific as evidenced by immunoabsorption experiments. The findings demonstrate that macrophage activation afforded by SP is effected through a receptor-mediated mechanism. Liberation of proinflammatory and immunomodulating substances in response to SP may be relevant to the pathogenesis of neuroinflammatory disease

  18. Phenanthrene binding by humic acid–protein complexes as studied by passive dosing technique

    International Nuclear Information System (INIS)

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene. Highlights: • Phenanthrene binding capability followed an order: HA-5>HA-2>BSA>pepsin>lysozyme. • Phenanthrene binding to HA-BSA was enhanced relative to individual HA and BSA. • Binding enhancement to HA-BSA was observed under all tested solution conditions. • The enhancement is related to BSA unfolding, size reduction and HA-BSA complexation. -- Phenanthrene binding to HA-BSA complexes is much higher than the sum to individual HA and BSA while there was no binding enhancement to HA-pepsin or HA-lysozyme

  19. The Investigation of Different Properties of Clonidine Drug Binding to Carbon Nanotube: A Theoretical Study

    OpenAIRE

    Z. Yousefian

    2014-01-01

    In this study, we investigated the binding of Clonidine Drug (C9H9Cl2N3) with zigzag single walled Carbon Nanotubes (SWCNTs) (5, 0) and a length of 5ᵒA by theoretical methods of theory (NMR,NBO, HOMO- LUMO Gap energy,…calculations) using Gaussian ­09 software package. Then, Simulation was done in MM+, AMBER and OPLS force fields by Monte Carlo method in HyperChem. Three important energy parameters – Potential Energy, Kinetic Energy and Total Energy-calculated in five different simulating temp...

  20. The Investigation of Different Properties of Clonidine Drug Binding to Carbon Nanotube: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Z. Yousefian

    2014-12-01

    Full Text Available In this study, we investigated the binding of Clonidine Drug (C9H9Cl2N3 with zigzag single walled Carbon Nanotubes (SWCNTs (5, 0 and a length of 5ᵒA by theoretical methods of theory (NMR,NBO, HOMO- LUMO Gap energy,…calculations using Gaussian ­09 software package. Then, Simulation was done in MM+, AMBER and OPLS force fields by Monte Carlo method in HyperChem. Three important energy parameters – Potential Energy, Kinetic Energy and Total Energy-calculated in five different simulating temperatures (308, 310, 312, 314 and 316 Kelvin were used for computation and good results were obtained.

  1. radiochemical studies on the binding of humic materials with toxic elements and compounds

    International Nuclear Information System (INIS)

    industrial nations produce several billion tons of waste every year . this figure will increase as both population and industrial growth increase. there are many kinds of waste, including refinery waste, which consists of hydrocarbons, heavy metals, metal catalysts and caustic solution; dredge spoils, some of which are highly polluted and cntains substances potentially hazardous to human health or the marine ecosystem; chemical waste such as insecticides, pesticides, other complex chemicals and heavy metals; radioactive waste and agricultural waste, anmd most of them are extremely hazardous and harmful to the marine ecosystem and its inhabitants.the aim of this thesis is to study the binding of humic materials with toxic elements and compounds

  2. First-principles study of solute–vacancy binding in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yufei [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Haiyan, E-mail: gaohaiyan@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Han, Yanfeng; Dai, Yongbing [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Bian, Fenggang [Shanghai Institute of Applied Physics, CAS, Shanghai 201204 (China); Wang, Jun; Sun, Baode [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Highlights: • Solute–vacancy binding is a key quantity in understanding diffusion kinetics. • A large database of solute–vacancy binding energies in Cu from first-principles calculations based on density functional theory was presented in the paper. • The trends in the binding energies in terms of super cell size, solutes size and magnetic moments were analyzed. - Abstract: Solute–vacancy binding is a key quantity in understanding diffusion kinetics, and may also have a considerable impact on the hardening response in Cu alloys. However, the binding energies between solute atoms and vacancies in Cu are largely unknown and difficult to measure accurately. A large database of solute–vacancy binding energies in Cu from first-principles calculations based on density functional theory was presented in the paper. The trends in the binding energies in terms of super cell size, solutes size and magnetic moments are analyzed. The calculated binding energies agree well with experimental measurements available.

  3. Plutonium excretion data from the 1945-1947 human injection study: correction for recovery losses and derivation of rate constant for long-term elimination

    International Nuclear Information System (INIS)

    Information on the short-term plutonium urinary excretion data obtained from the 1945-1947 human injection study is examined and it is shown that chemical recovery corrections need to be made. Revised and extended data sets, excluding those data considered to be atypical of persons in normal health, are presented. On the basis of the observed data for two injection study cases, with late estimates of excretion rates, a rate constant for the long-term elimination of plutonium from the body of 4.24 x 10-5 d-1 is derived. (author)

  4. Binding hot-spots in an antibody-ssDNA interface: a molecular dynamics study.

    Science.gov (United States)

    Wang, Yeng-Tseng; Lee, Wen-Jay

    2012-10-30

    Simulating antigen-antibody interactions is essential for elucidating antigen-antibody mechanics. Proteins interactions are vital for elucidating antibody-ssDNA associations in immunology. Therefore, this study investigated the dissociation of the human systemic lupus erythematosus antibody-ssDNA complex structure. Dissociation (i.e. the distance between the center of mass of the ssDNA and the antibody) is also studied using the potential of mean force calculations based on molecular dynamics and the explicit water model. The MM-PBSA method is also used to prove our dissociation simulations. With 605 nanosecond molecular dynamics simulations, the results indicate that the 8 residues (i.e. Gly44 (HCDR2), Asn54 (HCDR2), Arg98 (HCDR3), Tyr100 (HCDR3), Asp101 (HCDR3), Tyr32 (LCDR1), Tyr49 (LCDR2) and Asn50 (LCDR2)), and the five inter-protein molecular hydrogen bonds may profoundly impact the antibody-ssDNA interaction, a finding which may be useful for protein engineering of this antibody-ssDNA structure. Experimental binding affinity of this antibody-ssDNA complex equals 7.00 kcal mol(-1). Our dissociation binding affinity is 7.96 ± 0.33 kcal mol(-1) and MM-PBSA binding affinity is 9.12 ± 1.65 kcal mol(-1), which is close to the experimental value. Additionally, the 8 residues Gly44 (HCDR2), Asn54 (HCDR2), Arg98 (HCDR3), Tyr100 (HCDR3), Asp101 (HCDR3), Tyr32 (LCDR1), Tyr49 (LCDR2) and Asn50 (LCDR2) may play a more significant role in developing bioactive antibody analogues. PMID:23079742

  5. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  6. Spectroscopic, Viscositic, DNA Binding and Cytotoxic Studies of Newly Synthesized Steroidal Imidazolidines.

    Science.gov (United States)

    Dar, Ayaz Mahmood; Shamsuzzaman; Khan, Shakir

    2016-03-01

    A series of new steroidal imidazolidine derivatives (4-6) were synthesized after reacting steroidal thiosemicarbazones with chloro ethylacetate in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.63 × 10(3) M(-1), 1.81 × 10(3) M(-1) and 2.06 × 10(3) M(-1), respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of imidazolidine moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). The uptake of compound 4 by MCF-7 and HeLa cells was studied by confocal microscopy which determined cell shrinkage and hence leading to the apoptosis. The results revealed that compound 4 has better prospectus to act as cancer chemotherapeutic candidate which warrants further in vivo anticancer investigations. PMID:26698876

  7. A Study on Solubilization of Poorly Soluble Drugs by Cyclodextrins and Micelles: Complexation and Binding Characteristics of Sulfamethoxazole and Trimethoprim

    Directory of Open Access Journals (Sweden)

    Sinem Göktürk

    2012-01-01

    > α-CD. With taking into consideration of solubilization capacity of SDS micelles, it has been found that the solubility enhancement of TMP is much higher than that of SMX in the presence of SDS micelles. The binding constants of SMX and TMP obtained from the Benesi-Hildebrand equation are also confirmed by the estimated surface properties of SDS, employing the surface tension measurements. In order to elucidate the solubilization characteristics the surface tension measurements were also performed for nonionic surfactant Triton X-100. Polarity of the microenvironment and probable location of SMX and TMP were also discussed in the presence of various organic solvents.

  8. Study in static mode of a photovoltaic cell bi facial to crystalline silicon under electric polarization and constant multispectral illumination

    International Nuclear Information System (INIS)

    The theoretical study in static mode of a photovoltaic cell bi facial to silicon under electric polarization and multispectral illumination is presented. Through this study, various expressions of the parameters of recombination have been established as well for an illumination by the face before an illumination by the back face. Curves of variation of the densities of carriers, densities of photocurrent, speeds of recombinations and photo tensions have been traced for the two modes of illumination

  9. N.M.R. study of organo-phosphorus compounds: non equivalence of methylenic protons in the α position of an asymmetric phosphorus atom. Application to study of coupling constants JP,H and JH,H

    International Nuclear Information System (INIS)

    Non-equivalent methylenic protons, with respect to an asymmetric center, have been observed in the n.m.r. spectra of some three- and tetra-coordinated phosphorus compounds. The analysis of these spectra yield the following results: in the studied secondary phosphines, the inversion rate at the phosphorus atom is slow on the n.m.r. time scale; the geminal coupling constant, for a free-rotating methylene group attached to a phosphorus atom, is negative; in phosphines the non equivalence of methylenic protons reveals two 2JP-C-H coupling constants which differ by about 5 Hz. This result is in agreement with previous studies on cyclic phosphines. In phosphine oxides, the 2JP-C-H values are negative. The 3JH-P-C-H coupling constant is positive in both phosphines and phosphine oxides. In phosphines, the non-equivalent methylenic protons exhibit two nearly equal values for this coupling constant. (author)

  10. Structural studies of nucleoside analog and feedback inhibitor binding to Drosophila melanogaster multisubstrate deoxyribonucleoside kinase

    DEFF Research Database (Denmark)

    Mikkelsen, Niels Egil; Munch-Petersen, Birgitte; Eklund, Hans

    2008-01-01

    relate them to the binding of substrate and feedback inhibitors. dCTP and dGTP binds similarly as the feedback inhibitor dTTP with the base in the substrate site. All investigated nucleoside analogs bind similarly as the pyrimidine substrates with many interactions in common. In contrast, the base of d...

  11. Binding Studies of Natural Product Berberine with DNA G-Quadruplex

    Directory of Open Access Journals (Sweden)

    Nagendra K. Sharma

    2011-01-01

    Full Text Available Problem statement: The ends of chromosome had highly repetitive short G and C-rich sequences of DNA. These sequences were known to form stable tetraplex type of secondary structures which help to maintain gene integratity after cell divison. Approach: Any reagent which controls the random cell division would be useful to design anticancer drugs. Therefore a many natural and synthesized molecules which stabilized tetraplex structures are targeted as anticancer drug entities. Results: Among them, Berberine hydrochloride natural product and its analogues are well studies as G-quadruplex stabilizing agent. In this report, DNA sequence 5’-G3-C5-G3-3’ has been designed which has probability to form i-motif and G-qua druplex types of secondary structures. Herein we studied the interaction between this DNA strands and Berberine hydrochloride by 1H-NMR techniques and UV in two different PH (4.7 and 7.4 conditions. Conclusion/Recommendations: Our preliminary results showed that Berberine bind with this DNA strand in both pH conditions which is further supported by UV melting experiments. In future this sequence can be used as probe to screen out tetraplex binding natural products which help to generate new anticancer drugs.

  12. Structure and stability of copper clusters: A tight-binding molecular dynamics study

    International Nuclear Information System (INIS)

    In this paper we propose a tight-binding molecular dynamics with parameters fitted to first-principles calculations on the smaller clusters and with an environment correction, to be a powerful technique for studying large transition-metal/noble-metal clusters. In particular, the structure and stability of Cun clusters for n=3-55 are studied by using this technique. The results for small Cun clusters (n=3-9) show good agreement with ab initio calculations and available experimental results. In the size range 10≤n≤55 most of the clusters adopt icosahedral structure which can be derived from the 13-atom icosahedron, the polyicosahedral 19-, 23-, and 26-atom clusters, and the 55-atom icosahedron, by adding or removing atoms. However, a local geometrical change from icosahedral to decahedral structure is observed for n=40-44 and return to the icosahedral growth pattern is found at n=45 which continues. Electronic 'magic numbers' ( n=2, 8, 20, 34, 40) in this regime are correctly reproduced. Due to electron pairing in highest occupied molecular orbitals (HOMOs), even-odd alternation is found. A sudden loss of even-odd alternation in second difference of cluster binding energy, HOMO-LUMO (LUMO, lowest unoccupied molecular orbital) gap energy and ionization potential is observed in the region n∼40 due to structural change there. Interplay between electronic and geometrical structure is found

  13. Structural, vibrational, NMR, quantum chemical, DNA binding and protein docking studies of two flexible imine oximes

    Indian Academy of Sciences (India)

    YUNUS KAYA

    2016-09-01

    Two flexible imine oxime molecules, namely, 3-(pyridin-2-ylmethylimino)-butan-2-one oxime (HL¹) and 3-(pyridin-2-ylmethylimino)-pentan-2-one oxime (HL²) have been synthesized and characterized by elemental analysis, IR and NMR techniques. The conformational behavior was investigated using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, three stable molecules and the most stable conformer were determined for the both imine oximes. The spectroscopic properties such as vibrational and NMR were calculated for the most stable conformer of the HL¹ and HL². The calculation results were applied to simulate infrared spectra of the title compounds, which show good agreement with observed spectra. In addition, the stable three molecules of the both imine oximes have been used to carry out DNA binding and protein docking studies with DNA and protein structures (downloaded from Protein Data Bank) using Discovery Studio 3.5 to find the most preferred binding mode of the ligands inside the DNA and protein cavity.

  14. Immunological properties of prolactin and studies on a gonadotropin binding inhibitor

    International Nuclear Information System (INIS)

    The physiological role of prolactin in horses has not yet been well defined. With the availability of highly purified ePRL for inducing antibody formation in rabbits and for radiolabeling with Na125I, a very sensitive (0.4-0.6 ng/ml) and highly specific homologous RIA for ePRL was developed. A heterologous RIA using 125I-labeled ovine PRL and anti-ePRL antiserum was also developed and compared to the homologous RIA for ePRL. Of the two systems, it is concluded that this homologous RIA system is more suitable and more reliable for measuring prolactin concentration in horse serum samples. Until now, biochemical information on PRL has not been available for reptilian species. Sea turtle (Chelonia mydas) prolactin was purified from pituitary extracts by selective precipitation, DEAE-cellulose chromatography and gel filtration. Similar to other species of PRL, sea turtle PRL is a 22,000-24,000 daltons protein and contains a high content of glutamic acid, aspartic acid, serine and leucine, the N-terminal amino acid residue. Gonadotropin (FSH) binding inhibitor was partially purified from sheep testes by ammonium sulfate fractionation and ion exchange chromatography. The FSH-BI (molecular weight: 50,000 daltons, estimated by gel filtration) contains a protein moiety necessary for binding inhibitory activity. The inhibition of the binding of 125I-labeled ovine FSH to its receptor by the FSH-BI is not competitive. Both in vivo and in vitro biological studies of FSH-BI preparations in rats indicated various effects on FSH and LH activities at the gonadal level. These findings suggest a physiological role for FSH-BI in the regulation of reproduction

  15. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    International Nuclear Information System (INIS)

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg2+. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg2+, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics

  16. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  17. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  18. Kinetic analysis of the metabotropic glutamate subtype 5 tracer [(18)F]FPEB in bolus and bolus-plus-constant-infusion studies in humans.

    Science.gov (United States)

    Sullivan, Jenna M; Lim, Keunpoong; Labaree, David; Lin, Shu-Fei; McCarthy, Timothy J; Seibyl, John P; Tamagnan, Gilles; Huang, Yiyun; Carson, Richard E; Ding, Yu-Shin; Morris, Evan D

    2013-04-01

    [(18)F]FPEB is a positron emission tomography tracer which, in preclinical studies, has shown high specificity and selectivity toward the metabotropic glutamate receptor 5 (mGluR5). It possesses the potential to be used in human studies to evaluate mGluR5 function in a range of neuropsychiatric disorders, such as anxiety and Fragile X syndrome. To define optimal scan methodology, healthy human subjects were scanned for 6 hours following either a bolus injection (n=5) or bolus-plus-constant-infusion (n=5) of [(18)F]FPEB. Arterial blood samples were collected and parent fraction measured by high-performance liquid chromatography (HPLC) to determine the metabolite-corrected plasma input function. Time activity curves were extracted from 13 regions and fitted by various models to estimate V(T) and BPND. [(18)F]FPEB was well fitted by the two-tissue compartment model, MA1 (t*=30), and MRTM (using cerebellum white matter as a reference). Highest V(T) values were observed in the anterior cingulate and caudate, and lowest V(T) values were observed in the cerebellum and pallidum. For kinetic modeling studies, VT and BPND were estimated from bolus or bolus-plus-constant-infusion scans as short as 90 minutes. Bolus-plus-constant-infusion of [(18)F]FPEB reduced intersubject variability in V(T) and allowed equilibrium analysis to be completed with a 30-minute scan, acquired 90-120 minutes after the start of injection. PMID:23250105

  19. Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains

    Directory of Open Access Journals (Sweden)

    Han-Ha Chai

    2014-05-01

    Full Text Available The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4 when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure

  20. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    OpenAIRE

    Xie, Hongzhan; Song, Lanbo; Xie, Yizhi; Pi, Dong; Shao, Chunyu; Lin, Qizhao

    2015-01-01

    The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100), such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa) and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa) using a common rail system equipp...

  1. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    OpenAIRE

    Hongzhan Xie; Lanbo Song; Yizhi Xie; Dong Pi; Chunyu Shao; Qizhao Lin

    2015-01-01

    The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100), such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa) and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa) using a common rail system equi...

  2. An experimental study on relationship between hammett substituent constant and electronic absorption wavelength of some azo dyes

    OpenAIRE

    SIDIR, Yadigar GÜLSEVEN; Sidir, Isa; BERBER, Halil; Tasal, Erol

    2011-01-01

    In this study, absorption spectra of sixteen azo dyes have been recorded in various solvents. These azo dyes have substituents such as OH, SO3H, Cl, I, NO2, C2H5 and OCH3 in different positions of phenyl ring. There is a shift in ?max whose amount is dependent upon the type and position of substituent on the ring. The effects of substituent on the absorption spectra of azo dyes are interpreted by correlation of absorption maximum wavelengths (nm) with the hammett substituent parameters. Charg...

  3. DNA binding studies of 3, 5, 6-trichloro-2-pyridinol pesticide metabolite.

    Science.gov (United States)

    Kashanian, Soheila; Shariati, Zohreh; Roshanfekr, Hamideh; Ghobadi, Sirous

    2012-07-01

    3, 5, 6-Trichloro-2-pyridinol (TCP) is a stable metabolite of two major pesticides, Chlopyrifos insecticide and Triclopyr herbicide, which are widely used in the world. The potential health hazard associated with TCP is identified due to its high affinity to the DNA molecule. Therefore, in this study, the interaction of native calf thymus DNA with TCP has been investigated using spectrophotometric, circular dichroism (CD), spectrofluorometric, viscometric and voltametric techniques. It was found that TCP molecules could interact with DNA via a groove-binding mode, as evidenced by hyperchromism, with no red shift in the UV absorption band of TCP, no changes in K(b) values in the presence of salt, no significant changes in the specific viscosity and CD spectra of DNA, and a decrease in peak currents with no shift in the voltamogram. In addition, TCP is able to release Hoechst 33258, a strong groove binder, in the DNA solutions. The results are indicative of the groove-binding mode of TCP to DNA. PMID:22519761

  4. Study of Binding Interaction between Pif80 Protein Fragment and Aragonite

    Science.gov (United States)

    Du, Yuan-Peng; Chang, Hsun-Hui; Yang, Sheng-Yu; Huang, Shing-Jong; Tsai, Yu-Ju; Huang, Joseph Jen-Tse; Chan, Jerry Chun Chung

    2016-08-01

    Pif is a crucial protein for the formation of the nacreous layer in Pinctada fucata. Three non-acidic peptide fragments of the aragonite-binding domain (Pif80) are selected, which contain multiple copies of the repeat sequence DDRK, to study the interaction between non-acidic peptides and aragonite. The polypeptides DDRKDDRKGGK (Pif80-11) and DDRKDDRKGGKDDRKDDRKGGK (Pif80-22) have similar binding affinity to aragonite. Solid-state NMR data indicate that the backbones of Pif80-11 and Pif80-22 peptides bound on aragonite adopt a random-coil conformation. Pif80-11 is a lot more effective than Pif80-22 in promoting the nucleation of aragonite on the substrate of β-chitin. Our results suggest that the structural arrangement at a protein-mineral interface depends on the surface structure of the mineral substrate and the protein sequence. The side chains of the basic residues, which function as anchors to the aragonite surface, have uniform structures. The role of basic residues as anchors in protein-mineral interaction may play an important role in biomineralization.

  5. Dielectric Constant of Suspensions

    Science.gov (United States)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  6. Kerma constant of gamma radiation

    International Nuclear Information System (INIS)

    The values are tabulated of the gamma kerma constant for 106 radionuclides and an energy threshold of δ=0, 10, 20 and 30 keV. The calculated values will be useful in gamma radiation protection for ease of calculation of the kerma rate from a point radiation source. The study was required in view of the consistent introduction of SI units. (author)

  7. Exponential Decay of Expansive Constants

    OpenAIRE

    Sun, Peng

    2011-01-01

    A map $f$ on a compact metric space is expansive if and only if $f^n$ is expansive. We study the exponential rate of decay of the expansive constant of $f^n$. A major result is that this rate times box dimension bounds topological entropy.

  8. Multi-wavelength spectrophotometric determination of the protolytic constants of tetracycline hydrochloride in some nonaqueous-water mixed solvents: A solvatochromism study

    Science.gov (United States)

    Ghasemi, Jahan B.; Jalalvand, Ali R.

    2011-01-01

    Annihilation of the contribution of one chemical component from the original data matrix is a general method in rank annihilation factor analysis (RAFA). However, RAFA is not applicable for studying the protonation equilibria of multiprotic acids but in this study two-rank annihilation factor analysis (TRAFA) was used as an efficient chemometrics algorithm for determination of the protolytic constants (p Ka) of tetracycline hydrochloride (TCHC) in some nonaqueous-water mixed solvents such as acetonitrile (AN)-water and methanol (MeOH)-water from the spectral pH-absorbance data. The spectral data was obtained from spectrophotometric acid-base titrations of different solutions of TCHC at (25.0 ± 0.10) °C and an ionic strength of 0.10 M. In TRAFA algorithm the p Ka values were obtained with relationship between residual standard deviation (R.S.D.) and hypothetical p Ka values. In the case of TCHC, the spectra were divided in two consecutive subdivisions according to their pH range having two p Ka and TRAFA was run twice. The validity of the obtained p Ka values was checked with well-known chemometrics algorithms such as DATAN, EQUSPEC, SPECFIT/32 and SQUAD. The effects of changing solvent composition on the protolytic constants were explained by linear solvation energy relationships (LSER) utilizing solvatochromic parameters.

  9. Inhibition of [(11)C]mirtazapine binding by alpha(2)-adrenoceptor antagonists studied by positron emission tomography in living porcine brain

    DEFF Research Database (Denmark)

    Smith, Donald F.; Dyve, Suzan; Minuzzi, Luciano;

    2006-01-01

    We have developed [(11)C]mirtazapine as a ligand for PET studies of antidepressant binding in living brain. However, previous studies have determined neither optimal methods for quantification of [(11)C]mirtazapine binding nor the pharmacological identity of this binding. To obtain that informati...... brain. Synapse 59:463-471, 2006. (c) 2006 Wiley-Liss, Inc....

  10. Algorithm for structure constants

    CERN Document Server

    Paiva, F M

    2011-01-01

    In a $n$-dimensional Lie algebra, random numerical values are assigned by computer to $n(n-1)$ especially selected structure constants. An algorithm is then created, which calculates without ambiguity the remaining constants, obeying the Jacobi conditions. Differently from others, this algorithm is suitable even for poor personal computer. ------------- En $n$-dimensia algebro de Lie, hazardaj numeraj valoroj estas asignitaj per komputilo al $n(n-1)$ speciale elektitaj konstantoj de strukturo. Tiam algoritmo estas kreita, kalkulante senambigue la ceterajn konstantojn, obeante kondicxojn de Jacobi. Malsimile al aliaj algoritmoj, tiu cxi tauxgas ecx por malpotenca komputilo.

  11. In vitro study of the binding between chlorpyrfos and sex hormones using headspace solid-phase microextraction combined with high-performance liquid chromatography: A new aspect of pesticides and breast cancer risk.

    Science.gov (United States)

    Farhadi, K; Tahmasebi, R; Biparva, P; Maleki, R

    2015-08-01

    Endocrine-disrupting chemicals are compounds that alter the normal functioning of the endocrine system. Organophosphorus insecticides, as chlorpyrifos (CPS), receive an increasing consideration as potential endocrine disrupters. Physiological estrogens, including estrone (E1), 17β-estradiol (E2), and diethylstilbestrol (DES) fluctuate with life stage, suggesting specific roles for them in biological and disease processes. There has been great interest in whether certain organophosphorus pesticides can affect the risk of breast cancer. An understanding of the interaction processes is the key to describe the fate of CPS in biological media. The objectives of this study were to evaluate total, bound, and freely dissolved amount of CPS in the presence of three estrogenic sex hormones (ESHs). In vitro experiments were conducted utilizing a headspace solid phase microextraction (HS-SPME) combined with high-performance liquid chromatography (HPLC) method. The obtained Scatchard plot based on the proposed SPME-HPLC method was employed to determine CPS-ESHs binding constant and the number of binding sites as well as binding percentage of each hormone to CPS. The number of binding sites per studied hormone molecule was 1.10, 1, and 0.81 for E1, E2, and DES, respectively. The obtained results confirmed that CPS bound to one class of binding sites on sex hormones. PMID:25677505

  12. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  13. X-ray diffraction study of the binding of the antisickling agent 12C79 to human hemoglobin

    International Nuclear Information System (INIS)

    The hemoglobin binding site of the antisickling agent 12C79 has been determined by x-ray crystallography. 12C79 is recognized as one of the first molecules to reach clinical trials that was designed, de novo, from x-ray-determined atomic coordinates of a protein. Several previous attempts to verify the proposed Hb binding sites via crystallographic studies have failed. Using revised experimental procedures, the authors obtained 12C79-deoxhemoglobin crystals grown after reaction with oxyhemoglobin and cyanoborohydride reduction to stabilize the Schiff base linkage. The difference electron-density Fourier maps show that two 12C79 molecules bind covalently to both symmetry-related N-terminal amino groups of the hemoglobin α chains. This is in contrast to the original design that proposed the binding of one drug molecule that spans the molecular dyad to interact with both N-terminal α-amino groups

  14. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  15. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host-Guest Binding Study.

    Science.gov (United States)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 × 10(3) M(-1)) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity. PMID:27267936

  16. The Binding of Iron to Perineuronal Nets: A Combined Nuclear Microscopy and Moessbauer Study

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, M. [Universitaet Leipzig, Paul Flechsig Institute fuer Hirnforschung (Germany); Reinert, T. [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften (Germany); Brueckner, G. [Universitaet Leipzig, Paul Flechsig Institute fuer Hirnforschung (Germany); Wagner, F. E. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Arendt, T. H. [Universitaet Leipzig, Paul Flechsig Institute fuer Hirnforschung (Germany); Troeger, W., E-mail: troeger@physik.uni-leipzig.de [Universitaet Leipzig, Fakultaet fuer Physik und Geowissenschaften (Germany)

    2004-12-15

    A specialized form of extracellular matrix (ECM) surrounds subpopulations of neurons termed 'perineuronal nets' (PNs). These PNs form highly anionic charged structures in the direct microenvironment of neurons, assumed to be involved in local ion homeostasis since they are able to scavenge and bind redox-active iron ions. The quantity and distribution of iron-charged PNs of the extracellular matrix in the rat brain areas of the cortex and the red nucleus was investigated using the powerful combination of Particle-Induced X-ray Emission (PIXE) and Moessbauer spectroscopy. These studies reveal that the iron is bound to the PNs as Fe(III). PNs in both brain regions accumulate up to three to five times more Fe{sup 3+} than any other tissue structure in dependency on the applied Fe concentration with local amount maximums of 480 mmol/l Fe at PNs.

  17. The Binding of Iron to Perineuronal Nets: A Combined Nuclear Microscopy and Moessbauer Study

    International Nuclear Information System (INIS)

    A specialized form of extracellular matrix (ECM) surrounds subpopulations of neurons termed 'perineuronal nets' (PNs). These PNs form highly anionic charged structures in the direct microenvironment of neurons, assumed to be involved in local ion homeostasis since they are able to scavenge and bind redox-active iron ions. The quantity and distribution of iron-charged PNs of the extracellular matrix in the rat brain areas of the cortex and the red nucleus was investigated using the powerful combination of Particle-Induced X-ray Emission (PIXE) and Moessbauer spectroscopy. These studies reveal that the iron is bound to the PNs as Fe(III). PNs in both brain regions accumulate up to three to five times more Fe3+ than any other tissue structure in dependency on the applied Fe concentration with local amount maximums of 480 mmol/l Fe at PNs.

  18. A longitudinal study of serum cobalamins and its binding proteins in lactating women

    DEFF Research Database (Denmark)

    Mørkbak, A L; Ramlau-Hansen, C H; Møller, U K; Henriksen, T B; Møller, Jan; Nexø, E

    2006-01-01

    OBJECTIVE: To examine longitudinal changes in serum cobalamins, transcobalamin (TC) and haptocorrin (HC) during lactation and to investigate the influence of vitamin B12 supplementation on these parameters. DESIGN: A 9-month follow-up study. SUBJECTS AND METHODS: Lactating mothers (N=89) including...... 23 supplemented with vitamin B12 (1-18 microg/daily), 41 partly supplemented and 25 not supplemented. Blood samples collected 3 weeks (baseline) and 4 and 9 months post-partum were analysed for cobalamins, TC and HC. Both the total concentration and the cobalamin-saturated form (holo) of TC and HC...... were analysed. RESULTS: No significant differences were observed in serum cobalamins or its binding proteins related to supplementation with vitamin B12 or the duration of lactation. Serum cobalamins remained unchanged from 3 weeks to 9 months post-partum. Total TC (holoTC) (median+/-s.e. pmol...

  19. Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies

    Directory of Open Access Journals (Sweden)

    Ivan Gusachenko

    2015-07-01

    Full Text Available Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofiber and optical tweezers system. We show that consistent and reversible transmission modulations arise when individual silica microspheres are introduced to the nanofiber surface using the optical tweezers. The observed transmission changes depend on both particle and fiber diameter and can be used as a reference point for in situ nanofiber or particle size measurement. Thence, we combine scanning electron microscope (SEM size measurements with nanofiber transmission data to provide calibration for particle-based fiber assessment. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.

  20. A molecular dynamics study of chloride binding by the cryptand SC24

    Science.gov (United States)

    Owenson, B.; MacElroy, R. D.; Pohorille, A.

    1988-01-01

    The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.

  1. Studies on the hyaluronate binding properties of newly synthesized proteoglycans purified from articular chondrocyte cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sandy, J.D.; Plaas, A.H.

    1989-06-01

    Primary cultures of rabbit articular chondrocytes have been maintained for 10 days and labeled with (35S)sulfate, (3H)leucine, and (35S)cysteine in pulse-chase protocols to study the structure and hyaluronate binding properties of newly synthesized proteoglycan monomers. Radiolabeled monomers were purified from medium and cell-layer fractions by dissociative CsCl gradient centrifugation with bovine carrier monomer, and analyzed for hyaluronate binding affinity on Sepharose CL-2B in 0.5 M Na acetate, 0.1% Triton X-100, pH 6.8. Detergent was necessary to prevent self-association of newly synthesized monomers during chromatography. Monomers secreted during a 30-min pulse labeling with (35S)sulfate had a low affinity relative to carrier. Those molecules released into the medium during the first 12 h of chase remained in the low affinity form whereas those retained by the cell layer rapidly acquired high affinity. In cultures where more than 90% of the preformed cell-layer proteoglycan was removed by hyaluronidase digestion before radiolabeling the newly synthesized low affinity monomers also rapidly acquired high affinity if retained in the cell layer. Cultures labeled with amino acid precursors were used to establish the purity of monomer preparations and to isolate core proteins for study. Leucine- or cysteine-labeled core proteins derived from either low or high affinity monomer preparations migrated as a single major species on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with electrophoretic mobility very similar to that of core protein derived from extracted proteoglycan monomer. Purified low affinity monomers were converted to the high affinity form by treatment at pH 8.6; however, this change was prevented by guanidinium-HCl at concentrations above 0.8 M.

  2. Good use of fruit wastes: eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies.

    Science.gov (United States)

    Sreekanth, T V M; Ravikumar, Sambandam; Lee, Yong Rok

    2016-06-01

    A simple and eco-friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26644144

  3. Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes

    Indian Academy of Sciences (India)

    Pidaran Murugan; Leelavinothan Pari; Chippada Appa Rao

    2008-03-01

    Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)–nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin–receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (Kd1), low affinity (Kd2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is

  4. Microscopic group constants determination

    International Nuclear Information System (INIS)

    The method of microscopic group constants determination for nuclear reactor calculations is described in this paper. The principle of this method is group averaging of microscopic cross sections with respect to the standard spectrum. The group cross sections obtained are used for the calculation of fast critical assembly Jezebel. (author)

  5. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    Science.gov (United States)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  6. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Directory of Open Access Journals (Sweden)

    Kaur R

    2012-07-01

    . These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized "diamoplexes".Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials.Keywords: disaggregation, spectroscopy, dispersion, electrophoresis, size, zeta potential

  7. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  8. Novel binding patterns between ganoderic acids and neuraminidase: Insights from docking, molecular dynamics and MM/PBSA studies.

    Science.gov (United States)

    Yang, Zhiwei; Wu, Fei; Yuan, Xiaohui; Zhang, Lei; Zhang, Shengli

    2016-04-01

    Recently, ganoderic acids (GAs) give rise to the attractive candidates of novel neuraminidase (NA) inhibitors. However, there is still no evident conclusion about their binding patterns. To this end, docking, molecular dynamics and MM/PBSA methods were combined to study the binding profiles of GAs with the N1 protein and familiar H274Y and N294S mutations (A/Vietnam/1203/04 stain). It was found that the binding affinities of ganoderic acid DM and Z (ΔGbind, -16.83 and -10.99 kcal mol(-1)) are comparable to that of current commercial drug oseltamivir (-23.62 kcal mol(-1)). Electrostatic interaction is the main driving force, and should be one important factor to evaluate the binding quality and rational design of NA inhibitors. The 150-loop residues Asp151 and Arg152 played an important role in the binding processes. Further analysis revealed that ganoderic acid DM is a potential source of anti-influenza ingredient, with novel binding pattern and advantage over oseltamivir. It had steric hindrance on the 150 cavity of N1 protein, and exerted activities across the H274Y and N294S mutations. This work also pointed out how to effectively design dual-site NA inhibitors and reinforce their affinities. These findings should prove valuable for the in-depth understanding of interactions between NA and GAs, and warrant the experimental aspects to design novel anti-influenza drugs. PMID:26905206

  9. Frequency Dependence of Attenuation Constant of Dielectric Materials

    Directory of Open Access Journals (Sweden)

    A. S. Zadgaonkar

    1975-01-01

    Full Text Available Different dielectric materials have been studied for frequency dependence of attenuation constant. The sensitive cathode ray oscillograph method has been used to evaluate to the dielectric constant and loss factor, and from these attenuation constants have been calculated. The temperature remaining constant, a regular increase has been observed in attenuation constant, at higher frequencies of electro-magnetic propagating wave.

  10. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  11. Kinetic analysis of transport and opioid receptor binding of [3H](-)-cyclofoxy in rat brain in vivo: Implications for human studies

    International Nuclear Information System (INIS)

    [3H]Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using [18F]CF and positron emission tomography

  12. Specific albumin binding to microvascular endothelium in culture

    International Nuclear Information System (INIS)

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4 degree C by radioassay and immunocytochemistry. Radioiodinated RSA (125I-RSA) binding to the cells reached equilibrium at ∼ 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm2 was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport

  13. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  14. Constant Speed Ramps

    CERN Document Server

    Perdomo, Oscar M

    2013-01-01

    In this paper we show all possible ramps where an object can move with constant speed under the effect of gravity and friction. The planar ramp are very easy to describe, just rotate a curve with velocity vector (tanh(as),sech(as)). Recall that tanh(as)^2+sech^2(as) = 1. Therefore, the solution of the planar constant speed problem is connected with easy to describe examples of curves with arc-length parameter. For ramps in the space, we show that there are as many ramps as tangent unit vector fields in the south hemisphere. A video explaining these results can be found at http://www.youtube.com/watch?v=iBrvbb0efVk

  15. Variation of fundamental constants

    CERN Document Server

    Flambaum, V V

    2006-01-01

    We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.

  16. Mass Spectrometric Studies of Non-Covalent Binding Interactions Between Metallointercalators and DNA

    Science.gov (United States)

    Urathamakul, Thitima; Talib, Jihan; Beck, Jennifer L.; Ralph, Stephen F.

    Over the past 2 decades there has been increasing interest in metal complexes that bind non-covalently to DNA, driven in part by a host of potential applications for molecules that can accomplish this task with high affinity and selectivity. As a result many workers have used a wide variety of experimental techniques, several of which are discussed in other chapters of this book, to unravel the details of the precise intermolecular interactions involved. Here we discuss one of the most recent additions to the armory of techniques used by chemists to interrogate metal complex/DNA interactions. For the majority of its existence mass spectrometry (MS) has proven to be of enormous advantage to chemists by virtue of its ability to provide the molecular weights of compounds as well as structural information via fragmentation patterns. However, the high energies associated with many earlier MS techniques which result in fragmentation of covalent bonds, prevent its application for studying weaker intermolecular interactions. The advent of soft ionisation methods such as matrix assisted laser desorption ionisation (MALDI) and electrospray ionisation (ESI) has revolutionised mass spectrometric analysis of biomolecules, by allowing these normally fragile molecules to be introduced into the gas phase for analysis with minimal, if any, fragmentation. It was then recognised that ESI-MS, in particular, might be suitable for investigating non-covalent interactions between small molecules and either proteins or nucleic acids. This was confirmed by a number of early studies involving organic intercalators and minor groove binding ligands, prompting our interest in evaluating ESI-MS as a tool for studying non-covalent interactions between metal complexes and DNA. This chapter contains a discussion of the basic principles behind ESI-MS that enable it to introduce representative samples of solutions containing metal complexes and DNA into the gas phase for analysis. This will be

  17. The cosmological constant puzzle

    OpenAIRE

    Bass, Steven D.

    2011-01-01

    Abstract The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of General Relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 10 56 times smaller than the value expected from quantum fields and Standard Model particle physi...

  18. Is the sun constant

    International Nuclear Information System (INIS)

    Small fluctuations in the solar constant can occur on timescales much shorter than the Kelvin time. Changes in the ability of convection to transmit energy through the superadiabatic and transition regions of the convection zone cause structure adjustments which can occur on a time scale of days. The bulk of the convection zone reacts to maintain hydrostatic equilibrium (though not thermal equilibrium) and causes a luminosity change. While small radius variations will occur, most of the change will be seen in temperature

  19. Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes. A DFT study

    International Nuclear Information System (INIS)

    A computational study at the level of density functional theory (DFT) was carried out to investigate the influence of carbon doping (C-doping) on the 11B and 14N quadrupole coupling constants (CQ) in the (6,0) single-walled boron-nitride nanotube (BNNT). To this aim, a 10 Aa length of BNNT consisting of 24 B atoms and 24 N atoms was selected where the end atoms are capped by hydrogen atoms. To follow the purpose, six C atoms were doped instead of three B and three N atoms as a central ring in the surface of the C-doped BNNT. The calculated CQ values for both optimized BNNT systems, raw and C-doped, reveal different electrostatic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered BNNT systems. (orig.)

  20. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    International Nuclear Information System (INIS)

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 (125 I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na125 I by the lactoperoxidase method. 125 I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10-10 M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of 125 I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  1. Significance of mannose-binding lectin deficiency and nucleotide-binding oligomerization domain 2 polymorphisms in Staphylococcus aureus bloodstream infections: a case-control study.

    Directory of Open Access Journals (Sweden)

    Michael Osthoff

    Full Text Available BACKGROUND: Pathways coordinated by innate pattern recognition receptors like mannose-binding lectin (MBL and nucleotide-binding oligomerization domain 2 (NOD2 are among the first immune responses to Staphylococcus aureus (S. aureus bloodstream infections (BSI in animal models, but human data are limited. Here, we investigated the role of MBL deficiency and NOD2 mutations in the predisposition to and severity of S. aureus BSI. PATIENTS AND METHODS: A matched case-control study was undertaken involving 70 patients with S. aureus BSI and 70 age- and sex-matched hospitalized controls. MBL levels, MBL2 and NOD2 polymorphisms were analyzed. RESULTS: After adjusting for potential confounders, MBL deficiency (<0.5 µg/ml was found less frequently in cases than controls (26 vs. 41%, OR 0.4, 95% confidence interval (CI 0.20-0.95, p=0.04 as were low producing MBL genotypes (11 vs. 23%, OR 0.2, 95% CI 0.08-0.75, p=0.01, whereas NOD2 polymorphisms were similarly distributed. Cases with NOD2 polymorphisms had less organ dysfunction as shown by a lower SOFA score (median 2.5 vs. 4.5, p=0.02, whereas only severe MBL deficiency (<0.1 µg/ml was associated with life-threatening S. aureus BSI (OR 5.6, 95% CI 1.25-24.85, p=0.02. CONCLUSIONS: Contrary to animal model data, our study suggests MBL deficiency may confer protection against acquiring S. aureus BSI. NOD2 mutations were less frequently associated with multi-organ dysfunction. Further human studies of the innate immune response in S. aureus BSI are needed to identify suitable host targets in sepsis treatment.

  2. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    International Nuclear Information System (INIS)

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP

  3. Klebsiella 'modifying factor': binding studies with HLA-B27+ and B27- lymphocytes.

    OpenAIRE

    Trapani, J A; McKenzie, I. F.

    1985-01-01

    On the basis that extracts of some klebsiella organisms bind selectively to the lymphocytes of HLA-B27+ individuals and induce the appearance of new antigens, attempts were made to detect the binding of klebsiella products to HLA-B27+ and B27- lymphocytes by a number of different techniques. Firstly, blocking of the binding of two different HLA-B27 specific monoclonal antibodies to HLA-B27+ lymphocytes has been examined following exposure of the lymphocytes to a cell-free culture filtrate fro...

  4. Theoretical Study of Sequence Selectivity and Preferred Binding Mode of Psoralen with DNA

    Directory of Open Access Journals (Sweden)

    Patricia Saenz-Méndez

    2007-01-01

    Full Text Available Psoralen interaction with two models of DNA was investigated using molecular mechanics and molecular dynamics methods. Calculated energies of minor groove binding and intercalation were compared in order to define a preferred binding mode for the ligand. We found that both binding modes are possible, explaining the low efficiency for monoadduct formation from intercalated ligands. A comparison between the interaction energy for intercalation between different base pairs suggests that the observed sequence selectivity is due to favorable intercalation in 5′-TpA in (ATn sequences.

  5. The importance of being (a) constant

    International Nuclear Information System (INIS)

    The author intends to show how the epistemological status of the physical constants bears witness to the development of physical science in general. He classifies the various physical constants into three types, properties of particular physical objects, characteristics of classes of physical phenomena and universal constants. He discusses the phenomena of fundamental constants experiencing a change in their type, at length on the example of two important constants, c and G. He considers Planck's constant and discusses the conceptual role of universal constants in general, as well as some aspects of quantum mechanics which appear in a new light from the proposed point of view. The existence is shown of hidden universal constants, forgotten ones in the realm of classical physics, as well as overlooked ones in modern physics. The velocity of light is studied as an example of general considerations on universal constants, and as a way to approach some epistemological problems of special relativity. Newton's gravitational constant is studied in connection with the interpretation of general relativity. (Auth./C.F.)

  6. Studies on the actin-binding protein HS1 in platelets

    Directory of Open Access Journals (Sweden)

    Auger Jocelyn M

    2007-11-01

    Full Text Available Abstract Background The platelet cytoskeleton mediates the dramatic change in platelet morphology that takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3 complex is highly regulated by a number of actin-binding proteins including the haematopoietic-specific protein HS1 and its homologue cortactin. The present study investigates the role of HS1 in platelets using HS1-/- mice. Results The present results demonstrate that HS1 is not required for platelet activation, shape change or aggregation. Platelets from HS1-/- mice spread normally on a variety of adhesion proteins and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable between knock out and littermates and there is no increase in bleeding using the tail bleeding assay. Conclusion This study concludes that HS1 does not play a major role in platelet function. It is possible that a role for HS1 is masked by the presence of cortactin.

  7. 1HNMR study of methotrexate serum albumin (MTX SA) binding in rheumatoid arthritis

    Science.gov (United States)

    Sułkowska, A.; Maciążek-Jurczyk, M.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2008-11-01

    Rheumatoid arthritis (RA) is an immunologically depended disease. It is characterized by a chronic, progressive inflammatory process. Methotrexate (4-amino-10-methylfolic acid, MTX) is the modifying drug used to treat RA. The aim of the presented studies is to determine the low affinity binding site of MTX in bovine (BSA) and human (HSA) serum albumin with the use of proton nuclear magnetic resonance ( 1HNMR) spectroscopy. The analysis of 1HNMR spectra of MTX in the presence of serum albumin (SA) allows us to observe the interactions between aromatic rings of the drug and the rings of amino acids located in the hydrophobic subdomains of the protein. On the basis of the chemical shifts σ [ppm] and the relaxation times T1 [s] of drug protons the hydrophobic interaction between MTX-SA and the stoichiometric molar ratio of the complex was evaluated. This work is a part of a spectroscopic study on MTX-SA interactions [A. Sułkowska, M. Maciążek, J. Równicka, B. Bojko, D. Pentak, W.W. Sułkowski, J. Mol. Struct. 834-836 (2007) 162-169].

  8. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    Science.gov (United States)

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program. PMID:27107334

  9. Pion mass and decay constant

    CERN Document Server

    Maris, P; Tandy, P C

    1998-01-01

    Independent of assumptions about the form of the quark-antiquark scattering kernel we derive the explicit relation between the pion Bethe-Salpeter amplitude, Gamma_pi, and the quark propagator in the chiral limit; Gamma_pi necessarily involves a non-negligible gamma_5 gamma.P term (P is the pion four-momentum). We also obtain exact expressions for the pion decay constant, f_pi, and mass, both of which depend on Gamma_pi; and demonstrate the equivalence between f_pi and the pion Bethe-Salpeter normalisation constant in the chiral limit. We stress the importance of preserving the axial-vector Ward-Takahashi identity in any study of the pion itself, and in any study whose goal is a unified understanding of the properties of the pion and other hadronic bound states.

  10. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    Science.gov (United States)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  11. Yeast hexokinase. A fluorescence temperature-jump study of the kinetics of the binding of glucose to the monomer forms of hexokinases P-I and P-II.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1976-09-15

    The binding of glucose to the monomeric forms of hexokinases P-I and P-II in Tris and phosphate buffers at pH 8.0 in the presence of 1 mol l-1 KCl has been studied using the fluorescence temperature-jump technique. For both isozymes only one relaxation time was observed; values of tau-1 increased linearly with increasing concentration of free reacting partners. The apparent second-order rate constant for association was about 2 X 10(6) 1 mol-1 s-1 for both isozymes; the differences in the stabilities of the complexes with P-I and P-II are entirely attributable to the fact that glucose dissociates more slowly from its complex with P-I than P-II (approximately 300 s-1 and 1100 s-1 respectively). Although the kinetic data are compatible with a single-step mechanism for glucose binding the association rate constant was much lower than that expected for a diffusion-limited rate of encounter. Other mechanisms for describing an induced-fit are discussed. It is shown that the data are incompatible with a slow 'prior-isomerization' pathway of substrate binding, but are consistent with a 'substrate-guided' pathway involving isomerization of the enzyme-substrate complex. PMID:789076

  12. Bovine Chymosin: A Computational Study of Recognition and Binding of Bovine κ-Casein

    DEFF Research Database (Denmark)

    Palmer, David S.; Christensen, Anders Uhrenholt; Sørensen, Jesper; Celik, Leyla; Qvist, Karsten Bruun; Schiøtt, Hanne Birgit

    2010-01-01

    Bovine chymosin is an aspartic protease that selectively cleaves the milk protein κ-casein. The enzyme is widely used to promote milk clotting in cheese manufacturing. We have developed models of residues 97-112 of bovine κ-casein complexed with bovine chymosin, using ligand docking, conformational...... search algorithms, and molecular dynamics simulations. In agreement with limited experimental evidence, the model suggests that the substrate binds in an extended conformation with charged residues on either side of the scissile bond playing an important role in stabilizing the binding pose. Lys111 and...... Lys112 are observed to bind to the N-terminal domain of chymosin displacing a conserved water molecule. A cluster of histidine and proline residues (His98-Pro99-His100-Pro101-His102) in κ-casein binds to the C-terminal domain of the protein, where a neighboring conserved arginine residue (Arg97) is...

  13. STD NMR spectroscopy: a case study of fosfomycin binding interactions in living bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Milagre, Cintia D.F.; Cabeca, Luis Fernando; Martins, Lucas G.; Marsaioli, Anita J., E-mail: anita@iq [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2011-07-01

    A saturation transfer difference (STD) NMR experiment was successfully employed to observe the binding interactions of fosfomycin resistant and non-resistant bacterial strains using living cell suspensions, without the need for isotopic labelling of the ligand or receptor. (author)

  14. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation.

    Science.gov (United States)

    Su, Ji-Guo; Zhao, Shu-Xin; Wang, Xiao-Feng; Li, Chun-Hua; Li, Jing-Yuan

    2016-08-01

    Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties. PMID:27444879

  15. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Science.gov (United States)

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  16. Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies.

    Science.gov (United States)

    Vertessy, B G; Harmat, V; Böcskei, Z; Náray-Szabó, G; Orosz, F; Ovádi, J

    1998-11-01

    The modulatory action of Ca2+-calmodulin on multiple targets is inhibited by trifluoperazine, which competes with target proteins for calmodulin binding. The structure of calmodulin crystallized with two trifluoperazine molecules is determined by X-ray crystallography at 2.74 A resolution. The X-ray data together with the characteristic and distinct signals obtained by circular dichroism in solution allowed us to identify the binding domains as well as the order of the binding of two trifluoperazine molecules to calmodulin. Accordingly, the binding of trifluperazine to the C-terminal hydrophobic pocket is followed by the interaction of the second drug molecule with an interdomain site. Recently, we demonstrated that the two bisindole derivatives, vinblastine and KAR-2 [3"-(beta-chloroethyl)-2",4"-dioxo-3, 5"-spirooxazolidino-4-deacetoxyvinblastine], interact with calmodulin with comparable affinity; however, they display different functional effects [Orosz et al. (1997) British J. Pharmacol. 121, 955-962]. The structural basis responsible for these effects were investigated by circular dichroism and fluorescence spectroscopy. The data provide evidence that calmodulin can simultaneously accommodate trifluoperazine and KAR-2 as well as vinblastine and KAR-2, but not trifluoperazine and vinblastine. The combination of the binding and structural data suggests that distinct binding sites exist on calmodulin for vinblastine and KAR-2 which correspond, at least partly, to that of trifluoperazine at the C-terminal hydrophobic pocket and at an interdomain site, respectively. This structural arrangement can explain why these drugs display different anticalmodulin activities. Calmodulin complexed with melittin is also able to bind two trifluoperazine molecules, the binding of which appears to be cooperative. Results obtained with intact and proteolytically cleaved calmodulin reveal that the central linker region of the protein is indispensable for simultanous interactions

  17. Geometry, Energy, and Some Electronic Properties of Carbon Polyprismanes: Ab Initio and Tight-Binding Study

    OpenAIRE

    Konstantin P. Katin; Shostachenko, Stanislav A.; Avkhadieva, Alina I.; Mikhail M. Maslov

    2015-01-01

    We report geometry, energy, and some electronic properties of [n,4]- and [n,5]prismanes (polyprismanes): a special type of carbon nanotubes constructed from dehydrogenated cycloalkane C4- and C5-rings, respectively. Binding energies, interatomic bonds, and the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated using density functional approach and nonorthogonal tight-binding model for the systems up to thir...

  18. Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes

    OpenAIRE

    Sukumar, Narayanasami

    2013-01-01

    The x-ray crystal structures of several important vitamin B12 binding proteins that have been solved in recent years have enhanced our current understanding in the vitamin B12 field. These structurally diverse groups of B12 binding proteins perform various important biological activities, both by transporting B12 as well as catalyzing various biological reactions. An in-depth comparative analysis of these structures was carried out using PDB coordinates of a carefully chosen database of B12 b...

  19. A Study on the Presence of Ferritin-binding Proteins in Fetal Horse Plasma

    OpenAIRE

    Hashimoto, Masafumi; NAMBO, Yasuo; Kondo, Takashi; Watanabe, Kiyotaka; Orino, Koichi

    2011-01-01

    In mammal circulation, ferritin-binding proteins (FBPs) are thought to be involved in clearance of circulating ferritin after complex formation with it through receptor-mediated uptake. However, there is no report on fetal FBP in fetal circulation. Although iron concentrations of fetal horse plasma were higher than those of adult horse plasma, plasma ferritin concentrations and ferritin-binding activities were found to be significantly lower in fetus than in adult. FBPs were purified from fet...

  20. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  1. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    Science.gov (United States)

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  2. GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study.

    Science.gov (United States)

    Ashby, Jamie A; McGonigle, Ian V; Price, Kerry L; Cohen, Netta; Comitani, Federico; Dougherty, Dennis A; Molteni, Carla; Lummis, Sarah C R

    2012-11-21

    RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors. PMID:23200041

  3. Biologically active monoiodinated alpha-MSH derivatives for receptor binding studies using human melanoma cells

    International Nuclear Information System (INIS)

    Three different monoiodinated radioligands of alpha-MSH (alpha-melanocyte-stimulating hormone) were compared in a binding assay with human D10 melanoma cells: [Tyr(125I)2]-alpha-MSH, [Tyr(125I)2,NIe4]-alpha-MSH, and [Tyr(125I)2,NIe4,D-Phe7]-alpha-MSH. They were prepared either by the classical chloramine T method or by the Enzymobead method. A simple and rapid purification scheme was developed consisting of a primary separation on reversed-phase C18 silica cartridges immediately after the iodination, followed by HPLC purification before each binding experiment. Biological testing of the three radioligands showed that they all retained high melanotropic activity in the B16 melanin assay and the Anolis melanophore assay. However, in human D10 melanoma cells, [Tyr(125I)2,NIe4]-alpha-MSH led to a high degree of non-specific binding to the cells which could not be displaced by excess alpha-MSH and only partially by [NIe4]-alpha-MSH. The [Tyr(125I)2,NIe4,D-Phe7]-alpha-MSH tracer gave similar results but with a much lower proportion of non-specific binding. On the other hand, [Tyr(125I)2]-alpha-MSH proved to be an excellent radioligand whose non-specific binding to the D10 cells was not higher than 20% of the total binding

  4. Binding of 2',3'-cyclic nucleotide 3'-phosphodiesterase to myelin: an in vitro study.

    Science.gov (United States)

    De Angelis, D A; Braun, P E

    1996-06-01

    The binding of 2', 3'-cyclic nucleotide 3'-phosphodiesterase isoform 1 (CNP1) to myelin and its association with cytoskeletal elements of the sheath have been characterized with in vitro synthesized polypeptides and purified myelin. We have previously shown that the cysteine residue present in the carboxy-terminal CXXX box of CNP1 is isoprenylated, and that both C15 farnesyl and C20 geranylgeranyl isoprenoids can serve as substrates for the modification. Here, we have mutated the CXXX box to obtain selectively farnesylated CNP1 or geranyl- geranylated CNP1 and found that these two modified forms of CNP1 behave identically in all of the assays performed. Isoprenylation is essential but not sufficient for the binding of in vitro synthesized CNP1 to purified myelin, because a control nonmyelin protein is isoprenylated, yet unable to bind to myelin. In our assay, membrane-bound CNP1 partitions quantitatively into the nonionic detergent-insoluble phase of myelin, suggesting that CNP1 binds to cytoskeletal elements within myelin. However, isoprenylated CNP1 fails to bind to the cytoskeletal matrix isolated from myelin by detergent treatment, implying that both detergent-soluble and insoluble myelin components are involved in the binding of CNP1. A model for the interactions between CNP1 and myelin is presented, consistent with models proposed for other isoprenylated proteins. PMID:8632178

  5. Cosmological Constant and Axions in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-08-18

    String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.

  6. Bubble Universes With Different Gravitational Constants

    OpenAIRE

    Takamizu, Yu-ichi; Maeda, Kei-ichi

    2015-01-01

    We argue a scenario motivated by the context of string landscape, where our universe is produced by a new vacuum bubble embedded in an old bubble and these bubble universes have not only different cosmological constants, but also their own different gravitational constants. We study these effects on the primordial curvature perturbations. In order to construct a model of varying gravitational constants, we use the Jordan-Brans-Dicke (JBD) theory where different expectation values of scalar fi...

  7. Characterization of histamine receptors in isolated pig basilar artery by functional and radioligand binding studies

    International Nuclear Information System (INIS)

    Histamine receptors in pig basilar arteries were investigated in vitro by radioligand binding assays and by measuring the contractile and relaxant responses to histamine. Histamine and 2-pyridyethylamine (H1-agonist) induced concentration-dependent contractions, whereas impromidine (H2-agonist) induced concentration-dependent relaxations. These responses were independent of the presence of endothelial cells. Diphenhydramine (H1-antagonist) partially reversed the histamine-induced contractions to relaxations. Cimetidine (Hα2-antagonist) potentiated the contraction in a concentration-dependent manner. In the presence of cimetidine, the pEC50 value of histamine for the contraction was 6.30, and diphenhydramine competitively antagonized the histamine-induced contractions (pA2, 7.77). In the presence of diphenhydramine, the pEC50 value of histamine for the relaxation was 5.93, and cimetidine competitively antagonized the histamine-induced relaxations (pA2, 6.62). In the binding studies, the Kd value of [3H]mepyramine was 2.1 nM and the Bmax value was 95.6 fmol/mg protein. A competition experiment with diphenhydramine showed that the pKi value (7.51) was similar to the pA2 value. The Kd value for [3H]cimetidine was 126.0 nM and the Bmax value was 459.8 fmol/mg protein. The pKd (6.90) for [3H]cimetidine was similar to the pA2 for cimetidine. The Hill coefficients for these experiments were not significantly different from unity. The present findings indicate that the number of H1-receptors, in terms of the Bmax value for [3H]mepyramine, is smaller than that of H2-receptors, in terms of the Bmax value for [3H]cimetidine. However, the contractile response to histamine is predominantly mediated through stimulation of H1-receptors on vascular smooth muscle cells in pig basilar artery

  8. 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution

    International Nuclear Information System (INIS)

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in 2H2O by 1H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn2+) and the addition of Zn2+ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn2+ or not bound to Zn2+. The pK' values of the B5 and B10 histidines were determined in 60% 2H2O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for 1H NMR (approximately 1 mM) at 37 degrees C in 2H2O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni2+ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn2+. Addition of Co2+ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd2+ and of Cd2+ and Ca2+ produced changes that were similar to each other but were different from those observed on addition of Zn2+, probably due to the binding of Cd2+ and Ca2+ at glutamate B13

  9. Preparation of 99Tcm-Annexin V and in vitro study of its binding characteristics in dopaminergic apoptotic neurons

    International Nuclear Information System (INIS)

    Objective: The aims of this study were two. One was to find out an optimal method for 99Tcm-Annexin V preparation and the other was to investigate the binding characteristics of 99Tcm-Annexin V in dopaminergic apoptotic neurons in vitro. Methods: For 99Tcm-Annexin V preparation, hydrazine nicotinamide (HYNIC), a bifunctional chelating agent was used. Product was purified by Sephadex G-25 column chromatography and analyzed with instant thin layer chromatography (ITLC). To test the binding characteristics in dopaminergic apoptotic neurons in vitro, a rat pheoehromocytoma cell line (PC12) treated with l-methyl-4-phenylpyridinium (MPP+) was used. Tests including time-temperature binding, saturable bind- ing, competition binding between dopaminergic apoptotic neurons and 99Tcm-HYNIC-Annexin V and dose- dependent MPP+ studies were performed and evaluated. Results: The labeling rate of 99Tcm was (64.56 ± 6.23)%. The specific activity of 99Tcm-HYNIC-Annexin V was (3.7-74)xl05 kBq/mg protein. The radiochemical purity was (93.6±2.48)% and was >90% after 4 hours storage at room temperature. Seat- chard plotting suggested that the concentrations of Kd was (7.16±1.78) nmol/L, and Bmax was (178.73± 32.62) fmoL/106 ceils. Conclusions: The preliminary results show that an optimal 99Tcm-HYNIC-Annexin V preparation method can be provided. The 99Tcm-HYNIC-Annexin V prepared in our laboratory has good receptor-binding activity and may possibly be a potential drug in studying the apoptotic phenomenon in Parkin- son's disease at early stage in an animal model. (authors)

  10. [Comparative study of variola virus and monkeypox virus interferon-gamma-binding].

    Science.gov (United States)

    Nepomniashchikh, T S; Lebedev, L R; Riazankin, I A; Pozdniakov, S G; Gileeva, I P; Shchelkunov, S N

    2005-01-01

    DNA fragments containing genes for coding IFN-gamma-binding proteins (IFNgammaBPs) of variola virus (VARV) and monkeypox virus (MPXV) were obtained from viral genomes using PCR. Isolated genes coding desired proteins were expressed in the insect Sf21 cells using baculovirus expression system. Secreted recombinant IFNgammaBPs were isolated from culture medium of infected Sf21 cells through affinity chromatography procedure. SDS-PAAG and Western blot analysis of culture medium of infected insect cells and preparations of purified recombinant IFNgammaBPs indicated that recombinant viral proteins were dimerized even in the absence of ligand (hIFNgamma) unlike their cell (eucaryotic) analogs. Biological activity of the recombinant IFNgammaBPs were studied in the test of protective effect inhibition of hIFNgamma on L68 cells infected with murine encephalomyocarditis virus. It was shown that recombinant IFNgammaBPs had dose-dependent IFNgamma-inhibiting activity. A possibility of the elaboration of new therapeutics for anti-hIFNgamma therapy on the base of IFNgammaBPs is discussed. PMID:16358743

  11. Histochemical detection of sugar residues in lizard teeth (Liolaemus gravenhorsti: a lectin-binding study

    Directory of Open Access Journals (Sweden)

    MARCELA FUENZALIDA

    2000-01-01

    Full Text Available The structural diversity of the many oligosaccharide chains of surface glycoconjugates renders them likely candidates for modulators of cell-interactions, cellular movements, differentiation, and cellular recognition. A selection of different lectins was used to investigate the appearance of cellular distribution and changes in sugar residues during tooth development in the polyphyodont lizard, Liolaemus gravenhorsti. Lectins from three groups were used: (1 N-acetylgalactosamine specificity: BS-1, PNA, RCA-120; (2 N-acetylglucosamine specificity: ECA; and (3 fucose specificity: UEA 1 and LTA.. Digital images were processed using Scion Image. Grayscale graphics in each image were obtained. The lectins used showed a strong, wide distribution of the L-fucose and N-acetylgalactosamine at the cell surface and in the cytoplasm of multinucleate odontoclast cell, while mononuclear odontoclast cells showed no binding, suggesting some roles that the residues sugar might play in the resorption of dentine or with multinucleation of odontoclast after the attachment to the dentine surface in this polyphyodont species. Further studies must be planned to determine the specific identities of these glycoconjugates,and to elucidate the roles played by these sugar residues in the complex processes related to odontogenesis in polyphyodont species.

  12. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    Science.gov (United States)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  13. Proton and tritium NMR relaxation studies of peptide inhibitor binding to bacterial collagenase: Conformation and dynamics

    International Nuclear Information System (INIS)

    The interaction of succinyl-Pro-Ala, a competitive inhibitor of Achromobacter iophagus collagenase, with the enzyme was studied by longitudinal proton and tritium relaxation. Specific deuterium and tritium labeling of the succinyl part at vicinal positions allowed the measurement of the cross-relaxation rates of individual proton or tritium spin pairs in the inhibitor-enzyme complex as well as in the free inhibitor. Overall correlation times, internuclear distances, and qualitative information on the internal mobility in Suc1 (as provided by the generalized order parameter S2) could be deduced by the comparison of proton and tritium cross-relaxation of spin pairs at complementary positions in the -CH2- CH2- moiety as analyzed in terms of the model-free approach by Lipari and Szabo. The conformational and motional parameters of the inhibitor in the free and enzyme-bound state were directly compared by this method. The measurement of proton cross-relaxation in the Ala residue provided additional information on the inhibitor binding. The determination of the order parameter in different parts of the inhibitor molecule in the bound state indicates that the succinyl and alanyl residues are primarily involved in the interaction with the enzyme activity site. The succinyl moiety, characterized in solution by the conformational equilibrium among the three staggered rotamers--i.e., trans: 50%; g+: 20%; g-: 30%--adopted in the bound state the unique trans conformation

  14. Kinetics and thermodynamics of glycans and glycoproteins binding to Holothuria scabra lectin: a fluorescence and surface plasmon resonance spectroscopic study.

    Science.gov (United States)

    Gowda, Nagaraj M; Gaikwad, Sushama M; Khan, M Islam

    2013-11-01

    Holothuria scabra produces a monomeric lectin (HSL) of 182 kDa. HSL showed strong antibacterial activity and induced bacterial agglutination under in vitro conditions, indicating its role in animals' innate immune responses. Very few lectins have been reported from echinoderms and none of these lectins have been explored in detail for their sugar-binding kinetics. Affinity, kinetics and thermodynamic analysis of glycans and glycoproteins binding to HSL were studied by fluorescence and surface plasmon resonance spectroscopy. Lectin binds with higher affinity to O-linked than N-linked asialo glycans, and the affinities were relatively higher than that for sialated glycans and glycoproteins. T-antigen α-methyl glycoside was the most potent ligand having the highest affinity (Ka 8.32 ×10(7) M(-1)). Thermodynamic and kinetic analysis indicated that the binding of galactosyl Tn-antigen and asialo glycans is accompanied by an enthalpic contribution in addition to higher association rate coupled by low activation energy for the association process. Presence of sialic acid or protein matrix inhibits binding. Higher affinity of HSL for O-glycans than N-glycans had biological implications; since HSL specifically recognizes bacteria, which have mucin or O-glycan cognate on their cell surfaces and play a major role in animal innate immunity. Since, HSL had higher affinity to T-antigen, makes it a useful tool for cancer diagnostic purpose. PMID:23736907

  15. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit

    DEFF Research Database (Denmark)

    Rehling, M

    1988-01-01

    quality of a commercial [99mTc]DTPA preparation (C.I.S., France) with reference to stability, protein binding and accuracy of the determined plasma clearance values as a measure of GFR. The stability of the preparations was studied by thin-layer chromatography, the in vitro protein binding by Sephadex...... filtration after incubation with human serum albumin and in vivo protein binding by filtration of human plasma. The accuracy of the plasma clearance values was investigated by comparison with the simultaneously measured plasma clearance of [51Cr]EDTA. There was no detectable free pertechnetate or hydrolysed...... reduced technetium in eight vials five and six hours after the preparation. The in vitro protein binding 10 (20), 120 and 300 min after the preparation of eight vials was 2.3% (0.8%), 0.2% and 0.1%, respectively. The in vivo protein binding in 12 patients 5, 90 and 180 min after the injection was 0.3%, 0...

  16. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E; Nielsen, P E; Nordén, B

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and...... relative to that of the perfectly matched sequence with a corresponding free energy penalty of about 15 kJ mol(-1) bp(-1). The average cost of a single mismatch is therefore estimated to be on the order of or larger than the gain of two matched base pairs, resulting in an apparent binding constant of only...

  17. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease: an autoradiographic study

    International Nuclear Information System (INIS)

    In Alzheimer's disease (AD) and Parkinson's disease (PD), dysfunction in the basal forebrain cholinergic system is accompanied by a consistent loss of presynaptic cholinergic markers in cortex, but changes in cholinergic receptor binding sites are poorly understood. In the present study, we used receptor autoradiography to map the distribution of nicotinic [3H]acetylcholine binding sites in cortices of individuals with AD and PD and matched control subjects. In both diseases, a profound loss of nicotinic receptors occurs in all cortical layers, particularly the deepest layers

  18. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Guillermo Salgado-Moran

    2013-01-01

    Full Text Available The binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis was studied. The analysis was performed using an in silico approach in order to find out, by docking calculations and energy descriptors, the conformer of Ethambutol that forms the most stable complex with the C-terminal domain of arabinosyltransferase. The complex shows that location of the Ethambutol coincides with the cocrystallization ligand position and that amino acid residues ASH1051, ASN740, ASP1052, and ARG1055 should be critical in the binding of Ethambutol to C-terminal domain EmbC.

  19. A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Mosser David M

    2005-05-01

    Full Text Available Abstract Background The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. Methods To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 106 cells/mL. Leishmania (Leishmania chagasi parasites (stationary-phase were adjusted to 5 × 107 cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18 antibodies and analyzed by flow citometry. Results Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1 β2 integrin. Conclusion Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes.

  20. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF6 molecules, X = S, Se, Te, Mo, and W

    International Nuclear Information System (INIS)

    We present an analysis of the spin–rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants

  1. Multi-tracer study on in vivo and in vitro binding of trace elements with mouse liver DNA

    International Nuclear Information System (INIS)

    In vivo, semi-in vivo and in vitro binding of a series of trace elements (Be, Sc, Mn, Co, Zn, As, Se, Rb, Sr, Y, Zr, Tc, Ru and Rh) is studied by the multi-tracer technique. The corresponding nuclides in the multi-tracer solution used are 7Be, 46Sc, 54Mn, 58Co, 65Zn, 74As, 75Se, 83Rb, 85Sr, 88Y, 88Zr, 95Tcm, 103Ru and 102Rhm. It is found that most elements bound mouse liver DNA in vivo except As, Ru and Rh. In the semi-in vivo experiment, only elements Rh and As are not observed to be bound with DNA. In the in vitro experiment, DNA bound with all elements, among which Rb, Se, Zr, Ru and As showed very slight binding. In comparison, the binding in vitro is the strongest, semi-in vivo the medium and in vivo the weakest

  2. Structural and functional studies of a large winged Z-DNA-binding domain of Danio rerio protein kinase PKZ.

    Science.gov (United States)

    Subramani, Vinod Kumar; Kim, Doyoun; Yun, Kyunghee; Kim, Kyeong Kyu

    2016-07-01

    The Z-DNA-binding domain of PKZ from zebrafish (Danio rerio; drZαPKZ ) contains the largest β-wing among known Z-DNA-binding domains. To elucidate the functional implication of the β-wing, we solved the crystal structure of apo-drZαPKZ . Structural comparison with its Z-DNA-bound form revealed a large conformational change within the β-wing during Z-DNA binding. Biochemical studies of protein mutants revealed that two basic residues in the β-wing are responsible for Z-DNA recognition as well as fast B-Z transition. Therefore, the extra basic residues in the β-wing of drZαPKZ are necessary for the fast B-Z transition activity. PMID:27265117

  3. Theoretical study of the structure, energetics, and dynamics of silicon and carbon systems using tight-binding approaches

    International Nuclear Information System (INIS)

    Semiempirical interatomic potentials are developed for silicon and carbon by modeling the total energy of the system using tight-binding approaches. The parameters of the models were obtained by fitting to results from accurate first-principles Local Density Functional calculations. Applications to the computation of phonons as a function of volume for diamond-structured silicon and carbon and the thermal expansions for silicon and diamond yields results which agree well with experiment. The physical origin of the negative thermal expansion observed in silicon is explained. A tight-binding total energy model is generated capable of describing carbon systems with a variety of atomic coordinations and topologies. The model reproduces the total energy versus volume curves of various carbon polytypes as well as phonons and elastic constants of diamond and graphite. The model has also been used in the molecular-dynamics simulation of the properties of carbon clusters. The calculated ground-state geometries of small clusters (C2--C10) correlates well with results from accurate quantum chemical calculations, and the structural trend of clusters from C2 to C60 are investigated. 67 refs., 19 figs

  4. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    Science.gov (United States)

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  5. BayesPI - a new model to study protein-DNA interactions: a case study of condition-specific protein binding parameters for Yeast transcription factors.

    OpenAIRE

    Morigen; Wang Junbai

    2009-01-01

    Abstract Background We have incorporated Bayesian model regularization with biophysical modeling of protein-DNA interactions, and of genome-wide nucleosome positioning to study protein-DNA interactions, using a high-throughput dataset. The newly developed method (BayesPI) includes the estimation of a transcription factor (TF) binding energy matrices, the computation of binding affinity of a TF target site and the corresponding chemical potential. Results The method was successfully tested on ...

  6. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  7. Interaction of phenylbutazone and colchicine in binding to serum albumin in rheumatoid therapy: 1H NMR study

    Science.gov (United States)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2009-09-01

    The monitoring of drug concentration in blood serum is necessary in multi-drug therapy. Mechanism of drug binding with serum albumin (SA) is one of the most important factors which determine drug concentration and its transport to the destination tissues. In rheumatoid diseases drugs which can induce various adverse effects are commonly used in combination therapy. Such proceeding may result in the enhancement of those side effects due to drug interaction. Interaction of phenylbutazone and colchicine in binding to serum albumin and competition between them in gout has been studied by proton nuclear magnetic resonance ( 1H NMR) technique. The aim of the study was to determine the low affinity binding sites, the strength and kind of interaction between serum albumin and drugs used in combination therapy. The study of competition between phenylbutazone and colchicine in binding to serum albumin points to the change of their affinity to serum albumin in the ternary systems. This should be taken into account in multi-drug therapy. This work is a subsequent part of the spectroscopic study on Phe-COL-SA interactions [A. Sułkowska, et al., J. Mol. Struct. 881 (2008) 97-106].

  8. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound

    Energy Technology Data Exchange (ETDEWEB)

    Bijari, Nooshin [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Shokoohinia, Yalda [Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza; Ranjbar, Samira; Parvaneh, Shahram [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Moieni-Arya, Maryam [Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2013-11-15

    The studies on the interaction between human serum albumin (HSA) and drugs have been an interesting research field in life science, chemistry and clinical medicine. Osthole possesses a variety of pharmacological activities including anti-tumor, anti-inflammation, anti-seizure, anti-hyperlipidemic and anti-osteoporosis effects. The interaction of osthole with HSA and its binding site in HSA by spectroscopic methods is the subject of this work. By monitoring the intrinsic fluorescence of the single Trp{sub 214} residue and performing site markers displacement measurements, the specific binding of osthole in the vicinity of Sudlow's site I of HSA has been clarified. The changes in the secondary structure of HSA after its complexation with ligand were studied with CD spectroscopy, which indicate that osthole induced only a slight decrease in the helix structural content of the protein. In addition, the mean distance between osthole and HSA fluorophores is estimated to be 4.96 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Osthole can quench the intrinsic fluorescence of HSA by dynamic quenching, and analysis of the thermodynamic parameters of binding showed that hydrophobic interactions play an important role in the stabilizing of the complex. Increase of protein surface hydrophobicity (PSH) was also observed upon the osthole binding. -- Highlights: • Hydrophobic interactions play an important role in osthole–HSA interaction. • Sudlow's I site is possible binding site of osthole. • Osthole inhibits esterase activity of HSA. • Osthole binding induces no gross protein structural changes.

  9. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound

    International Nuclear Information System (INIS)

    The studies on the interaction between human serum albumin (HSA) and drugs have been an interesting research field in life science, chemistry and clinical medicine. Osthole possesses a variety of pharmacological activities including anti-tumor, anti-inflammation, anti-seizure, anti-hyperlipidemic and anti-osteoporosis effects. The interaction of osthole with HSA and its binding site in HSA by spectroscopic methods is the subject of this work. By monitoring the intrinsic fluorescence of the single Trp214 residue and performing site markers displacement measurements, the specific binding of osthole in the vicinity of Sudlow's site I of HSA has been clarified. The changes in the secondary structure of HSA after its complexation with ligand were studied with CD spectroscopy, which indicate that osthole induced only a slight decrease in the helix structural content of the protein. In addition, the mean distance between osthole and HSA fluorophores is estimated to be 4.96 nm using Föster's equation on the basis of the fluorescence energy transfer. Furthermore, the synchronous fluorescence spectra show that the microenvironment of the tryptophan residues does not have obvious changes. Osthole can quench the intrinsic fluorescence of HSA by dynamic quenching, and analysis of the thermodynamic parameters of binding showed that hydrophobic interactions play an important role in the stabilizing of the complex. Increase of protein surface hydrophobicity (PSH) was also observed upon the osthole binding. -- Highlights: • Hydrophobic interactions play an important role in osthole–HSA interaction. • Sudlow's I site is possible binding site of osthole. • Osthole inhibits esterase activity of HSA. • Osthole binding induces no gross protein structural changes

  10. Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique

    International Nuclear Information System (INIS)

    The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV-vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern-Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were KAnaringenin)=4.08x104A(hesperetin)=5.40x104∼KA(apigenin)=5.32x104 L mol-1. The main binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Foerster theory of non-radiation energy transfer, the binding distances (r0) were obtained as 3.36, 3.47 and 3.30 nm for naringenin-BSA, hesperetin-BSA and apigenin-BSA, respectively. The effect of some common ions such as Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (K'A) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution. - Highlights: → Quenchings of BSA fluorescence by the flavonoids was all static quenchings. → Synchronous fluorescence was applied to study the structural change of BSA. → Binding constant, binding site and binding force were determined. → Competition binding experiments were performed. → One flavonoid had an obvious effect on the binding of another one to BSA.

  11. Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun, E-mail: sy_bi@sina.com [College of Chemistry, Changchun Normal University, Changchun 130032 (China); Yan Lili; Pang Bo; Wang Yu [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2012-01-15

    The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV-vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern-Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were K{sub A{sub (naringenin)}}=4.08x10{sup 4}binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Foerster theory of non-radiation energy transfer, the binding distances (r{sub 0}) were obtained as 3.36, 3.47 and 3.30 nm for naringenin-BSA, hesperetin-BSA and apigenin-BSA, respectively. The effect of some common ions such as Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Mn{sup 2+}, Zn{sup 2+} and Ca{sup 2+} on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (K'{sub A}) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution. - Highlights: > Quenchings of BSA fluorescence by the flavonoids was all static quenchings. > Synchronous fluorescence was applied to study the structural change of BSA. > Binding constant, binding site and binding force were determined. > Competition binding experiments were performed. > One flavonoid had an obvious effect on the binding of another one to BSA.

  12. A first-principles study of cementite (Fe3C and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Directory of Open Access Journals (Sweden)

    G. Ghosh

    2015-08-01

    Full Text Available A comprehensive computational study of elastic properties of cementite (Fe3C and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT, all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA. Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i single-crystal elastic constants, Cij, of above M3Cs; (ii anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii isotropic (polycrystalline elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio of M3Cs by homogenization of calculated Cijs; and (iv acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  13. A first-principles study of cementite (Fe3C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Science.gov (United States)

    Ghosh, G.

    2015-08-01

    A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  14. A study of the effects of Reynolds number and Mach number on constant pressure coefficient jump for shock-induced trailing-edge separation

    Science.gov (United States)

    Cunningham, Atlee M., Jr.; Spragle, Gregory S.

    1987-01-01

    The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.

  15. Evidence from opiate binding studies that heroin acts through its metabolites.

    Science.gov (United States)

    Inturrisi, C E; Schultz, M; Shin, S; Umans, J G; Angel, L; Simon, E J

    1983-01-01

    The relative affinity to opiate receptors of heroin, 6-acetylmorphine and morphine was estimated by determining their ability to displace specifically bound 3H-naltrexone from rat brain opiate binding sites. In vitro hydrolysis of heroin to 6-acetylmorphine was monitored in the binding assay filtrate by use of a quantitative HPLC procedure. The rate of heroin hydrolysis was significantly slower at 0 degrees C than at 37 degrees C. The displacement of 1 nM 3H-naltrexone by unlabeled ligand at concentrations ranging from 7 to 500 nM was measured at 0 degrees C for 120 minutes, yielding IC50 values of heroin = 483 nM, 6-acetylmorphine = 73 nM and morphine = 53 nM. When the binding data for heroin were recalculated to include the displacement that could be attributed to the 6-acetylmorphine derived from heroin degradation during the incubation, all of the apparent heroin binding was accounted for by the 6-acetylmorphine. These results are consistent with previous reports of the low binding affinity of morphine congeners (e.g., codeine) that lack a free phenolic 3-hydroxyl group and support the view that heroin is a prodrug which serves to determine the distribution of its intrinsically active metabolites, 6-acetylmorphine and morphine. PMID:6319928

  16. Binding studies of a large antiviral polyamide to a natural HPV sequence.

    Science.gov (United States)

    He, Gaofei; Vasilieva, Elena; Harris, George Davis; Koeller, Kevin J; Bashkin, James K; Dupureur, Cynthia M

    2014-07-01

    PA1 is a large hairpin polyamide (dImPyPy-β-PyPyPy-γ-PyPy-β-PyPyPyPy-β-Ta; Py = pyrrole, Im = imidazole, β = beta alanine) that targets the sequence 5'-WWGWWWWWWW-3' (W = A or T) and is effective in eliminating HPV16 in cell culture (Edwards, T. G., Koeller, K. J., Slomczynska, U., Fok, K., Helmus, M., Bashkin, J. K., Fisher, C., Antiviral Res. 91 (2011) 177-186). Described here are its DNA binding properties toward a natural DNA, a 523 bp portion of HPV16 (2150-2672) containing three predicted perfect match sites. Strategies for obtaining binding data on large fragments using capillary electrophoresis are also described. Using an Fe EDTA conjugate of PA1, 19 affinity cleavage (AC) patterns were detected for this fragment. In many cases, there are multiple possible binding sequences (perfect, single and double mismatch sites) consistent with the AC data. Quantitative DNase I footprinting analysis indicates that perfect and most single mismatch sites bind PA1 with Kds between 0.7 and 4 nM, indicating excellent tolerance for the latter. Double mismatch sites exhibit Kds between 12 and 62 nM. A large fraction of the accessible sequence is susceptible to PA1 binding, much larger than predicted based on the literature of polyamide-DNA recognition rules. PMID:24582833

  17. Constant Proportion Portfolio Insurance

    DEFF Research Database (Denmark)

    Jessen, Cathrine

    2014-01-01

    Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation on the...... theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...

  18. When constants are important

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  19. Decay constants in geochronology

    Institute of Scientific and Technical Information of China (English)

    IgorM.Villa; PaulR.Renne

    2005-01-01

    Geologic time is fundamental to the Earth Sciences, and progress in many disciplines depends critically on our ability to measure time with increasing accuracy and precision. Isotopic geochronology makes use of the decay of radioactive nuclides as a help to quantify the histories of rock, minerals, and other materials. Both accuracy and precision of radioisotopic ages are, at present, limited by those of radioactive decay constants. Modem mass spectrometers can measure isotope ratios with a precision of 10-4 or better. On the other hand, the uncertainties associated with direct half-life determinations are, in most cases, still at the percent level. The present short note briefly summarizes progress and problems that have been encountered during the Working Group's activity.

  20. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  1. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies.

    Directory of Open Access Journals (Sweden)

    Pei Yang

    Full Text Available G-protein coupled receptors (GPCRs are integral membrane proteins involved in a wide variety of biological processes in eukaryotic cells, and are targeted by a large fraction of marketed drugs. GPCR kinases (GRKs play important roles in feedback regulation of GPCRs, such as of β-adrenergic receptors in the heart, where GRK2 and GRK5 are the major isoforms expressed. Membrane targeting is essential for GRK function in cells. Whereas GRK2 is recruited to the membrane by heterotrimeric Gβγ subunits, the mechanism of membrane binding by GRK5 is not fully understood. It has been proposed that GRK5 is constitutively associated with membranes through elements located at its N-terminus, its C-terminus, or both. The membrane orientation of GRK5 is also a matter of speculation. In this work, we combined sum frequency generation (SFG vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR to help determine the membrane orientation of GRK5 and a C-terminally truncated mutant (GRK51-531 on membrane lipid bilayers. It was found that GRK5 and GRK51-531 adopt a similar orientation on model cell membranes in the presence of PIP2 that is similar to that predicted for GRK2 in prior studies. Mutation of the N-terminal membrane binding site of GRK5 did not eliminate membrane binding, but prevented observation of this discrete orientation. The C-terminus of GRK5 does not have substantial impact on either membrane binding or orientation in this model system. Thus, the C-terminus of GRK5 may drive membrane binding in cells via interactions with other proteins at the plasma membrane or bind in an unstructured manner to negatively charged membranes.

  2. RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study.

    Science.gov (United States)

    Bernacchi, Serena; Henriet, Simon; Dumas, Philippe; Paillart, Jean-Christophe; Marquet, Roland

    2007-09-01

    The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Some "non-permissive" cell lines cannot sustain replication of Vif(-) HIV-1 virions. In these cells, Vif counteracts the natural antiretroviral activity of the DNA-editing enzymes APOBEC3G/3F. Moreover, Vif is packaged into viral particles through a strong interaction with genomic RNA in viral nucleoprotein complexes. To gain insights into determinants of this binding process, we performed the first characterization of Vif/nucleic acid interactions using Vif intrinsic fluorescence. We determined the affinity of Vif for RNA fragments corresponding to various regions of the HIV-1 genome. Our results demonstrated preferential and moderately cooperative binding for RNAs corresponding to the 5'-untranslated region of HIV-1 (5'-untranslated region) and gag (cooperativity parameter omega approximately 65-80, and K(d) = 45-55 nM). In addition, fluorescence spectroscopy allowed us to point out the TAR apical loop and a short region in gag as primary strong affinity binding sites (K(d) = 9.5-14 nM). Interestingly, beside its RNA binding properties, the Vif protein can also bind the corresponding DNA oligonucleotides and their complementary counterparts with an affinity similar to the one observed for the RNA sequences, while other DNA sequences displayed reduced affinity. Taken together, our results suggest that Vif binding to RNA and DNA offers several non-exclusive ways to counteract APOBEC3G/3F factors, in addition to the well documented Vif-induced degradation by the proteasome and to the Vif-mediated repression of translation of these antiviral factors. PMID:17609216

  3. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available BACKGROUND: Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners. METHODOLOGY: Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques. CONCLUSIONS: Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions. AVAILABILITY: We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  4. Atomic hydrogen and fundamental physical constants

    International Nuclear Information System (INIS)

    Techniques are described which allow the study, in undergraduate laboratories, of the spectrum of atomic hydrogen. The Rydberg constant, the electron-proton mass ratio, and the fine-structure constant are evaluated from the measurements. The key to the series of experiments is a discharge tube in which atomic lines dominate over the molecular lines. (author)

  5. A comparative study of caffeine and theophylline binding to Mg(II) and Ca(II) ions: studied by FTIR and UV spectroscopic methods

    Science.gov (United States)

    Nafisi, Shohreh; Shamloo, Delaram Sadraii; Mohajerani, Nasser; Omidi, Akram

    2002-08-01

    The interactions of calcium and magnesium ions with caffeine and theophylline have been investigated in aqueous solution at physiological pH. Fourier Transform infrared (FTIR) spectroscopy and absorption spectra were used to determine the cation binding mode and the association constants. Our spectroscopic results showed that calcium and magnesium ions do not complex with caffeine strongly and the weak interactions between caffeine and Mg 2+ and Ca 2+ might be via O6 atom. In Ca 2+-theophylline complex, binding between Ca 2+ with CO and N7 is observed, however in Mg 2+-theophylline complex, binding between Mg 2+ and N7 is more likely. The k values of these complexes are as follows: k(caffeine-Ca)=29.8 M -1, k(caffeine-Mg)=22.4 M -1, k(theophylline-Ca)=59.8 M -1 and k(theophylline-Mg)=33.8 M -1. These values are evidence for a weak cation interaction in these metal complexes.

  6. Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia

    Indian Academy of Sciences (India)

    Mohammad Bagherbandi; Robert Tenzer

    2013-04-01

    We compare three different numerical schemes of treating the Moho density contrast in gravimetric inverse problems for finding the Moho depths. The results are validated using the global crustal model CRUST2.0, which is determined based purely on seismic data. Firstly, the gravimetric recovery of the Moho depths is realized by solving Moritz’s generalization of the Vening-Meinesz inverse problem of isostasy while the constant Moho density contrast is adopted. The Pratt-Hayford isostatic model is then facilitated to estimate the variable Moho density contrast. This variable Moho density contrast is subsequently used to determine the Moho depths. Finally, the combined least-squares approach is applied to estimate jointly the Moho depths and density contract based on a priori error model. The EGM2008 global gravity model and the DTM2006.0 global topographic/bathymetric model are used to generate the isostatic gravity anomalies. The comparison of numerical results reveals that the optimal isostatic inverse scheme should take into consideration both the variable depth and density of compensation. This is achieved by applying the combined least-squares approach for a simultaneous estimation of both Moho parameters. We demonstrate that the result obtained using this method has the best agreement with the CRUST2.0 Moho depths. The numerical experiments are conducted at the regional study area of New Zealand’s continental shelf.

  7. The potentiometric and laser RAMAN study of the hydrolysis of uranyl chloride under physiological conditions and the effect of systematic and random errors on the hydrolysis constants

    International Nuclear Information System (INIS)

    The hydrolysis of uranyl ions in 0.15 mol/L (Na)C1 solution at 37 degrees Celsius has been studied by potentiometric titration. The results were consistent with the formation of (UO2)2(OH)2, (UO2)3(OH)4, (UO2)3(OH)5 and (UO2)4(OH)7. The stability constants, which were evaluated using a version of MINIQUAD, were found to be: log β22 = -5.693 ± 0.007, log β34 = -11.499 ± 0.024, log β35 = -16.001 ± 0.050, log β47 = -21.027 ± 0.051. Laser Raman spectroscopy has been used to identify the products including (UO2)4(OH)7 species. The difficulties in identifying the chemical species in solution and the effect of small errors on this selection has also been investigated by computer simulation. The results clearly indicate that small errors can lead to the selection of species that may not exist

  8. Rejoining of DNA double-strand breaks in X-irradiated CHO cells studied by constant- and graded-field gel electrophoresis

    International Nuclear Information System (INIS)

    Induction and repair of double-strand breaks (dsb) were measured in exponentially growing CHO-10A cells using the constant- and graded-field gel electrophoresis. Dsb repair was studied after an X-ray dose of 60Gy. The repair curve obtained was biphasic with the respective half-times of τ1 = 3.8 ± 0.9 and τ2 = 118 ± 30 min. The number of non-reparable dsb was measured for X-ray doses up to 180 Gy and was found to be only a small fraction (14%) of all non-rejoinable breaks determined previously using the alkaline unwinding technique. The ratio of non-reparable dsb to the number of lethal events calculated from survival curves is 0.14:1. This result indicates that for CHO cells non-reparable dsb represent only a small fraction of lethal damage. This is in line with the cytogenic observation that cell killing mainly results from mis-rejoined events (i.e. exchange aberrations, translocations, interstitial delections). The kinetics of dsb rejoining were found to be independent of the size of the fragments involved (between 1 and 10 Mbp). In addition, the rejoining kinetics of DNA fragments ≤ 1 Mbp did not show the formation of new DNA fragments with time after irradiation indicating the absence of programmed cell death in irradiated CHO cells. (author)

  9. A study of the importance of the cell geometry in non-Faradaic systems. A new definition of the cell constant for conductivity measurement

    International Nuclear Information System (INIS)

    A new definition for the electrochemical cell constant in conductivity measurements is presented in this paper. Electrochemical Impedance Spectroscopy and DC pulses measurements have been carried out in non-Faradaic conditions in order to evaluate the effects of the cell geometry. The results obtained demonstrate that conductivity measurements are affected not only by the electrodes surface and separation but also by the cross section of the electrochemical cell. In order to obtain a linear behavior of the resistance versus the distance between electrodes, the cross section of the cell should be equal to the electrodes surface. Differences between the cell cross section and the electrodes surface produce a heterogeneous distribution of the electric field that causes the non-linear behavior for low values of the electrodes separation. This study shows that the reproducibility in electronic tongue and humid electronic nose measurements can be improved by designing an electrochemical cell structure that warrants a homogeneous distribution of the electrical field, which results in a reduction of the detection threshold in these types of system

  10. Comparative study by infrared spectrometry of the behaviour of Y-H and Y-D groups. Valencies frequency and molecular association constants

    International Nuclear Information System (INIS)

    In the first part of the report a comparison is made of the relative lowering of the frequencies determined using homologous hydrogenated and deuterated vibrators dissolved in various solvents, with the gaseous state as reference. It is confirmed that one always has (Δν/νg)YH ≥ (Δν/νg)YD. Certain results suggest the existence of interactions between vibrational and electronic states, but the different behaviours of OH and OD molecules and of NH and deuterated-N compounds show that the phenomenon is complex. In the second part of the report a quantitative examination is made of about a hundred molecular associations which are formed in solution in an inert solvent by means of hydrogen or deuterium bridges. The proton and deuton donor auto-associations are studied first of all, the association constants KH are then determined for the proton donors with various acceptors, as are the KD/KH ratios obtained after partial substitution in these donors of the hydrogen by deuterium. The results show that it is necessary to distinguish thermo-dynamic effects (which can be calculated when all frequencies of the free dynamic and complexed molecules, are known) and chemical effects connected with the nature of the donors and acceptors; among these latter, the possible formation of 'ionic pairs' has without doubt a great influence on the direction of the isotopic effect. (author)

  11. Genome-Wide Association Study Reveals Constant and Specific Loci for Hematological Traits at Three Time Stages in a White Duroc × Erhualian F2 Resource Population

    Science.gov (United States)

    Zhang, Zhiyan; Hong, Yuan; Gao, Jun; Xiao, Shijun; Ma, Junwu; Zhang, Wanchang; Ren, Jun; Huang, Lusheng

    2013-01-01

    Hematological traits are important indicators of immune function and have been commonly examined as biomarkers of disease and disease severity in humans. Pig is an ideal biomedical model for human diseases due to its high degree of similarity with human physiological characteristics. Here, we conducted genome-wide association studies (GWAS) for 18 hematological traits at three growth stages (days 18, 46 and 240) in a White Duroc × Erhualian F2 intercross. In total, we identified 38 genome-wide significant regions containing 185 genome-wide significant SNPs by single-marker GWAS or LONG-GWAS. The significant regions are distributed on pig chromosomes (SSC) 1, 4, 5, 7, 8, 10, 11, 12, 13, 17 and 18, and most of significant SNPs reside on SSC7 and SSC8. Of the 38 significant regions, 7 show constant effects on hematological traits across the whole life stages, and 6 regions have time-specific effects on the measured traits at early or late stages. The most prominent locus is the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid traits. The KIT gene in this region appears to be a promising candidate gene. The findings improve our understanding of the genetic architecture of hematological traits in pigs. Further investigations are warranted to characterize the responsible gene(s) and causal variant(s) especially for the major loci on SSC7 and SSC8. PMID:23691082

  12. A preliminary MTD-PLS study for androgen receptor binding of steroid compounds

    Science.gov (United States)

    Bora, Alina; Seclaman, E.; Kurunczi, L.; Funar-Timofei, Simona

    The relative binding affinities (RBA) of a series of 30 steroids for Human Androgen Receptor (AR) were used to initiate a MTD-PLS study. The 3D structures of all the compounds were obtained through geometry optimization in the framework of AM1 semiempirical quantum chemical method. The MTD hypermolecule (HM) was constructed, superposing these structures on the AR-bonded dihydrotestosterone (DHT) skeleton obtained from PDB (AR complex, ID 1I37). The parameters characterizing the HM vertices were collected using: AM1 charges, XlogP fragmental values, calculated fragmental polarizabilities (from refractivities), volumes, and H-bond parameters (Raevsky's thermodynamic originated scale). The resulted QSAR data matrix was submitted to PCA (Principal Component Analysis) and PLS (Projections in Latent Structures) procedure (SIMCA P 9.0); five compounds were selected as test set, and the remaining 25 molecules were used as training set. In the PLS procedure supplementary chemical information was introduced, i.e. the steric effect was always considered detrimental, and the hydrophobic and van der Waals interactions were imposed to be beneficial. The initial PLS model using the entire training set has the following characteristics: R2Y = 0.584, Q2 = 0.344. Based on distances to the model criterions (DMODX and DMODY), five compounds were eliminated and the obtained final model had the following characteristics: R2Y D 0.891, Q2 D 0.591. For this the external predictivity on the test set was unsatisfactory. A tentative explanation for these behaviors is the weak information content of the input QSAR matrix for the present series comparatively with other successful MTD-PLS modeling published elsewhere.

  13. Mechanical properties of phosphorene nanotubes: a density functional tight-binding study.

    Science.gov (United States)

    Sorkin, V; Zhang, Y W

    2016-09-30

    Using the density functional tight-binding method, we studied the elastic properties, deformation and failure of armchair (AC) and zigzag (ZZ) phosphorene nanotubes (PNTs) under uniaxial tensile strain. We found that the deformation and failure of PNTs are very much anisotropic. For ZZ PNTs, three deformation phases are recognized: the primary linear elastic phase-which is associated with interactions between neighboring puckers, succeeded by the bond rotation phase-where the puckered configuration of phosphorene is smoothed via bond rotation, and lastly the bond elongation phase-where the P-P bonds are directly stretched up to the maximally allowed limit and failure is initiated by the rupture of the most stretched bonds. For AC PNTs, the applied strain stretches the bonds up to the maximally allowed limit, causing their ultimate failure. For both AC and ZZ PNTs, their failure strain and failure stress are sensitive- while the Young's modulus, flexural rigidity, radial Poisson's ratio and thickness Poisson's ratio are relatively insensitive-to the tube diameter. More specifically, for AC PNTs, the failure strain decreases from 0.40 to 0.25 and the failure stress increases from 13 GPa to 21 GPa when the tube diameter increases from 13.3 Å to 32.8 Å; while for ZZ PNTs, the failure strain decreases from 0.66 to 0.55 and the failure stress increases from 4 GPa to 9 GPa when the tube diameter increases from 13.2 Å to 31.1 Å. The Young's modulus, flexural rigidity, radial and thickness Poisson ratios are 114.2 GPa, 0.019 eV · nm(2), 0.47 and 0.11 for AC PNTs, and 49.2 GPa, 0.071 eV · nm(2), 0.07 and 0.21 for ZZ PNTs, respectively. The present findings provide valuable references for the design and application of PNTs as device elements. PMID:27535543

  14. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    Science.gov (United States)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  15. Studies on the binding of 5-N-methylated quindoline derivative to human telomeric G-quadruplex

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Tan, Jia-Heng; Chen, Shuo-Bin; Hou, Jin-Qiang; Li, Ding [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Zhi-Shu, E-mail: ceshzs@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Gu, Lian-Quan, E-mail: cesglq@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China)

    2011-03-18

    Research highlights: {yields} Hydrophobic interaction provided an important driving force for the interaction between ligand and G-quadruplex. {yields} Constrained water molecules were released from surface of G-tetrad upon the formation of the complex. {yields} The end-stacking mode for quindoline derivative was validated through UV-vis, ITC, steady-state, and time-resolved fluorescence experiment. {yields} The binding of compound 1 to quadruplex was found to be a temperature-dependent and enthalpy-entropy compensation process. -- Abstract: Quindoline derivatives as telomeric quadruplex ligands have shown good biological activity for telomerase inhibition. In the present study, we used spectroscopic and calorimetric methods to investigate the interactions between a quindoline derivative (5-methyl-11-(2-morpholinoethylamino)-10-H-indolo-[3,2-b]quinolin-5-ium iodide, compound 1) and human telomeric G-quadruplex. The thermodynamic studies using isothermal titration calorimetry (ITC) indicated that their binding process was temperature-dependent and enthalpy-entropy co-driven. The significant negative heat capacity was obtained experimentally from the temperature dependence of enthalpy changes, which was consistent with that from theoretical calculation, and all suggesting significant hydrophobic contribution to the molecular recognition process. Based on the results from UV-vis, ITC, steady-state and time-resolved fluorescence, their binding mode was determined as two ligand molecules stacking on the quartets on both ends of the quadruplex. These results shed light on rational design and development of quindoline derivatives as G-quadruplex binding ligands.

  16. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  17. Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study.

    Directory of Open Access Journals (Sweden)

    Gugan Kothandan

    Full Text Available Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å, we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2 and Glu283 (CCR5 are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.

  18. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  19. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    International Nuclear Information System (INIS)

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP–BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: ► Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. ► Involvement of a static quenching component in an overall dynamic quenching process. ► Ability of quercetin and rutin to change the binding constants of 6-MP–BSA complex. ► Binding of 6-MP to BSA through entropy-driven hydrophobic interactions

  20. Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence

    Directory of Open Access Journals (Sweden)

    A.M. Kettlun

    2000-07-01

    Full Text Available Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10 and Desirée (ATPase/ADPase = 1 isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.