WorldWideScience

Sample records for binding cassette transporters

  1. Human ATP-binding cassette (ABC transporter family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2009-04-01

    Full Text Available Abstract There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx or out (efflux of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]. ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.

  2. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires

  3. Association of ATP-binding cassette transporter-A1 polymorphism ...

    Indian Academy of Sciences (India)

    [Halalkhor S., Mesbah-Namin S. A., Daneshpour M. S., Hedayati M. and Azizi F. 2011 Association of ATP-binding cassette transporter-A1 polymorphism with apolipoprotein AI level in Tehranian population. J. Genet. 90, 129–132 ]. Introduction. The ATP-binding cassette transporter-A1 (ABCA1) plays a crucial role in reverse ...

  4. ATP-binding cassette transporters in reproduction: a new frontier

    Science.gov (United States)

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and

  5. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly

  6. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.

    NARCIS (Netherlands)

    Cnubben, N.H.; Wortelboer, H.M.; Zanden, J.J. van; Rietjens, I.M.; Bladeren, P.J. van

    2005-01-01

    Membrane transport proteins belonging to the ATP-binding cassette (ABC) family of transport proteins play a central role in the defence of organisms against toxic compounds, including anticancer drugs. However, for compounds that are designed to display a toxic effect, this defence system diminishes

  7. Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers

    NARCIS (Netherlands)

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned

  8. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been i...

  9. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis

    NARCIS (Netherlands)

    Kooij, G.; Mizee, M.R.; van Horssen, J.; Reijerkerk, A.; Witte, M.E.; Drexhage, J.A.R.; van der Pol, SM; Van Het Hof, B; Scheffer, G.L.; Scheper, R.J.; Dijkstra, C.D.; van der Valk, P.; de Vries, H.E.

    2011-01-01

    Adenosine triphosphate-binding cassette efflux transporters are highly expressed at the blood-brain barrier and actively hinder passage of harmful compounds, thereby maintaining brain homoeostasis. Since, adenosine triphosphate-binding cassette transporters drive cellular exclusion of potential

  10. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules.

    Science.gov (United States)

    Masereeuw, Rosalinde; Russel, Frans G M

    2012-12-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elaborate signaling pathways, including genetic, epigenetic, nuclear receptor mediated, posttranscriptional gene regulation involving microRNAs, and non-genomic (kinases) pathways triggered by hormones and/or growth factors. This review discusses current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein. Insight in these processes is of importance because variations in transporter activity due to certain (disease) conditions could lead to significant changes in drug efficacy or toxicity.

  11. ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa.

    Science.gov (United States)

    Morales, Carlos R; Marat, Andrea L; Ni, Xiaoyan; Yu, Yang; Oko, Richard; Smith, Brian T; Argraves, W Scott

    2008-11-21

    Mammalian spermatozoa lose plasma membrane cholesterol during their maturation in the epididymis and during their capacitation in the female reproductive tract. While acceptors such as high-density lipoproteins (HDL) and apolipoproteins A-I (apoA-I) and J have been found in male and female reproductive tracts, transporters that mediate cholesterol efflux from plasma membranes of spermatozoa to such acceptors have not yet been defined. Candidate transporters are members of the ATP-binding cassette (ABC) transporter superfamily including ABCA1, ABCA7, ABCG1 and ABCG4, which have all been implicated in the transport of sterols and phospholipids to apolipoproteins and HDL. Here we show that mouse spermatozoa in the seminiferous tubules and epididymis express ABCA1, ABCA7 and ABCG1, but not ABCG4. Moreover, we show that ABCA1, ABCA7, and ABCG1 antibodies decrease cholesterol efflux from spermatozoa to lipid acceptors apoA-I and albumin and inhibit in vitro fertilization.

  12. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  13. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2

    KAUST Repository

    Weng, Jingwei

    2017-02-23

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called

  14. The role of ATP-binding cassette (ABC) transporters in pathogenesis and multidrug resistance of the wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.

    2003-01-01

    ATP-binding cassette (ABC) transporters are membrane proteins that utilise the energy derived from the hydrolysis of ATP to drive the transport of compounds over biological membranes. They are members of one of the largest protein families to date, present in both pro- and eukaryotic

  15. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development.

    Science.gov (United States)

    Shipp, Lauren E; Hamdoun, Amro

    2012-06-01

    ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG "multidrug efflux" transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10-100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively. Copyright © 2012 Wiley Periodicals, Inc.

  16. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    Science.gov (United States)

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  17. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC Transporters

    Directory of Open Access Journals (Sweden)

    Pierre Andreoletti

    2017-07-01

    Full Text Available The peroxisomal ATP-binding Cassette (ABC transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD. Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues.

  18. Structure-Function Analysis of Peroxisomal ATP-binding Cassette Transporters Using Chimeric Dimers*

    Science.gov (United States)

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. PMID:25043761

  19. Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers.

    Science.gov (United States)

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W; Lopez, Tatiana E; Dias, Alexandre M M; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J; Trompier, Doriane; Savary, Stéphane

    2014-08-29

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma.

    Science.gov (United States)

    Dréan, Antonin; Rosenberg, Shai; Lejeune, François-Xavier; Goli, Larissa; Nadaradjane, Aravindan Arun; Guehennec, Jérémy; Schmitt, Charlotte; Verreault, Maïté; Bielle, Franck; Mokhtari, Karima; Sanson, Marc; Carpentier, Alexandre; Delattre, Jean-Yves; Idbaih, Ahmed

    2018-03-08

    ATP-binding cassette transporters (ABC transporters) regulate traffic of multiple compounds, including chemotherapeutic agents, through biological membranes. They are expressed by multiple cell types and have been implicated in the drug resistance of some cancer cells. Despite significant research in ABC transporters in the context of many diseases, little is known about their expression and clinical value in glioblastoma (GBM). We analyzed expression of 49 ABC transporters in both commercial and patient-derived GBM cell lines as well as from 51 human GBM tumor biopsies. Using The Cancer Genome Atlas (TCGA) cohort as a training dataset and our cohort as a validation dataset, we also investigated the prognostic value of these ABC transporters in newly diagnosed GBM patients, treated with the standard of care. In contrast to commercial GBM cell lines, GBM-patient derived cell lines (PDCL), grown as neurospheres in a serum-free medium, express ABC transporters similarly to parental tumors. Serum appeared to slightly increase resistance to temozolomide correlating with a tendency for an increased expression of ABCB1. Some differences were observed mainly due to expression of ABC transporters by microenvironmental cells. Together, our data suggest that the efficacy of chemotherapeutic agents may be misestimated in vitro if they are the targets of efflux pumps whose expression can be modulated by serum. Interestingly, several ABC transporters have prognostic value in the TCGA dataset. In our cohort of 51 GBM patients treated with radiation therapy with concurrent and adjuvant temozolomide, ABCA13 overexpression is associated with a decreased progression free survival in univariate (p ABC transporters is: (i) detected in GBM and microenvironmental cells and (ii) better reproduced in GBM-PDCL. ABCA13 expression is an independent prognostic factor in newly diagnosed GBM patients. Further prospective studies are warranted to investigate whether ABCA13 expression can be

  1. Molecular cloning and characterisation of three new ATP-binding cassette transporter genes from the wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.; Gielkens, M.M.C.; Goodall, S.D.; Venema, K.; Waard, De M.A.

    2002-01-01

    Three single copy ATP-binding cassette (ABC) transporter encoding genes, designated MgAtr3, MgAtr4, and MgAtr5, were cloned and sequenced from the plant pathogenic fungus Mycosphaerella graminicola. The encoded ABC proteins all exhibit the [NBD-TMS6]2 configuration and can be classified as novel

  2. Expression of some ATP-binding cassette transporters in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Antonella Maria Salvia

    2017-12-01

    Full Text Available Hematopoietic cells express ATP binding cassette (ABC transporters in relation to different degrees of differentiation. One of the known multidrug resistance mechanisms in acute myeloid leukemia (AML is the overexpression of efflux pumps belonging to the superfamily of ABC transporters such as ABCB1, ABCG2 and ABCC1. Although several studies were carried out to correlate ABC transporters expression with drug resistance, little is known about their role as markers of diagnosis and progression of the disease. For this purpose we investigated the expression, by real-time PCR, of some ABC genes in bone marrow samples of AML patients at diagnosis and after induction therapy. At diagnosis, ABCG2 was always down-regulated, while an up regulated trend for ABCC1 was observed. After therapy the examined genes showed a different expression trend and approached the values of healthy subjects suggesting that this event could be considered as a marker of AML regression. The expression levels of some ABC transporters such as ABCC6, seems to be related to gender, age and to the presence of FLT3/ITD gene mutation.

  3. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly.

    Science.gov (United States)

    Schaedler, Theresia A; Thornton, Jeremy D; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J; van Veen, Hendrik W; Balk, Janneke

    2014-08-22

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. ATP-binding cassette (ABC transporters in normal and pathological lung

    Directory of Open Access Journals (Sweden)

    Timmer-Bosscha Hetty

    2005-06-01

    Full Text Available Abstract ATP-binding cassette (ABC transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp, multidrug resistance-associated protein 1 (MRP1 and breast cancer resistance protein (BCRP are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (malfunction in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases.

  5. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  6. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Science.gov (United States)

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  7. Membrane porters of ATP-binding cassette transport systems are polyphyletic.

    Science.gov (United States)

    Wang, Bin; Dukarevich, Maxim; Sun, Eric I; Yen, Ming Ren; Saier, Milton H

    2009-09-01

    The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems.

  8. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity.

    Science.gov (United States)

    Rijpma, Sanna R; van den Heuvel, Jeroen J M W; van der Velden, Maarten; Sauerwein, Robert W; Russel, Frans G M; Koenderink, Jan B

    2014-09-13

    Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1-4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti

  9. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  10. Molecular Events Involved in a Single Cycle of Ligand Transfer from an ATP Binding Cassette Transporter, LolCDE, to a Molecular Chaperone, LolA*

    OpenAIRE

    Taniguchi, Naohiro; Tokuda, Hajime

    2008-01-01

    An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters med...

  11. Functional Analysis of an ATP-Binding Cassette Transporter Gene in Botrytis cinerea by Gene Disruption

    OpenAIRE

    Masami, NAKAJIMA; Junko, SUZUKI; Takehiko, HOSAKA; Tadaaki, HIBI; Katsumi, AKUTSU; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; School of Agriculture, Ibaraki University; Department of Agriculture and Environmental Biology, The University of Tokyo; School of Agriculture, Ibaraki University

    2001-01-01

    The BMR1 gene encoding an ABC transporter was cloned from Botrytis cinerea. To examine the function of BMR1 in B.cinerea, we isolated BMR1-deficient mutants after gene disruption. Disruption vector pBcDF4 was constructed by replacing the BMR1-coding region with a hygromycin B phosphotransferase gene(hph)cassette. The BMR1 disruptants had an increased sensitivity to polyoxin and iprobenfos. Polyoxin and iprobenfos, structurally unrelated compounds, may therefore be substrates of BMR1.

  12. ATP-binding cassette transporters of the multicellular cyanobacterium Anabaena sp. PCC 7120: a wide variety for a complex lifestyle.

    Science.gov (United States)

    Shvarev, Dmitry; Maldener, Iris

    2018-02-01

    Two hundred genes or 3% of the known or putative protein-coding genes of the filamentous freshwater cyanobacterium Anabaena sp. PCC 7120 encode domains of ATP-binding cassette (ABC) transporters. Detailed characterization of some of these transporters (14-15 importers and 5 exporters) has revealed their crucial roles in the complex lifestyle of this multicellular photoautotroph, which is able to differentiate specialized cells for nitrogen fixation. This review summarizes the characteristics of the ABC transporters of Anabaena sp. PCC 7120 known to date. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Efficient purification and reconstitution of ATP binding cassette transporter B6 (ABCB6) for functional and structural studies.

    Science.gov (United States)

    Chavan, Hemantkumar; Khan, Mohiuddin Md Taimur; Tegos, George; Krishnamurthy, Partha

    2013-08-02

    The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μM) and an ATPase activity with a Km of 0.99 mM. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6.

  14. LrABCF1, a GCN-type ATP-binding cassette transporter from lilium regale, is involved in defense responses against viral and fungal pathogens

    Science.gov (United States)

    ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...

  15. Genome-wide identification, characterization and phylogenetic analysis of 50 catfish ATP-binding cassette (ABC transporter genes.

    Directory of Open Access Journals (Sweden)

    Shikai Liu

    Full Text Available Although a large set of full-length transcripts was recently assembled in catfish, annotation of large gene families, especially those with duplications, is still a great challenge. Most often, complexities in annotation cause mis-identification and thereby much confusion in the scientific literature. As such, detailed phylogenetic analysis and/or orthology analysis are required for annotation of genes involved in gene families. The ATP-binding cassette (ABC transporter gene superfamily is a large gene family that encodes membrane proteins that transport a diverse set of substrates across membranes, playing important roles in protecting organisms from diverse environment.In this work, we identified a set of 50 ABC transporters in catfish genome. Phylogenetic analysis allowed their identification and annotation into seven subfamilies, including 9 ABCA genes, 12 ABCB genes, 12 ABCC genes, 5 ABCD genes, 2 ABCE genes, 4 ABCF genes and 6 ABCG genes. Most ABC transporters are conserved among vertebrates, though cases of recent gene duplications and gene losses do exist. Gene duplications in catfish were found for ABCA1, ABCB3, ABCB6, ABCC5, ABCD3, ABCE1, ABCF2 and ABCG2.The whole set of catfish ABC transporters provide the essential genomic resources for future biochemical, toxicological and physiological studies of ABC drug efflux transporters. The establishment of orthologies should allow functional inferences with the information from model species, though the function of lineage-specific genes can be distinct because of specific living environment with different selection pressure.

  16. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence.

    Science.gov (United States)

    Murphy, Timothy F; Brauer, Aimee L; Johnson, Antoinette; Kirkham, Charmaine

    2016-01-01

    Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract.

  17. Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice

    NARCIS (Netherlands)

    Kosters, A; Frijters, RJJM; Schaap, FG; Vink, E; Plosch, T; Ottenhoff, R; Jirsa, M; De Cuyper, IM; Kuipers, F; Groen, AK

    Background/Aims: Mutations in genes encoding the ATP-binding cassette (ABC)-transporters ABCG5 and ABCG8 underlie sitosterolemia, which is characterized by elevated plasma levels of phytosterols due to increased intestinal absorption and impaired biliary secretion of sterols. The aim of our study

  18. Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice

    NARCIS (Netherlands)

    Kosters, Astrid; Frijters, Raoul J. J. M.; Schaap, Frank G.; Vink, Edwin; Plösch, Torsten; Ottenhoff, Roelof; Jirsa, Milan; de Cuyper, Iris M.; Kuipers, Folkert; Groen, Albert K.

    2003-01-01

    Background/Aims: Mutations in genes encoding the ATP-binding cassette (ABC)-transporters ABCG5 and ABCG8 underlie sitosterolemia, which is characterized by elevated plasma levels of phytosterols due to increased intestinal absorption and impaired biliary secretion of sterols. The aim of our study

  19. Endocrine Disruptors Differentially Target ATP-Binding Cassette Transporters in the Blood-Testis Barrier and Affect Leydig Cell Testosterone Secretion In Vitro

    NARCIS (Netherlands)

    Dankers, A.C.A.; Roelofs, M.J.; Piersma, A.H.; Sweep, F.C.; Russel, F.G.M.; Berg, M. van den; Duursen, M.B. van; Masereeuw, R.

    2013-01-01

    Endocrine-disrupting chemicals (EDCs) are considered to cause testicular toxicity primarily via interference with steroid hormone function. Alternatively, EDCs could possibly exert their effects by interaction with ATP-binding cassette (ABC) transporters that are expressed in the blood-testis

  20. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  1. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    Directory of Open Access Journals (Sweden)

    Birsen Çakır

    Full Text Available The ATP-binding cassette (ABC protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog and ABCC (multidrug resistance-associated protein. We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  2. A Conserved Mitochondrial ATP-binding Cassette Transporter Exports Glutathione Polysulfide for Cytosolic Metal Cofactor Assembly*♦

    Science.gov (United States)

    Schaedler, Theresia A.; Thornton, Jeremy D.; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J.; van Veen, Hendrik W.; Balk, Janneke

    2014-01-01

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe2+ alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol. PMID:25006243

  3. Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2.

    Science.gov (United States)

    Hosokawa, Yuki; Takahashi, Hisaaki; Inoue, Akihiro; Kawabe, Yuya; Funahashi, Yu; Kameda, Kenji; Sugimoto, Kana; Yano, Hajime; Harada, Hironobu; Kohno, Shohei; Ohue, Shiro; Ohnishi, Takanori; Tanaka, Junya

    2015-06-01

    Drug resistance is a major obstacle for the efficacy of chemotherapeutic treatment of tumors. Oct-3/4, a self-renewal regulator in stem cells, is expressed in various kinds of solid tumors including glioblastoma. Although Oct-3/4 expression has been implicated in the malignancy and prognosis of glioblastomas, little is known of its involvement in drug resistances of glioblastoma. The involvement of Oct-3/4 in drug resistance of glioblastoma cells was assessed by lactate dehydrogenase assay, efflux assay of an anticancer drug, poly ADP-ribose polymerase cleavage, and in vivo xenograft experiments. Involvement of a drug efflux pump ATP binding cassette transporter G2 in Oct-3/4-induced drug resistance was evaluated by quantitative PCR analysis and knockdown by shRNA. Oct-3/4 decreased the susceptibility to chemotherapeutic drugs by enhancing excretion of drugs through a drug efflux pump gene, ATP binding cassette transporter G2. Moreover, the expression of Oct-3/4 was well correlated to ATP binding cassette transporter G2 expression in clinical GB tissues. Oct-3/4 elevated the ATP binding cassette transporter G2 expression, leading to acquisition of a drug-resistant phenotype by glioblastoma cells. If the drug-resistance of glioblastoma cells could be suppressed, it should be a highly ameliorative treatment for glioblastoma patients. Therefore, signaling pathways from Oct-3/4 to ATP binding cassette transporter G2 should be intensively elucidated to develop new therapeutic interventions for better efficacy of anti-cancer drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2012-08-01

    Full Text Available Abstract Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877 and 1.4-fold in SR16 (P = 0.00973 duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively. Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.

  5. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  6. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain

    OpenAIRE

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G.; Guizzetti, Marina

    2014-01-01

    Aims: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cho...

  7. The role of ATP-binding cassette transporter genes in the progression of prostate cancer.

    Science.gov (United States)

    Karatas, Omer F; Guzel, Esra; Duz, Mehmet B; Ittmann, Michael; Ozen, Mustafa

    2016-04-01

    Prostate cancer (PCa) is the most commonly diagnosed neoplasm and the second leading cause of cancer-related death among men in developed countries. There is no clear evidence showing the success of current screening tests in reducing mortality of PCa. In this study, we aimed to profile expressions of nine ABC transporters, ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10, and ABCF2, in recurrent, non-recurrent PCa and normal prostate tissues. A total of 77 (39 recurrent, 38 non-recurrent) radical prostatectomy and 20 normal prostate samples, obtained from Baylor College of Medicine Prostate Cancer program, were included into the study and divided into two independent groups as test and validation sample sets. Differential expression of selected ABC transporters was assessed using quantitative real-time PCR (qRT-PCR). Pearson's correlation test, receiver operating characteristics (ROC) analysis and Kaplan-Meier test were used for statistical analysis. QRT-PCR results demonstrated the elevated expression of ABCA5, ABCB1, ABCB6, ABCC1, and ABCC2 as well as reduced expression of ABCC3 in PCa samples compared to normal prostate tissues. In addition, we found deregulation of ABCB1, ABCB6, ABCC3, and ABCC10 in recurrent PCa samples and validated differential expression of ABCB6, ABCC3, and ABCC10 in recurrent PCa compared to non-recurrent PCa. Pearson's correlation, ROC and Kaplan-Meier analysis revealed the power of these three ABC transporters for estimating prognosis of PCa. We demonstrated differential expression of ABC transporters both in tumor versus normal and recurrent versus non-recurrent comparisons. Our data suggest ABCB6, ABCC3, and ABCC10 as valuable predictors of PCa progression. © 2015 Wiley Periodicals, Inc.

  8. Functional analysis of an ATP-binding cassette transporter protein from Aspergillus fumigatus by heterologous expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Paul, Sanjoy; Moye-Rowley, W Scott

    2013-08-01

    Aspergillus fumigatus is the major filamentous fungal pathogen in humans. Although A. fumigatus can be treated with many of the available antifungal drugs, including azole compounds, drug resistant isolates are being recovered at an increasing rate. In other fungal pathogens such as the Candida species, ATP-binding cassette (ABC) transporter proteins play important roles in development of clinically-significant azole resistance phenotypes. Central among these ABC transporter proteins are homologues of the Saccharomyces cerevisiae Pdr5 multidrug transporter. In this work, we test the two A. fumigatus genes encoding proteins sharing the highest degree of sequence similarity to S. cerevisiae Pdr5 for their ability to be function in a heterologous pdr5Δ strain of S. cerevisiae. Expression of full-length cDNAs for these two Afu proteins failed to suppress the drug sensitive phenotype of a pdr5Δ strain and no evidence could be obtained for their expression as green fluorescent protein (GFP) fusions. To improve the expression of one of these Afu ABC transporters (XP_755847), we changed the sequence of the cDNA to use codons corresponding to the major tRNA species in S. cerevisiae. This codon-optimized (CO Afu abcA) cDNA was efficiently expressed in pdr5Δ cells and able to be detected as a GFP fusion protein. The CO Afu abcA did not correct the drug sensitivity of the pdr5Δ strain and exhibited a high degree of perinuclear fluorescence suggesting that this fusion protein was localized to the S. cerevisiae ER. Interestingly, when these experiments were repeated at 37 °C, the CO Afu abcA was able to complement the drug sensitive phenotype of pdr5Δ cells and exhibited less intracellular fluorescence. Additionally, we found that the CO Afu abcA was able to reduce resistance to drugs like phytosphingosine that act via causing mislocalization of amino acid permeases in fungi. These data suggest that the Afu abcA protein can carry out two different functions of Pdr5: drug

  9. IMB2026791, a Xanthone, Stimulates Cholesterol Efflux by Increasing the Binding of Apolipoprotein A-I to ATP-Binding Cassette Transporter A1

    Directory of Open Access Journals (Sweden)

    Zijian Xie

    2012-03-01

    Full Text Available It is known that the ATP-binding cassette transporter A1 (ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791 was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The [3H] cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.

  10. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation.

    Science.gov (United States)

    Elmeliegy, Mohamed A; Carcaboso, Angel M; Tagen, Michael; Bai, Feng; Stewart, Clinton F

    2011-01-01

    To study the role of drug transporters in central nervous system (CNS) penetration and cellular accumulation of erlotinib and its metabolite, OSI-420. After oral erlotinib administration to wild-type and ATP-binding cassette (ABC) transporter-knockout mice (Mdr1a/b(-/-), Abcg2(-/-), Mdr1a/b(-/-)Abcg2(-/-), and Abcc4(-/-)), plasma was collected and brain extracellular fluid (ECF) was sampled using intracerebral microdialysis. A pharmacokinetic model was fit to erlotinib and OSI-420 concentration-time data, and brain penetration (P(Brain)) was estimated by the ratio of ECF-to-unbound plasma area under concentration-time curves. Intracellular accumulation of erlotinib was assessed in cells overexpressing human ABC transporters or SLC22A solute carriers. P(Brain) in wild-type mice was 0.27 ± 0.11 and 0.07 ± 0.02 (mean ± SD) for erlotinib and OSI-420, respectively. Erlotinib and OSI-420 P(Brain) in Abcg2(-/-) and Mdr1a/b(-/-)Abcg2(-/-) mice were significantly higher than in wild-type mice. Mdr1a/b(-/-) mice showed similar brain ECF penetration as wild-type mice (0.49 ± 0.37 and 0.04 ± 0.02 for erlotinib and OSI-420, respectively). In vitro, erlotinib and OSI-420 accumulation was significantly lower in cells overexpressing breast cancer resistance protein (BCRP) than in control cells. Only OSI-420, not erlotinib, showed lower accumulation in cells overexpressing P-glycoprotein (P-gp) than in control cells. The P-gp/BCRP inhibitor elacridar increased erlotinib and OSI-420 accumulation in BCRP-overexpressing cells. Erlotinib uptake was higher in OAT3- and OCT2-transfected cells than in empty vector control cells. Abcg2 is the main efflux transporter preventing erlotinib and OSI-420 penetration in mouse brain. Erlotinib and OSI-420 are substrates for SLC22A family members OAT3 and OCT2. Our findings provide a mechanistic basis for erlotinib CNS penetration, cellular uptake, and efflux mechanisms. ©2010 AACR.

  11. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Estelita Pereira Lima

    2014-11-01

    Full Text Available The role of ATP-binding cassette (ABC transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM. The best result in the series was obtained with the addition of verapamil (40 μM, which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.

  12. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1.

    Science.gov (United States)

    Lu, Y P; Li, Z S; Drozdowicz, Y M; Hortensteiner, S; Martinoia, E; Rea, P A

    1998-02-01

    Three ATP binding cassette (ABC) transporter-like activities directed toward large amphipathic organic anions have recently been identified on the vacuolar membrane of plant cells. These are the Mg-ATP-energized, vanadate-inhibitable vacuolar accumulation of glutathione S-conjugates (GS conjugates), chlorophyll catabolites, and bile acids, respectively. Although each of these activities previously had been assigned to distinct pumps in native plant membranes, we describe here the molecular cloning, physical mapping, and heterologous expression of a gene, AtMRP2, from Arabidopsis thaliana that encodes a multispecific ABC transporter competent in the transport of both GS conjugates and chlorophyll catabolites. Unlike its isoform, AtMRP1, which transports the model Brassica napus chlorophyll catabolite transporter substrate Bn-NCC-1 at low efficiency, heterologously expressed AtMRP2 has the facility for simultaneous high-efficiency parallel transport of GS conjugates and Bn-NCC-1. The properties of AtMRP2 therefore establish a basis for the manipulation of two previously identified plant ABC transporter activities and provide an explanation for how the comparable transporter in native plant membranes would be systematically mistaken for two distinct transporters. These findings are discussed with respect to the functional organization of AtMRP2, the inability of AtMRP2 and AtMRP1 to transport the model bile acid transporter substrate taurocholate (despite the pronounced sensitivity of both to direct inhibition by this agent), the differential patterns of expression of their genes in the intact plant, and the high capacity of AtMRP2 for the transport of glutathionated herbicides and anthocyanins.

  13. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    OpenAIRE

    Chen Guoxiong; Komatsuda Takao; Ma Jian Feng; Nawrath Christiane; Pourkheirandish Mohammad; Tagiri Akemi; Hu Yin-Gang; Sameri Mohammad; Li Xinrong; Zhao Xin; Liu Yubing; Li Chao; Ma Xiaoying; Wang Aidong; Nair Sudha

    2011-01-01

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed ...

  14. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58.

    Science.gov (United States)

    Wichelecki, Daniel J; Vetting, Matthew W; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T; Almo, Steven C; Gerlt, John A

    2015-11-27

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    Science.gov (United States)

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  16. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  17. Function and regulation of ATP-binding cassette transport proteins involved in hepatobiliary transport (vol 12, pg 13, 2000)

    NARCIS (Netherlands)

    Hooiveld, GJEJ; van Montfoort, JE; Meijer, DKF; Muller, M

    Hepatobiliary transport of endogenous and exogenous compounds is mediated by the coordinated action of multiple transport systems present at the sinusoidal (basolateral) and canalicular (apical) membrane domains of hepatocytes. During the last few years many of these transporters have been cloned

  18. LrABCF1, a GCN-type ATP-binding cassette transporter from Lilium regale, is involved in defense responses against viral and fungal pathogens.

    Science.gov (United States)

    Sun, Daoyang; Zhang, Xinguo; Li, Shaohua; Jiang, Cai-Zhong; Zhang, Yanlong; Niu, Lixin

    2016-12-01

    The L. regale ATP-binding cassette transporter gene, LrABCF1 belonging to GCN subfamily, functions as a positive regulator of plant defense against Cucumber mosaic virus, Tobacco rattle virus , and Botrytis cinerea in petunia. ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (CMV)-induced cDNA library of L. regale. LrABCF1 was up-regulated upon inoculation with CMV and Lily mottle virus (LMoV). Salicylic acid (SA) and ethylene (ET) application and treatments with abiotic stresses such as cold, high salinity, and wounding increased the transcript abundances of LrABCF1. Constitutive overexpression of LrABCF1 in petunia (Petunia × hybrida) resulted in an impairment of plant growth and development. LrABCF1 overexpression conferred reduced susceptibility to CMV, Tobacco rattle virus (TRV), and B. cinerea infection in transgenic petunia plants, accompanying by elevated transcripts of PhGCN2 and a few defense-related genes in SA-signaling pathway. Our data indicate that LrABCF1 positively modulates viral and fungal resistance.

  19. Functional roles of YPT31 and YPT32 in clotrimazole resistance of Saccharomyces cerevisiae through effects on vacuoles and ATP-binding cassette transporter(s).

    Science.gov (United States)

    Tsujimoto, Yoshiyuki; Takase, Daisuke; Okano, Hajime; Tomari, Naohiro; Watanabe, Kunihiko; Matsui, Hiroshi

    2013-01-01

    We identified YPT31, which is involved in Golgi traffic, as a clotrimazole (CTZ)-resistance gene in a multicopy library screen. Multicopies of the YPT31 homolog YPT32 also conferred resistance to CTZ, and single disruption of YPT31 or YPT32 resulted in sensitivity to CTZ. Pdr5p, an ATP-binding cassette (ABC) transporter at the plasma membrane, was the most important factor for mediating basal resistance to CTZ, suggesting that Ypt31p and Ypt32p might be involved in the trafficking of Pdr5p to the plasma membrane. However, the activity of Pdr5p was independent of YPT31 or YPT32, and multicopies of YPT31 or YPT32 still conferred resistance to CTZ in pdr5 cells. To elucidate the roles of YPT31 and YPT32 in CTZ resistance, we analyzed mutants of 11 genes that are involved in the following vesicular trafficking: Golgi traffic (kes1, trs33, trs65, gyp1, trs85, and gyp2), vacuole inheritance (ypt7), endocytosis (rcy1 and ypt51) and exocytosis (msb3 and msb4). All of the mutant cells except ypt51, msb3 and msb4 were sensitive to CTZ, indicating that vacuoles were involved in CTZ resistance, since vacuole formation requires proper Golgi-trafficking and endocytosis. Microscopic analysis showed abnormal vacuoles in ypt31 cells. Multicopies of YPT31 or YPT32 conferred resistance to CTZ in AD1-8 cells, which are defective in seven major drug transporters, and in pdr5 ypt7 cells, but not in ypt7 or AD1-8-7 (AD1-8/ypt7) cells. These results indicated that Ypt31p and Ypt32p played minor but compensatory roles in cellular resistance to CTZ through vacuoles and specific ABC transporter(s) other than Pdr5p. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold...

  1. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... resistant to flavopiridol, as well as highly cross-resistant to mitoxantrone (675-fold), topotecan (423-fold), and SN-38 (950-fold), the active metabolite of irinotecan. Because this cross-resistance pattern is consistent with that reported for ABCG2-overexpressing cells, cytotoxicity studies were repeated...

  2. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption

    NARCIS (Netherlands)

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W.

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding

  3. The Yeast ATP-binding Cassette (ABC) Transporter Ycf1p Enhances the Recruitment of the Soluble SNARE Vam7p to Vacuoles for Efficient Membrane Fusion*

    Science.gov (United States)

    Sasser, Terry L.; Lawrence, Gus; Karunakaran, Surya; Brown, Christopher; Fratti, Rutilio A.

    2013-01-01

    The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd2+ transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1pK669M) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion. PMID:23658021

  4. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    Science.gov (United States)

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  5. Analysis of the structural and functional roles of coupling helices in the ATP-binding cassette transporter MsbA through enzyme assays and molecular dynamics simulations.

    Science.gov (United States)

    Furuta, Tadaomi; Yamaguchi, Tomohiro; Kato, Hiroaki; Sakurai, Minoru

    2014-07-08

    ATP-binding cassette (ABC) transporters are constructed from some common structural units: the highly conserved nucleotide-binding domains (NBDs), which work as a nucleotide-dependent engine for driving substrate transport, the diverse transmembrane domains (TMDs), which create the translocation pathway, and the coupling helices (CHs), which are located at the NBD-TMD interface. Although the CHs are believed to be essential for NBD-TMD communication, their roles remain unclear. In this study, we performed enzyme assays and molecular dynamics (MD) simulations of the ABC transporter MsbA and two MsbA mutants in which the amino acid residues of one of the CHs were mutated to alanines: (i) wild type (Wt), (ii) CH1 mutant (Mt1), and (iii) CH2 mutant (Mt2). The experiments show that the CH2 mutation decreases the ATPase activity (kcat) compared with that of the Wt (a decrease of 32%), and a nearly equal degree of decrease in the ATP binding affinity (Km) was observed for both Mt1 and Mt2. The MD simulations successfully accounted for several structural and dynamical origins for these experimental observations. In addition, on the basis of collective motion and morphing analyses, we propose that the reverse-rotational motions and noddinglike motions between the NBDs and TMDs are indispensable for the conformational transition between the inward- and outward-facing conformations. In particular, CH2 is significantly important for the occurrence of the noddinglike motion. These findings provide important insights into the structure-function relationship of ABC transporters.

  6. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor

    Directory of Open Access Journals (Sweden)

    Su Sun Back

    2013-06-01

    Full Text Available The ATP-binding cassette transporters ABCG5 and ABCG8 formheterodimers that limit absorption of dietary sterols in theintestine and promote cholesterol elimination from the bodythrough hepatobiliary secretion. To identify cis-regulatoryelements of the two genes, we have cloned and analyzedtwenty-three evolutionary conserved region (ECR fragmentsusing the CMV-luciferase reporter system in HepG2 cells. TwoECRs were found to be responsive to the Liver-X-Receptor (LXR.Through elaborate deletion studies, regions containing putativeLXREs were identified and the binding of LXRα wasdemonstrated by EMSA and ChIP assay. When the LXREs wereinserted upstream of the intergenic promoter, synergisticactivation by LXRα/RXRα in combination with GATA4, HNF4α,and LRH-1, which had been shown to bind to the intergenicregion, was observed. In conclusion, we have identified twoLXREs in ABCG5/ABCG8 genes for the first time and proposethat these LXREs, especially in the ECR20, play major roles inregulating these genes. [BMB Reports 2013; 46(6: 322-327

  7. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress.

    Science.gov (United States)

    Saha, Jayita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2015-02-01

    ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation.

    Science.gov (United States)

    Song, T-T; Ying, S-H; Feng, M-G

    2012-01-01

    Probing possible mechanisms involved in the resistance of entomopathogenic fungus Isaria fumosorosea to carbendazim fungicide. A carbendazim-sensitive strain (If116) selected from 15 wild-type strains was subjected to NaNO(2) -induced mutagenesis, yielding nine mutants with carbendazim resistance increased by 82- to 830-fold and thermotolerance decreased by 15-51%. Comparing the protein sequences deduced from the α- and β-tubulin genes of If116 and its mutants revealed no traceable site mutation relating to the enhanced resistance although the transcripts levels of β-tubulin gene in all mutants were 0·87- to 7·16-fold of that in If116. Three examined mutants showed multidrug resistance because they were significantly more resistant to glufosinate, imidacloprid and other six fungicides than If116 during growth. Further examination of rhodamine-stained blastospores revealed existence of drug efflux pump protein(s) in all carbendazim-resistant mutants. Thus, the sequences of an ATP-binding cassette (ABC) transporter gene (ifT1) and its promoter region cloned from the wild-type and mutant strains were analysed. Three common point mutations were located, respectively, at the binding sites of Gal4, Abf1 and Raf, which are crucial transcription factors in the regulative network of numerous protein loci. Such point mutations elevated the ifT1 expression by 17 to 137-fold in all the mutants. The overexpression of the ABC transporter caused by the point mutations at the binding sites was responsible for the fungal resistance to various pesticides including carbendazim. The transporter-mediated multidrug resistance found for the first time in entomopathogenic fungi is potential for use in improving mycoinsecticide compatibility with chemical pesticides. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway.

    Science.gov (United States)

    Ishii, Seiji; Yano, Takato; Ebihara, Akio; Okamoto, Akihiro; Manzoku, Miho; Hayashi, Hideyuki

    2010-04-02

    ComA of Streptococcus is a member of the bacteriocin-associated ATP-binding cassette transporter family and is postulated to be responsible for both the processing of the propeptide ComC and secretion of the mature quorum-sensing signal. The 150-amino acid peptidase domain (PEP) of ComA specifically recognizes an extended region of ComC that is 15 amino acids in length. It has been proposed that an amphipathic alpha-helix formed by the N-terminal leader region of ComC, as well as the Gly-Gly motif at the cleavage site, is critical for the PEP-ComC interaction. To elucidate the substrate recognition mechanism, we determined the three-dimensional crystal structure of Streptococcus mutans PEP and then constructed models for the PEP.ComC complexes. PEP had an overall structure similar to the papain-like cysteine proteases as has long been predicted. The active site was located at the bottom of a narrow cleft, which is suitable for binding the Gly-Gly motif. Together with the results from mutational experiments, a shallow hydrophobic concave surface of PEP was proposed as a site that accommodates the N-terminal helix of ComC. This dual mode of substrate recognition would provide the small PEP domain with an extremely high substrate specificity.

  10. ATP-binding cassette G-subfamily transporter 2 regulates cell cycle progression and asymmetric division in mouse cardiac side population progenitor cells.

    Science.gov (United States)

    Sereti, Konstantina-Ioanna; Oikonomopoulos, Angelos; Unno, Kazumasa; Cao, Xin; Qiu, Yiling; Liao, Ronglih

    2013-01-04

    After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.

  11. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    Science.gov (United States)

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  12. Whole-Transcriptome Survey of the Putative ATP-Binding Cassette (ABC) Transporter Family Genes in the Latex-Producing Laticifers of Hevea brasiliensis

    Science.gov (United States)

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis. PMID:25615936

  13. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal

    Science.gov (United States)

    Quazi, Faraz; Molday, Robert S.

    2014-01-01

    The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within retinal-binding proteins. Previous studies have focused on the role of the ATP-binding cassette transporter ABCA4 associated with Stargardt macular degeneration and retinol dehydrogenases (RDH) in the clearance of all-trans-retinal from photoreceptors following photoexcitation. How rod and cone cells prevent the accumulation of 11-cis-retinal in photoreceptor disk membranes in excess of what is required for visual pigment regeneration is not known. Here we show that ABCA4 can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), the Schiff-base conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disk membranes. This transport function together with chemical isomerization to its all-trans isomer and reduction to all-trans-retinol by RDH can prevent the accumulation of excess 11-cis-retinal and its Schiff-base conjugate and the formation of toxic bisretinoid compounds as found in ABCA4-deficient mice and individuals with Stargardt macular degeneration. This segment of the visual cycle in which excess 11-cis-retinal is converted to all-trans-retinol provides a rationale for the unusually high content of PE and its long-chain unsaturated docosahexaenoyl group in photoreceptor membranes and adds insight into the molecular mechanisms responsible for Stargardt macular degeneration. PMID:24707049

  14. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    Science.gov (United States)

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function

    Directory of Open Access Journals (Sweden)

    Wen-Jung Lu

    2018-03-01

    Full Text Available Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein, as well as cells lacking the outer membrane factor (OMF TolC (Tolerance to colicins. Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV, however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.

  16. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3.

    Science.gov (United States)

    Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz

    2015-02-20

    The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterization of a lactose-responsive promoter of ATP-binding cassette (ABC) transporter gene from Lactobacillus acidophilus 05-172.

    Science.gov (United States)

    Zeng, Zhu; Zuo, Fanglei; Yu, Rui; Zhang, Bo; Ma, Huiqin; Chen, Shangwu

    2017-09-01

    A novel lactose-responsive promoter of the ATP-binding cassette (ABC) transporter gene Lba1680 of Lactobacillus acidophilus strain 05-172 isolated from a traditionally fermented dairy product koumiss was characterized. In L. acidophilus 05-172, expression of Lba1680 was induced by lactose, with lactose-induced transcription of Lba1680 being 6.1-fold higher than that induced by glucose. This is in contrast to L. acidophilus NCFM, a strain isolated from human feces, in which expression of Lba1680 and Lba1679 is induced by glucose. Both gene expression and enzyme activity assays in L. paracasei transformed with a vector containing the inducible Lba1680 promoter (PLba1680) of strain 05-172 and a heme-dependent catalase gene as reporter confirmed that PLba1680 is specifically induced by lactose. Its regulatory expression could not be repressed by glucose, and was independent of cAMP receptor protein. This lactose-responsive promoter might be used in the expression of functional genes in L. paracasei incorporated into a lactose-rich environment, such as dairy products. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    Science.gov (United States)

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  19. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    Science.gov (United States)

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration.

    Science.gov (United States)

    Stein, Mónica; Dittgen, Jan; Sánchez-Rodríguez, Clara; Hou, Bi-Huei; Molina, Antonio; Schulze-Lefert, Paul; Lipka, Volker; Somerville, Shauna

    2006-03-01

    Arabidopsis thaliana is a host to the powdery mildew Erysiphe cichoracearum and nonhost to Blumeria graminis f. sp hordei, the powdery mildew pathogenic on barley (Hordeum vulgare). Screening for Arabidopsis mutants deficient in resistance to barley powdery mildew identified PENETRATION3 (PEN3). pen3 plants permitted both increased invasion into epidermal cells and initiation of hyphae by B. g. hordei, suggesting that PEN3 contributes to defenses at the cell wall and intracellularly. pen3 mutants were compromised in resistance to the necrotroph Plectosphaerella cucumerina and to two additional inappropriate biotrophs, pea powdery mildew (Erysiphe pisi) and potato late blight (Phytophthora infestans). Unexpectedly, pen3 mutants were resistant to E. cichoracearum. This resistance was salicylic acid-dependent and correlated with chlorotic patches. Consistent with this observation, salicylic acid pathway genes were hyperinduced in pen3 relative to the wild type. The phenotypes conferred by pen3 result from the loss of function of PLEIOTROPIC DRUG RESISTANCE8 (PDR8), a highly expressed putative ATP binding cassette transporter. PEN3/PDR8 tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated at infection sites. PEN3/PDR8 may be involved in exporting toxic materials to attempted invasion sites, and intracellular accumulation of these toxins in pen3 may secondarily activate the salicylic acid pathway.

  1. Arabidopsis PEN3/PDR8, an ATP Binding Cassette Transporter, Contributes to Nonhost Resistance to Inappropriate Pathogens That Enter by Direct Penetration[W][OA

    Science.gov (United States)

    Stein, Mónica; Dittgen, Jan; Sánchez-Rodríguez, Clara; Hou, Bi-Huei; Molina, Antonio; Schulze-Lefert, Paul; Lipka, Volker; Somerville, Shauna

    2006-01-01

    Arabidopsis thaliana is a host to the powdery mildew Erysiphe cichoracearum and nonhost to Blumeria graminis f. sp hordei, the powdery mildew pathogenic on barley (Hordeum vulgare). Screening for Arabidopsis mutants deficient in resistance to barley powdery mildew identified PENETRATION3 (PEN3). pen3 plants permitted both increased invasion into epidermal cells and initiation of hyphae by B. g. hordei, suggesting that PEN3 contributes to defenses at the cell wall and intracellularly. pen3 mutants were compromised in resistance to the necrotroph Plectosphaerella cucumerina and to two additional inappropriate biotrophs, pea powdery mildew (Erysiphe pisi) and potato late blight (Phytophthora infestans). Unexpectedly, pen3 mutants were resistant to E. cichoracearum. This resistance was salicylic acid–dependent and correlated with chlorotic patches. Consistent with this observation, salicylic acid pathway genes were hyperinduced in pen3 relative to the wild type. The phenotypes conferred by pen3 result from the loss of function of PLEIOTROPIC DRUG RESISTANCE8 (PDR8), a highly expressed putative ATP binding cassette transporter. PEN3/PDR8 tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated at infection sites. PEN3/PDR8 may be involved in exporting toxic materials to attempted invasion sites, and intracellular accumulation of these toxins in pen3 may secondarily activate the salicylic acid pathway. PMID:16473969

  2. Crystal structures and mutational analysis of the arginine-, lysine-, histidine-binding protein ArtJ from Geobacillus stearothermophilus. Implications for interactions of ArtJ with its cognate ATP-binding cassette transporter, Art(MP)2.

    Science.gov (United States)

    Vahedi-Faridi, Ardeschir; Eckey, Viola; Scheffel, Frank; Alings, Claudia; Landmesser, Heidi; Schneider, Erwin; Saenger, Wolfram

    2008-01-11

    ArtJ is the substrate-binding component (receptor) of the ATP-binding cassette (ABC) transport system ArtJ-(MP)(2) from the thermophilic bacterium Geobacillus stearothermophilus that is specific for arginine, lysine, and histidine. The highest affinity is found for arginine (K(d)=0.039(+/-0.014) microM), while the affinities for lysine and histidine are about tenfold lower. We have determined the X-ray structures of ArtJ liganded with each of these substrates at resolutions of 1.79 A (arginine), 1.79 A (lysine), and 2.35 A (histidine), respectively. As found for other solute receptors, the polypeptide chain is folded into two distinct domains (lobes) connected by a hinge. The interface between the lobes forms the substrate-binding pocket whose geometry is well preserved in all three ArtJ/amino acid complexes. Structure-derived mutational analyses indicated the crucial role of a region in the carboxy-terminal lobe of ArtJ in contacting the transport pore Art(MP)(2) and revealed the functional importance of Gln132 and Trp68. While variant Gln132Leu exhibited lower binding affinity for arginine but no binding of lysine and histidine, the variant Trp68Leu had lost binding activity for all three substrates. The results are discussed in comparison with known structures of homologous proteins from mesophilic bacteria.

  3. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci.

    Science.gov (United States)

    Tian, Lixia; Song, Tianxue; He, Rongjun; Zeng, Yang; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2017-04-26

    ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r = 0.684, p ABC transporters in B. tabaci. The identification of these ABC transporters, their temporal expression profiles during B. tabaci development, and their response to a neonicotinoid insecticide lay the foundation for functional genomic understanding of their contribution to the invasiveness of B. tabaci.

  4. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  5. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  6. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.

    Science.gov (United States)

    Lv, Yun-Cheng; Tang, Yan-Yan; Peng, Juan; Zhao, Guo-Jun; Yang, Jing; Yao, Feng; Ouyang, Xin-Ping; He, Ping-Ping; Xie, Wei; Tan, Yu-Lin; Zhang, Min; Liu, Dan; Tang, Deng-Pei; Cayabyab, Francisco S; Zheng, Xi-Long; Zhang, Da-Wei; Tian, Guo-Ping; Tang, Chao-Ke

    2014-09-01

    Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or

  7. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  8. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    Science.gov (United States)

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  9. ATP-Binding Cassette Transporter G2 Activity in the Bovine Spermatozoa Is Modulated Along the Epididymal Duct and at Ejaculation1

    Science.gov (United States)

    Caballero, Julieta; Frenette, Gilles; D'Amours, Olivier; Dufour, Maurice; Oko, Richard; Sullivan, Robert

    2012-01-01

    During their epididymal maturation, stabilizing factors such as cholesterol sulfate are associated with the sperm plasma membrane. Cholesterol is sulfated in epididymal spermatozoa by the enzyme estrogen sulfotransferase. Because of its role in the efflux of sulfate conjugates formed intracellularly by sulfotransferases, the ATP-binding cassette membrane transporter G2 (ABCG2) might have a role in the translocation of this compound across the plasma membrane. In the present study we showed that ABCG2 is present in the plasma membrane overlaying the acrosomal region of spermatozoa recovered from testis, epididymis, and after ejaculation. Although ABCG2 is also present in epididymosomes, the transporter is not transferred to spermatozoa via this mechanism. Furthermore, although epididymal sperm ABCG2 was shown to be functional, as determined by its ability to extrude Hoechst 33342 in the presence of the specific inhibitor Fumitremorgin C, ABCG2 present in ejaculated sperm was found to be nonfunctional. Additional experiments demonstrated that phosphorylation of ABCG2 tyrosyl residues, but not its localization in lipid rafts, is the mechanism responsible for its functionality. Dephosphorylation of ABCG2 in ejaculated spermatozoa is proposed to cause a partial protein relocalization to other intracellular compartments. Prostasomes are proposed to have a role in this process because incubation with this fraction of seminal plasma induces a decrease in the amount of ABCG2 in the associated sperm membrane fraction. These results demonstrate that ABCG2 plays a role in epididymal sperm maturation, but not after ejaculation. The loss of ABCG2 function after ejaculation is proposed to be regulated by prostasomes. PMID:22441796

  10. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

    Science.gov (United States)

    Shiono, Katsuhiro; Ando, Miho; Nishiuchi, Shunsaku; Takahashi, Hirokazu; Watanabe, Kohtaro; Nakamura, Motoaki; Matsuo, Yuichi; Yasuno, Naoko; Yamanouchi, Utako; Fujimoto, Masaru; Takanashi, Hideki; Ranathunge, Kosala; Franke, Rochus B; Shitan, Nobukazu; Nishizawa, Naoko K; Takamure, Itsuro; Yano, Masahiro; Tsutsumi, Nobuhiro; Schreiber, Lukas; Yazaki, Kazufumi; Nakazono, Mikio; Kato, Kiyoaki

    2014-10-01

    Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain.

    Science.gov (United States)

    Zhou, Chunyan; Chen, Jing; Zhang, Xiaolu; Costa, Lucio G; Guizzetti, Marina

    2014-11-01

    Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  12. α-Lipoic acid ameliorates foam cell formation via liver X receptor α-dependent upregulation of ATP-binding cassette transporters A1 and G1.

    Science.gov (United States)

    Cheng, Li-Ching; Su, Kuo-Hui; Kou, Yu Ru; Shyue, Song-Kun; Ching, Li-Chieh; Yu, Yuan-Bin; Wu, Yuh-Lin; Pan, Ching-Chian; Lee, Tzong-Shyuan

    2011-01-01

    α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Association Study of the ATP - Binding Cassette Transporter A1 (ABCA1 Rs2230806 Genetic Variation with Lipid Profile and Coronary Artery Disease Risk in an Iranian Population

    Directory of Open Access Journals (Sweden)

    Habib Ghaznavi

    2018-02-01

    Full Text Available BACKGROUND: ATP - binding cassette transporter A1 (ABCA1 plays essential roles in the biogenesis of high -density lipoprotein - cholesterol. Variations in the ABCA1 gene may influence the risk of coronary artery disease (CAD. AIM: Present study aimed to investigate the association of rs2230806 (R219K polymorphism of ABCA1 gene with the development and severity of CAD in an Iranian population. MATERIALS AND METHODS: Our study population consisted of 100 patients with angiographically confirmed CAD and 100 controls. The genotyping of R219K mutation of ABCA1 gene was determined by PCR - RFLP method. Lipid profile was determined using routine colourimetric assays. Statistical analysis was done by SPSS - 16. RESULTS: The genotypic (P = 0.024 and allelic (P = 0.001 distribution of the ABCA1 R219K polymorphism were significantly different between the two groups. In a univariate analysis (with genotype RR as the reference, the RK genotype (OR = 0.46, 95%CI = 0.25-0.86, P = 0.020 and KK genotype (OR = 0.27, 95%CI = 0.11 – 0.66, P = 0.005 was significantly associated with a decreased risk of CAD. A multiple logistic regression analysis revealed that smoking (0.008, diabetes (P = 0.023, triglyceride (P = 0.001, HDL - cholesterol (P = 0.002 and ABCA1 KK genotype (P = 0.009 were significantly and independently associated with the risk of CAD. The association between different genotypes of R219K polymorphism with lipid profile was not significant in both groups (P > 0.05. The R219K polymorphism was significantly associated with severity of CAD (P < 0.05. CONCLUSION: The carriage of K allele of ABCA1 R219K polymorphism has a protective effect on CAD risk and correlates with a decreased severity of CAD. This protective effect seems to be mediated independently of plasma lipid levels.

  14. Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells.

    Science.gov (United States)

    Kumar, Rajeev; McClain, Denise; Young, Rebecca; Carlson, George A

    2008-06-01

    Prion diseases are transmissible neurodegenerative disorders of prion protein (PrP) conformation. Prion replication by conversion of benign PrPC isoforms into disease-specific PrPSc isoforms is intimately involved in prion disease pathogenesis and may be initiated in cholesterol-rich caveolae-like domains (CLD). Concentrations of the cholesterol transporter ATP-binding cassette A1 protein (ABCA1) are elevated in pre-clinical scrapie prion-infected mice and in prion-infected cells in vitro. Elevation of ABCA1 in prion-infected brain is not a direct consequence of local PrPSc accumulation, indeed levels of ABCA1 are comparable in brain regions that differ dramatically in the amount of PrPSc. Similarly, ABCA1 concentrations are identical in normal mice, transgenic mice overexpressing PrP and PrP knockout mice. In contrast, PrPC and PrPSc levels, but not Prnp mRNA, were increased by overexpression of ABCA1 in N2a neuroblastoma cells and scrapie prion-infected N2a cells (ScN2a). Conversely, RNAi-mediated knock down of Abca1 expression decreased the concentrations of PrPC in N2a cells and of PrPSc in ScN2a cells. These results suggest that ABCA1's effects on PrPC levels are post-translational and may reflect an increase in of PrPC stability, mediated either indirectly by increasing membrane cholesterol and CLD formation or by other functions of ABCA1. The increased supply of PrPC available for conversion would lead to increased PrPSc formation.

  15. Regulation of Human γδ T Cells by BTN3A1 Protein Stability and ATP-Binding Cassette Transporters

    Directory of Open Access Journals (Sweden)

    David A. Rhodes

    2018-04-01

    Full Text Available Activation of human Vγ9/Vδ2 T cells by “phosphoantigens” (pAg, the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP and the endogenous isoprenoid intermediate isopentenyl pyrophosphate, requires expression of butyrophilin BTN3A molecules by presenting cells. However, the precise mechanism of activation of Vγ9/Vδ2 T cells by BTN3A molecules remains elusive. It is not clear what conformation of the three BTN3A isoforms transmits activation signals nor how externally delivered pAg accesses the cytosolic B30.2 domain of BTN3A1. To approach these problems, we studied two HLA haplo-identical HeLa cell lines, termed HeLa-L and HeLa-M, which showed marked differences in pAg-dependent stimulation of Vγ9/Vδ2 T cells. Levels of IFN-γ secretion by Vγ9/Vδ2 T cells were profoundly increased by pAg loading, or by binding of the pan-BTN3A specific agonist antibody CD277 20.1, in HeLa-M compared to HeLa-L cells. IL-2 production from a murine hybridoma T cell line expressing human Vγ9/Vδ2 T cell receptor (TCR transgenes confirmed that the differential responsiveness to HeLa-L and HeLa-M was TCR dependent. By tissue typing, both HeLa lines were shown to be genetically identical and full-length transcripts of the three BTN3A isoforms were detected in equal abundance with no sequence variation. Expression of BTN3A and interacting molecules, such as periplakin or RhoB, did not account for the functional variation between HeLa-L and HeLa-M cells. Instead, the data implicate a checkpoint controlling BTN3A1 stability and protein trafficking, acting at an early time point in its maturation. In addition, plasma membrane profiling was used to identify proteins upregulated in HMB-PP-treated HeLa-M. ABCG2, a member of the ATP-binding cassette (ABC transporter family was the most significant candidate, which crucially showed reduced expression in HeLa-L. Expression of a subset of ABC transporters, including ABCA1 and ABCG1, correlated

  16. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet.

    Science.gov (United States)

    Shimizu, Tomohiko; Miura, Shin-ichiro; Tanigawa, Hiroyuki; Kuwano, Takashi; Zhang, Bo; Uehara, Yoshinari; Saku, Keijiro

    2014-10-01

    It is controversial whether statins improve high-density lipoprotein (HDL) function, which plays an important role in reverse cholesterol transport in vivo. The aim of the present study was to clarify the effects of rosuvastatin and atorvastatin on reverse cholesterol transport in macrophage cells in vivo and their underlying mechanisms. Male C57BL mice were divided into 3 groups (rosuvastatin, atorvastatin, and control groups) and orally administered rosuvastatin, atorvastatin, or placebo for 6 weeks under feeding with a 0.5% cholesterol+10% coconut oil diet. After administration, although there were no changes in plasma HDL cholesterol levels among the groups, plasma from the rosuvastatin group showed an increased ability to promote ATP-binding cassette transporter A1-mediated cholesterol efflux ex vivo. In addition, capillary electrophoresis revealed a shift in HDL toward the pre-β HDL fraction only in the rosuvastatin group. Mice in all 3 groups were intraperitoneally injected with (3)H-cholesterol-labeled and cholesterol-loaded macrophages and then were monitored for the appearance of (3)H-tracer in plasma and feces. The amount of (3)H-tracer excreted into feces during 48 hours in the rosuvastatin group was greater than that in the control group. Finally, (3)H-cholesteryl oleate-HDL was intravenously injected into all groups, blood samples were taken, and the count of (3)H-cholesterol was analyzed. Plasma (3)H-cholesteryl oleate-HDL changed similarly, and no differences in fractional catabolic rates were observed. Rosuvastatin enhanced the ATP-binding cassette transporter A1-dependent HDL efflux function of reverse cholesterol transport, and this finding highlights the potential of rosuvastatin for the regression of atherosclerosis. © 2014 American Heart Association, Inc.

  17. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1.

    Science.gov (United States)

    Lv, Yun-cheng; Yang, Jing; Yao, Feng; Xie, Wei; Tang, Yan-yan; Ouyang, Xin-ping; He, Ping-ping; Tan, Yu-lin; Li, Liang; Zhang, Min; Liu, Dan; Cayabyab, Francisco S; Zheng, Xi-Long; Tang, Chao-ke

    2015-05-01

    Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis

  18. Human ATP-binding cassette transporter 1 (ABC1): Genomic organization and identification of the genetic defect in the original Tangier disease kindred

    Science.gov (United States)

    Remaley, Alan T.; Rust, Stephan; Rosier, Marie; Knapper, Cathy; Naudin, Laurent; Broccardo, Cyril; Peterson, Katherine M.; Koch, Christine; Arnould, Isabelle; Prades, Catherine; Duverger, Nicholas; Funke, Harald; Assman, Gerd; Dinger, Maria; Dean, Michael; Chimini, Giovanna; Santamarina-Fojo, Silvia; Fredrickson, Donald S.; Denefle, Patrice; Brewer, H. Bryan

    1999-01-01

    Tangier disease is characterized by low serum high density lipoproteins and a biochemical defect in the cellular efflux of lipids to high density lipoproteins. ABC1, a member of the ATP-binding cassette family, recently has been identified as the defective gene in Tangier disease. We report here the organization of the human ABC1 gene and the identification of a mutation in the ABC1 gene from the original Tangier disease kindred. The organization of the human ABC1 gene is similar to that of the mouse ABC1 gene and other related ABC genes. The ABC1 gene contains 49 exons that range in size from 33 to 249 bp and is over 70 kb in length. Sequence analysis of the ABC1 gene revealed that the proband for Tangier disease was homozygous for a deletion of nucleotides 3283 and 3284 (TC) in exon 22. The deletion results in a frameshift mutation and a premature stop codon starting at nucleotide 3375. The product is predicted to encode a nonfunctional protein of 1,084 aa, which is approximately half the size of the full-length ABC1 protein. The loss of a Mnl1 restriction site, which results from the deletion, was used to establish the genotype of the rest of the kindred. In summary, we report on the genomic organization of the human ABC1 gene and identify a frameshift mutation in the ABC1 gene of the index case of Tangier disease. These results will be useful in the future characterization of the structure and function of the ABC1 gene and the analysis of additional ABC1 mutations in patients with Tangier disease. PMID:10535983

  19. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  20. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    Science.gov (United States)

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  1. Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters.

    Science.gov (United States)

    Zheng, Wei Hao; Västermark, Åke; Shlykov, Maksim A; Reddy, Vamsee; Sun, Eric I; Saier, Milton H

    2013-05-06

    The ATP-Binding Cassette (ABC) functional superfamily includes integral transmembrane exporters that have evolved three times independently, forming three families termed ABC1, ABC2 and ABC3, upon which monophyletic ATPases have been superimposed for energy-coupling purposes [e.g., J Membr Biol 231(1):1-10, 2009]. The goal of the work reported in this communication was to understand how the integral membrane constituents of ABC uptake transporters with different numbers of predicted or established transmembrane segments (TMSs) evolved. In a few cases, high resolution 3-dimensional structures were available, and in these cases, their structures plus primary sequence analyses allowed us to predict evolutionary pathways of origin. All of the 35 currently recognized families of ABC uptake proteins except for one (family 21) were shown to be homologous using quantitative statistical methods. These methods involved using established programs that compare native protein sequences with each other, after having compared each sequence with thousands of its own shuffled sequences, to gain evidence for homology. Topological analyses suggested that these porters contain numbers of TMSs ranging from four or five to twenty. Intragenic duplication events occurred multiple times during the evolution of these porters. They originated from a simple primordial protein containing 3 TMSs which duplicated to 6 TMSs, and then produced porters of the various topologies via insertions, deletions and further duplications. Except for family 21 which proved to be related to ABC1 exporters, they are all related to members of the previously identified ABC2 exporter family. Duplications that occurred in addition to the primordial 3 → 6 duplication included 5 → 10, 6 → 12 and 10 → 20 TMSs. In one case, protein topologies were uncertain as different programs gave discrepant predictions. It could not be concluded with certainty whether a 4 TMS ancestral protein or a 5 TMS ancestral protein

  2. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    Science.gov (United States)

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  3. A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides.

    Science.gov (United States)

    Prévéral, Sandra; Gayet, Landry; Moldes, Cristina; Hoffmann, Jonathan; Mounicou, Sandra; Gruet, Antoine; Reynaud, Florie; Lobinski, Ryszard; Verbavatz, Jean-Marc; Vavasseur, Alain; Forestier, Cyrille

    2009-02-20

    Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.

  4. Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila: A case of functional divergence in a multigene family

    Directory of Open Access Journals (Sweden)

    Yuan Dongxia

    2010-10-01

    Full Text Available Abstract Background In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes. Results A total of 165 ABC transporter genes, constituting a highly expanded superfamily relative to its size in other eukaryotes, were identified in the macronuclear genome of the ciliate Tetrahymena thermophila. Based on ortholog comparisons, phylogenetic topologies and intron characterizations, each highly expanded ABC transporter family of T. thermophila was classified into several distinct groups, and hypotheses about their evolutionary relationships are presented. A comprehensive microarray analysis revealed divergent expression patterns among the members of the ABC transporter superfamily during different states of physiology and development. Many of the relatively recently formed duplicate pairs within individual ABC transporter families exhibit significantly different expression patterns. Further analysis showed that multiple mechanisms have led to functional divergence that is responsible for the preservation of duplicated genes. Conclusion Gene duplications have resulted in an extensive expansion of the superfamily of ABC transporters in the Tetrahymena genome, making it the largest example of its kind reported in any organism to date. Multiple independent duplications and subsequent divergence contributed to the formation of different families of ABC transporter genes. Many of the members within a gene family exhibit different expression patterns. The combination of gene duplication followed by both sequence divergence and acquisition of new patterns of

  5. A novel ATP-binding cassette transporter is responsible for resistance to viologen herbicides in the cyanobacterium Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Prosecká, J.; Orlov, V. N.; Fantin, Y. S.; Zinchenko, V. V.; Babykin, M. M.; Tichý, Martin

    2009-01-01

    Roč. 276, č. 15 (2009), s. 4001-4011 ISSN 1742-464X R&D Projects: GA MŠk ME 881 Institutional research plan: CEZ:AV0Z50200510 Keywords : ABC-type transporter * cyanobacteria * oxidative stress Subject RIV: EE - Microbiology, Virology Impact factor: 3.042, year: 2009

  6. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Science.gov (United States)

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  7. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Chen

    Full Text Available Metabolic syndrome (MetS is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1 regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  8. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Genetic variant of V825I in the ATP-binding cassette transporter A1 gene and serum lipid levels in the Guangxi Bai Ku Yao and Han populations.

    Science.gov (United States)

    Cao, Xiao-Li; Yin, Rui-Xing; Wu, Dong-Feng; Miao, Lin; Aung, Lynn Htet Htet; Hu, Xi-Jiang; Li, Qing; Yan, Ting-Ting; Lin, Wei-Xiong; Pan, Shang-Ling

    2011-01-19

    Several genetic variants in the ATP-binding cassette transporter A1 (ABCA1) gene have associated with modifications of serum high-density lipoprotein cholesterol (HDL-C) levels and the susceptibility for coronary heart disease, but the findings are still controversial in diverse racial/ethnic groups. Bai Ku Yao is an isolated subgroup of the Yao minority in southern China. The present study was undertaken to detect the possible association of V825I (rs2066715) polymorphism in the ABCA1 gene and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. A total of 677 subjects of Bai Ku Yao and 646 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Polymerase chain reaction and restriction fragment length polymorphism assay combined with gel electrophoresis were performed for the genotyping of V825I variant, and then confirmed by direct sequencing. The levels of serum total cholesterol (TC), HDL-C, apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P 0.05); respectively. The frequency of GG, GA and AA genotypes was 33.7%, 47.4% and 18.9% in Bai Ku Yao, and 33.4%, 48.6% and 18.0% in Han (P > 0.05); respectively. There was no difference in the genotypic and allelic frequencies between males and females in the both ethnic groups. The subjects with AA genotype in Bai Ku Yao had higher serum TC levels than the subjects with GG and GA genotypes (P blood pressure in both ethnic groups (P < 0.05-0.001). The present study suggests that the V825I polymorphism in the ABCA1 gene is associated with male serum HDL-C and ApoAI levels in the Han, and serum TC levels in the Bai Ku Yao populations. The difference in the association of V825I polymorphism and serum lipid levels between the two ethnic groups might partly result from different ABCA1 gene-environmental interactions.

  10. Genetic variant of V825I in the ATP-binding cassette transporter A1 gene and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    Directory of Open Access Journals (Sweden)

    Yan Ting-Ting

    2011-01-01

    Full Text Available Abstract Background Several genetic variants in the ATP-binding cassette transporter A1 (ABCA1 gene have associated with modifications of serum high-density lipoprotein cholesterol (HDL-C levels and the susceptibility for coronary heart disease, but the findings are still controversial in diverse racial/ethnic groups. Bai Ku Yao is an isolated subgroup of the Yao minority in southern China. The present study was undertaken to detect the possible association of V825I (rs2066715 polymorphism in the ABCA1 gene and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 677 subjects of Bai Ku Yao and 646 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Polymerase chain reaction and restriction fragment length polymorphism assay combined with gel electrophoresis were performed for the genotyping of V825I variant, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC, HDL-C, apolipoprotein (Apo AI and ApoB were lower in Bai Ku Yao than in Han (P P > 0.05; respectively. The frequency of GG, GA and AA genotypes was 33.7%, 47.4% and 18.9% in Bai Ku Yao, and 33.4%, 48.6% and 18.0% in Han (P > 0.05; respectively. There was no difference in the genotypic and allelic frequencies between males and females in the both ethnic groups. The subjects with AA genotype in Bai Ku Yao had higher serum TC levels than the subjects with GG and GA genotypes (P P P P Conclusion The present study suggests that the V825I polymorphism in the ABCA1 gene is associated with male serum HDL-C and ApoAI levels in the Han, and serum TC levels in the Bai Ku Yao populations. The difference in the association of V825I polymorphism and serum lipid levels between the two ethnic groups might partly result from different ABCA1 gene-enviromental interactions.

  11. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    Science.gov (United States)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  12. Expression and regulation of prostaglandin transporters, ATP-binding cassette, subfamily C, member 1 and 9, and solute carrier organic anion transporter family, member 2A1 and 5A1 in the uterine endometrium during the estrous cycle and pregnancy in pigs

    Directory of Open Access Journals (Sweden)

    Hwanhee Jang

    2017-05-01

    Full Text Available Objective Prostaglandins (PGs function in various reproductive processes, including luteolysis, maternal pregnancy recognition, conceptus development, and parturition. Our earlier study has shown that PG transporters ATP-binding cassette, subfamily C, member 4 (ABCC4 and solute carrier organic anion transporter family, member 2A1 (SLCO2A1 are expressed in the uterine endometrium in pigs. Since several other PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 are known to be present in the uterine endometrium, this study investigated the expression of these PG transporters in the porcine uterine endometrium and placenta. Methods Uterine endometrial tissues were obtained from gilts on day (D 12 and D15 of the estrous cycle and days 12, 15, 30, 60, 90, and 114 of pregnancy. Results ABCC1, ABCC9, SLCO4C1, and SLCO5A1 mRNAs were expressed in the uterine endometrium, and levels of expression changed during the estrous cycle and pregnancy. Expression of ABCC1 and ABCC9 mRNAs was localized mainly to luminal and glandular epithelial cells in the uterine endometrium, and chorionic epithelial cells during pregnancy. Conceptuses during early pregnancy and chorioallantoic tissues from mid to late pregnancy also expressed these PG transporters. Estradiol-17β increased the expression of ABCC1 and SLCO5A1, but not ABCC9 and SLCO4C1 mRNAs and increasing doses of interleukin-1β induced the expression of ABCC9, SLCO4C1, and SLCO5A1 mRNAs in endometrial explant tissues. Conclusion These data showed that several PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 were expressed at the maternal-conceptus interface, suggesting that these PG transporters may play an important role in the establishment and maintenance of pregnancy by regulating PG transport in the uterine endometrium and placenta in pigs.

  13. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    Science.gov (United States)

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC Transporter Gene Family in Pineapple (Ananas comosus (L. Merr. Reveal the Role of AcABCG38 in Pollen Development

    Directory of Open Access Journals (Sweden)

    Piaojuan Chen

    2017-12-01

    Full Text Available Pineapple (Ananas comosus L. cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs. Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  15. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    Science.gov (United States)

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  16. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby; Fredslund, Folmer; Andersen, Joakim Mark

    2016-01-01

    composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the -(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which...... of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria....

  17. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Science.gov (United States)

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  18. Structure, function, and evolution of bacterial ATP-binding cassette systems

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. (Purdue)

    2010-07-27

    The ATP-binding cassette (ABC) systems constitute one of the largest superfamilies of paralogous sequences. All ABC systems share a highly conserved ATP-hydrolyzing domain or protein (the ABC; also referred to as a nucleotide-binding domain [NBD]) that is unequivocally characterized by three short sequence motifs (Fig. 1): these are the Walker A and Walker B motifs, indicative of the presence of a nucleotide-binding site, and the signature motif, unique to ABC proteins, located upstream of the Walker B motif (426). Other motifs diagnostic of ABC proteins are also indicated in Fig. 1. The biological significance of these motifs is discussed in Structure, Function, and Dynamics of the ABC. ABC systems are widespread among living organisms and have been detected in all genera of the three kingdoms of life, with remarkable conservation in the primary sequence of the cassette and in the organization of the constitutive domains or subunits (203, 420). ABC systems couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena, comprising not only transmembrane (TM) transport, for which they are best known, but also several non-transport-related processes, such as translation elongation (62) and DNA repair (174). Although ABC systems deserve much attention because they are involved in severe human inherited diseases (107), they were first discovered and characterized in detail in prokaryotes, as early as the 1970s (13, 148, 238, 468). The most extensively analyzed systems were the high-affinity histidine and maltose uptake systems of Salmonella enterica serovar Typhimurium and Escherichia coli. Over 2 decades ago, after the completion of the nucleotide sequences encoding these transporters in the respective laboratories of Giovanna Ames and Maurice Hofnung, Hiroshi Nikaido and colleagues noticed that the two systems displayed a global similarity in the nature of their components and, moreover, that the primary sequences of MalK and

  19. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts.

    Science.gov (United States)

    Pelkonen, Laura; Tengvall-Unadike, Unni; Ruponen, Marika; Kidron, Heidi; Del Amo, Eva M; Reinisalo, Mika; Urtti, Arto

    2017-11-15

    Melanin pigment is a negatively charged polymer found in pigmented human tissues. In the eye, iris, ciliary body, choroid and retinal pigment epithelium (RPE) are heavily pigmented. Several drug molecules are known to bind to melanin, but larger sets of drugs have not been compared often in similar test conditions. In this study, we introduce a powerful tool for screening of melanin binding. The binding of a set of 34 compounds to isolated porcine RPE melanin was determined by cassette (n-in-one) dosing in rapid equilibrium dialysis inserts and the binding was quantitated with LC-MS/MS analytics. The compounds represented large variety in melanin binding (from 8.6%, ganciclovir) to over 95% bound (ampicillin and ciprofloxacin). The data provides information on melanin binding of small molecular weight compounds that are used for ocular (e.g. brinzolamide, ganciclovir) and systemic (e.g. tizanidine, indomethacin) therapy. Interestingly, competition among compounds was seen for melanin binding and the binding did not show any correlation with plasma protein binding. These results increase the understanding of melanin binding of ocular drugs and can be further exploited to predict pharmacokinetics in the eye. Pigment binding provides an interesting option for improved drug distribution to retina and choroid that are difficult target tissues in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    International Nuclear Information System (INIS)

    Xue, Shanshan; Wang, Jiaxing; Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun; Pang, Wei; Ai, Ding; Zhu, Yi; He, Jinlong

    2016-01-01

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr −/− ) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr −/− mouse aortas, EC-ABCG1-Tg/Ldlr −/− aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr −/− mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr −/− background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  1. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  2. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    Science.gov (United States)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  3. Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane.

    NARCIS (Netherlands)

    Kavishe, R.A.; Heuvel, J.M.W. van den; Vegte-Bolmer, M.G. van de; Luty, A.J.F.; Russel, F.G.M.; Koenderink, J.B.

    2009-01-01

    BACKGROUND: The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding

  4. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems.

    Science.gov (United States)

    Garcia, Olivier; Bouige, Philippe; Forestier, Cyrille; Dassa, Elie

    2004-10-08

    ATP-binding cassette (ABC) proteins constitute a large superfamily found in all kingdoms of living organisms. The recent completion of two draft sequences of the rice (Oryza sativa) genome allowed us to analyze and classify its ABC proteins and to compare to those in Arabidopsis thaliana. We identified a similar number of ABC proteins in rice and Arabidopsis (121 versus 120), despite the rice genome being more than three times the size of Arabidopsis. Both Arabidopsis and rice have representative members in all seven major subfamilies of ABC ATPases (A to G) commonly found in eukaryotes. This comparative analysis allowed the detection of 29 potential orthologous sequences in Arabidopsis and rice. However, plant share with prokaryotes a specific set of ABC systems that is not detected in animals. These ABC systems might be inherited from the cyanobacterial ancestor of chloroplasts. The present work provides the first complete inventory of rice ABC proteins and an updated inventory of those proteins in Arabidopsis.

  5. Cell and molecular biology of ATP-binding cassette proteins in plants.

    Science.gov (United States)

    Yazaki, Kazufumi; Shitan, Nobukazu; Sugiyama, Akifumi; Takanashi, Kojiro

    2009-01-01

    ATP-binding cassette (ABC) proteins constitute a large and diverse superfamily of membrane-bound and soluble proteins, which are involved in a wide range of biological processes in all organisms from prokaryotes to eukaryotes. Genome analyses of model plants, for example, Arabidopsis and rice, have revealed that plants have more than double numbers of this family member in their genomes compared to animals and insects. In recent years, various biochemical and physiological functions of ABC proteins in plants have been reported. Some are relevant for the defense mechanisms to biotic and abiotic stresses, whereas others are involved in the basic functions necessary for maintaining the plant life. Here, we provide an updated inventory of plant ABC proteins and summarize their tissue specificities, membrane localizations, and physiological functions.

  6. Functional Diversity of Tandem Substrate-Binding Domains in ABC Transporters from Pathogenic Bacteria

    NARCIS (Netherlands)

    Fulyani, Faizah; Schuurman-Wolters, Gea K.; Vujicic - Zagar, Andreja; Guskov, Albert; Slotboom, Dirk-Jan; Poolman, Bert

    2013-01-01

    The ATP-binding cassette (ABC) transporter GInPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional

  7. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.).

    Science.gov (United States)

    Pang, Kaiyuan; Li, Yanjiao; Liu, Menghan; Meng, Zhaodong; Yu, Yanli

    2013-09-10

    The metabolic functions of ATP-binding cassette (or ABC) proteins, one of the largest families of proteins presented in all organisms, have been investigated in many protozoan, animal and plant species. To facilitate more systematic and complicated studies on maize ABC proteins in the future, we present the first complete inventory of these proteins, including 130 open reading frames (ORFs), and provide general descriptions of their classifications, basic structures, typical functions, evolution track analysis and expression profiles. The 130 ORFs were assigned to eight subfamilies based on their structures and homological features. Five of these subfamilies consist of 109 proteins, containing transmembrane domains (TM) performing as transporters. The rest three subfamilies contain 21 soluble proteins involved in various functions other than molecular transport. A comparison of ABC proteins among nine selected species revealed either convergence or divergence in each of the ABC subfamilies. Generally, plant genomes contain far more ABC genes than animal genomes. The expression profiles and evolution track of each maize ABC gene were further investigated, the results of which could provide clues for analyzing their functions. Quantitative real-time polymerase chain reaction experiments (PCR) were conducted to detect induced expression in select ABC genes under several common stresses. This investigation provides valuable information for future research on stress tolerance in plants and potential strategies for enhancing maize production under stressful conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Survey of the ATP-Binding Cassette (ABC Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis.

    Directory of Open Access Journals (Sweden)

    Greta Carmona-Antoñanzas

    Full Text Available Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837, are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences, C (11 and G (2. The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  9. A Survey of the ATP-Binding Cassette (ABC) Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis).

    Science.gov (United States)

    Carmona-Antoñanzas, Greta; Carmichael, Stephen N; Heumann, Jan; Taggart, John B; Gharbi, Karim; Bron, James E; Bekaert, Michaël; Sturm, Armin

    2015-01-01

    Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837), are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC) gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq) of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences), C (11) and G (2). The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  10. ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation

    NARCIS (Netherlands)

    Westerterp, Marit; Bochem, Andrea E.; Yvan-Charvet, Laurent; Murphy, Andrew J.; Wang, Nan; Tall, Alan R.

    2014-01-01

    Although recent genome-wide association studies have called into question the causal relationship between high-density lipoprotein (HDL) cholesterol levels and cardiovascular disease, ongoing research in animals and cells has produced increasing evidence that cholesterol efflux pathways mediated by

  11. Linsitinib (OSI-906) antagonizes ATP-binding cassette subfamily G member 2 and subfamily C member 10-mediated drug resistance.

    Science.gov (United States)

    Zhang, Hui; Kathawala, Rishil J; Wang, Yi-Jun; Zhang, Yun-Kai; Patel, Atish; Shukla, Suneet; Robey, Robert W; Talele, Tanaji T; Ashby, Charles R; Ambudkar, Suresh V; Bates, Susan E; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-06-01

    In this study we investigated the effect of linsitinib on the reversal of multidrug resistance (MDR) mediated by the overexpression of the ATP-binding cassette (ABC) subfamily members ABCB1, ABCG2, ABCC1 and ABCC10. Our results indicate for the first time that linsitinib significantly potentiate the effect of anti-neoplastic drugs mitoxantrone (MX) and SN-38 in ABCG2-overexpressing cells; paclitaxel, docetaxel and vinblastine in ABCC10-overexpressing cells. Linsitinib moderately enhanced the cytotoxicity of vincristine in cell lines overexpressing ABCB1, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, linsitinib significantly increased the intracellular accumulation and decreased the efflux of [(3)H]-MX in ABCG2-overexpressing cells and [(3)H]-paclitaxel in ABCC10-overexpressing cells. However, linsitinib, at a concentration that reversed MDR, did not significantly alter the expression levels of either the ABCG2 or ABCC10 transporter proteins. Furthermore, linsitinib did not significantly alter the intracellular localization of ABCG2 or ABCC10. Moreover, linsitinib stimulated the ATPase activity of ABCG2 in a concentration-dependent manner. Overall, our study suggests that linsitinib attenuates ABCG2- and ABCC10-mediated MDR by directly inhibiting their function as opposed to altering ABCG2 or ABCC10 protein expression. Published by Elsevier Ltd.

  12. ATP-binding cassette systems in Burkholderia pseudomallei and Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Titball Richard W

    2007-03-01

    Full Text Available Abstract Background ATP binding cassette (ABC systems are responsible for the import and export of a wide variety of molecules across cell membranes and comprise one of largest protein superfamilies found in prokarya, eukarya and archea. ABC systems play important roles in bacterial lifestyle, virulence and survival. In this study, an inventory of the ABC systems of Burkholderia pseudomallei strain K96243 and Burkholderia mallei strain ATCC 23344 has been compiled using bioinformatic techniques. Results The ABC systems in the genomes of B. pseudomallei and B. mallei have been reannotated and subsequently compared. Differences in the number and types of encoded ABC systems in belonging to these organisms have been identified. For example, ABC systems involved in iron acquisition appear to be correlated with differences in genome size and lifestyles between these two closely related organisms. Conclusion The availability of complete inventories of the ABC systems in B. pseudomallei and B. mallei has enabled a more detailed comparison of the encoded proteins in this family. This has resulted in the identification of ABC systems which may play key roles in the different lifestyles and pathogenic properties of these two bacteria. This information has the potential to be exploited for improved clinical identification of these organisms as well as in the development of new vaccines and therapeutics targeted against the diseases caused by these organisms.

  13. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle.

    Science.gov (United States)

    Heuveling, Johanna; Frochaux, Violette; Ziomkowska, Joanna; Wawrzinek, Robert; Wessig, Pablo; Herrmann, Andreas; Schneider, Erwin

    2014-01-01

    Prokaryotic solute binding protein-dependent ATP-binding cassette import systems are divided into type I and type II and mechanistic differences in the transport process going along with this classification are under intensive investigation. Little is known about the conformational dynamics during the catalytic cycle especially concerning the transmembrane domains. The type I transporter for positively charged amino acids from Salmonella enterica serovar Typhimurium (LAO-HisQMP2) was studied by limited proteolysis in detergent solution in the absence and presence of co-factors including ATP, ADP, LAO/arginine, and Mg(2+) ions. Stable peptide fragments could be obtained and differentially susceptible cleavage sites were determined by mass spectrometry as Lys-258 in the nucleotide-binding subunit, HisP, and Arg-217/Arg-218 in the transmembrane subunit, HisQ. In contrast, transmembrane subunit HisM was gradually degraded but no stable fragment could be detected. HisP and HisQ were equally resistant under pre- and post-hydrolysis conditions in the presence of arginine-loaded solute-binding protein LAO and ATP/ADP. Some protection was also observed with LAO/arginine alone, thus reflecting binding to the transporter in the apo-state and transmembrane signaling. Comparable digestion patterns were obtained with the transporter reconstituted into proteoliposomes and nanodiscs. Fluorescence lifetime spectroscopy confirmed the change of HisQ(R218) to a more apolar microenvironment upon ATP binding and hydrolysis. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. Together, our data suggest similar conformational changes during the transport cycle as described for the maltose ABC transporter of Escherichia coli, despite distinct structural differences between both systems. © 2013.

  14. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells.

    Science.gov (United States)

    Bachmeier, Beatrice E; Iancu, Cristina M; Killian, Peter H; Kronski, Emanuel; Mirisola, Valentina; Angelini, Giovanna; Jochum, Marianne; Nerlich, Andreas G; Pfeffer, Ulrich

    2009-12-23

    Curcumin induces apoptosis in many cancer cells and it reduces xenograft growth and the formation of lung metastases in nude mice. Moreover, the plant derived polyphenol has been reported to be able to overcome drug resistance to classical chemotherapy. These features render the drug a promising candidate for tumor therapy especially for cancers known for their high rates concerning therapy resistance like melanoma. We show here that the melanoma cell line M14 is resistant to Curcumin induced apoptosis, which correlates with the absence of any effect on NFkappaB signaling. We show that CXCL1 a chemokine that is down regulated in breast cancer cells by Curcumin in an NFkappaB dependent manner is expressed at variable levels in human melanomas. Yet in M14 cells, CXCL1 expression did not change upon Curcumin treatment. Following the hypothesis that Curcumin is rapidly removed from the resistant cells, we analyzed expression of known multi drug resistance genes and cellular transporters in M14 melanoma cells and in the Curcumin sensitive breast cancer cell line MDA-MB-231. ATP-binding cassette transporter ABCA1, a gene involved in the cellular lipid removal pathway is over-expressed in resistant M14 melanoma as compared to the sensitive MDA-MB-231 breast cancer cells. Gene silencing of ABCA1 by siRNA sensitizes M14 cells to the apoptotic effect of Curcumin most likely as a result of reduced basal levels of active NFkappaB. Moreover, ABCA1 silencing alone also induces apoptosis and reduces p65 expression. Resistance to Curcumin thus follows classical pathways and ABCA1 expression should be considered as response marker.

  15. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells

    Directory of Open Access Journals (Sweden)

    Angelini Giovanna

    2009-12-01

    Full Text Available Abstract Background Curcumin induces apoptosis in many cancer cells and it reduces xenograft growth and the formation of lung metastases in nude mice. Moreover, the plant derived polyphenol has been reported to be able to overcome drug resistance to classical chemotherapy. These features render the drug a promising candidate for tumor therapy especially for cancers known for their high rates concerning therapy resistance like melanoma. Results We show here that the melanoma cell line M14 is resistant to Curcumin induced apoptosis, which correlates with the absence of any effect on NFκB signaling. We show that CXCL1 a chemokine that is down regulated in breast cancer cells by Curcumin in an NFκB dependant manner is expressed at variable levels in human melanomas. Yet in M14 cells, CXCL1 expression did not change upon Curcumin treatment. Following the hypothesis that Curcumin is rapidly removed from the resistant cells, we analyzed expression of known multi drug resistance genes and cellular transporters in M14 melanoma cells and in the Curcumin sensitive breast cancer cell line MDA-MB-231. ATP-binding cassette transporter ABCA1, a gene involved in the cellular lipid removal pathway is over-expressed in resistant M14 melanoma as compared to the sensitive MDA-MB-231 breast cancer cells. Gene silencing of ABCA1 by siRNA sensitizes M14 cells to the apoptotic effect of Curcumin most likely as a result of reduced basal levels of active NFκB. Moreover, ABCA1 silencing alone also induces apoptosis and reduces p65 expression. Conclusion Resistance to Curcumin thus follows classical pathways and ABCA1 expression should be considered as response marker.

  16. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis.

    Science.gov (United States)

    Hafiane, Anouar; Genest, Jacques

    2017-02-01

    Micro-particles (MP) are secreted by various cells. Their biological roles in health and in disease remain unknown. Here we describe formation of MP in the process of ABCA1-dependent cholesterol efflux in different cell types. The ATP-binding cassette transporter, subfamily A, member 1 (ABCA1) is the rate-limiting step in the biogenesis of high-density lipoproteins (HDL). We have found that ABCA1 and apoA-I contribute to the formation of MP. Using cell-based systems with overexpression and selective inactivation of ABCA1, pharmacological blockade and modulation of membrane cholesterol content, we characterized MP release from various cell lines. We studied MP release in BHK cells stably expressing ABCA1 under mifepristone control, human THP-1 macrophages and HepG2 cells without, or with incubation with human apoA-I. ABCA1 mediates the production of MPs containing cholesterol. This was also confirmed in primary human monocyte-derived macrophages (MDMs). Adding apoA-I markedly increases MP release from cells. Inhibition of ABCA1 with probucol or decreasing plasma membrane cholesterol with methyl-β cyclodextrin (CDX) markedly reduced MP release and nascent HDL formation. MPs do not contain apoA-I, but contain flotilin-2, a marker of plasma membrane, and CD63, an exosome marker. MPs exhibit considerable size heterogeneity (50-250 nm). We show that MPs are lipoprotein-sized structures created by the ABCA1 transporter, and contribute approximately 30% of ABCA1-and apoA-I mediated cholesterol efflux. In addition, we found that MPs release from cells consists, in part, of exosomes and depends on the same pathway used for HDL biogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  18. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    2011-03-01

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  19. Flavone Glucoside Uptake into Barley Mesophyll and Arabidopsis Cell Culture Vacuoles. Energization Occurs by H+-Antiport and ATP-Binding Cassette-Type Mechanisms1

    Science.gov (United States)

    Frangne, Nathalie; Eggmann, Thomas; Koblischke, Carsten; Weissenböck, Gottfried; Martinoia, Enrico; Klein, Markus

    2002-01-01

    In many cases, secondary plant products accumulate in the large central vacuole of plant cells. However, the mechanisms involved in the transport of secondary compounds are only poorly understood. Here, we demonstrate that the transport mechanisms for the major barley (Hordeum vulgare) flavonoid saponarin (apigenin 6-C-glucosyl-7-O-glucoside) are different in various plant species: Uptake into barley vacuoles occurs via a proton antiport and is competitively inhibited by isovitexin (apigenin 6-C-glucoside), suggesting that both flavone glucosides are recognized by the same transporter. In contrast, the transport into vacuoles from Arabidopsis, which does not synthesize flavone glucosides, displays typical characteristics of ATP-binding cassette transporters. Transport of saponarin into vacuoles of both the species is saturable with a Km of 50 to 100 μm. Furthermore, the uptake of saponarin into vacuoles from a barley mutant exhibiting a strongly reduced flavone glucoside biosynthesis is drastically decreased when compared with the parent variety. Thus, the barley vacuolar flavone glucoside/H+ antiporter could be modulated by the availability of the substrate. We propose that different vacuolar transporters may be responsible for the sequestration of species-specific/endogenous and nonspecific/xenobiotic secondary compounds in planta. PMID:11842175

  20. Inventory and analysis of ATP-binding cassette (ABC) systems in Brugia malayi.

    Science.gov (United States)

    Ardelli, B F; Stitt, L E; Tompkins, J B

    2010-07-01

    ABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from the Brugia malayi genome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain of B. malayi genes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults of B. malayi than in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.

  1. Thermodynamics of the ATPase cycle of GlcV, the nucleotide-binding domain of the glucose ABC transporter of Sulfolobus solfataricus

    NARCIS (Netherlands)

    Pretz, Monika G.; Albers, Sonja-Verena; Schuurman-Wolters, Gea; Tampe, Robert; Driessen, Arnold J. M.; van der Does, Chris

    2006-01-01

    ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains ( NBDs) that energize the

  2. Isolated cerebellar variant of adrenoleukodystrophy with a de novo adenosine triphosphate-binding cassette D1 (ABCD1) gene mutation.

    Science.gov (United States)

    Kang, Joon Won; Lee, Sang Mi; Koo, Kyo Yeon; Lee, Young-Mock; Nam, Hyo Suk; Quan, Zhejiu; Kang, Hoon-Chul

    2014-07-01

    X-linked adrenoleukodystrophy (X-ALD) shows a wide range of phenotypic expression, but clinical presentation as an isolated lesion of the cerebellar white matter and dentate nuclei has not been reported. We report an unusual presentation of X-ALD only with an isolated lesion of the cerebellar white matter and dentate nuclei. The proband, a 37-year-old man presented with bladder incontinence, slurred speech, dysmetria in all limbs, difficulties in balancing, and gait ataxia. Brain magnetic resonance imaging showed an isolated signal change of white matter around the dentate nucleus in cerebellum. With high level of very long chain fatty acid, gene study showed a de novo mutation in exon 1 at nucleotide position c.277_296dup20 (p.Ala100Cysfs*10) of the adenosine triphosphate-binding cassette D1 gene. It is advised to consider X-ALD as a differential diagnosis in patients with isolated cerebellar degeneration symptoms.

  3. Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp: Ontogenetic Differences and Potential for Toxicity

    Directory of Open Access Journals (Sweden)

    Ngu Njei Abanda

    2017-02-01

    Full Text Available The ATP Binding Cassette B1 (ABCB1 transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years, and in S9 from randomly acquired samples (n = 87, 7 days–87 years. ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships, but protein levels were lower in pediatric S9 (p < 0.0001, with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.

  4. Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1 bind PECAM1.

    Directory of Open Access Journals (Sweden)

    Sanne S Berger

    Full Text Available Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1 family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been associated with the expression of particular subsets of PfEMP1 molecules. PfEMP1 are grouped into subtypes based on upstream sequences and the presence of semi-conserved PfEMP1 domain compositions named domain cassettes (DCs. Earlier studies have indicated that DC5-containing PfEMP1 (DC5-PfEMP1 are more likely to be expressed in children with severe malaria disease than in children with uncomplicated malaria, but these PfEMP1 subtypes only dominate in a relatively small proportion of the children with severe disease. In this study, we have characterised the genomic sequence characteristic for DC5, and show that two genetically different parasite lines expressing DC5-PfEMP1 bind PECAM1, and that anti-DC5-specific antibodies inhibit binding of DC5-PfEMP1-expressing parasites to transformed human bone marrow endothelial cells (TrHBMEC. We also show that antibodies against each of the four domains characteristic for DC5 react with native PfEMP1 expressed on the surface of infected erythrocytes, and that some of these antibodies are cross-reactive between the two DC5-containing PfEMP1 molecules tested. Finally, we confirm that anti-DC5 antibodies are acquired early in life by individuals living in malaria endemic areas, that individuals having high levels of these antibodies are less likely to develop febrile malaria episodes and that the antibody levels correlate positively with hemoglobin levels.

  5. Sorafenib modulates the gene expression of multi-drug resistance mediating ATP-binding cassette proteins in experimental hepatocellular carcinoma.

    Science.gov (United States)

    Hoffmann, Katrin; Franz, Clemens; Xiao, Zhi; Mohr, Elvira; Serba, Susanne; Büchler, Markus W; Schemmer, Peter

    2010-11-01

    High ATP-binding cassette (ABC) protein expression leads to intrinsic drug resistance of hepatocellular carcinoma (HCC). The aim of this study was to investigate the potential chemosensitizing effects of sorafenib on the multi-drug resistance (MDR) phenotype. The ABC-protein gene expression and the cellular survival were determined by RT-PCR analysis and MTT assay in HUH7 cells. Sorafenib inhibits MDR. The ABC-protein mRNA expression decreased by up to 51% (p ≤ 0.01). Addition of sorafenib to conventional chemotherapy restored the chemosensitivity. Combination of gemcitabine plus sorafenib decreased the ABC-protein mRNA levels by up to 77%, compared to gemcitabine monotherapy (p ≤ 0.001). Doxorubicin plus sorafenib decreased the ABC-protein mRNA levels up to 74% compared to doxorubicin monotherapy (p ≤ 0.001). This study provides evidence that the MDR phenotype of HCC cells can be modulated by the multi-kinase inhibitor sorafenib and consequentially may lead towards personalized therapies in patients with highly resistant tumors.

  6. Binding thermodynamics of a glutamate transporter homologue

    Science.gov (United States)

    Reyes, Nicolas; Oh, SeCheol; Boudker, Olga

    2013-01-01

    Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest. PMID:23563139

  7. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition.

    Science.gov (United States)

    Stewart, Teneale A; Azimi, Iman; Thompson, Erik W; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2015-03-13

    Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Selective ATP-Binding Cassette Subfamily C Gene Expression and Proinflammatory Mediators Released by BEAS-2B after PM2.5, Budesonide, and Cotreated Exposures

    Directory of Open Access Journals (Sweden)

    Jarline Encarnación-Medina

    2017-01-01

    Full Text Available ATP-binding cassette subfamily C (ABCC genes code for phase III metabolism proteins that translocate xenobiotic (e.g., particulate matter 2.5 (PM2.5 and drug metabolites outside the cells. IL-6 secretion is related with the activation of the ABCC transporters. This study assesses ABCC1–4 gene expression changes and proinflammatory cytokine (IL-6, IL-8 release in human bronchial epithelial cells (BEAS-2B exposed to PM2.5 organic extract, budesonide (BUD, used to control inflammation in asthmatic patients, and a cotreatment (Co-T: PM2.5 and BUD. A real-time PCR assay shows that ABCC1 was upregulated in BEAS-2B exposed after 6 and 7 hr to PM2.5 extract or BUD but downregulated after 6 hr of the Co-T. ABCC3 was downregulated after 6 hr of BUD and upregulated after 6 hr of the Co-T exposures. ABCC4 was upregulated after 5 hr of PM2.5 extract, BUD, and the Co-T exposures. The cytokine assay revealed an increase in IL-6 release by BEAS-2B exposed after 5 hr to PM2.5 extract, BUD, and the Co-T. At 7 hr, the Co-T decreases IL-6 release and IL-8 at 6 hr. In conclusion, the cotreatment showed an opposite effect on exposed BEAS-2B as compared with BUD. The results suggest an interference of the BUD therapeutic potential by PM2.5.

  9. The Plasma-Facing Components Transporter (PFCT) : a Prototype System for PFC Replacement on the new ITER 2001 Cassette Mock-up

    International Nuclear Information System (INIS)

    Micciche, G.; Lorenzelli, L.; Muro, L.; Irving, M.

    2006-01-01

    The remote maintainability of the early ITER divertor cassette (based on the ITER 1998 design) was successfully proved during test campaigns carried out in the Divertor Refurbishment Platform (DRP) at the ENEA research centre at Brasimone over the period 1999-2003. Due to subsequent major modifications in the ITER divertor cassette design, the main focus over the past few years has been on the design and manufacture of the various components, devices and tools needed for refurbishment of the new ITER 2001 Divertor Cassette. The design of this new cassette differs substantially from the earlier version: in particular the shape, weight and attachment system of the Plasma Facing Components (PFC's) has been completely revised, and this also entailed a review of the procedures adopted for its refurbishment. One of the major requirements of the cassette refurbishment process is removal and replacement of the three PFC's. In the old cassette concept, target replacement was performed by means of a purpose-built '' C '' frame slung from a standard bridge crane. The 2001 cassette design precludes such handling methods for a number of reasons, notably because of the extremely tight inter-PFC clearances, and the need for controlled inclination of the target in addition to normal translational movements, both impossible with a simple Cartesian crane. To demonstrate the refurbishment feasibility operations for the new ITER Divertor 2001 cassettes, an experimental machine known as the Plasma-Facing Component Transporter (PFCT) has been designed, fabricated and commissioned in the years 2004-5. This full six degree-of-freedom system has been designed to handle payloads of up to 5 tonnes with good positional accuracy, and axes capable of very low joint velocities, including inclination of the PFC's over the range of ± 10 o in both horizontal axes, and controlled rotation about the vertical axis. Preliminary trials carried out during the commissioning phase have proved its

  10. Association of ATP-binding cassette transporter-A1 polymorphism ...

    Indian Academy of Sciences (India)

    ., Slagle S. and Eder H. A. 1982. Separation and quantitation of subclasses of human plasma high density lipoproteins by a simple precipitation procedure. J. Lipid. Res. 23, 1206–1223. Hallman D. M., Srinivasan S. R., Chen W., Boerwinkle E.

  11. Plasmodium falciparum Expressing Domain Cassette 5 Type PfEMP1 (DC5-PfEMP1) Bind PECAM1

    DEFF Research Database (Denmark)

    Berger, Sanne S; Turner, Louise; Wang, Christian W

    2013-01-01

    Members of the Plasmodium falciparum Erythrocyte Membrane protein 1 (PfEMP1) family expressed on the surface of malaria-infected erythrocytes mediate binding of the parasite to different receptors on the vascular lining. This process drives pathologies, and severe childhood malaria has been assoc...

  12. Actin binding proteins, spermatid transport and spermiation*

    Science.gov (United States)

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-Ho; Tang, Elizabeth I.; Han, Daishu; Lee, Will M.; Wong, Elissa W. P.; Cheng, C. Yan

    2014-01-01

    The transport of germ cells across the seminiferous epithelium is composed of a series of cellular events during the epithelial cycle essential to the completion of spermatogenesis. Without the timely transport of spermatids during spermiogenesis, spermatozoa that are transformed from step 19 spermatids in the rat testis fail to reach the luminal edge of the apical compartment and enter the tubule lumen at spermiation, thereby entering the epididymis for further maturation. Step 19 spermatids and/or sperms that remain in the epithelium will be removed by the Sertoli cell via phagocytosis to form phagosomes and be degraded by lysosomes, leading to subfertility and/or infertility. However, the biology of spermatid transport, in particular the final events that lead to spermiation remain elusive. Based on recent data in the field, we critically evaluate the biology of spermiation herein by focusing on the actin binding proteins (ABPs) that regulate the organization of actin microfilaments at the Sertoli-spermatid interface, which is crucial for spermatid transport during this event. The hypothesis we put forth herein also highlights some specific areas of research that can be pursued by investigators in the years to come. PMID:24735648

  13. Structural and functional characterization of an orphan ATP-binding cassette ATPase involved in manganese utilization and tolerance in Leptospira spp.

    Science.gov (United States)

    Benaroudj, Nadia; Saul, Frederick; Bellalou, Jacques; Miras, Isabelle; Weber, Patrick; Bondet, Vincent; Murray, Gerald L; Adler, Ben; Ristow, Paula; Louvel, Hélène; Haouz, Ahmed; Picardeau, Mathieu

    2013-12-01

    Pathogenic Leptospira species are the etiological agents of the widespread zoonotic disease leptospirosis. Most organisms, including Leptospira, require divalent cations for proper growth, but because of their high reactivity, these metals are toxic at high concentrations. Therefore, bacteria have acquired strategies to maintain metal homeostasis, such as metal import and efflux. By screening Leptospira biflexa transposon mutants for their ability to use Mn(2+), we have identified a gene encoding a putative orphan ATP-binding cassette (ABC) ATPase of unknown function. Inactivation of this gene in both L. biflexa and L. interrogans strains led to mutants unable to grow in medium in which iron was replaced by Mn(2+), suggesting an involvement of this ABC ATPase in divalent cation uptake. A mutation in this ATPase-coding gene increased susceptibility to Mn(2+) toxicity. Recombinant ABC ATPase of the pathogen L. interrogans exhibited Mg(2+)-dependent ATPase activity involving a P-loop motif. The structure of this ATPase was solved from a crystal containing two monomers in the asymmetric unit. Each monomer adopted a canonical two-subdomain organization of the ABC ATPase fold with an α/β subdomain containing the Walker motifs and an α subdomain containing the ABC signature motif (LSSGE). The two monomers were arranged in a head-to-tail orientation, forming a V-shaped particle with all the conserved ABC motifs at the dimer interface, similar to functional ABC ATPases. These results provide the first structural and functional characterization of a leptospiral ABC ATPase.

  14. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Kostsin, Dzmitry G. [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Academicheskaya Str. 27, Minsk 220072 (Belarus); Kashiwayama, Yoshinori [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takanashi, Kojiro; Yazaki, Kazufumi [Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoko University, Uji, Kyoto 611-0011 (Japan); Imanaka, Tsuneo, E-mail: imanaka@pha.u-toyama.ac.jp [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Morita, Masashi [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  15. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    -binding cassette) transporters, which include MDR1, a protein that pumps xenobiotics from cells, and the SLC (solute carrier) trans- porters, which take up neurotransmitters, nutrients, heavy metals, and other substrates into ...

  16. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter

    Science.gov (United States)

    Lu, Shuo; Zgurskaya, Helen I.

    2012-01-01

    Summary MacB is a founding member of the Macrolide Exporter family of transporters belonging to the ATP-Binding Cassette superfamily. These proteins are broadly represented in genomes of both gram-positive and gram-negative bacteria and are implicated in virulence and protection against antibiotics and peptide toxins. MacB transporter functions together with MacA, a periplasmic membrane fusion protein, which stimulates MacB ATPase. In gram-negative bacteria, MacA is believed to couple ATP hydrolysis to transport of substrates across the outer membrane through a TolC-like channel. In this study, we report a real-time analysis of concurrent ATP hydrolysis and assembly of MacAB-TolC complex. MacB binds nucleotides with a low millimolar affinity and fast on- and off-rates. In contrast, MacA-MacB complex is formed with a nanomolar affinity, which further increases in the presence of ATP. Our results strongly suggest that association between MacA and MacB is stimulated by ATP binding to MacB but remains unchanged during ATP hydrolysis cycle. We also found that the large periplasmic loop of MacB plays the major role in coupling reactions separated in two different membranes. This loop is required for MacA-dependent stimulation of MacB ATPase and at the same time, contributes to recruitment of TolC into a trans-envelope complex. PMID:23057817

  17. Backbone NMR resonance assignments of the nucleotide binding domain of the ABC multidrug transporter LmrA from Lactococcus lactis in its ADP-bound state.

    Science.gov (United States)

    Hellmich, Ute A; Duchardt-Ferner, Elke; Glaubitz, Clemens; Wöhnert, Jens

    2012-04-01

    LmrA from Lactococcus lactis is a multidrug transporter and a member of the ATP binding cassette (ABC) transporter family. ABC transporters consist of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). The NBD contains the highly conserved signature motifs of this transporter superfamily. In the case of LmrA, the TMD and the NBD are expressed as a single polypeptide. LmrA catalyzes the extrusion of hydrophobic compounds including antibiotics from the cell membrane at the expense of ATP hydrolysis. ATP binds to the NBD, where binding and hydrolysis induce conformational changes that lead to the extrusion of the substrate via the TMD. Here, we report the (1)H, (13)C and (15)N backbone chemical shift assignments of the isolated 263 amino acid containing NBD of LmrA in its ADP bound state.

  18. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  19. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  20. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  1. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  2. Film sheet cassette

    International Nuclear Information System (INIS)

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  3. The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity.

    Science.gov (United States)

    Maqbool, Abbas; Horler, Richard S P; Muller, Axel; Wilkinson, Anthony J; Wilson, Keith S; Thomas, Gavin H

    2015-10-01

    ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways. © 2015 Authors; published by Portland Press Limited.

  4. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain.

    Science.gov (United States)

    Nishie, Mami; Sasaki, Makoto; Nagao, Jun-ichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2011-04-01

    Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn(106) is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT.

  5. Lantibiotic Transporter Requires Cooperative Functioning of the Peptidase Domain and the ATP Binding Domain*

    Science.gov (United States)

    Nishie, Mami; Sasaki, Makoto; Nagao, Jun-ichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2011-01-01

    Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics that contain unusual amino acids such as dehydro and lanthionine residues. Nukacin ISK-1 is a class II lantibiotic, whose precursor peptide (NukA) is modified by NukM to form modified NukA. ATP-binding cassette (ABC) transporter NukT is predicted to cleave off the N-terminal leader peptide of modified NukA and secrete the mature peptide. Multiple sequence alignments revealed that NukT has an N-terminal peptidase domain (PEP) and a C-terminal ATP binding domain (ABD). Previously, in vitro reconstitution of NukT has revealed that NukT peptidase activity depends on ATP hydrolysis. Here, we constructed a series of NukT mutants and investigated their transport activity in vivo and peptidase activity in vitro. Most of the mutations of the conserved residues of PEP or ABD resulted in failure of nukacin ISK-1 production and accumulation of modified NukA inside the cells. NukT(N106D) was found to be the only mutant capable of producing nukacin ISK-1. Asn106 is conserved as Asp in other related ABC transporters. Additionally, an in vitro peptidase assay of NukT mutants demonstrated that PEP is on the cytosolic side and all of the ABD mutants as well as PEP (with the exception of NukT(N106D)) did not have peptidase activity in vitro. Taken together, these observations suggest that the leader peptide is cleaved off inside the cells before peptide secretion; both PEP and ABD are important for NukT peptidase activity, and cooperation between these two domains inside the cells is indispensable for proper functioning of NukT. PMID:21303905

  6. Diversity of transport mechanisms: common structural principles

    NARCIS (Netherlands)

    Driessen, A.J.M.; Rosen, B.P.; Konings, W.N

    2000-01-01

    Traditionally, prokaryotic solute transport systems are classified into major groups based on the energetic requirement of the transport process. These include the secondary transporters that are driven by a proton or sodium motive force, and the ATP-binding cassette (ABC) primary transporters,

  7. A Cassette Based System for Hydrogen Storage and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Britton Wayne E.

    2006-11-29

    A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

  8. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    Science.gov (United States)

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  9. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A

    2002-01-01

    Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces the ab...

  10. Energy Coupling Factor-Type ABC Transporters for Vitamin Uptake in Prokaryotes

    NARCIS (Netherlands)

    Erkens, Guus B.; Dosz-Majsnerowska, Maria; ter Beek, Josy; Slotboom, Dirk Jan

    2012-01-01

    Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains

  11. ABC and MFS transporters from Botrytis cinerea involved in sensitivity to fungicides and natural toxic compounds

    NARCIS (Netherlands)

    Hayashi, K.

    2003-01-01

    ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporters are two major classes of proteins involved in drug resistance. ABC transporter proteins are primary transporters that use the energy generated by ATP hydrolysis to transport drugs over membranes, while MFS transport

  12. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  13. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  14. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  15. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  17. Impact of genetic variants of ATP binding cassette B1, AICAR transformylase/IMP cyclohydrolase, folyl-polyglutamatesynthetase, and methylenetetrahydrofolatereductase on methotrexate toxicity.

    Science.gov (United States)

    Sala-Icardo, Luis; Lamana, Amalia; Ortiz, Ana María; García Lorenzo, Elena; Moreno Fresneda, Pablo; García-Vicuña, Rosario; González-Álvaro, Isidoro

    To analyze the effect of single nucleotide polymorphisms (SNPs) with well-known functional impact of methylenetetrahydrofolatereductase (MTHFR; rs1801131 and rs1801133), the membrane transporter ABCB1 (rs1045642), the AICAR transformylase/IMP cyclohydrolase (ATIC; rs2372536) and folyl-polyglutamatesynthetase (FPGS; rs1544105), on liver and bone marrow toxicity of methotrexate (MTX). We analyzed 1415 visits from 350 patients of the PEARL (Princesa Early Arthritis Register Longitudinal) study: (732 with MTX, 683 without MTX). The different SNPs were genotyped using specific TaqMan probes (Applied Biosystems). Multivariate analyzes were performed using generalized linear models in which the dependent variables were the levels of serum alanine aminotransferase (liver toxicity), leukocytes, platelets or hemoglobin (hematologic toxicity) and adjusted for clinical variables (disease activity, etc.), analytical (renal function, etc.), sociodemographic (age, sex, etc.) and genetic variants of MTHFR, ABCB1, ATIC and FPGS. The effect of these variables on the MTX doses prescribed throughout follow-up was also analyzed through multivariate analysis nested by visit and patient. When taking MTX, those patients carrying the CC genotype of rs1045642 in ABCB1 showed significantly higher GPT levels (7.1±2.0 U/L; P<.001). Carrying at least one G allele of rs1544105 in FPGS was associated with lower leukocyte (-0.67±0.32; 0.038), hemoglobin (-0.34±0.11g/dL; P=.002), and platelet (-11.8±4.7; P=.012) levels. The presence of the G allele of rs1544105 in FPGS, and the T allele of rs1801133 in MTHFR, was significantly associated with the use of lower doses of MTX. Our data suggest that genotyping functional variants in FGPS and MTHFR enzymes and the transporter ABCB1 could help to identify patients with increased risk of MTX toxicity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  18. Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis.

    Science.gov (United States)

    Saito, A; Schrempf, H

    2004-06-01

    The highly differentiated bacterium Streptomyces olivaceoviridis efficiently hydrolyses chitin, a highly abundant natural polysaccharide, to low molecular weight products including N-acetylglucosamine (NAG) and N,N' -diacetylchitobiose (chitobiose). NAG is taken up by a PTS (phosphoenolpyruvate-dependent phosphotransferase system) which includes the PtsC2 protein, and via the ABC (ATP-binding cassette) transporter Ngc, which itself includes the substrate-binding protein NgcE. This is at present the only ABC transporter which is known to mediate specific uptake of NAG (K(m) 0.48 microM, V(max) 1.3 nmol/min/mg dry weight) and is competitively inhibited by chitobiose (K(i) 0.68 microM). The latter finding suggests that the Ngc system transports both NAG and chitobiose efficiently. To identify amino acid residues required for the function of NgcE, either the wild-type or one of several mutant forms of the ngcE gene was introduced into the strain S. olivaceoviridis DeltaNgcE/DeltaPtsC1/DeltaPtsC2, which lacks both functional transport systems for NAG, and chromosomal recombinants were selected. Based on the in vivo transport parameters of the recombinants, and the in vitro binding characteristics of the corresponding purified proteins, the following conclusions can be drawn. (1) Replacement of the C-terminally located residue Y396 by A (Y396A) has little effect on ligand-binding or transport parameters. The W395A mutation also induced little change in the substrate affinity in vitro, but it led in vivo to a marked increase (11 fold) in K(m), and enhanced V(max) (by 1.5 fold). (2) The amino acids Y201 and W280 both contribute (51% and 38%) to the ligand-binding capacity of NgcE. They are both very important for the in vivo function of the complete transport apparatus; strains expressing either Y201A or W280A show drastically (100 or 150 times) enhanced K(m) values. (3) The concomitant presence of either Y200 and W280 or Y201 and W280 is essential for the function of Ngc

  19. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2?) and tungstate (WO4 2?). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across

  20. The peroxisomal ABC transporter family

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Visser, Wouter F.; van Roermund, Carlo W. T.; Kemp, Stephan; Waterham, Hans R.

    2007-01-01

    This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae,

  1. Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs

    NARCIS (Netherlands)

    Jensen, Sonja

    2017-01-01

    Glutamate transporters and their homologs are membrane proteins that transport glutamate and aspartate together with sodium ions and/or protons. Human glutamate transporters remove the neurotransmitter glutamate after signal transmission. Therefore, glutamate transporters play a great role in

  2. ATP-Binding Cassette Systems of Brucella

    Directory of Open Access Journals (Sweden)

    Dominic C. Jenner

    2009-01-01

    Full Text Available Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59 as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.

  3. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station.

    Science.gov (United States)

    Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z

    2014-06-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.

  4. Structural and mechanistic insights into ABC-type ECF transporters for vitamin uptake

    NARCIS (Netherlands)

    Dosz-Majsnerowska, Maria

    2014-01-01

    Dit proefschrift gaat over de relatie tussen de structuur en het mechanisme van ABC-type ECF transporters voor vitamines, uit de bacterie Lactococcus lactis. Energy-Coupling Factor (ECF) transporters vormen een subgroep van de ATP-binding cassette (ABC) transporters en zijn betrokken bij de opname

  5. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    NARCIS (Netherlands)

    Bosdriesz, E.; Magnúsdóttir, S.; Bruggeman, F.J.; Teusink, B.; Molenaar, D.

    2015-01-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is

  6. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines

    Science.gov (United States)

    While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (ATP-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baselin...

  7. A specific interdomain interaction preserves the structural and binding properties of the ModA protein from the phytopathogen Xanthomonas citri domain interaction and transport in ModA.

    Science.gov (United States)

    Santacruz-Perez, Carolina; Pegos, Vanessa Rodrigues; Honorato, Rodrigo V; Verli, Hugo; Lindahl, Erik; Barbosa, João Alexandre Ribeiro Gonçalves; Balan, Andrea

    2013-11-01

    The periplasmic-binding proteins in ATP-binding cassette systems (ABC Transporters) are responsible for the capture and delivery of ligands to their specific transporters, triggering a series of ATP-driven conformational changes that leads to the transport of the ligand. Structurally consisting of two lobes, the proteins change conformation after interaction with the ligand. The structure of the molybdate-binding protein (ModA) from Xanthomonas citri, bound to molybdate, was previously solved by our group and an interdomain interaction, mediated by a salt bridge between K127 and D59, apparently supports the binding properties and keeps the domains closed. To determinate the importance of this interaction, we built two ModA mutants, K127S and D59A, and analysed their functional and structural properties. Based on a set of spectroscopic experiments, crystallisation trials, structure determination and molecular dynamics (MD) simulations, we showed that the salt bridge is essential to maintain the structure and binding properties. Additionally, the MD simulations revealed that this mutant adopted a more compact structure that packed down the ligand-binding pocket. From the closed bound to open structure, the positioning of the helices forming the dipole and the salt bridge are essential to induce an intermediate state. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Structural diversity of ABC transporters

    Science.gov (United States)

    ter Beek, Josy; Guskov, Albert

    2014-01-01

    ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity. PMID:24638992

  9. Binding of mazindol and analogs to the human serotonin and dopamine transporters.

    Science.gov (United States)

    Severinsen, Kasper; Koldsø, Heidi; Thorup, Katrine Almind Vinberg; Schjøth-Eskesen, Christina; Møller, Pernille Thornild; Wiborg, Ove; Jensen, Henrik Helligsø; Sinning, Steffen; Schiøtt, Birgit

    2014-02-01

    Mazindol has been explored as a possible agent in cocaine addiction pharmacotherapy. The tetracyclic compound inhibits both the dopamine transporter and the serotonin transporter, and simple chemical modifications considerably alter target selectivity. Mazindol, therefore, is an attractive scaffold for both understanding the molecular determinants of serotonin/dopamine transporter selectivity and for the development of novel drug abuse treatments. Using molecular modeling and pharmacologic profiling of rationally chosen serotonin and dopamine transporter mutants with respect to a series of mazindol analogs has allowed us to determine the orientation of mazindol within the central binding site. We find that mazindol binds in the central substrate binding site, and that the transporter selectivity can be modulated through mutations of a few residues in the binding pocket. Mazindol is most likely to bind as the R-enantiomer. Tyrosines 95 and 175 in the human serotonin transporter and the corresponding phenylalanines 75 and 155 in the human dopamine transporter are the primary determinants of mazindol selectivity. Manipulating the interaction of substituents on the 7-position with the human serotonin transporter Tyr175 versus dopamine transporter Phe155 is found to be a strong tool in tuning the selectivity of mazindol analogs and may be used in future drug design of cocaine abuse pharmacotherapies.

  10. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder

    DEFF Research Database (Denmark)

    Mc Mahon, Brenda; Andersen, Sofie B.; Madsen, Martin K.

    2016-01-01

    from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty 11 C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy...... controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding...... in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less...

  11. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein

    DEFF Research Database (Denmark)

    Staresincic, Lidija; Walker, Jane; Dirac-Svejstrup, A Barbara

    2011-01-01

    transport of RNAPII. Surprisingly, we were unable to detect interactions between Npa3 and proteins in the classical importin a/ß pathway for nuclear import. Interestingly, Npa3-RNAPII binding is significantly increased by the addition of GTP or its slowly hydrolyzable analogue guanosine 5'-3-O......-(thio)triphosphate (GTP¿S). Moreover, the Npa3 mutant that binds GTP, but cannot hydrolyze it, binds RNAPII even in the absence of added GTP, whereas the mutant that cannot bind GTP is unable to bind the polymerase. Together, our data suggest that Npa3 defines an unconventional pathway for nuclear import of RNAPII, which...

  12. Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays.

    NARCIS (Netherlands)

    Krumpochova, P; Sapthu, S.; Brouwers, J.F.H.M.; de Haas, M.; de Vos, R.; Borst, P.; van de Wetering, K.

    2013-01-01

    ABSTRACT The ATP-binding cassette (ABC) genes encode the largest family of transmembrane proteins. ABC transporters translocate a wide variety of substrates across membranes, but their physiological function is often incompletely understood. We describe a new method to study the substrate spectrum

  13. Transportomics: screening for substrates of ABC transporters in body fluids using vesicular transport assays

    NARCIS (Netherlands)

    Krumpochova, Petra; Sapthu, Sunny; Brouwers, Jos F.; de Haas, Marcel; de Vos, Ric; Borst, Piet; van de Wetering, Koen

    2012-01-01

    The ATP-binding cassette (ABC) genes encode the largest family of transmembrane proteins. ABC transporters translocate a wide variety of substrates across membranes, but their physiological function is often incompletely understood. We describe a new method to study the substrate spectrum of ABC

  14. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive...

  15. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males...... and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....

  16. Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage

    NARCIS (Netherlands)

    Ferrer, Isidre; Kapfhammer, Josef P.; Hindelang, Colette; Kemp, Stephan; Troffer-Charlier, Nathalie; Broccoli, Vania; Callyzot, Noëlle; Mooyer, Petra; Selhorst, Jacqueline; Vreken, Peter; Wanders, Ronald J. A.; Mandel, Jean Louis; Pujol, Aurora

    2005-01-01

    ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substances, ranging from peptides to lipids, across cell or organelle membranes. In peroxisomes, a subfamily of four ABC transporters (ABCD1 to ABCD4) has been related to fatty acid transport,

  17. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle

    DEFF Research Database (Denmark)

    Hwang, Jae-Ung; Song, Won-Yong; Hong, Daewoong

    2016-01-01

    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental...

  18. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural

  19. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    Science.gov (United States)

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  20. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J

    2014-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. METHODS: The relationship between clinical outcomes and ABC transporter gene expression in two in...

  1. Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA

    NARCIS (Netherlands)

    Mahmood, N. A. B. Nik; Biemans-Oldehinkel, Esther; Patzlaff, Jason S.; Schuurman-Wolters, Gea K.; Poolman, Bert

    2006-01-01

    The ATPase subunit of the osmoregulatory ATP- binding cassette transporterOpuAfrom Lactococcus lactis has a C- terminal extension, the tandem cystathionine beta- synthase ( CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress ( Biemans-

  2. Preserved serotonin transporter binding in de novo Parkinson's disease: negative correlation with the dopamine transporter.

    Science.gov (United States)

    Strecker, Karl; Wegner, Florian; Hesse, Swen; Becker, Georg-Alexander; Patt, Marianne; Meyer, Philipp M; Lobsien, Donald; Schwarz, Johannes; Sabri, Osama

    2011-01-01

    Recent imaging and neuropathological studies indicate reduced serotonin transporter (SERT) in advanced Parkinson's disease (PD). However, data on SERT in early PD patients are sparse. Following the hypothesis that the serotonergic system is damaged early in PD, the aim of our study was to investigate SERT availability by means of PET imaging. Since the loss of dopaminergic neurons is the pathologic hallmark of PD and SERT might be associated with psychiatric co-morbidity, we further sought to correlate SERT availability with the availability of dopamine transporter (DAT) and depressive or motor symptoms in early PD. We prospectively recruited nine early PD patients (4 female, 5 male; 42-76 years) and nine age matched healthy volunteers (5 female, 4 male; 42-72 years). Diagnosis of PD was confirmed by the UK brain bank criteria and DAT imaging. SERT availability was measured by means of [11C]DASB PET. For neuropsychiatric assessment done on the day of PET we applied UPDRS parts I, II and III, Beck's Depression Inventory, Hamilton Rating Scale for Depression, Mini-Mental State Examination and Demtect. SERT was not reduced in any of 14 investigated regions of interest in the nine PD patients compared to healthy controls (p>0.13). SERT was negatively associated with DAT in the striatum (r=-0.69; p=0.04) but not within the midbrain. There was no correlation of SERT availability with depressive symptoms. No alteration of SERT binding in our patients suggests that the serotonergic system is remarkably preserved in early PD. Correlation with DAT might point to a compensatory regulation of the serotonergic system in early stages of PD.

  3. ABC transporter genes and risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Schou, Jesper; Tybjærg-Hansen, Anne; Møller, Holger Jon

    2012-01-01

    Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2...... diabetes in the general population is unknown....

  4. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively

  5. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The

  6. Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies.

    Science.gov (United States)

    Raffel, David M; Chen, Wei

    2004-07-01

    The norepinephrine transporter (NET) is the carrier that drives the neuronal norepinephrine uptake mechanism (uptake1) in mammalian hearts. The radioligand [3H]mazindol binds with high affinity to NET. In this study, the kinetics of [3H]mazindol binding to NET were measured using a rat heart membrane preparation. Results from these studies were used to set up saturation binding assays designed to measure cardiac NET densities (Bmax) and competitive inhibition assays designed to measure inhibitor binding affinities (KI) for NET. Saturation binding assays measured NET densities in rat, rabbit, and canine hearts. Assay reproducibility was assessed and the effect of NaCl concentration on [3H]mazindol binding to NET was studied using membranes from rat and canine hearts. Specificity of [3H]mazindol binding to NET was determined in experiments in which the neurotoxin 6-hydroxydopamine (6-OHDA) was used to selectively destroy cardiac sympathetic nerve terminals in rats. Competitive inhibition studies measured KI values for several NET inhibitors and substrates. In kinetic studies using rat heart membranes, [3H]mazindol exhibited a dissociation rate constant koff=0.0123+/-0.0007 min(-1) and an association rate constant kon=0.0249+/-0.0019 nM(-1)min(-1). In saturation binding assays, [3H]mazindol binding was monophasic and saturable in all cases. Increasing the concentration of NaCl in the assay buffer increased binding affinity significantly, while only modestly increasing Bmax. Injections of 6-OHDA in rats decreased measured cardiac NET Bmax values in a dose-dependent manner, verifying that [3H]mazindol binds specifically to NET from sympathetic nerve terminals. Competitive inhibition studies provided NET inhibitor and substrate KI values consistent with previously reported values. These studies demonstrate the high selectivity of [3H]mazindol binding for the norepinephrine transporter in membrane preparations from mammalian hearts.

  7. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells.

    NARCIS (Netherlands)

    Tang, L.; Bergevoet, S.M.; Gilissen, C.F.H.A.; Witte, T.J.M. de; Jansen, J.H.; Reijden, B.A. van der; Raymakers, R.A.P.

    2010-01-01

    BACKGROUND: ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC

  8. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding.

    Science.gov (United States)

    Versteeg, Ruth I; Schrantee, Anouk; Adriaanse, Sofie M; Unmehopa, Unga A; Booij, Jan; Reneman, Liesbeth; Fliers, Eric; la Fleur, Susanne E; Serlie, Mireille J

    2017-10-01

    Recent studies have shown that meal timing throughout the day contributes to maintaining or regaining weight after hypocaloric diets. Although brain serotonin and dopamine are well known to be involved in regulating feeding, it is unknown whether meal timing during energy restriction affects these neurotransmitter systems. We studied the effect of a 4 wk hypocaloric diet with either 50% of daily calories consumed at breakfast (BF group) or at dinner (D group) on hypothalamic and thalamic serotonin transporter (SERT) binding and on striatal dopamine transporter (DAT) binding. The BF and D groups lost a similar amount of weight. Striatal DAT and thalamic SERT binding increased in the BF group, while decreasing in the D group after the diet (ΔDAT 0.37 ± 0.63 vs. -0.53 ± 0.77, respectively; P = 0.005; ΔSERT 0.12 ± 0.25 vs. -0.13 ± 0.26 respectively, P = 0.032). Additional voxel-based analysis showed an increase in DAT binding in the ventral striatum in the BF group and a decrease in the dorsal striatum in the D group. During weight loss, striatal DAT and thalamic SERT binding increased weight independently when 50% of daily calories were consumed at breakfast, whereas it decreased when caloric intake was highest at dinner. These findings may contribute to the earlier reported favorable effect of meal timing on weight maintenance after hypocaloric diets.-Versteeg, R. I., Schrantee, A., Adriaanse, S. M., Unmehopa, U. A., Booij, J., Reneman, L., Fliers, E., la Fleur, S. E., Serlie, M. J. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding. © FASEB.

  9. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  11. Scavenger Receptor Class B Type I Mediates Biliary Cholesterol Secretion Independent of ATP-Binding Cassette Transporter g5/g8 in Mice

    NARCIS (Netherlands)

    Wiersma, Harmen; Gatti, Alberto; Nijstad, Niels; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Tietge, Uwe J. F.

    2009-01-01

    Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesterol from high-density lipoprotein (HDL) particles by the liver and influences biliary cholesterol secretion. However, it is not dear, if this effect is direct or indirect. The aim of this study was to determine the impact

  12. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells

    NARCIS (Netherlands)

    Hinrichs, JWJ; Klappe, K; Hummel, [No Value; Kok, JW

    2004-01-01

    In this study we show that P-glycoprotein in multi-drug-resistant 2780AD human ovarian carcinoma cells and multidrug resistance-associated protein 1 in multi-drug-resistant HT29(col) human colon carcinoma cells are predominantly located in Lubrol-based detergent-insoluble glycosphingolipid-enriched

  13. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  14. Neuroticism Associates with Cerebral in Vivo Serotonin Transporter Binding Differently in Males and Females

    DEFF Research Database (Denmark)

    Tuominen, Lauri; Miettunen, Jouko; Cannon, Dara M

    2017-01-01

    Background: Neuroticism is a major risk factor for affective disorders. This personality trait has been hypothesized to associate with synaptic availability of the serotonin transporter, which critically controls serotonergic tone in the brain. However, earlier studies linking neuroticism...... studies. Methods: Here, we combined data from 4 different positron emission tomography imaging centers to address whether neuroticism is related to serotonin transporter binding in vivo. The data set included serotonin transporter binding potential values from the thalamus and striatum and personality......). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex....

  15. Serotonin transporter binding as a possible predictor of one-year remission in major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Oquendo, Maria A; Ogden, R Todd; Mann, J John; Parsey, Ramin V

    2008-10-01

    Lower serotonin transporter (5-HTT) binding (BP(P)=f(P)B(avail)/K(D)) is reported during a major depressive episode (MDE) compared to healthy controls. Higher 5-HTT binding in the diencephalon has previously been associated with acute response to antidepressant treatment. We assessed baseline 5-HTT binding as a predictor of one-year remission from a MDE, examining binding in brain regions implicated in the pathophysiology of major depressive disorder (MDD). 5-HTT binding was quantified using positron emission tomography (PET) with [(11)C]McN5652 in 19 currently depressed subjects with MDD and 41 healthy controls. Depressed subjects received open, naturalistic antidepressant treatment. Remission status was determined one year after PET scan and treatment initiation. Significant differences in 5-HTT binding among the three groups (healthy controls, remitters, and non-remitters) were observed in a linear mixed-effects model. Post hoc, non-remitters had lower 5-HTT binding than controls in midbrain, amygdala, and anterior cingulate. Remitters did not differ significantly from controls or non-remitters in 5-HTT binding. Remitters did not differ from non-remitters in clinical characteristics apart from greater family history of depression among non-remitters. A logistic regression model fit to determine the capacity of baseline 5-HTT binding to predict remission status at one year yielded a coefficient that was suggestive but not significant (p=0.057). The small sample size and heterogeneous treatments received reduced statistical power to detect differences in binding based on clinical outcome. Lower pretreatment 5-HTT binding may be predictive of non-remission from major depression following one year of naturalistic antidepressant treatment. Future studies using standardized treatment are warranted.

  16. CHARACTERIZATION OF A BINDING PROTEIN-DEPENDENT GLUTAMATE TRANSPORT-SYSTEM OF RHODOBACTER-SPHAEROIDES

    NARCIS (Netherlands)

    Jacobs, M.H J; Driessen, A.J.M.; Konings, W.N

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (K-t of 1.2 mu M), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein

  17. Characterization of a Binding Protein-Dependent Glutamate Transport System of Rhodobacter sphaeroides

    NARCIS (Netherlands)

    Jacobs, Mariken H.J.; Driessen, Arnold J.M.; Konings, Wil N.

    1995-01-01

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 µM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was

  18. Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo

    Science.gov (United States)

    Han, Hee-Sun; Martin, John D.; Lee, Jungmin; Harris, Daniel K.; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi

    2013-01-01

    Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles. PMID:23255143

  19. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration

    DEFF Research Database (Denmark)

    Ziebell, Morten; Khalid, Usman; Klein, Anders B

    2012-01-01

    BDNF levels in patients with parkinsonism. Twenty-one patients with abnormal in vivo striatal dopamine transporter (DAT) binding as evidenced with [(123)I]PE2I SPECT brain scanning were included. Samples for serum BDNF levels were collected at the time of the SPECT scanning, and BDNF was measured...

  20. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  1. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    International Nuclear Information System (INIS)

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-01-01

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg 2+ . • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg 2+ , which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics

  2. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  3. Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats.

    Science.gov (United States)

    Vasselli, J R; Flory, T; Fried, S K

    1987-01-01

    The intestinal glucosidase inhibitor acarbose was administered as a dietary admix (30 mg/100 g chow diet) to male Zucker obese and lean rats. After 15 weeks, epidiymal fat pads were removed and adipocytes isolated by collagenase digestion. Equilibrium binding of A-14 tyrosine 125I-insulin, and transport of U-14C-glucose was determined was adipocytes incubated for 50 min at 37 degrees C in 0-16000 pM insulin. Insulin binding/cell was enhanced two-fold in lean (P less than 0.01) and obese (n.s.) drug groups. In drug-treated leans, increased sensitivity of glucose transport to submaximally stimulating concentrations of insulin was observed (P less than 0.02). For both genotypes, acarbose mildly decreased insulin levels and body weight gain, although adipocyte size was unaffected. Results indicate that enhanced insulin binding accompanies metabolic improvements induced by acarbose in lean Zucker rats.

  4. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  5. Retinoblastoma-binding Protein 4-regulated Classical Nuclear Transport Is Involved in Cellular Senescence*

    Science.gov (United States)

    Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro

    2015-01-01

    Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence. PMID:26491019

  6. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    International Nuclear Information System (INIS)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-01-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression

  7. Phloem RNA-binding proteins as potential components of the long-distance RNA transport system.

    Directory of Open Access Journals (Sweden)

    VICENTE ePALLAS

    2013-05-01

    Full Text Available RNA-binding proteins (RBPs govern a myriad of different essential processes in eukaryotic cells. Recent evidence reveals that apart from playing critical roles in RNA metabolism and RNA transport, RBPs perform a key function in plant adaption to various environmental conditions. Long distance RNA transport occurs in land plants through the phloem, a conducting tissue that integrates the wide range of signalling pathways required to regulate plant development and response to stress processes. The macromolecules in the phloem pathway vary greatly and include defence proteins, transcription factors, chaperones acting in long distance trafficking, and RNAs (mRNAs, siRNAs and miRNAs. How these RNA molecules translocate through the phloem is not well understood, but recent evidence indicates the presence of translocatable RNA-binding proteins in the phloem, which act as potential components of long distance RNA transport system. This review updates our knowledge on the characteristics and functions of RBPs present in the phloem.

  8. Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport.

    Science.gov (United States)

    Baghel, Pratima; Rawal, Manpreet Kaur; Khan, Mohammad Firoz; Sen, Sobhan; Siddiqui, Mohammed Haris; Chaptal, Vincent; Falson, Pierre; Prasad, Rajendra

    2017-10-01

    The present study examines the kinetics of steroids efflux mediated by the Candida drug resistance protein 1 (Cdr1p) and evaluates their interaction with the protein. We exploited our in-house mutant library for targeting the 252 residues forming the twelve transmembrane helices (TMHs) of Cdr1p. The screening revealed 65 and 58 residues critical for β-estradiol and corticosterone transport, respectively. Notably, up to 83% critical residues for corticosterone face the lipid interface compared to 54% for β-estradiol. Molecular docking identified a possible peripheral corticosterone-binding site made of 8/14 critical/non-critical residues between TMHs 3, 4 and 6. β-estradiol transport was severely hampered by alanine replacements of Cdr1p core residues involving TMHs 2, 5 and 8, in a binding site made of 10/14 critical residues mainly shared with rhodamine 6G with which it competes. By contrast, TMH11 was poorly impacted, although being part of the core domain. Finally, we observed the presence of several contiguous stretches of 3-5 critical residues in TMHs 2, 5 and 10 that points to a rotation motion of these helices during the substrate transport cycle. The selective structural arrangement of the steroid-binding pockets in the core region and at the lipid-TMD interface, which was never reported before, together with the possible rotation of some TMHs may be the structural basis of the drug-transport mechanism achieved by these type II ABC transporters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein.

    Science.gov (United States)

    Qasem-Abdullah, Hiba; Perach, Michal; Livnat-Levanon, Nurit; Lewinson, Oded

    2017-09-01

    Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B 12 , heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The ITER divertor cassette project meeting

    International Nuclear Information System (INIS)

    Merola, M.; Riccardi, B.; Tivey, R.

    1999-01-01

    The Divertor Cassette Project topical meeting was held on May 26-28, 1999 at the ENEA Brasimone Research Centre in Camugnano (Bologna), Italy. Specialists from all the four Parties and the JCT participated in the meeting. It was concluded that the Divertor Cassette Project has significantly contributed to solving a large part of the critical issues of the ITER divertor design

  11. Importin β-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    International Nuclear Information System (INIS)

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-01-01

    Highlights: → Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. → Biosensor measurements provide constants for dissociation, on-rates, and off-rates. → The affinity of receptors for Ran-GTP is widely divergent. → Dissociation constants differ for three orders of magnitude. → The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin β family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of β-receptors and of other Ran-binding proteins was determined. We found that the number of β-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  12. The effects of methylglyoxal-bis(guanylhydrazone) on spermine binding and transport in liver mitochondria.

    Science.gov (United States)

    Toninello, A; Via, L D; Di Noto, V; Mancon, M

    1999-12-15

    This study evaluated the effect of the anticancer drug methylglyoxal-bis(guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Noto et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et al., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S2 site is able to participate in residual spermine transport. MGBG also strongly inhibits deltapH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation

  13. Microwave emulations and tight-binding calculations of transport in polyacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, Thomas, E-mail: stegmann@icf.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Franco-Villafañe, John A., E-mail: jofravil@fis.unam.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico); Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Ortiz, Yenni P. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Kuhl, Ulrich [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Mortessagne, Fabrice, E-mail: fabrice.mortessagne@unice.fr [Université de Nice – Sophia Antipolis, Laboratoire de la Physique de la Matière Condensée, CNRS, Parc Valrose, 06108 Nice (France); Seligman, Thomas H. [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, 62210 Cuernavaca (Mexico); Centro Internacional de Ciencias, 62210 Cuernavaca (Mexico)

    2017-01-05

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene. - Highlights: • Electronic transport in individual polyacetylene chains is studied. • Microwave emulation experiments and tight-binding calculations agree well. • In long chains a band-gap opens due the dimerization of the chain. • In short chains edge atoms cause strong resonance peaks in the center of the band-gap.

  14. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  15. Functional expression and characterization of plant ABC transporters in Xenopus laevis oocytes for transport engineering purposes

    DEFF Research Database (Denmark)

    Xu, Deyang; Veres, Dorottya; Belew, Zeinu Mussa

    2016-01-01

    Transport engineering in bioengineering is aimed at efficient export of the final product to reduce toxicity and feedback inhibition and to increase yield. The ATP-binding cassette (ABC) transporters with their highly diverse substrate specificity and role in cellular efflux are potentially...... suitable in transport engineering approaches, although their size and high number of introns make them notoriously difficult to clone. Here, we report a novel in planta “exon engineering” strategy for cloning of full-length coding sequence of ABC transporters followed by methods for biochemical...... provided will hopefully contribute to more successful transport engineering in synthetic biology....

  16. Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding

    DEFF Research Database (Denmark)

    Skovstrup, S.; Taboureau, Olivier; Bräuner-Osborne, H.

    2010-01-01

    A homology model of the human GABA transporter (GAT-1) based on the recently reported crystal structures of the bacterial leucine transporter from Aquifex aeolicus (LeuT) was developed. The stability of the resulting model embedded in a membrane environment was analyzed by extensive molecular...... dynamics (MD) simulations. Based on docking studies and subsequent MD simulations of three compounds, the endogenous ligand GABA and two potent inhibitors, (R)-nipecotic acid and the anti-epilepsy drug tiagabine, various binding modes were identified and are discussed. Whereas GABA and (R)-nipecotic acid...

  17. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David

    2009-01-01

    Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects.......4+/-5.0 years) for developing mood disorder were included. The subjects were healthy twins with or without a co-twin history of mood disorder identified by linking information from the Danish Twin Register and the Danish Psychiatric Central Register. Regional in vivo brain serotonin transporter binding...... at risk for developing depression. The aim of this study was to explore whether abnormalities in SERT might be present in healthy individuals with familial predisposition to mood disorder. Nine individuals at high familial risk (mean age 32.2+/-4.2 years) and 11 individuals at low risk (mean age 32...

  18. BDNF val66met association with serotonin transporter binding in healthy humans

    OpenAIRE

    Fisher, P. M.; Ozenne, B.; Svarer, C.; Adamsen, D.; Lehel, S.; Baaré, W. F. C.; Jensen, P.S.; Knudsen, G. M.

    2017-01-01

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted differences in 5-HTT levels in humans but with equivocal results, possibly due to limited sample sizes. Within the current study we evaluated these genetic predictors of 5-HTT binding with [11C]DASB po...

  19. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron T. [Northwestern Univ., Evanston, IL (United States); Barupala, Dulmini [Wayne State Univ., Detroit, MI (United States); Stemmler, Timothy L. [Wayne State Univ., Detroit, MI (United States); Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  20. Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening.

    Science.gov (United States)

    Xiao, Hao; Sun, Mingyue; Zhao, Ruiyue; Hong, Haiyan; Zhang, Aili; Zhang, Shuxian; Liu, Futao; Zhang, Yan; Liu, Yajing; Zhu, Lin; Kung, Hank F; Qiao, Jinping

    2018-03-03

    Cassette dosing is also known as N-in-One dosing: several compounds are simultaneously administrated to a single animal and then the samples are rapidly detected by LC-MS/MS. This approach is a successful strategy to enhance the efficiency of drug discovery and reduce animal usage. However, no report on the utility of the cassette approach in radiotracer discovery has appeared in the literature. This study designed a cassette microdose with LC-MS/MS method to enhance the throughput for screening radiopharmaceutical biodistribution in the rat brain directly. Three unradiolabeled compounds (FPBM FPBM2 and AV-133) were chosen as model drugs administrated intravenously to the rats as a cassette as opposed to discrete study. The rat brain biodistribution data, target localization, the differential uptake ratio (%ID/g) and the brain tissue-specific binding ratio were obtained by the LC-MS/MS analysis. These data matched very well with the values obtained by the standard radioactivity measurements. Moreover, no significant differences between discrete dosing and cassette dosing were observed. By circumventing the need for radiolabeled molecules, this method may be high-throughput and safe for the research and development of new PET imaging agents. The combination of cassette microdosing and LC-MS/MS would be a medium throughput screening tool at an early stage in the discovery/development process of PET imaging agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Simulation of the coupling between nucleotide binding and transmembrane domains in the ABC transporter BtuCD

    DEFF Research Database (Denmark)

    Sonne, Jacob; Kandt, C.; Peters, Günther H.j.

    2007-01-01

    binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B12 to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B12 from the transporter pore....

  2. Insights to ligand binding to the monoamine transporters – from homology modeling to LeuBAT and dDAT

    Directory of Open Access Journals (Sweden)

    Heidi eKoldsø

    2015-09-01

    Full Text Available Understanding of drug binding to the human biogenic amine transporters is essential to explain the mechanism of action of these pharmaceuticals but more importantly to be able to develop new and improved compounds to be used in the treatment of depression or drug addiction. Until recently no high resolution structure was available of the biogenic amine transporters and homology modeling was a necessity. Various studies have revealed experimentally validated binding modes of numerous ligands to the biogenic amine transporters using homology modeling. Here we examine and discuss the similarities between the binding models of substrates, antidepressants, psychostimulants and anti-abuse drugs in homology models of the human biogenic amine transporters and the recently published crystal structures of the drosophila dopamine transporter and the engineered protein, LeuBAT. The comparison reveals that careful computational modeling combined with experimental data can be utilized to predict binding of molecules to proteins that agree very well with crystal structures.

  3. Borreliacidal activity of Borrelia metal transporter A (BmtA binding small molecules by manganese transport inhibition

    Directory of Open Access Journals (Sweden)

    Wagh D

    2015-02-01

    Full Text Available Dhananjay Wagh,* Venkata Raveendra Pothineni,* Mohammed Inayathullah, Song Liu, Kwang-Min Kim, Jayakumar Rajadas Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA *These authors contributed equally to this work  Abstract: Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA, a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 µg/mL (250 µM. Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.  Keywords: Lyme disease, BmtA, Borrelia burgdorferi, desloratadine, Bac Titer-Glo assay

  4. Prenatal stress induces increased striatal dopamine transporter binding in adult nonhuman primates.

    Science.gov (United States)

    Converse, Alexander K; Moore, Colleen F; Moirano, Jeffrey M; Ahlers, Elizabeth O; Larson, Julie A; Engle, Jonathan W; Barnhart, Todd E; Murali, Dhanabalan; Christian, Bradley T; DeJesus, Onofre T; Holden, James E; Nickles, Robert J; Schneider, Mary L

    2013-10-01

    To determine the effects in adult offspring of maternal exposure to stress and alcohol during pregnancy, we imaged striatal and midbrain dopamine transporter (DAT) binding by positron emission tomography in rhesus monkeys (Macaca mulatta). We also evaluated the relationship between DAT binding and behavioral responses previously found to relate to dopamine D2 receptor density (responsivity to tactile stimuli, performance on a learning task, and behavior during a learning task). Subjects were adult offspring derived from a 2 × 2 experiment in which pregnant monkeys were randomly assigned to control, daily mild stress exposure (acoustic startle), voluntary consumption of moderate-level alcohol, or both daily stress and alcohol. Adult offspring (n = 38) were imaged by positron emission tomography with the DAT ligand [(18)F]2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)-nortropane ([(18)F]FECNT). Results showed that prenatal stress yielded an overall increase of 15% in [(18)F]FECNT binding in the striatum (p = .016), 17% greater binding in the putamen (p = .012), and 13% greater binding in the head of the caudate (p = .028) relative to animals not exposed to prenatal stress. Striatal [(18)F]FECNT binding correlated negatively with habituation to repeated tactile stimulation and positively with tactile responsivity. There were no significant effects of prenatal alcohol exposure on [(18)F]FECNT binding. Maternal exposure to mild daily stress during pregnancy yielded increases in striatal DAT availability that were apparent in adult offspring and were associated with behavioral characteristics reflecting tactile hyperresponsivity, a condition associated with problem behaviors in children. © 2013 Society of Biological Psychiatry.

  5. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters

    OpenAIRE

    Verdon, Grégory; Oh, SeCheol; Serio, Ryan N; Boudker, Olga

    2014-01-01

    eLife digest Molecules of glutamate can carry messages between cells in the brain, and these signals are essential for thought and memory. Glutamate molecules can also act as signals to build new connections between brain cells and to prune away unnecessary ones. However, too much glutamate outside of the cells kills the brain tissue and can lead to devastating brain diseases. In a healthy brain, special pumps called glutamate transporters move these molecules back into the brain cells, where...

  6. Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment

    Science.gov (United States)

    Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

  7. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna

    NARCIS (Netherlands)

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L.; Grysan, Patrick; Audinot, Jean Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C.; Murk, A.J.

    2016-01-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR).

  8. Design of SMART steam generator cassette

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Jang, M. H.

    2001-01-01

    Basic design development for the steam generator to be installed in the integral reactor SMART has been performed. Optimization of the steam generator shape, determination of the basic dimension and confirmation of the structural strength have been carried out. Individual steam generator cassette can be replaced in the optimized design concept of steam generator. Shape design of the steam generator cassette has been done on the computer based on 3-D CAE strategy. The structural integrity of the developed steam generator was investigated by performing the dynamic analysis for the steam generator cassette, flow induced vibration analysis for the tube bundle, and the thermo-mechanical analysis for the module header and tube. As for the manufacturing of steam generator, the numerical and the experimental simulation have been carried to control the amount of spring back and to eliminate residual stress. SMART steam generator cassette was developed by a sequential research of the aforementioned activities

  9. Cassette for handling banknotes or the like

    Science.gov (United States)

    Lundblad, Leif

    1981-08-11

    A cassette for banknotes and like valuable articles is provided with a displaceable lid (6) and locking means (10) for latching the lid of the cassette when the cassette is located outside a housing (25) in which it is intended to be placed. An operating means (8) is arranged to co-act with the locking means and with a latching element (15). The latching element is arranged to be released in dependence upon a pre-set program. A signal circuit is arranged to send a code signal to a detector circuit (23) when electrical contact elements on the cassette and the housing co-act with one another, which detector circuit, when the signal coincides with the signal program in the detector circuit, causes a signal to be sent for moving the latching means to a non-latching position.

  10. Investigations into the binding of 125I-calmodulin to CA++ transport ATPase of human erythrocytes

    International Nuclear Information System (INIS)

    Sterk, V.

    1983-01-01

    The study described was carried out in order to investigate the binding of 125 I-calmodulin to Ca ++ transport ATPase using different Ca ++ concentrations and temperatures. The data obtained from these experiments were subsequently analysed in such as a way as to yield meaningful information relating to the mechanisms underlying the attachment of calmodulin to Ca ++ transport ATPase, the % proportion of membrane protein that was attributable to the enzyme as well as the number of calmodulin receptor sites on the individual erythrocytes, etc. Comparisons with data from the relevant literature permitted conclusions to be drawn concerning the mode of Ca ++ transport at the level of the erythrocytes. A new methodology and processing technique had to be developed prior to the beginning of the experiments. (orig./MG) [de

  11. Selective binding of 2-[125I]iodo-nisoxetine to norepinephrine transporters in the brain

    International Nuclear Information System (INIS)

    Kung, M.-P.; Choi, Seok-Rye; Hou, Catherine; Zhuang, Z.-P.; Foulon, Catherine; Kung, Hank F.

    2004-01-01

    A radioiodinated ligand, (R)-N-methyl-(2-[ 125 I]iodo-phenoxy)-3-phenylpropylamine, [ 125 I]2-INXT, targeting norepinephrine transporters (NET), was successfully prepared. A no-carrier-added product, [ 125 I]2-INXT, displayed a saturable binding with a high affinity (K d =0.06 nM) in the homogenates prepared from rat cortical tissues as well as from LLC-PK 1 cells expressing NET. A relatively low number of binding sties (B max =55 fmol/mg protein) measured with [ 125 I]2-INXT in rat cortical homogenates is consistent with the value reported for a known NET ligand, [ 3 H]nisoxetine. Competition studies with various compounds on [ 125 I]2-INXT binding clearly confirmed the pharmacological specificity and selectivity for NET binding sites. Following a tail-vein injection of [ 125 I]2-INXT in rats, a good initial brain uptake was observed (0.56% dose at 2 min) followed by a slow washout from the brain (0.2% remained at 3 hours post-injection). The hypothalamus (a NET-rich region) to striatum (a region devoid of NET) ratio was 1.5 at 3 hours post-i.v. injection. Pretreatment of rats with nisoxetine significantly inhibited the uptake of [ 125 I]2-INXT (70-100% inhibition) in locus coeruleus, hypothalamus and raphe nuclei, regions known to have a high density of NET; whereas escitalopram, a serotonin transporter ligand, did not show a similar effect. Ex vivo autoradiography of rat brain sections of [ 125 I]2-INXT (at 3 hours after an i.v. injection) displayed an excellent regional brain localization pattern corroborated to the specific NET distribution in the brain. The specific brain localization was significantly reduced by a dose of nisoxetine pretreatment. Taken together, the data suggest that [ 123 I]2-INXT may be useful for mapping NET binding sites in the brain

  12. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  13. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Sanz, Y; Toldra, F; Renault, P; Poolman, B

    2003-01-01

    The genome sequence of Lactococcus lactis IL1403 revealed the presence of a putative peptide-binding protein-dependent ABC-transporter (Dpp). The genes for two peptide-binding proteins (dppA and dppP) precede the membrane components, which include two transmembrane protein genes (dppB and dppC) and

  14. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...

  15. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  16. Brain Serotonin Transporter Binding In a Minipig Model of Parkinson's Disease

    DEFF Research Database (Denmark)

    Lillethorup, Thea Pinholt; Glud, Andreas Nørgaard; Sørensen, Jens Christian Hedemann

    Objectives: Some of the debilitating non-motor aspects of Parkinson’s disease (PD) are related to the serotonin system1. To investigate the involvement of the brain serotonergic system in a PD animal model, we measured the in vivo binding of [11C]-DASB to the serotonin transporter (SERT......) as a marker of serotonergic neurons. In this study, we use the in vivo capabilities of PET imaging to study serotonin neurotransmission in a minipig model of PD induced by the intracerebroventricular injection of lactacystin, an inhibitor of the ubiquitin proteasome system. Methods: Five female Göttingen....... Results: Lactacystin administration induced behavioural symptoms including weakness of hindlimbs and decreased motor activity. SERT binding potential was decreased by 35-40% in striatal brain regions and by 20% in thalamic regions compared to the baseline scans. Conclusions: Our imaging data suggests...

  17. Insight of the Iron Binding and Transport in Dke1 - A Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Hrvoje Brkić

    2015-12-01

    Full Text Available Acetylacetone dioxygenase from Acinetobacter johnsonii (Dke1 is a non-heme Fe2+ dependent enzyme which catalyzes the oxidative degradation of β-dicarbonyl compounds. It is a homotetramer with four active sites, each containing single metal ion. Since the active site is buried, knowledge on transport of the metal ion and reactants (products is essential for understanding the enzyme mechanism. The goal of this study was to assess the influence of several point mutations on the enzyme activity. The point mutations of hydrophilic amino acid residues (Tyr70, Arg80 and Glu98 that were shown to be important for metal binding and reactants stabilization were of the particular interest. Computational study enabled us to determine the preferred metal ion binding sites as well, as the pathways it utilizes to enter the enzyme active site. Besides, influence of the point mutations on the hydrogen bond network within enzyme was determined.

  18. Kinetic analysis of ligand binding to the Ehrlich cell nucleoside transporter: Pharmacological characterization of allosteric interactions with the sup 3 Hnitrobenzylthioinosine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.R. (Department of Pharmacology and Toxicology, University of Western Ontario, London (Canada))

    1991-06-01

    Kinetic analysis of the binding of {sup 3}Hnitrobenzylthioinosine ({sup 3}H NBMPR) to Ehrlich ascites tumor cell plasma membranes was conducted in the presence and absence of a variety of nucleoside transport inhibitors and substrates. The association of {sup 3}H NBMPR with Ehrlich cell membranes occurred in two distinct phases, possibly reflecting functional conformation changes in the {sup 3}HNBMPR binding site/nucleoside transporter complex. Inhibitors of the equilibrium binding of {sup 3}HNBMPR, tested at submaximal inhibitory concentrations, generally decreased the rate of association of {sup 3}HNBMPR, but the magnitude of this effect varied significantly with the agent tested. Adenosine and diazepam had relatively minor effects on the association rate, whereas dipyridamole and mioflazine slowed the rate dramatically. Inhibitors of nucleoside transport also decreased the rate of dissociation of {sup 3}HNBMPR, with an order of potency significantly different from their relative potencies as inhibitors of the equilibrium binding of {sup 3}HNBMPR. Dilazep, dipyridamole, and mioflazine were effective inhibitors of both {sup 3}HNBMPR dissociation and equilibrium binding. The lidoflazine analogue R75231, on the other hand, had no effect on the rate of dissociation of {sup 3}HNBMPR at concentrations below 300 microM, even though it was one of the most potent inhibitors of {sup 3}HNBMPR binding tested (Ki less than 100 nM). In contrast, a series of natural substrates for the nucleoside transport system enhanced the rate of dissociation of {sup 3}HNBMPR with an order of effectiveness that paralleled their relative affinities for the permeant site of the transporter. The most effective enhancers of {sup 3}HNBMPR dissociation, however, were the benzodiazepines diazepam, chlordiazepoxide, and triazolam.

  19. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...

  20. Binding-protein-dependent sugar transport by Agrobacterium radiobacter and A. tumefaciens grown in continuous culture.

    Science.gov (United States)

    Cornish, A; Greenwood, J A; Jones, C W

    1989-11-01

    Binding-protein-dependent sugar transport has been investigated in Agrobacterium radiobacter and A. tumefaciens. A. radiobacter contained two high-affinity glucose-binding proteins (GBP1 and GBP2) that additionally bound D-galactose (KD 0.26 microM) and D-xylose (KD 0.04 microM) respectively and were involved in the transport of these sugars. Partial sequencing of GBP1 and GBP2 showed that GBP2 exhibited significant homology with both the arabinose-binding protein (ABP) and the galactose-binding protein (GalBP) from Escherichia coli, whereas GBP1 exhibited significant homology only with ABP. Antiserum raised against GBP1 cross-reacted with GBP1 but not with GBP2, and vice versa. Anti-GBP1 and anti-GBP2 also cross-reacted with proteins corresponding to GBP1 and GBP2 respectively in A. tumefaciens, but little or no cross-reaction was observed with selected members of the Enterobacteriaceae, Rhizobiaceae and Pseudomonadaceae families grown under glucose limitation. GBP1 was less strongly repressed than GBP2 following batch growth of A. radiobacter on various carbon sources. The growth of A. radiobacter for more than approximately 10 generations in continuous culture under galactose or xylose limitation (D 0.045 h-1) led to the emergence of new strains which exhibited increased rates of glucose/galactose or glucose/xylose uptake, and which respectively hyperproduced GBP1 (strain AR18a) or GBP2 (strain AR9a). Similarly, growth of A. tumefaciens for more than approximately 15 generations under glucose or galactose limitation produced new strains which exhibited increased rates of glucose/xylose or glucose/galactose uptake and which respectively hyperproduced proteins analogous to GBP2 (strain AT9) or GBP1 (strain AT18a). It is concluded that growth of Agrobacterium species under carbon-limited conditions leads to the predictable emergence of new strains which specifically hyperproduce the transport system for the limiting nutrient. The GBP1-dependent system of A

  1. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang

    2015-01-01

    Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs...... with a multimodal pharmacological profile that in addition to potent inhibition of hSERT include agonistic or antagonistic effects at different serotonin receptors. We used a combination of computational, chemical, and biological methods to decipher the molecular basis for high affinity binding of vortioxetine in h...

  2. BDNF val66met association with serotonin transporter binding in healthy humans

    DEFF Research Database (Denmark)

    Fisher, P. M.; Ozenne, B.; Svarer, C.

    2017-01-01

    -carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT......The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted...

  3. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Chi [Cryo-EM Structural; Tong, Simon [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Zhou, Yuchen [Department of Applied Mathematics; Elmes, Matthew W. [Department of Biochemistry and; Yan, Su [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Kaczocha, Martin [Department of Biochemistry and; Department of Anesthesiology, Stony Brook University, Stony; Deutsch, Dale G. [Department of Biochemistry and; Institute of Chemical Biology and; Rizzo, Robert C. [Department of Applied Mathematics; Institute of Chemical Biology and; Laufer; Ojima, Iwao [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Institute of Chemical Biology and; Li, Huilin [Cryo-EM Structural; Institute of Chemical Biology and

    2017-06-28

    Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26–FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.

  4. Conservation of targeting but divergence in function and quality control of peroxisomal ABC transporters: an analysis using cross-kingdom expression

    NARCIS (Netherlands)

    Zhang, Xuebin; de Marcos Lousa, Carine; Schutte-Lensink, Nellie; Ofman, Rob; Wanders, Ronald J.; Baldwin, Stephen A.; Baker, Alison; Kemp, Stephan; Theodoulou, Frederica L.

    2011-01-01

    ABC (ATP-binding cassette) subfamily D transporters are found in all eukaryotic kingdoms and are known to play essential roles in mammals and plants; however, their number, organization and physiological contexts differ. Via cross-kingdom expression experiments, we have explored the conservation of

  5. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    DEFF Research Database (Denmark)

    Skovstrup, Soren; David, Laurent; Taboureau, Olivier

    2012-01-01

    , dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter...... to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues...... in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary...

  6. Relationships between the catechol substrate binding site and amphetamine, cocaine, and mazindol binding sites in a kinetic model of the striatal transporter of dopamine in vitro.

    Science.gov (United States)

    Wayment, H; Meiergerd, S M; Schenk, J O

    1998-05-01

    Experiments were conducted to determine how (-)-cocaine and S(+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m-tyramine and S(+)-amphetamine caused release of dopamine from intracellular stores at concentrations > or = 12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m-tyramine and S(+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S(+)-Amphetamine and m-tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (-)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site (K(int) = 583 nM). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (-)-cocaine suggest that the (-)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (-)-cocaine binding may be developed to block (-)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.

  7. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  8. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.

    2010-01-01

    The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine......, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (h...... is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to h...

  9. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2

    DEFF Research Database (Denmark)

    Henriksen, Ulla Birk; Gether, Ulrik; Litman, Thomas

    2005-01-01

    of the nucleotide binding domain (NBD) known to be critical for ATP binding and/or hydrolysis in ABC transporters. The mutant (ABCG2-K86M) was inactive as expected but was expressed at similar levels as the wild-type (wt) protein. The mutation did not affect the predicted oligomerization properties......The ATP binding cassette (ABC) half-transporter ABCG2 (MXR/BCRP/ABCP) is associated with mitoxantrone resistance accompanied by cross-resistance to a broad spectrum of cytotoxic drugs. Here we investigate the functional consequences of mutating a highly conserved lysine in the Walker A motif...... of the NBDs in assisting proper surface targeting of ABC transporters....

  10. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A

    2002-01-01

    Two ATP-binding cassette (ABC) proteins, ABCG5 and ABCG8, have recently been associated with the accumulation of dietary cholesterol in the sterol storage disease sitosterolemia. These two 'half-transporters' are assumed to dimerize to form the complete sitosterol transporter which reduces...... the absorption of sitosterol and related molecules in the intestine by pumping them back into the lumen. Although mutations altering ABCG5 and ABCG8 are found in affected patients, no functional demonstration of sitosterol transport has been achieved. In this study, we investigated whether other ABC transporters......-specific ABC transporters have acquired specificity to exclude sitosterol and related sterols like cholesterol presumably because the abundance of cholesterol in the membrane would interfere with their action; in consequence, specific transporters have evolved to handle these sterols....

  11. Benzo- and cyclohexanomazindol analogues as potential inhibitors of the cocaine binding site at the dopamine transporter.

    Science.gov (United States)

    Houlihan, William J; Ahmad, Umer F; Koletar, Judith; Kelly, Lawrence; Brand, Leonard; Kopajtic, Theresa A

    2002-09-12

    A series of mazindol (1), homomazindol (2), and bishomomazindol (3) derivatives with a benzo or cyclohexano ring fused at various sites were prepared as part of an SAR study to determine the effect of increased aliphatic and aromatic lipophilicity on selected in vitro assays used to identify potential cocaine-like and cocaine antagonism activity. Very good (IC(50) = 2-3 nM) inhibition of [(3)H] WIN 35,428 and [(125)I] RTI-55 binding on rat or guinea pig striatal membranes and HEK cells expressing cDNA for the human dopamine transporter (HEK-hDAT) was shown by the 8,9-benzomazindol 25 and 9,10-benzohomomazindol 28. All new compounds were weaker inhibitors of [(3)H] DA uptake in HEK-hDAT cells than 1 and 2. No improvement in the binding selectivity ratio (SERT/DAT and NET/DAT) was found when compared to 2. Compounds 25and 28 showed a considerable increase versus 1 in uptake/binding discrimination ratios at the DAT (311.0 and 182.1 vs 0.9), SERT (33.6 and 127.3 vs 1.9), and NET (7.3 and 10.0 vs 0.3).

  12. Mazindol analogues as potential inhibitors of the cocaine binding site at the dopamine transporter.

    Science.gov (United States)

    Houlihan, William J; Kelly, Lawrence; Pankuch, Jessica; Koletar, Judith; Brand, Leonard; Janowsky, Aaron; Kopajtic, Theresa A

    2002-09-12

    A series of mazindol (2) and homomazindol (3) analogues with a variety of electron-donating and electron-withdrawing groups in the pendant aryl group and the benzo ring C, as well as H, methoxy, and alkyl groups replacing the hydroxyl group were synthesized, and their binding affinities at the dopamine transporter (DAT) on rat or guinea pig striatal membranes were determined. Several active analogues were also evaluated for their ability to block uptake of DA, 5-HT, and NE and inhibit binding of [(125)I] RTI-55 at HEK-hDAT, HEK-hSERT, and HEK-hNET cells. Mazindane (26) was found to be a pro-drug, oxidizing (5-H --> 5-OH) to mazindol on rat striatal membranes and HEK-hDAT cells. The 4',7,8-trichloro analogue (38) of mazindol was the most potent and selective ligand for HEK-hDAT cells (DAT K(i) = 1.1 nM; SERT/DAT = 1283 and NET/DAT = 38). Experimental results strongly favor the cyclic or ol tautomers of 2 and 3 to bind more tightly at the DAT than the corresponding keto tautomers.

  13. Selective binding of 2-[{sup 125}I]iodo-nisoxetine to norepinephrine transporters in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kung, M.-P.; Choi, Seok-Rye; Hou, Catherine; Zhuang, Z.-P.; Foulon, Catherine; Kung, Hank F. E-mail: kunghf@sunmac.spect.upenn.edu

    2004-07-01

    A radioiodinated ligand, (R)-N-methyl-(2-[{sup 125}I]iodo-phenoxy)-3-phenylpropylamine, [{sup 125}I]2-INXT, targeting norepinephrine transporters (NET), was successfully prepared. A no-carrier-added product, [{sup 125}I]2-INXT, displayed a saturable binding with a high affinity (K{sub d}=0.06 nM) in the homogenates prepared from rat cortical tissues as well as from LLC-PK{sub 1} cells expressing NET. A relatively low number of binding sties (B{sub max}=55 fmol/mg protein) measured with [{sup 125}I]2-INXT in rat cortical homogenates is consistent with the value reported for a known NET ligand, [{sup 3}H]nisoxetine. Competition studies with various compounds on [{sup 125}I]2-INXT binding clearly confirmed the pharmacological specificity and selectivity for NET binding sites. Following a tail-vein injection of [{sup 125}I]2-INXT in rats, a good initial brain uptake was observed (0.56% dose at 2 min) followed by a slow washout from the brain (0.2% remained at 3 hours post-injection). The hypothalamus (a NET-rich region) to striatum (a region devoid of NET) ratio was 1.5 at 3 hours post-i.v. injection. Pretreatment of rats with nisoxetine significantly inhibited the uptake of [{sup 125}I]2-INXT (70-100% inhibition) in locus coeruleus, hypothalamus and raphe nuclei, regions known to have a high density of NET; whereas escitalopram, a serotonin transporter ligand, did not show a similar effect. Ex vivo autoradiography of rat brain sections of [{sup 125}I]2-INXT (at 3 hours after an i.v. injection) displayed an excellent regional brain localization pattern corroborated to the specific NET distribution in the brain. The specific brain localization was significantly reduced by a dose of nisoxetine pretreatment. Taken together, the data suggest that [{sup 123}I]2-INXT may be useful for mapping NET binding sites in the brain.

  14. Arabidopsis Transporter ABCG37/PDR9 contributes primarily highly oxygenated Coumarins to Root Exudation

    OpenAIRE

    Ziegler, J?rg; Schmidt, Stephan; Strehmel, Nadine; Scheel, Dierk; Abel, Steffen

    2017-01-01

    The chemical composition of root exudates strongly impacts the interactions of plants with microorganisms in the rhizosphere and the efficiency of nutrient acquisition. Exudation of metabolites is in part mediated by ATP-binding cassette (ABC) transporters. In order to assess the contribution of individual ABC transporters to root exudation, we performed an LC-MS based non-targeted metabolite profiling of semi-polar metabolites accumulating in root exudates of Arabidopsis thaliana plants and ...

  15. BDNF val66met association with serotonin transporter binding in healthy humans.

    Science.gov (United States)

    Fisher, P M; Ozenne, B; Svarer, C; Adamsen, D; Lehel, S; Baaré, W F C; Jensen, P S; Knudsen, G M

    2017-02-14

    The serotonin transporter (5-HTT) is a key feature of the serotonin system, which is involved in behavior, cognition and personality and implicated in neuropsychiatric illnesses including depression. The brain-derived neurotrophic factor (BDNF) val66met and 5-HTTLPR polymorphisms have predicted differences in 5-HTT levels in humans but with equivocal results, possibly due to limited sample sizes. Within the current study we evaluated these genetic predictors of 5-HTT binding with [ 11 C]DASB positron emission tomography (PET) in a comparatively large cohort of 144 healthy individuals. We used a latent variable model to determine genetic effects on a latent variable (5-HTT LV ), reflecting shared correlation across regional 5-HTT binding (amygdala, caudate, hippocampus, midbrain, neocortex, putamen and thalamus). Our data supported a significant BDNF val66met effect on 5-HTT LV such that met-carriers showed 2-7% higher subcortical 5-HTT binding compared with val/val individuals (P=0.042). Our data did not support a BDNF val66met effect in neocortex and 5-HTTLPR did not significantly predict 5-HTT LV . We did not observe evidence for an interaction between genotypes. Our findings indicate that met-carriers have increased subcortical 5-HTT binding. The small difference suggests limited statistical power may explain previously reported null effects. Our finding adds to emerging evidence that BDNF val66met contributes to differences in the human brain serotonin system, informing how variability in the 5-HTT level emerges and may represent an important molecular mediator of BDNF val66met effects on behavior and related risk for neuropsychiatric illness.

  16. Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system.

    Science.gov (United States)

    Imperial, J; Hadi, M; Amy, N K

    1998-03-13

    ModA, the periplasmic-binding protein of the Escherichia coli mod transport system was overexpressed and purified. Binding of molybdate and tungstate to ModA was found to modify the UV absorption and fluorescence emission spectra of the protein. Titration of these changes showed that ModA binds molybdate and tungstate in a 1:1 molar ratio. ModA showed an intrinsic fluorescence emission spectrum attributable to its three tryptophanyl residues. Molybdate binding caused a conformational change in the protein characterized by: (i) a shift of tryptophanyl groups to a more hydrophobic environment; (ii) a quenching (at pH 5.0) or enhancement (at pH 7.8) of fluorescence; and (iii) a higher availability of tryptophanyl groups to the polar quencher acrylamide. The tight binding of molybdate did not allow an accurate estimation of the binding constants by these indirect methods. An isotopic binding method with 99MoO42- was used for accurate determination of KD (20 nM) and stoichiometry (1:1 molar ratio). ModA bound tungstate with approximately the same affinity, but did not bind sulfate or phosphate. These KDs are 150- to 250-fold lower than those previously reported, and compatible with the high molybdate transport affinity of the mod system. The affinity of ModA for molybdate was also determined in vivo and found to be similar to that determined in vitro. Copyright 1998 Elsevier Science B.V.

  17. The ITER Divertor Cassette Project meeting

    International Nuclear Information System (INIS)

    Akiba, M.; Tivey, R.

    2000-01-01

    The Divertor Cassette Project topical meeting took place on April 5-7, 2000 at the JAERI Naka site in Japan. The meeting focused on the progress made by the three parties under task agreements on the development of carbon-fibre composite and tungsten armored high flux plasma-facing components

  18. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    Science.gov (United States)

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre bactericidal assay (hSBA) using anti-rNMB1612 sera, although another strain (MC168) expressing the same protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines

  19. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    Science.gov (United States)

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  20. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...... translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters...

  1. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  2. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    Science.gov (United States)

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Exploration of Structural Changes in Lactose Permease on Sugar Binding and Proton Transport through Atomistic Simulations

    Science.gov (United States)

    Liu, Jin; Jewel, Yead; Dutta, Prashanta

    2017-11-01

    Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-D-galactopyranosyl-1-thio- β-D-galactopyranoside (TDG) molecule to a wild-type LacY. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from microsecond simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with experiments. Our analysis suggest that the conformational changes of LacY are a cumulative consequence of inter-domain H-bonds breaking at the periplasmic side, inter-domain salt-bridge formation at the cytoplasmic side, as well as the TDG orientational changes during the transition. This work is supported by US National Science Foundation under Grant No. CBET-1604211.

  4. Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype

    International Nuclear Information System (INIS)

    Reimold, M.; Bares, R.; Reischl, G.; Solbach, C.; Machulla, H.-J.; Smolka, M.N.; Mann, K.; Schumann, G.; Zimmer, A.; Wrase, J.; Hu, X.-Z.; Goldman, D.; Heinz, A.

    2007-01-01

    Homozygote carriers of two long (L) alleles of the serotonin transporter (5-HTT) regulatory region displayed in vitro a twofold increase in 5-HTT expression compared with carriers of one or two short (S) alleles. However, in vivo imaging studies yielded contradictory results. Recently, an A > G exchange leading to differential transcriptional activation of 5-HTT mRNA in lymphobalstoid cell lines was discovered in the 5-HTT regulatory region. In vitro and in vivo evidence suggests that [ 11 C]DASB, a new 5-HTT ligand offers some advantages over the ligands used in previous studies in measuring 5-HTT density independent of synaptic levels of serotonin. We assessed 5-HTT binding potential (BP 2) in the midbrain of 19 healthy subjects with positron emission tomography and [ 11 C]DASB. Accounting for the hypothesized functional similarity of L G and S in driving 5-HTT transcription, we assessed whether L A L A homozygotes display increased midbrain BP 2 compared with carriers of at least one S allele. BP 2 in the midbrain was significantly increased in L A L A homozygotes compared with carriers of at least one S allele. Interestingly, the genotype effect on the midbrain was significantly different from that on the thalamus and the amygdala where no group differences were detected. This in vivo study provides further evidence that subjects homozygous for the L A allele display increased expression of 5-HTT in the midbrain, the origin of central serotonergic projections. (author)

  5. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...... and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  6. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes.

    OpenAIRE

    Kegler-Ebo, D M; Docktor, C M; DiMaio, D

    1994-01-01

    We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequen...

  7. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.

    Science.gov (United States)

    Kumar Kondapi, Venkata Pavan; Soueidan, Olivier-Mohamad; Cheeseman, Christopher I; West, Frederick G

    2017-06-12

    The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interatomic electron transport by semiempirical and ab initio tight-binding approaches

    Science.gov (United States)

    Turek, I.; Kudrnovský, J.; Drchal, V.; Szunyogh, L.; Weinberger, P.

    2002-03-01

    A unified approach to interatomic electron transport within Kubo linear-response theory is sketched that is applicable both in semiempirical (matrix-element-based) and ab initio (wave-function-based) tight-binding (TB) techniques. This approach is based on a systematic neglect of the electron motion inside the atomic (Wigner-Seitz) cells leading thus to velocity operators describing pure intersite hopping. This is achieved by using piecewise constant coordinates, i.e., coordinates that are constant inside the cells. The formalism is presented within the simple semiempirical TB method, the TB linear muffin-tin orbital (LMTO) method, and the screened Korringa-Kohn-Rostoker (KKR) method with emphasis on the formal analogy of the derived formulas. The results provide a justification of current assumptions used in semiempirical TB schemes, an assessment of properties of recent TB-LMTO approaches, and an alternative formulation of electron transport within the screened KKR method. The formalism is illustrated by a calculation of residual resistivity of substitutionally disordered fcc Ag-Pd alloys.

  9. Drug transporters in breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Stenvang, Jan; Moreira, José

    2015-01-01

    Despite the advances that have taken place in the past decade, including the development of novel molecular targeted agents, cytotoxic chemotherapy remains the mainstay of cancer treatment. In breast cancer, anthracyclines and taxanes are the two main chemotherapeutic options used on a routine...... basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter...

  10. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  11. Fuel cell cassette with compliant seal

    Science.gov (United States)

    Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.

    2017-11-07

    A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.

  12. The stability of cassette walls in compression

    Science.gov (United States)

    Voutay, Pierre-Arnaud

    Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode

  13. Acute administration of haloperidol does not influence 123I-FP-CIT binding to the dopamine transporter

    NARCIS (Netherlands)

    Booij, Jan; van Loon, Guus; de Bruin, Kora; Voorn, Pieter

    2014-01-01

    A recent (123)I-FP-CIT ((123)-I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane) SPECT study on rats suggested that a single 1 mg/kg dose of the antipsychotic haloperidol induces enough dopamine release to compete with (123)I-FP-CIT for binding to the dopamine transporter. Taking into

  14. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes.

    Science.gov (United States)

    Kegler-Ebo, D M; Docktor, C M; DiMaio, D

    1994-05-11

    We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequences for the restriction endonuclease Sapl, an enzyme that cleaves outside of its recognition sequence. The intermediate molecule containing the mutagenic cassette is then digested with Sapl, thereby removing most of the mutagenic cassette, leaving only a three base cohesive overhang that is ligated to generate the final insertion or substitution mutation. A general method for constructing blunt-end target molecules suitable for this approach is also described. Because the mutagenic cassette is excised during this procedure and alters the target only by introducing the desired mutation, the same cassette can be used to introduce a particular codon at all target sites. Each cassette can deposit two different codons, depending on the orientation in which it is inserted into the target molecule. Therefore, a series of eleven cassettes is sufficient to insert all possible amino acids at any constructed target site. Thus codon cassettes are 'off-the-shelf' reagents, and this methodology should be a particularly useful and inexpensive approach for subjecting multiple different positions in a protein sequence to saturation mutagenesis.

  15. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-12-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression.

  16. Studies of the biogenic amine transporters. 1. Dopamine reuptake blockers inhibit [3H]mazindol binding to the dopamine transporter by a competitive mechanism: preliminary evidence for different binding domains.

    Science.gov (United States)

    Dersch, C M; Akunne, H C; Partilla, J S; Char, G U; de Costa, B R; Rice, K C; Carroll, F I; Rothman, R B

    1994-02-01

    The present study addressed the hypothesis that the DA transporter ligand, [3H]mazindol, labels multiple sites/states associated with the dopamine (DA) transporter in striatal membranes. Incubations with [3H]mazindol proceeded for 18-24 hr at 4 degrees C in 55.2 mM sodium phosphate buffer, pH 7.4, with a protease inhibitor cocktail. In order to obtain data suitable for quantitative curve fitting, it was necessary to repurify the [3H]mazindol by HPLC before a series of experiments. Under these conditions, we observed greater than 80% specific binding. The method of binding surface analysis was used to characterize the interaction of GBR12935, BTCP, mazindol, and CFT with binding site/sites labeled by [3H]mazindol. A one site model fit the data as well as the two site model: Bmax = 16911 fmol/mg protein, Kd of [3H]mazindol = 75 nM, Ki of GBR12935 = 8.1 nM, Ki of CFT = 50 nM and Ki of BTCP = 44 nM. The inhibitory mechanism (competitive or noncompetitive) of several drugs (GBR12935, CFT, BTCP, cocaine, cis-flupentixol, nomifensine, WIN35,065-2, bupropion, PCP, and benztropine) was determined. All drugs inhibited [3H]mazindol binding by a competitive mechanism. Although the ligand-selectivity of the [3H]mazindol binding site indicates that it is the uptake inhibitor recognition site of the classic DA transporter, the quantitative differences among the ligand-selectivities of different radioligands for the same site suggest that each radioligand labels different overlapping domains of the DA uptake inhibitor recognition site. It is likely that development of domain-selective drugs may further our understanding of the DA transporter.

  17. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    OpenAIRE

    Reilman, E.; Mars, R. A. T.; van Dijl, J. M.; Denham, Emma

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology,...

  18. Bone marrow transplantation of CD117+ (c-Kit) stem cells and investigation of the bile acid transporter regulation in Abcb4-/- mice, a model of sclerosing cholangitis

    OpenAIRE

    Pasupuleti, Sravanthi

    2014-01-01

    Abcb4 (ATP-binding cassette sub family-b) or Mdr2 (multidrug resistance protein 2) is a gene which encodes for ABCB4 protein that mediates the transportation of phospholipids across the canalicular membrane of hepatocytes into the bile. Functional loss of the ABCB4 transporter disturbs the excretion of phospholipids into bile, leading to toxic bile composition, bile duct alterations, and damaged bile duct epithelia resembling sclerosing cholangitis (1). Long term consequences are biliary cirr...

  19. ABC transporters in the CNS - an inventory.

    Science.gov (United States)

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  20. WIN 35,428 and mazindol are mutually exclusive in binding to the cloned human dopamine transporter.

    Science.gov (United States)

    Xu, C; Reith, M E

    1997-08-01

    It has been suggested that cocaine and mazindol bind to separate sites on the dopamine transporter. In the present study, we address this issue by examining the inhibition by mazindol of the binding of [3H]WIN 35,428 ([3H]2beta-carbomethyoxy-3beta-(4-fluorophenyl)-tropane), a phenyltropane analog of cocaine, and the inhibition by WIN 35,428 of [3H]mazindol binding to the cloned human dopamine transporter expressed in C6 glioma cells. The design involved the construction of inhibition curves at six widely different radioligand levels, enabling the distinction between the nonlinear hyperbolic competition (i.e., negative allosteric) model and the competitive (i.e., mutually exclusive binding) model. Nonlinear computer curve-fitting analysis indicated no difference in the goodness of fit between the two models; the negative allosteric model indicated an extremely high allosteric constant of approximately > or = 100, which practically equates to the competitive model. The present results suggest that complex interactions reported between cocaine and mazindol in inhibiting dopamine transport are beyond the level of ligand recognition.

  1. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  2. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  3. Specificity of drug transport mediated by CaMDR1: a major facilitator ...

    Indian Academy of Sciences (India)

    Unknown

    among these two tested drugs. Due to severe toxicity of these drugs to insect cells, further characterization of. CaMdr1p as a drug transporter could not be done with this system. Therefore, as an alternative, CaMdr1p and. Cdr1p, which is an ABC protein (ATP binding cassette) also involved in azole resistance in C. albicans, ...

  4. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B.O.

    2009-01-01

    A gene cluster involved in maltodextrin transport and metabolism was identified in the genome of Lactobacillus acidophilus NCFM, which encoded a maltodextrin-binding protein, three maltodextrin ATP-binding cassette transporters and five glycosidases, all under the control of a transcriptional...... with inversion of the anomeric configuration releasing beta-glucose 1-phosphate (beta-Glc 1-P) and glucose. The broad specificity of the aglycone binding site was demonstrated by products formed in reverse phosphorolysis using various carbohydrate acceptor substrates and beta-Glc 1-P as the donor. MalP showed...

  5. The importance of drug transporters in human pluripotent stem cells and in early tissue differentiation.

    Science.gov (United States)

    Apáti, Ágota; Szebényi, Kornélia; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs

    2016-01-01

    Drug transporters are large transmembrane proteins which catalyse the movement of a wide variety of chemicals, including drugs as well as xeno- and endobiotics through cellular membranes. The major groups of these proteins include the ATP-binding cassette transporters which in eukaryotes work as ATP-fuelled drug 'exporters' and the Solute Carrier transporters, with various transport directions and mechanisms. In this review, we discuss the key ATP-binding cassette and Solute Carrier drug transporters which have been reported to contribute to the function and/or protection of undifferentiated human stem cells and during tissue differentiation. We review the various techniques for studying transporter expression and function in stem cells, and the role of drug transporters in foetal and placental tissues is also discussed. We especially focus on the regulation of transporter expression by factors modulating cell differentiation properties and on the function of the transporters in adjustment to environmental challenges. The relatively new and as yet unexplored territory of transporters in stem cell biology may rapidly expand and bring important new information regarding the metabolic and epigenetic regulation of 'stemness' and the early differentiation properties. Drug transporters are clearly important protective and regulatory components in stem cells and differentiation.

  6. A study on contamination and disinfection of film cassette

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Chung, Kyung Mo; Choi, Ji Won

    2000-01-01

    In July 2000, a bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient to prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic bacterial in the four different cassette size of the contact surface. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. Also the education of nosocomial infection for radiographer will be required

  7. A study on contamination and disinfection of film cassette

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Chung, Kyung Mo [Seoul National University Hospital, Seoul (Korea, Republic of); Choi, Ji Won [University of Sydney, Sydney (Australia)

    2000-04-15

    In July 2000, a bacteria infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient to prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic bacterial in the four different cassette size of the contact surface. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. Also the education of nosocomial infection for radiographer will be required.

  8. Mobile gene cassettes: a fundamental resource for bacterial evolution.

    Science.gov (United States)

    Michael, Carolyn A; Gillings, Michael R; Holmes, Andrew J; Hughes, Lesley; Andrew, Nigel R; Holley, Marita P; Stokes, H W

    2004-07-01

    Horizontal gene transfer increases genetic diversity in prokaryotes to a degree not allowed by the limitations of reproduction by binary fission. The integron/gene cassette system is one of the most recently characterized examples of a system that facilitates horizontal gene transfer. This system, discovered in the context of multidrug resistance, is recognized in a clinical context for its role in allowing pathogens to adapt to the widespread use of antibiotics. Recent studies suggest that gene cassettes are common and encode functions relevant to many adaptive traits. To estimate the diversity of mobile cassettes in a natural environment, a molecular technique was developed to provide representative distributions of cassette populations at points within a sampling area. Subsequently, statistical methods analogous to those used for calculating species diversity were employed to assess the diversity of gene cassettes within the sample area in addition to gaining an estimate of cassette pool size. Results indicated that the number of cassettes within a 5x10-m sample area was large and that the overall mobile cassette metagenome was likely to be orders of magnitude larger again. Accordingly, gene cassettes appear to be capable of mobilizing a significant genetic resource and consequently have a substantial impact on bacterial adaptability.

  9. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters

    DEFF Research Database (Denmark)

    Seppälä, Susanna; Solomon, Kevin V; Gilmore, Sean P.

    2016-01-01

    Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut....... Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. We report the first comprehensive characterization of the membrane protein...... a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce....

  10. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs

    2012-01-01

    The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses...... a low affinity allosteric site for antidepressants. Binding to the allosteric site impedes dissociation of antidepressants from the high affinity site, which may enhance antidepressant efficacy. Here we employ an induced fit docking/molecular dynamics protocol to identify the residues that may...... effects of Zn(2+) binding in an engineered site and the covalent attachment of benzocaine-methanethiosulfonate to a cysteine introduced in the extracellular vestibule. The data provide a mechanistic explanation for the allosteric action of antidepressants at SERT and suggest that the role of the vestibule...

  11. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport.

    Science.gov (United States)

    Stapleton, Nigel M; Armstrong-Fisher, Sylvia S; Andersen, Jan Terje; van der Schoot, C Ellen; Porter, Charlene; Page, Kenneth R; Falconer, Donald; de Haas, Masja; Williamson, Lorna M; Clark, Michael R; Vidarsson, Gestur; Armour, Kathryn L

    2018-03-01

    We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the neonatal Fc receptor (FcRn) is important to preserve the long half-life typical of IgG. An ability to cross the placenta, which is also mediated, at least in part, by FcRn is desirable in some indications, such as feto-maternal alloimmune disorders. Here, we show that G1Δnab mutants retain pH-dependent binding to human FcRn but that the amino acid alterations reduce the affinity of the IgG1:FcRn interaction by 2.0-fold and 1.6-fold for the two antibodies investigated. The transport of the modified G1Δnab mutants across monolayers of human cell lines expressing FcRn was approximately 75% of the wild-type, except that no difference was observed with human umbilical vein endothelial cells. G1Δnab mutation also reduced transport in an ex vivo placenta model. In conclusion, we demonstrate that, although the G1Δnab mutations are away from the FcRn-binding site, they have long-distance effects, modulating FcRn binding and transcellular transport. Our findings have implications for the design of therapeutic human IgG with tailored effector functions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding

    DEFF Research Database (Denmark)

    Lennartz, Frank; Bengtsson, Anja; Olsen, Rebecca W

    2015-01-01

    of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLβ3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides...

  13. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.; Pinkett, Heather W. (CIT); (NWU)

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.

  14. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations.

    Science.gov (United States)

    Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy; Childers, Steven R; Hemby, Scott E

    2014-10-01

    Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc. © 2014 Wiley Periodicals, Inc.

  15. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R; Miyake, K

    2001-01-01

    in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38......ATP-binding cassette proteins comprise a superfamily of transporter proteins, a subset of which have been implicated in multidrug resistance. Although P-glycoprotein was described over 15 years ago, the recent expansion in the number of transporters identified has prompted renewed interest...... and topotecan. At 72 kDa, MXR localizes to the plasma membrane in cells which highly overexpress the protein either through gene amplification or though gene rearrangement. Future studies will be aimed at identifying an inhibitor, and attempting to translate recognition of this new transporter into a target...

  16. Flavin binding to the high affinity riboflavin transporter RibU

    NARCIS (Netherlands)

    Duurkens, Hinderika; Tol, Menno B.; Geertsma, Eric R.; Permentier, Hjalmar P.; Slotboom, Dirk Jan

    2007-01-01

    The first biochemical and spectroscopic characterization of a purified membrane transporter for riboflavin ( vitamin B-2) is presented. The riboflavin transporter RibU from the bacterium Lactococcus lactis was overexpressed, solubilized, and purified. The purified transporter was bright yellow when

  17. X-ray film cassette and method of making

    International Nuclear Information System (INIS)

    1980-01-01

    An x-ray film cassette which is capable of providing forces on the film that vary across the surface of the cassette is described. Methods of manufacture are discussed. The system is of particular use when large area films are used in conjunction with intensifying screens. (U.K.)

  18. Influence of serotonin transporter gene polymorphism (5-HTTLPR polymorphism on the relation between brain 5-HT transporter binding and heart rate corrected cardiac repolarization interval.

    Directory of Open Access Journals (Sweden)

    Esa Kauppila

    Full Text Available OBJECTIVE: Serotonin transporter gene polymorphism (5-HTTLPR polymorphism predicts the degree of structural and functional connectivity in the brain, and less consistently the degree of vulnerability for anxiety and depressive disorders. It is less known how 5-HTTLPR polymorphism influences on the coupling between brain and neuronal cardiovascular control. The present study demonstrates the impact of 5-HTTLPR polymorphism on the relations between heart rate (HR corrected cardiac repolarization interval (QTc interval and the brain 5-HTT binding. MATERIAL AND METHODS: Thirty healthy young adults (fifteen monozygotic twin pairs (mean age 26±1.3 years, 16 females were imagined with single-photon emission computed tomography (SPECT using iodine-123 labeled 2β-carbomethoxy-3β-(4-iodophenyl nortropane (nor-β-CIT. Continuous ECG recording was obtained from each participant at supine rest. Signal averaged QTc interval on continuous ECG was calculated and compared with the brain imaging results. RESULTS: In the two groups [l homozygotes (n = 16, 10 females, s carriers (n = 14, 8 female] HR and the length of QTc interval were not influenced by 5-HTTLPR polymorphism. There were no significant relations between HR and 5-HTT binding in the brain. There were significant associations between QTc interval and nor-β-CIT binding in the brain in l homozygotes, but not in s carriers (correlations for QTc interval and nor-β-CIT binding of striatum, thalamus and right temporal region were -0.8--0.9, (p<0.0005, respectively. CONCLUSION: The finding of longer QTc interval with less 5-HTT binding availability in major serotonergic binding sites in l homozygotes, but not in s carriers, implicate to differentiated control of QTc interval by 5-HTTLPR polymorphism.

  19. The role of transporters on drug therapy

    Directory of Open Access Journals (Sweden)

    . Ngatidjan

    2016-02-01

    Full Text Available ABSTRACT Pharmacodynamical studies showed that most drugs elicit their effects by acting on 3 kinds of protein molecules known as receptors, enzymes or transporters. Although their detail properties had not been explained for decades the roles of transporters in drug kinetics and dynamics has been well understood, even have been applied in the therapy. Transporters are classified into 2 major classes, the solute carriers (SLC and ATP-binding cassette (ABC families. SLC transporters do not possess ATP binding site property as those of ABC transporters. SLC transporters consist of 3 SLC subfamilies i.e. organic cation transporters (OCTs, organic anion transporters (OATs and organic anion transporting polypeptides (OATPs. In contrast, ABC transporters require ATP hydrolysis to transport substrate across cell membrane. Human ABC-transporters consist of ABCA1- 13, ABCB1-11, ABCC1-12, ABCD1-4, ABCE1, ABCF1-3 and ABCG1-8 subfamily. Although the originally funtion of transporter is to transport specific physiological substrate such as nutrient, hormone, cytokines, neurotransmitters and other physiological subtances across cell membrane the specificity is not restricted to each substrate. Drugs and other xenobiotics which have structural similarity to the physiological substrates are recognized and transported by the related transporters. The competition of them on transporters therefore may lead to the occurence of drug-drug interactions (DDI or drugphysiological substrate interaction in the drug-kinetics phase. Many transporters located in the liver, intestinal and renal epithelial cell membranes involve in the transport of endogenous substance or xenobiotics including drugs play important roles as protective barrier. Since transporters also serve as the targets of drug action it is understood that transporters play important role in the pathogenesis of diseases as well as in the drug therapy of diseases.

  20. The secretion ATPase ComGA is required for the binding and transport of transforming DNA

    OpenAIRE

    Briley, Kenneth; Dorsey-Oresto, Angella; Prepiak, Peter; Dias, Miguel J.; Mann, Jessica M.; Dubnau, David

    2011-01-01

    Transformation requires specialized proteins to facilitate the binding and uptake of DNA. The genes of the B. subtilis comG operon (comGA–G) are required for transformation and to assemble a structure, the pseudopilus, in the cell envelope. No role for the pseudopilus has been established and the functions of the individual comG genes are unknown. We show that among the comG genes, only comGA is absolutely required for DNA binding to the cell surface. ComEA, an integral membrane DNA binding p...

  1. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis

    Czech Academy of Sciences Publication Activity Database

    Kubeš, Martin; Yang, H.; Richter, G.L.; Cheng, Y.; Młodzińska, E.; Wang, X.; Blakeslee, J.J.; Carraro, N.; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Ann Peer, W.; Murphy, A. S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 640-654 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin transporters * ATP-binding cassette B4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.582, year: 2012

  2. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    Science.gov (United States)

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  3. Associations between dru Types and SCCmec Cassettes

    DEFF Research Database (Denmark)

    Bartels, Mette D; Boye, Kit; Oliveira, Duarte C

    2013-01-01

    types (dt) in 283 isolates, while eighteen isolates contained no dru repeats and one isolate resisted sequencing. The most common dru type, dt10a, was present in 53% of the sequenced isolates and was found in all SCCmec types, except type II. Seven (10%) of the 68 epidemiologically related patients had...... isolates with dru type variants indicating that dru typing is not useful as a first line epidemiological typing tool. However, MRSA isolates cultured from a single patient over a three year period exhibited a single dru type. The finding of dt10a in most SCCmec types suggests that dru and mecA originate......Molecular typing is an important tool in the investigation of methicillin resistant Staphylococcus aureus (MRSA) outbreaks and in following the evolution of MRSA. The staphylococcal cassette chromosome mec (SCCmec) contains a hypervariable region with a variable number of 40 bp repeats named direct...

  4. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding

    DEFF Research Database (Denmark)

    Loland, Claus Juul; Grånäs, Charlotta; Javitch, Jonathan A

    2004-01-01

    Recently we showed evidence that mutation of Tyr-335 to Ala (Y335A) in the human dopamine transporter (hDAT) alters the conformational equilibrium of the transport cycle. Here, by substituting, one at a time, 16 different bulky or charged intracellular residues, we identify three residues, Lys-264......, this inactivation was protected by dopamine and enhanced by cocaine. These data are consistent with a Zn(2+)-dependent partial reversal of a constitutively altered conformational equilibrium in the mutant transporters. They also suggest that the conformational equilibrium produced by the mutations resembles...... that of the NET more than that of the DAT. Moreover, the data provide evidence that the cocaine-bound state of both DAT mutants and of the NET is structurally distinct from the cocaine-bound state of the DAT....

  5. The secretion ATPase ComGA is required for the binding and transport of transforming DNA.

    Science.gov (United States)

    Briley, Kenneth; Dorsey-Oresto, Angella; Prepiak, Peter; Dias, Miguel J; Mann, Jessica M; Dubnau, David

    2011-08-01

    Transformation requires specialized proteins to facilitate the binding and uptake of DNA. The genes of the Bacillus subtilis comG operon (comGA-G) are required for transformation and to assemble a structure, the pseudopilus, in the cell envelope. No role for the pseudopilus has been established and the functions of the individual comG genes are unknown. We show that among the comG genes, only comGA is absolutely required for DNA binding to the cell surface. ComEA, an integral membrane DNA-binding protein plays a minor role in the initial binding step, while an unidentified protein which communicates with ComGA must be directly responsible for binding to the cell. We show that the use of resistance to DNase to measure 'DNA uptake' reflects the movement of transforming DNA to a protected state in which it is not irreversibly associated with the protoplast, and presumably resides outside the cell membrane, in the periplasm or associated with the cell wall. We suggest that ComGA is needed for the acquisition of DNase resistance as well as for the binding of DNA to the cell surface. Finally, we show that the pseudopilus is required for DNA uptake and we offer a revised model for the transformation process. © 2011 Blackwell Publishing Ltd.

  6. Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, H.-H. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Lin, K.-J. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Department of Nuclear Medicine, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan (China); Juang, J.-H. [Division of Endocrinology and Metabolism, Chung Gung University and Chung Gung Memorial Hospital, Taoyuan, Taiwan (China); Skovronsky, Daniel M. [Avid Radiopharmaceuticals, Philadelphia, PA (United States); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Yen, T.-C. [Department of Nuclear Medicine, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Kung, M.-P. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kungmp@sunmac.spect.upenn.edu

    2010-05-15

    The vesicular monoamine transporter type 2 (VMAT2) is highly expressed in pancreatic {beta}-cells and thus has been proposed to be a potential target for measuring {beta}-cell mass (BCM) by molecular imaging. C-11- and F-18-labeled tetrabenazine derivatives targeting VMAT2 have shown some promising results as potential biomarkers for BCM. In the present study, we examined the binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine ([{sup 18}F]AV-133), a potential PET tracer for BCM imaging, in rat pancreas and rat brain. Methods: Pancreatic exocrine cells and pancreatic islet cells were isolated and purified from Sprague-Dawley rats. Membrane homogenates, prepared from both pancreatic exocrine and islet cells as well as from brain striatum and hypothalamus regions, were used for in vitro binding studies. In vitro and ex vivo autoradiography studies with [{sup 18}F]AV-133 were performed on rat brain and rat pancreas sections. Immunohistochemistry studies were performed to confirm the distribution of VMAT2 on islet {beta}-cells. Results: Excellent binding affinities of [{sup 18}F]AV-133 were observed in rat striatum and hypothalamus homogenates with K{sub d} values of 0.19 and 0.25 nM, respectively. In contrast to single-site binding observed in rat striatum homogenates, rat islet cell homogenates showed two saturable binding sites (site A: K{sub d}=6.76 nM, B{sub max}=60 fmol/mg protein; site B: K{sub d}=241 nM, B{sub max}=1500 fmol/mg protein). Rat exocrine pancreas homogenates showed only a single low-affinity binding site (K{sub d}=209 nM), which was similar to site B in islet cells. In vitro autoradiography of [{sup 18}F]AV-133 using frozen sections of rat pancreas showed specific labeling of islets, as evidenced by co-localization with anti-insulin antibody. Ex vivo VMAT2 pancreatic autoradiography in the rat, however, was not successful, in contrast to the excellent ex vivo autoradiography of VMAT2 binding sites in the brain. In vivo/ex vivo islet

  7. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  8. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding.

    Science.gov (United States)

    Soysa, Radika; Venselaar, Hanka; Poston, Jacqueline; Ullman, Buddy; Hasne, Marie-Pierre

    2013-06-15

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural determinants critical for function of these permeases are unknown. To elucidate the key residues involved in putrescine translocation and recognition by this APC family member, a homology model of TcPOT1.1 was constructed on the basis of the atomic co-ordinates of the Escherichia coli AdiC arginine/agmatine antiporter crystal structure. The TcPOT1.1 homology model consisted of 12 transmembrane helices with the first ten helices organized in two V-shaped antiparallel domains with discontinuities in the helical structures of transmembrane spans 1 and 6. The model suggests that Trp241 and a Glu247-Arg403 salt bridge participate in a gating system and that Asn245, Tyr148 and Tyr400 contribute to the putrescine-binding pocket. To test the validity of the model, 26 site-directed mutants were created and tested for their ability to transport putrescine and to localize to the parasite cell surface. These results support the robustness of the TcPOT1.1 homology model and reveal the importance of specific aromatic residues in the TcPOT1.1 putrescine-binding pocket.

  9. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.

    Science.gov (United States)

    Teichman, Shlomit; Qu, Shaogang; Kanner, Baruch I

    2009-08-25

    Glutamate transporters maintain low synaptic concentrations of neurotransmitter by coupling uptake to flux of other ions. Their transport cycle consists of two separate translocation steps, namely cotransport of glutamic acid with three Na(+) followed by countertransport of K(+). Two Tl(+) binding sites, presumed to serve as sodium sites, were observed in the crystal structure of a related archeal homolog and the side chain of a conserved aspartate residue contributed to one of these sites. We have mutated the corresponding residue of the eukaryotic glutamate transporters GLT-1 and EAAC1 to asparagine, serine, and cysteine. Remarkably, these mutants exhibited significant sodium-dependent radioactive acidic amino acid uptake when expressed in HeLa cells. Reconstitution experiments revealed that net uptake by the mutants in K(+)-loaded liposomes was impaired. However, with Na(+) and unlabeled L-aspartate inside the liposomes, exchange levels were around 50-90% of those by wild-type. In further contrast to wild-type, where either substrate or K(+) stimulated the anion conductance by the transporter, substrate but not K(+) modulated the anion conductance of the mutants expressed in oocytes. Both with wild-type EAAC1 and EAAC1-D455N, not only sodium but also lithium could support radioactive acidic amino acid uptake. In contrast, with D455S and D455C, radioactive uptake was only observed in the presence of sodium. Thus the conserved aspartate is required for transporter-cation interactions in each of the two separate translocation steps and likely participates in an overlapping sodium and potassium binding site.

  10. Effect of growth in lithium on ouabain binding, Na-K-ATPase and Na and K transport in hela cells.

    Science.gov (United States)

    Boardman, L J; Hume, S P; Lamb, J F; Polson, J

    1975-01-01

    1. HeLa cells were grown for 24 hr in growth medium in which part of the Na was replaced with Li. Ion contents, cell volumes and numbers, Na-K-ATPase and specific ouabain binding were measured. In some experiments the Na efflux and net Na transport was also measured. 2. Growth in Li caused a rise in the specific ouabain binding and membrane Na-K-ATPase of these cells. The Li concentrations in the cells necessary to produce this effect ranged up to 50 mM. 3. It is suggested that Li, like Na, acts on the genetic material of the cells to cause the production of more Na pumps within the membrane. PMID:124350

  11. Homology modeling of the serotonin transporter: Insights into the primary escitalopram-binding Site

    DEFF Research Database (Denmark)

    Jørgensen, Anne Marie; Tagmose, L.; Jørgensen, A.M.M.

    2007-01-01

    -ray structure of the closely related amino acid transporter, Aquifex aeolicus leucine transporter (LeuT), provides an opportunity to develop a three-dimensional model of the structure of SERT. We present herein a homology model of SERT using LeuT as the template and containing escitalopram as a bound ligand...

  12. Assembly and mechanism of a group II ECF transporter.

    Science.gov (United States)

    Karpowich, Nathan K; Wang, Da-Neng

    2013-02-12

    Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.

  13. Halogenated mazindol analogs as potential inhibitors of the cocaine binding site at the dopamine transporter.

    Science.gov (United States)

    Houlihan, W J; Boja, J W; Parrino, V A; Kopajtic, T A; Kuhar, M J

    1996-12-06

    A series of halogenated (F, Cl, Br, I), pyrimido and diazepino homologs of mazindol were prepared and evaluated for their ability to displace [3H]WIN 35,428 binding and to inhibit uptake of [3H]dopamine (DA) in rat striatal tissue. All of the compounds except for the 2'-chloro (6) and 2'-bromo (16) analogs of mazindol displaced [3H]WIN 35,428 binding and inhibited [3H]DA uptake more effectively than (R)-cocaine. Structure-activity studies indicated that best inhibition of [3H]WIN 35,428 binding occurred in the imidazo series with compounds containing one or two Cl or Br atoms in the 3'- or 4'-position of the free phenyl group. Replacement of the imidazo ring by a pyrimido or diazepino ring enhanced binding inhibition. The most potent inhibitors of [3H]WIN 35,428 binding and [3H]DA uptake were 6-(3'-chlorophenyl)-2,3,4,6-tetrahydropyrimido[2,1-alpha]isoind ol-6-ol (23; IC50 1.0 nM; 8 x mazindol) and 7-(3',4'-dichlorophenyl)-2,3,4,5-tetrahydro-7H-diazepino[2,1-alpha ]isoindol-7-ol (28; IC50 0.26 nM; 32 x mazindol), respectively. No significant differences was found between binding and uptake inhibition. Mazindol and the pyrimido and diazepino homologs 24 and 27 showed a selectivity for the DA uptake over the serotonin (5-HT) uptake site of 5-, 250-, and 465-fold, respectively, and displayed weak or no affinity for a variety of neurotransmitter receptor sites.

  14. Brain Dopamine Transporter Binding and Glucose Metabolism in Progressive Supranuclear Palsy-Like Creutzfeldt-Jakob Disease

    Directory of Open Access Journals (Sweden)

    Eero Rissanen

    2014-01-01

    Full Text Available Here, we present a patient with Creutzfeldt-Jakob disease (CJD who developed initial symptoms mimicking progressive supranuclear palsy (PSP. Before the development of typical CJD symptoms, functional imaging supported a diagnosis of PSP when [123I]-FP-CIT-SPECT showed a defect in striatal dopamine transporter binding, while [18F]-fluorodeoxyglucose PET showed cortical hypometabolism suggestive of Lewy body dementia. However, the postmortem neuropathological examination was indicative of CJD only, without tau protein or Lewy body findings. This case demonstrates that CJD should be taken into account in rapidly progressing atypical cases of parkinsonism, even when functional imaging supports a diagnosis of a movement disorder.

  15. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  16. Glycine transporter 1 modulates GABA release from amacrine cells by controlling occupancy of coagonist binding site of NMDA receptors.

    Science.gov (United States)

    Rozsa, Eva; Vigh, Jozsef

    2013-09-01

    The occupancy of coagonist binding sites of NMDA receptors (NMDARs) by glycine or d-serine has been thought to mediate NMDAR-dependent excitatory signaling, as simultaneous binding of glutamate and a coagonist is obligatory for NMDAR activation. Amacrine cells (ACs) mediating GABAergic feedback inhibition of mixed bipolar cells (Mbs) in the goldfish retina have been shown to express NMDARs. Here we studied whether NMDAR-mediated GABAergic inhibitory currents (IGABA) recorded from the axon terminals of Mbs are influenced by experimental manipulations altering retinal glycine and d-serine levels. Feedback IGABA in Mb axon terminals was triggered by focal NMDA application or by synaptically released glutamate from depolarized Mb terminals. In both cases, blocking the coagonist binding sites of NMDARs eliminated the NMDAR-dependent IGABA, demonstrating that coagonist binding is critical in mediating NMDAR activity-triggered GABA release. Glycine transporter 1 (GLYT1) inhibition increased IGABA, indicating that coagonist binding sites of NMDARs on ACs providing GABAergic feedback inhibition to Mbs were not saturated. Focal glycine application, in the presence of the ionotropic glycine receptor blocker strychnine, triggered a GLYT1-dependent current in ACs, suggesting that GLYT1 expressed by putative glycinergic ACs controls the saturation level of NMDARs' coagonist sites. External d-serine also increased NMDAR activation-triggered IGABA in Mbs, further substantiating that the coagonist sites were unsaturated. Together, our findings demonstrate that coagonist modulation of glutamatergic input to GABAergic ACs via NMDARs is strongly reflected in the AC neuronal output (i.e., transmitter release) and thus is critical in GABAergic signal transfer function in the inner retina.

  17. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-05

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Characterisation of the zebrafish serotonin transporter functionally links TM10 to the ligand binding site

    DEFF Research Database (Denmark)

    Severinsen, Kasper; Müller, Heidi Kaastrup; Wiborg, Ove

    2008-01-01

    and [(3)H]-escitalopram binding in transiently transfected human embryonic kidney cells; HEK-293-MSR. Residues responsible for altered affinities inhibitors were pinpointed by generating cross-species chimeras and subsequent point mutations by site directed mutagenesis. drSERT has a higher affinity...

  19. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.

    Science.gov (United States)

    Atherton, Joseph; Farabella, Irene; Yu, I-Mei; Rosenfeld, Steven S; Houdusse, Anne; Topf, Maya; Moores, Carolyn A

    2014-09-10

    Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles--including their nucleotide-free states--at ∼ 7 Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin-microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface.

  20. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  1. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Directory of Open Access Journals (Sweden)

    Ming Zhong

    Full Text Available Vitamin A and its derivatives (retinoids play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels. STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  2. Genetic Susceptibility of Lung Cancer Associated With Common Variants in the 3 ' Untranslated Regions of the Adenosine Triphosphate-Binding Cassette B1 (ABCB1) and ABCC1 Candidate Transporter Genes for Carcinogen Export

    NARCIS (Netherlands)

    Wang, Haijian; Jin, Guangfu; Wang, Haifeng; Liu, Gaifen; Qian, Ji; Jin, Li; Wei, Qingyi; Shen, Hongbing; Huang, Wei; Lu, Daru

    2009-01-01

    BACKGROUND: Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NKK) is a well defined carcinogen that can induce lung cancer. Genetic polymorphisms in its disposition pathways could modify the risk of developing lung cancer. The authors of this report previously catalogued

  3. Polymorphisms in ATP-binding cassette transporter genes and interaction with diet and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Andersen, Vibeke; Tjonneland, Anne

    2015-01-01

    to assess whether polymorphisms in ABCB1, ABCC2 and ABCG2 were associated with risk of colorectal cancer (CRC) and to investigate gene-environment (dietary factors, smoking and use of non-steroidal anti-inflammatory drugs) and gene-gene interactions between previously studied polymorphisms in IL1B and IL10...

  4. [Effect of transcription activity regulated by VNTR-ZNF and -14C/T variants in the promoter region of ATP-binding cassette transporter 1 in HepG2 cells].

    Science.gov (United States)

    Gao, Shenxia; Zhao, Lili; Zhang, Ying; Mao, Yongmin

    2016-10-01

    To explore the effect of VNTR-ZNF and -14C/T variants of the promoter region of the ABCA1 gene on the transcription activity of genes in vitro. The recombinants were constructed by ligating DNA fragment containing VNTR-ZNF ACCCC inserted/deleted allele with or without -14C/T substitution fragments with a PGL2-basic vector containing luciferase reporter gene. The recombinants were then transfected into HepG2 cells using the cationic lipid method. After 48 h, transfected cells were collected and used to detect the luciferase activity. Luciferase activity of PGL2-ZNF-ACCCCDel was greater than that of PGL2-ZNF-ACCCCIns. Luciferase activity of PGL2-ZNFDel-14C was greater than that of PGL2-ZNFDel-14T, PGL2-ZNFIns-14C, PGL2-ZNFIns-14T. Compared with the insertion type, the ACCCC-deleted type of VNTR-ZNF can significantly enhance the transcription activity of ABCA1. And co-transfection of -14 C allele can further enhance this activity.

  5. Bioinformatic survey of ABC transporters in dermatophytes.

    Science.gov (United States)

    Gadzalski, Marek; Ciesielska, Anita; Stączek, Paweł

    2016-01-15

    ATP binding cassette (ABC) transporters constitute a very large and ubiquitous superfamily of membrane proteins. They are responsible for ATP hydrolysis driven translocation of countless substrates. Being a very old and diverse group of proteins present in all organisms they share a common feature, which is the presence of an evolutionary conservative nucleotide binding domain (NBD)--the engine that drives the transport. Another common domain is a transmembrane domain (TMD) which consists of several membrane-spanning helices. This part of protein is substrate-specific, thus it is much more variable. ABC transporters are known for driving drug efflux in many pathogens and cancer cells, therefore they are the subject of extensive studies. There are many examples of conferring a drug resistance phenotype in fungal pathogens by ABC transporters, however, little is known about these proteins in dermatophytes--a group of fungi causing superficial mycoses. So far only a single ABC transporter has been extensively studied in this group of pathogens. We analyzed available genomic sequences of seven dermatophyte species in order to provide an insight into dermatophyte ABC protein inventory. Phylogenetic studies of ABC transporter genes and their products were conducted and included ABC transporters of other fungi. Our results show that each dermatophyte genome studied possesses a great variety of ABC transporter genes. Detailed analysis of selected genes and their products indicates that relatively recent duplication of ABC transporter genes could lead to novel substrate specificity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng

    2016-06-13

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.

  7. Brain Serotonin Transporter Binding In a Minipig Model of Parkinson's Disease

    DEFF Research Database (Denmark)

    Lillethorup, Thea Pinholt; Glud, Andreas Nørgaard; Sørensen, Jens Christian Hedemann

    minipigs were implanted in the cisterna magna with a catheter connected to a subcutaneous titanium injection port under sterile conditions. Six-eight weeks after recovery from the catheter implant, and after injections of sterile saline alone to verify patency, minipigs were scanned at baseline with [11C......]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (11C-DASB), a label of SERT availability. Four pigs then received eight weekly injections of lactacystin dissolved in sterile saline, and one pig received saline alone, directly into the CSF through the access port. They were scanned...... with DASB again after a cumulative dose of 200μg lactacystin. PET data were registered to an average minipig MRI atlas and processed using PMOD software. The binding potential (BPND) of DASB was obtained with the Logan graphical analysis and cerebellum activity as a region of non-displaceable binding...

  8. Use of video cassette recorders for combined video and PCM data recording

    Science.gov (United States)

    McQuillan, R. J.; Gallo, L.

    Analog tape recorders are commonly used in aircraft flight testing to record PCM digital data. These recorders require considerable space and add significantly to the cost of test instrumentation. For limited test programs in densely packed aircraft, such as the modern fighter, the burden of a conventional reel to reel analog recorder is oppressive. With this condition in mind, the desirability of recording PCM data on a video cassette recorder surfaced. The video cassette recorder (VCR) offers greatly improved size and cost efficiency over conventional reel to reel recorders for many data acquisition requirements. Not only are cost and size improved, but several other benefits are realized. For instance, video cassettes are easily stored and transported. Automatic synchronization of the digital data and video images is inherent in the combined recording system. The system described in this paper makes use of a small electronic interface unit to combine and synchronize the video and PCM data signals. This composite signal is then recorded on a standard VHS video recorder. PCM data rates of up to thirty kilobits per second can be accomodated with only a minor reduction of picture area.

  9. Observing cassette culture: user interface implications for digital music libraries

    OpenAIRE

    Toal, Jason

    2007-01-01

    Many people keep their collections of music on cassette tape even if they rarely listen to them. Images of these collections can be found online on photo sharing websites. What can we learn from such collections and what might they tell us about designing interfaces for new digital music libraries? The author conducts an online ethnographic study of over two hundred cassette tape collections, and over sixty participants with the aim of guiding future design of music collections. The author pr...

  10. Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli

    OpenAIRE

    Pougach, Ksenia; Semenova, Ekaterina; Bogdanova, Ekaterina; Datsenko, Kirill A.; Djordjevic, Marko; Wanner, Barry L.; Severinov, Konstantin

    2010-01-01

    CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laborato...

  11. Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins.

    Science.gov (United States)

    Abil, Zhanar; Gumy, Laura F; Zhao, Huimin; Hoogenraad, Casper C

    2017-06-16

    Localization of mRNA is important in a number of cellular processes such as embryogenesis, cellular motility, polarity, and a variety of neurological processes. A synthetic device that controls cellular mRNA localization would facilitate investigations on the significance of mRNA localization in cellular function and allow an additional level of controlling gene expression. In this work, we developed the PUF (Pumilio and FBF homology domain)-assisted localization of RNA (PULR) system, which utilizes a eukaryotic cell's cytoskeletal transport machinery to reposition mRNA within a cell. Depending on the cellular motor used, we show ligand-dependent transport of mRNA toward either pole of the microtubular network of cultured cells. In addition, implementation of the reprogrammable PUF domain allowed the transport of untagged endogenous mRNA in primary neurons.

  12. Crystal Structure of a Group I Energy Coupling Factor Vitamin Transporter S Component in Complex with Its Cognate Substrate.

    Science.gov (United States)

    Josts, Inokentijs; Almeida Hernandez, Yasser; Andreeva, Antonina; Tidow, Henning

    2016-07-21

    Energy coupling factor (ECF) transporters are responsible for the uptake of essential scarce nutrients in prokaryotes. This ATP-binding cassette transporter family comprises two subgroups that share a common architecture forming a tripartite membrane protein complex consisting of a translocation component and ATP hydrolyzing module and a substrate-capture (S) component. Here, we present the crystal structure of YkoE from Bacillus subtilis, the S component of the previously uncharacterized group I ECF transporter YkoEDC. Structural and biochemical analyses revealed the constituent residues of the thiamine-binding pocket as well as an unexpected mode of vitamin recognition. In addition, our experimental and bioinformatics data demonstrate major differences between YkoE and group II ECF transporters and indicate how group I vitamin transporter S components have diverged from other group I and group II ECF transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quantitative autoradiography of brain binding sites for the vesicular acetylcholine transport blocker 2-(4-phenylpiperidino)cyclohexanol (AH5183)

    International Nuclear Information System (INIS)

    Marien, M.R.; Parsons, S.M.; Altar, C.A.

    1987-01-01

    2-(4-Phenylpiperidino)cyclohexanol (AH5183) is a noncompetitive and potent inhibitor of high-affinity acetylcholine transport into cholinergic vesicles. It is reported here that [ 3 H]AH5183 binds specifically and saturably to slide-mounted sections of the rat forebrain (Kd = 1.1 to 2.2 X 10(-8) M; Bmax = 286 to 399 fmol/mg of protein). The association and dissociation rate constants for [ 3 H]AH5183 binding are 8.6 X 10(6) M-1 X min-1 and 0.18 min-1, respectively. Bound [ 3 H]AH5183 can be displaced by nonradioactive AH5183 and by the structural analog (2 alpha,3 beta,4A beta,8A alpha)-decahydro-3-(4-phenyl-1-piperidinyl)-2- naphthalenol but not by 10 microM concentrations of the cholinergic drugs acetylcholine, choline, atropine, hexamethonium, eserine, or hemicholinium-3 or by the structurally related compounds 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridine, (+/-)-N-allylnormetazocine (SKF 10,047), levoxadrol, or dexoxadrol. Quantitative autoradiography reveals that [ 3 H]AH5183 binding sites are distributed heterogenously throughout the rat forebrain and are highly localized to cholinergic nerve terminal regions. At the level of the caudate nucleus-putamen, the highest concentrations of saturable [ 3 H]AH5183 binding (713-751 fmol/mg of protein) are found in the vertical limb of the diagonal band and the olfactory tubercle, with lesser amounts (334-516 fmol/mg of protein) in the caudate-putamen, nucleus accumbens, superficial layers of the cerebral cortex, and the primary olfactory cortex. At day 7 after transsection of the left fimbria, [ 3 H]AH5183 binding and choline acetyltransferase activity in the left hippocampus were reduced by 33 +/- 6% and 61 +/- 7%, respectively. These findings indicate that [ 3 H]AH5183 binds to a unique recognition site in rat brain that is topographically associated with cholinergic nerve terminals

  14. Reproducibility of [123I]PE2I binding to dopamine transporters with SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten; Thomsen, Gerda; Knudsen, Gitte M

    2007-01-01

    The iodinated cocaine derivative [(123)I]PE2I is a new selective ligand for in vivo studies of the dopamine transporter (DAT) with SPECT. Recently, a bolus/infusion (B/I) protocol for [(123)I]PE2I measurements of DAT density was established [Pinborg LH et al. J Nucl Med 2005;46:1119-271]. The aims...

  15. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    Science.gov (United States)

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-05

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Obstacles to Brain Tumor Therapy: Key ABC Transporters

    Directory of Open Access Journals (Sweden)

    Juwina Wijaya

    2017-11-01

    Full Text Available The delivery of cancer chemotherapy to treat brain tumors remains a challenge, in part, because of the inherent biological barrier, the blood–brain barrier. While its presence and role as a protector of the normal brain parenchyma has been acknowledged for decades, it is only recently that the important transporter components, expressed in the tightly knit capillary endothelial cells, have been deciphered. These transporters are ATP-binding cassette (ABC transporters and, so far, the major clinically important ones that functionally contribute to the blood–brain barrier are ABCG2 and ABCB1. A further limitation to cancer therapy of brain tumors or brain metastases is the blood–tumor barrier, where tumors erect a barrier of transporters that further impede drug entry. The expression and regulation of these two transporters at these barriers, as well as tumor derived alteration in expression and/or mutation, are likely obstacles to effective therapy.

  17. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  18. Effect of Oxidative Stress on ABC Transporters: Contribution to Epilepsy Pharmacoresistance

    Directory of Open Access Journals (Sweden)

    Gurpreet Kaur Grewal

    2017-02-01

    Full Text Available Epilepsy is a neurological disorder affecting around 1%–2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.

  19. KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons.

    Directory of Open Access Journals (Sweden)

    Artur ePadzik

    2016-03-01

    Full Text Available Increased phosphorylation of the KIF5 anterograde motor is associated with impaired axonal transport and neurodegeneration, but paradoxically also with normal transport, though the details are not fully defined. JNK phosphorylates KIF5C on S176 in the motor domain; a site that we show is phosphorylated in brain. Microtubule pelleting assays demonstrate that phosphomimetic KIF5C(1-560S176D associates weakly with microtubules compared to KIF5C(1-560WT. Consistent with this, 50% of KIF5C(1-560S176D shows diffuse movement in neurons. However the remaining 50% remains microtubule bound and displays decreased pausing and increased bidirectional movement. The same directionality switching is observed with KIF5C(1-560WT in the presence of an active JNK chimera, MKK7-JNK. Yet, in cargo trafficking assays where peroxisome cargo is bound, KIF5C(1-560S176D-GFP-FRB transports normally to microtubule plus ends. We also find that JNK increases the ATP hydrolysis of KIF5C in vitro. These data suggest that phosphorylation of KIF5C-S176 primes the motor to either disengage entirely from microtubule tracks as previously observed in response to stress, or to display improved efficiency. The final outcome may depend on cargo load and motor ensembles.

  20. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X...... of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region...... ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications...

  1. Structural basis of nanobody-mediated blocking of BtuF, the cognate substrate-binding protein of the Escherichia coli vitamin B12 transporter BtuCD.

    Science.gov (United States)

    Mireku, S A; Sauer, M M; Glockshuber, R; Locher, K P

    2017-10-30

    Bacterial ABC importers catalyze the uptake of essential nutrients including transition metals and metal-containing co-factors. Recently, an IgG antibody targeting the external binding protein of the Staphylococcus aureus Mn(II) ABC importer was reported to inhibit transport activity and reduce bacterial cell growth. We here explored the possibility of using alpaca-derived nanobodies to inhibit the vitamin B12 transporter of Escherichia coli, BtuCD-F, as a model system by generating nanobodies against the periplasmic binding protein BtuF. We isolated six nanobodies that competed with B12 for binding to BtuF, with inhibition constants between 10 -6 and 10 -9  M. Kinetic characterization of the nanobody-BtuF interactions revealed dissociation half-lives between 1.6 and 6 minutes and fast association rates between 10 4 and 10 6  M -1 s -1 . For the tightest-binding nanobody, we observed a reduction of in vitro transport activity of BtuCD-F when an excess of nanobody over B12 was used. The structure of BtuF in complex with the most effective nanobody Nb9 revealed the molecular basis of its inhibitory function. The CDR3 loop of Nb9 reached into the substrate-binding pocket of BtuF, preventing both B12 binding and BtuCD-F complex formation. Our results suggest that nanobodies can mediate ABC importer inhibition, providing an opportunity for novel antibiotic strategies.

  2. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft

    2005-01-01

    The serotonin transporter (SERT), which belongs to a family of       sodium/chloride-dependent transporters, is the major pharmacological       target in the treatment of several clinical disorders, including       depression and anxiety. In the present study we show that the dissociation......       rate, of [3H]S-citalopram from human SERT, is retarded by the presence of       serotonin, as well as by several antidepressants, when present in the       dissociation buffer. Dissociation of [3H]S-citalopram from SERT is most       potently inhibited by S-citalopram followed by R......-citalopram, sertraline,       serotonin and paroxetine. EC50 values for S- and R-citalopram are 3.6 +/-       0.4 microm and 19.4 +/- 2.3 microm, respectively. Fluoxetine, venlafaxine       and duloxetine have no significant effect on the dissociation of       [3H]S-citalopram. Allosteric modulation of dissociation...

  3. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  4. Tripartite ATP-Independent Periplasmic (TRAP Transporters and Tripartite Tricarboxylate Transporters (TTT: From Uptake to Pathogenicity

    Directory of Open Access Journals (Sweden)

    Leonardo T. Rosa

    2018-02-01

    Full Text Available The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP transporters and Tripartite Tricarboxylate Transporters (TTT. Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the

  5. Yeast ABC transporters in lipid trafficking.

    Science.gov (United States)

    Prasad, Rajendra; Khandelwal, Nitesh Kumar; Banerjee, Atanu

    2016-08-01

    Throughout its evolution, the ATP-binding cassette (ABC) transporter superfamily has experienced a rapid expansion in its substrate repertoire and functions. Of the diverse functions that these pumps offer, their drug transport properties have attracted considerable attention primarily owing to their clinical significance. Despite this fact, emerging evidence suggests that physiological substrates of transporters also affect the overall functioning of an organism. Lipids, as substrates of ABC transporters, constitute one feature found in all representative groups of the living kingdom. Due to the importance of lipid species in the cellular physiology of an organism, their proper distribution within cells is crucial. This fact is well exemplified by the vast number of medical conditions that have been caused as a result of perturbations in ABC transporter-mediated lipid transport in higher organisms. In yeasts, apart from providing transport functions, ABC transporters also coordinate regulatory networks with lipids. This review focuses on yeast ABC transporters involved in the transport of lipids and briefly discusses the integration of their regulatory network with that of the lipid species. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Split tasks of asymmetric nucleotide-binding sites in the heterodimeric ABC exporter EfrCD.

    Science.gov (United States)

    Hürlimann, Lea M; Hohl, Michael; Seeger, Markus A

    2017-06-01

    Many heterodimeric ATP-binding cassette (ABC) exporters evolved asymmetric ATP-binding sites containing a degenerate site incapable of ATP hydrolysis due to noncanonical substitutions in conserved sequence motifs. Recent studies revealed that nucleotide binding to the degenerate site stabilizes contacts between the nucleotide-binding domains (NBDs) of the inward-facing transporter and regulates ATP hydrolysis at the consensus site via allosteric coupling mediated by the D-loops. However, it is unclear whether nucleotide binding to the degenerate site is strictly required for substrate transport. In this study, we examined the functional consequences of a systematic set of mutations introduced at the degenerate and consensus site of the multidrug efflux pump EfrCD of Enterococcus faecalis. Mutating motifs which differ among the two ATP-binding sites (Walker B, switch loop, and ABC signature) or which are involved in interdomain communication (D-loop and Q-loop) led to asymmetric results in the functional assays and were better tolerated at the degenerate site. This highlights the importance of the degenerate site to allosterically regulate the events at the consensus site. Mutating invariant motifs involved in ATP binding and NBD closure (A-loop and Walker A) resulted in equally reduced transport activities, regardless at which ATP-binding site they were introduced. In contrast to previously investigated heterodimeric ABC exporters, mutation of the degenerate site Walker A lysine completely inactivated ATPase activity and substrate transport, indicating that ATP binding to the degenerate site is essential for EfrCD. This study provides novel insights into the split tasks of asymmetric ATP-binding sites of heterodimeric ABC exporters. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  7. Comparison of mechanistic transport cycle models of ABC exporters.

    Science.gov (United States)

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. myo-Inositol and d-Ribose Ligand Discrimination in an ABC Periplasmic Binding Protein

    Science.gov (United States)

    Herrou, Julien

    2013-01-01

    The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds d-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and d-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for d-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on d-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands. PMID:23504019

  9. ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione

    Science.gov (United States)

    Qiu, Wei; Liesa, Marc; Carpenter, Elizabeth P.; Shirihai, Orian S.

    2015-01-01

    ABCB10 (ATP binding cassette sub-family B10) is a mitochondrial inner-membrane ABC transporter. ABCB10 has been shown to protect the heart from the impact of ROS during ischemia-reperfusion and to allow for proper hemoglobin synthesis during erythroid development. ABC transporters are proteins that increase ATP binding and hydrolysis activity in the presence of the transported substrate. However, molecular entities transported by ABCB10 and its regulatory mechanisms are currently unknown. Here we characterized ATP binding and hydrolysis properties of ABCB10 by using the 8-azido-ATP photolabeling technique. This technique can identify potential ABCB10 regulators, transported substrates and amino-acidic residues required for ATP binding and hydrolysis. We confirmed that Gly497 and Lys498 in the Walker A motif, Glu624 in the Walker B motif and Gly602 in the C-Loop motif of ABCB10 are required for proper ATP binding and hydrolysis activity, as their mutation changed ABCB10 8-Azido-ATP photo-labeling. In addition, we show that the potential ABCB10 transported entity and heme precursor delta-aminolevulinic acid (dALA) does not alter 8-azido-ATP photo-labeling. In contrast, oxidized glutathione (GSSG) stimulates ATP hydrolysis without affecting ATP binding, whereas reduced glutathione (GSH) inhibits ATP binding and hydrolysis. Indeed, we detectABCB10 glutathionylation in Cys547 and show that it is one of the exposed cysteine residues within ABCB10 structure. In all, we characterize essential residues for ABCB10 ATPase activity and we provide evidence that supports the exclusion of dALA as a potential substrate directly transported by ABCB10. Last, we show the first molecular mechanism by which mitochondrial oxidative status, through GSH/GSSG, can regulate ABCB10. PMID:26053025

  10. Calibration of charcoal cassettes for radio-Iodine sampling

    International Nuclear Information System (INIS)

    Levinson, S.; Pelled, O.; Ballon, I.; Oved, S.; German, U.

    2004-01-01

    131 I is considered a high hazard radioisotope due to its abundance as a fission product, and its concentration in the thyroid gland. Monitoring 131 I in laboratories and determining its concentration in air is of great importance for Radiation Protection purposes. In order to achieve good collection efficiencies, monitoring devices are based on active charcoal cassettes, usually impregnated with TEDA 5% to enhance Iodine trapping (retention) efficiency. We employ at NRCN at the radio-iodine production laboratory continuous monitoring by air sampling through a cassette containing ∼26 gram activated coal, with a diameter of 57.4 mm and a height of 22 mm (TE2C 30x50 Mesh, manufactured by F and J., USA). A monitoring device, the RIS system, was described in the past (1). The charcoal cassette is replaced periodically, and the activity of the radio-Iodine is determined by gamma counting or spectrometry

  11. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  12. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    Science.gov (United States)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  13. Blanket maintenance by remote means using the cassette blanket approach

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  14. In abstinent MDMA users the cortisol awakening response is off-set but associated with prefrontal serotonin transporter binding as in non-users

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Erritzoe, David; Holst, Klaus Kähler

    2014-01-01

    Serotonergic signaling is considered critical for an appropriate adaptation to stress. We have previously observed that in healthy volunteers, prefrontal serotonin transporter (SERT) binding is positively associated with hypothalamic-pituitary-adrenal (HPA)-axis output in terms of the cortisol...

  15. The SPECT tracer [123I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    NARCIS (Netherlands)

    van de Giessen, Elsmarieke; Booij, Jan

    2010-01-01

    PURPOSE: The tracer (123)I-2-([2-({dimethylamino}methyl)phenyl]thio)-5-iodophenylamine ([(123)I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [(123)I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that

  16. Metal-binding thermodynamics of the histidine-rich sequence from the metal-transport protein IRT1 of Arabidopsis thaliana.

    Science.gov (United States)

    Grossoehme, Nicholas E; Akilesh, Shreeram; Guerinot, Mary Lou; Wilcox, Dean E

    2006-10-16

    The widespread ZIP family of transmembrane metal-transporting proteins is characterized by a large intracellular loop that contains a histidine-rich sequence whose biological role is unknown. To provide a chemical basis for this role, we prepared and studied a peptide corresponding to this sequence from the first iron-regulated transporter (IRT1) of Arabidopsis thaliana, which transports Fe2+ as well as Mn2+, Co2+, Zn2+, and Cd2+. Isothermal titration calorimetry (ITC) measurements, which required novel experiments and data analysis, and supporting spectroscopic methods were used to quantify IRT1's metal-binding affinity and associated thermodynamics. The peptide, PHGHGHGHGP, binds metal ions with 1:1 stoichiometry and stabilities that are consistent with the Irving-Williams series. Comparison of the metal-binding thermodynamics of the peptide with those of trien provides new insight about enthalpic and entropic contributions to the stability of the metal-peptide complex. Although Fe2+ and other IRT1-transported metal ions do not bind very tightly, this His-rich sequence has a very high entropy-driven affinity for Fe3+, which may have biological significance.

  17. Simple and rapid quantification of serotonin transporter binding using [11C]DASB bolus plus constant infusion.

    Science.gov (United States)

    Gryglewski, G; Rischka, L; Philippe, C; Hahn, A; James, G M; Klebermass, E; Hienert, M; Silberbauer, L; Vanicek, T; Kautzky, A; Berroterán-Infante, N; Nics, L; Traub-Weidinger, T; Mitterhauser, M; Wadsak, W; Hacker, M; Kasper, S; Lanzenberger, R

    2017-04-01

    In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [ 11 C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. [ 11 C]DASB bolus/infusion optimization was performed on data acquired after [ 11 C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [ 11 C]DASB bolus plus constant infusion with K bol 160-179min and one scan after [ 11 C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (V T ) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (V T-70 for 60-70min after start of tracer infusion, V T-90 for 75-90min, V T-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BP ND ) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. A K bol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. V T-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for V T-90 and 0.77-0.93 for V T-120 in these regions. BP ND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0

  18. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism.

    Science.gov (United States)

    Li, Yang; Mayer, Felix P; Hasenhuetl, Peter S; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H; Freissmuth, Michael; Sandtner, Walter

    2017-03-10

    The human dopamine transporter (DAT) has a tetrahedral Zn 2+ -binding site. Zn 2+ -binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn 2+ , Co 2+ , Ni 2+ , and Cu 2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn 2+ -binding site. All transition metals except Mn 2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu 2+ , followed by Ni 2+ and Zn 2+ (= Co 2+ ). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni 2+ and Cu 2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn 2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn 2+ -binding site may be of interest to restore transport in loss-of-function mutants. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    Science.gov (United States)

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  20. Structure of a bacterial energy-coupling factor transporter.

    Science.gov (United States)

    Wang, Tingliang; Fu, Guobin; Pan, Xiaojing; Wu, Jianping; Gong, Xinqi; Wang, Jiawei; Shi, Yigong

    2013-05-09

    The energy-coupling factor (ECF) transporters constitute a novel family of conserved membrane transporters in prokaryotes that have a similar domain organization to the ATP-binding cassette transporters. Each ECF transporter comprises a pair of cytosolic ATPases (the A and A' components, or EcfA and EcfA'), a membrane-embedded substrate-binding protein (the S component, or EcfS) and a transmembrane energy-coupling component (the T component, or EcfT) that links the EcfA-EcfA' subcomplex to EcfS. The structure and transport mechanism of the quaternary ECF transporter remain largely unknown. Here we report the crystal structure of a nucleotide-free ECF transporter from Lactobacillus brevis at a resolution of 3.5 Å. The T component has a horseshoe-shaped open architecture, with five α-helices as transmembrane segments and two cytoplasmic α-helices as coupling modules connecting to the A and A' components. Strikingly, the S component, thought to be specific for hydroxymethyl pyrimidine, lies horizontally along the lipid membrane and is bound exclusively by the five transmembrane segments and the two cytoplasmic helices of the T component. These structural features suggest a plausible working model for the transport cycle of the ECF transporters.

  1. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  2. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... regulation of biofilm formation by L. monocytogenes 4b G. The immediate gene upstream of lm.G_1771 encoded an ATP-binding protein. Bioinformatics analysis suggested that these two genes were organized into an operon and that their proteins formed an export ABC transporter. Here, we report...... the characterization of the mutant and identification of a novel ABC transporter that functions in negative regulation of biofilm formation in L. monocytogenes....

  3. Patterns of Availability and Use of Audiotape Cassettes in Special Libraries. Ph.D. Thesis

    Science.gov (United States)

    Hughes, J. M., II

    1975-01-01

    The availability and use of audiotape cassettes is studied in terms of user requirements. The following factors were examined: how special libraries utilize audiotape cassettes; who the users of the medium are; how the libraries acquire and maintain their collection; and opinions of librarians as to the value of the audiotape cassette as a medium for dissemination of information.

  4. ABC transporters in megakaryopoiesis and platelet activity.

    Science.gov (United States)

    Wang, Wei; Buitrago, Lorena; Wang, Ying

    2017-08-01

    ATP-binding cassette (ABC) is a family of transporters that facilitates the translocation of substrates across cell membrane using its ATPase subunit. These transporters have key roles in multidrug resistance, lipid homeostasis, antigen processing, immunity, cell proliferation and hematopoiesis. Some ABC transporters are selectively expressed on megakaryocyte progenitor, megakaryocyte and its cellular fragment platelet. However, the role of ABC transporters in hemostasis and thrombosis were not well explored until recently. Studies of both human genetic diseases and genetically-manipulated animal models have greatly improved our understanding of ABC transporters in regulating hematopoiesis particularly megakaryopoiesis and/or platelet activity. Human genome wide association studies (GWAS) have also unraveled the association between ABC transporters and thrombopoiesis in general population. Therefore, this review aims to summarize the recent advances in our understanding of how ABC transporters regulate megakaryopoiesis and platelet activity, the underlining mechanisms and their association with atherosclerosis and atherothrombosis. Last, the emerging therapeutic targets to slow down atherosclerosis development and prevent atherothrombosis via ABC transporters or downstream pathways will also be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia

    International Nuclear Information System (INIS)

    Nobrega, J.N.; Gernert, M.; Loescher, W.; Raymond, R.; Belej, T.; Richter, A.

    1999-01-01

    Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt sz ), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [ 3 H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [ 3 H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [ 3 H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals.This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri

    Science.gov (United States)

    Pegos, Vanessa R.; Santos, Rodrigo M. L.; Medrano, Francisco J.

    2017-01-01

    In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases. PMID:28542513

  7. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant.

    Science.gov (United States)

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie

    2009-10-25

    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  8. ABC Transporters and the Alzheimer’s Disease Enigma

    Directory of Open Access Journals (Sweden)

    Andrea eWolf

    2012-06-01

    Full Text Available Alzheimer’s disease (AD is considered the disease of the 21st century. With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems.Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1, Mrp1 (ABCC1 and BCRP (ABCG2, all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.

  9. Structural basis for the mechanism of ABC transporters.

    Science.gov (United States)

    Beis, Konstantinos

    2015-10-01

    The ATP-binding cassette (ABC) transporters are primary transporters that couple the energy stored in adenosine triphosphate (ATP) to the movement of molecules across the membrane. ABC transporters can be divided into exporters and importers; importers mediate the uptake of essential nutrients into cells and are found predominantly in prokaryotes whereas exporters transport molecules out of cells or into organelles and are found in all organisms. ABC exporters have been linked with multi-drug resistance in both bacterial and eukaryotic cells. ABC transporters are powered by the hydrolysis of ATP and transport their substrate via the alternating access mechanism, whereby the protein alternates between a conformation in which the substrate-binding site is accessible from the outside of the membrane, outward-facing and one in which it is inward-facing. In this mini-review, the structures of different ABC transporter types in different conformations are presented within the context of the alternating access mechanism and how they have shaped our current understanding of the mechanism of ABC transporters. © 2015 Authors; published by Portland Press Limited.

  10. Computer-Aided Recognition of ABC Transporters Substrates and Its Application to the Development of New Drugs for Refractory Epilepsy.

    Science.gov (United States)

    Couyoupetrou, Manuel; Gantner, Melisa E; Di Ianni, Mauricio E; Palestro, Pablo H; Enrique, Andrea V; Gavernet, Luciana; Ruiz, Maria E; Pesce, Guido; Bruno-Blanch, Luis E; Talevi, Alan

    2017-01-01

    Despite the introduction of more than 15 third generation antiepileptic drugs to the market from 1990 to the moment, about one third of the epileptic patients still suffer from refractory to intractable epilepsy. Several hypotheses seek to explain the failure of drug treatments to control epilepsy symptoms in such patients. The most studied one proposes that drug resistance might be related with regional overactivity of efflux transporters from the ATP-Binding Cassette (ABC) superfamily at the blood-brain barrier and/or the epileptic foci in the brain. Different strategies have been conceived to address the transporter hypothesis, among them inhibiting or down-regulating the efflux transporters or bypassing them through a diversity of artifices. Here, we review scientific evidence supporting the transporter hypothesis along with its limitations, as well as computer-assisted early recognition of ABC transporter substrates as an interesting strategy to develop novel antiepileptic drugs capable of treating refractory epilepsy linked to ABC transporters overactivity.

  11. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    Science.gov (United States)

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  12. Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ.

    Science.gov (United States)

    Lycklama A Nijeholt, Jelger A; Vietrov, Ruslan; Schuurman-Wolters, Gea K; Poolman, Bert

    2018-03-16

    Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Purification and biochemical characterisation of the yeast ABC transporter Pdr11p

    DEFF Research Database (Denmark)

    Laub, Katrine Rude

    Sterols constitute an essential lipid class in eukaryotic membranes where intracellular distributions are highly regulated. In the yeast Saccharomyces cerevisiae sterol uptake has been attributed to the two plasma membrane-localised ATP-binding cassette (ABC) transporters, Aus1p and Pdr11p...... understanding of their action and molecular functioning, it is helpful to focus on homogeneous preparations of membrane proteins reconstituted into model membranes like detergent micelles, liposomes, and nanodiscs. In the present study, I report the first successful expression, purification, and reconstitution...

  14. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk

    NARCIS (Netherlands)

    Guskov, Albert; Jensen, Sonja; Faustino, Ignacio; Marrink, Siewert J.; Slotboom, Dirk Jan

    2016-01-01

    Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters

  15. Cations affect [3H]mazindol and [3H]WIN 35,428 binding to the human dopamine transporter in a similar fashion.

    Science.gov (United States)

    Wu, Q; Coffey, L L; Reith, M E

    1997-09-01

    The present study addresses the possibility that there are different cocaine-related and mazindol-related binding domains on the dopamine transporter (DAT) that show differential sensitivity to cations. The effects of Zn2+, Mg2+, Hg2+, Li+, K+, and Na+ were assessed on the binding of [3H]mazindol and [3H]WIN 35,428 to the human (h) DAT expressed in C6 glioma cells under identical conditions for intact cell and membrane assays. The latter were performed at both 0 and 21 degrees C. Zn2+ (30-100 microM) stimulated binding of both radioligands to membranes, with a relatively smaller effect for [3H]mazindol; Mg2+ (0.1-100 microM) had no effect; Hg2+ at approximately 3 microM stimulated binding to membranes, with a relatively smaller effect for [3H]mazindol than [3H]WIN 35,428 at 0 degrees C, and at 30-100 microM inhibited both intact cell and membrane binding; Li+ and K+ substitution (30-100 mM) inhibited binding to membranes more severely than to intact cells; and Na+ substitution was strongly stimulatory. With only a few exceptions, the patterns of ion effects were remarkably similar for both radioligands at both 0 and 21 degrees C, suggesting the involvement of common binding domains on the hDAT impacted similarly by cations. Therefore, if there are different binding domains for WIN 35,428 and mazindol, these are not affected differentially by the cations studied in the present experiments, except for the stimulatory effect of Zn2+ at 0 and 21 degrees C and Hg2+ at 0 degrees C.

  16. Importance of ABC Transporters in Drug Development.

    Science.gov (United States)

    Benadiba, Marcel; Maor, Yehoshua

    2016-01-01

    ATP-binding cassette (ABC) transporters are a huge family of ATP-dependent transmembrane proteins whose main function is exporting or importing substances or molecules through the cell membranes, plasma cell membrane, or inner membranes in organelles. They fulfill these functions by maintaining cell integrity, metabolism, and homeostasis. They are expressed in a variety of tissues as they transport numerous essential compounds including lipids and other signaling molecules. ABC transporters became widely studied since the discovery of their ability to carry a multitude of xenobiotics, including therapeutic drugs, and in light of the fact that they represent a hurdle for the treatment of resistant cancers. In contrast, the role of ABC transporters in neurological diseases like Alzheimer`s and Parkinson`s, depression, schizophrenia, and epilepsy remains controversial and their mechanism of action in these pathologies remains elusive, thus hindering the implementation of therapies aimed at modulating the functions of these transporters. To date, a number of natural and synthetic compounds are known to act as inhibitors, substrates, and even inducers of these transporters, being able to modulate their expression and/or function; however, their implication as therapeutic agents is far from reaching wide clinical utilization. This review highlights the importance of overcoming the challenges posed by ABC transporters in drug development.

  17. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    Science.gov (United States)

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-07-01

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  19. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices.

    Science.gov (United States)

    Jung, Mi-Hee; Chu, Moo-Jung

    2014-08-07

    In this research, we prepared composite films via covalent coupling of CdSe quantum dots (QDs) to graphene through the direct binding of aryl radicals to the graphene surface. To compare the carrier transport with the CdSe aryl binding graphene film, we prepared CdSe pyridine capping graphene films through the pi-pi interactions of noncovalent bonds between the graphene and pyridine molecules. The photovoltaic devices were fabricated from the two hybrid films using the electrophoretic deposition method on flexible substrates. Even though the two hybrid films have the same amount of QDs and graphene, time-resolved fluorescence emission decay results show that the emission lifetime of the CdSe aryl group binding graphene film is significantly shorter than that of the pyridine capping CdSe-graphene. The quantum efficiency and photocurrent density of the device fabricated from CdSe aryl binding graphene were also higher than those of the device fabricated from pyridine capping CdSe-graphene. These results indicated that the carrier transport of the QD-graphene system is not related to the additive effect from the CdSe and graphene components but rather is a result of the unique interactions between the graphene and QDs. We could expect that these results can be useful in designing QD-graphene composite materials, which are applied in photovoltaic devices.

  20. Polycistronic transcription of fused cassettes and identification of translation initiation signals in an unusual gene cassette array from Pseudomonas aeruginosa [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Érica L. Fonseca

    2015-11-01

    Full Text Available The gene cassettes found in class 1 integrons are generally promoterless units composed by an open reading frame (ORF, a short 5’ untranslated region (UTR and a 3’ recombination site (attC. Fused gene cassettes are generated by partial or total loss of the attC from the first cassette in an array, creating, in some cases, a fusion with the ORF from the next cassette. These structures are rare and little is known about their mechanisms of mobilization and expression. The aim of this study was to evaluate the dynamic of mobilization and transcription of the gcu14-blaGES-1/aacA4 gene cassette array, which harbours a fused gene cassette represented by blaGES-1/aacA4. The cassette array was analyzed by Northern blot and real-time reverse transcription-polymerase chain reaction (RT-PCR in order to assess the transcription mechanism of blaGES-1/aacA4 fused cassette. Also, inverse polymerase chain reactions (PCR were performed to detect the free circular forms of gcu14, blaGES-1 and aacA4. The Northern blot and real time RT-PCR revealed a polycistronic transcription, in which the fused cassette blaGES-1/aacA4 is transcribed as a unique gene, while gcu14 (with a canonical attC recombination site has a monocistronic transcription. The gcu14 cassette, closer to the weak configuration of cassette promoter (PcW, had a higher transcription level than blaGES-1/aacA4, indicating that the cassette position affects the transcript amounts. The presence of ORF-11 at attI1, immediately preceding gcu14, and of a Shine-Dalgarno sequence upstream blaGES-1/aacA4 composes a scenario for the occurrence of array translation. Inverse PCR generated amplicons corresponding to gcu14, gcu14-aacA4 and gcu14-blaGES-1/aacA4 free circular forms, but not to blaGES-1 and aacA4 alone, indicating that the GES-1 truncated attC is not substrate of integrase activity and that these genes are mobilized together as a unique cassette. This study was original in showing the transcription

  1. Pouring and running a protein gel by reusing commercial cassettes.

    Science.gov (United States)

    Hwang, Alexander C; Grey, Paris H; Cuddy, Katrina; Oppenheimer, David G

    2012-02-12

    The evaluation of proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is a common technique used by biochemistry and molecular biology researchers. For laboratories that perform daily analyses of proteins, the cost of commercially available polyacrylamide gels (~$10/gel) can be considerable over time. To mitigate this cost, some researchers prepare their own polyacrylamide gels. Traditional methods of pouring these gels typically utilize specialized equipment and glass gel plates that can be expensive and preclude pouring many gels and storing them for future use. Furthermore, handling of glass plates during cleaning or gel pouring can result in accidental breakage creating a safety hazard, which may preclude their use in undergraduate laboratory classes. Our protocol demonstrates how to pour multiple protein gels simultaneously by recycling Invitrogen Nupage Novex minigel cassettes, and inexpensive materials purchased at a home improvement store. This economical and streamlined method includes a way to store the gels at 4°C for a few weeks. By re-using the plastic gel cassettes from commercially available gels, labs that run frequent protein gels can save significant costs and help the environment. In addition, plastic gel cassettes are extremely resistant to breakage, which makes them ideal for undergraduate laboratory classrooms.

  2. Mapping the Binding Site for Escitalopram and Paroxetine in the Human Serotonin Transporter Using Genetically Encoded Photo-Cross-Linkers

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Bang-Andersen, Benny

    2017-01-01

    amber codon suppression in hSERT to encode the photo-cross-linking unnatural amino acid p-azido-l-phenylalanine into the suggested high- and low-affinity binding sites. We then employ UV-induced cross-linking with azF to map the binding site of escitalopram and paroxetine, two prototypical selective...

  3. Repeated administration of D-amphetamine induces loss of [{sup 123}I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands)]. E-mail: j.booij@amc.uva.nl; Bruin, Kora de [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands); Gunning, W. Boudewijn [Department of Neurology, Epilepsy Centre Kempenhaeghe, 5590 AB Heeze (Netherlands)

    2006-04-15

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in amphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of D-AMPH or methamphetamine (METH) may induce loss of binding to striatal DATs in rats by using an experimental biodistribution study design and a SPECT tracer for the DAT ([{sup 123}I]FP-CIT). Methods: Groups of male rats (n=10 per group) were treated with D-AMPH (10 mg/kg body weight), METH (10 mg/kg body weight), or saline, twice a day for 5 consecutive days. Five days later, [{sup 123}I]FP-CIT was injected intravenously, and 2 h later, the rats were sacrificed and radioactivity was assayed. Results: In D-AMPH but not METH-treated rats, striatal [{sup 123}I]FP-CIT uptake was significantly lower (approximately 17%) than in the control group. Conclusion: These data show that [{sup 123}I]FP-CIT can be used to detect AMPH-induced changes in DAT binding and may validate the use of DAT radiotracers to study AMPH-induced changes in striatal DAT binding in vivo.

  4. Differential sensitivity to NaCl for inhibitors and substrates that recognize mutually exclusive binding sites on the neuronal transporter of dopamine in rat striatal membranes.

    Science.gov (United States)

    Tidjane Corera, A; Do-Régo, J C; Costentin, J; Bonnet, J J

    2001-03-01

    Addition of NaCl (90--290 mM) to a 10 mM Na(+) medium did not significantly modify B(max) and K(d) values for [3H]mazindol binding to the dopamine neuronal transporter (DAT) studied on rat striatal membranes at 20 degrees C. Addition of NaCl differentially affected the ability of other uptake inhibitors and substrates to block the [3H]mazindol binding. Ratios of 50% inhibiting concentrations calculated for 290 and 90 mM NaCl allowed to distinguish three groups of agents: substrates which were more potent in the presence of 290 mM NaCl (group 1; ratio mazindol, benztropine, nomifensine). However, agents from these three groups recognize mutually exclusive binding sites since in interaction studies the presence of WIN 35,428 (group 2) or mazindol (group 3) increased the 50% inhibiting concentrations of D-amphetamine (group 1) and WIN 35,428 on the [3H]mazindol binding to theoretical values expected for a competition of all of these compounds for the same binding domain on the DAT.

  5. The SPECT tracer [{sup 123}I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men

    Energy Technology Data Exchange (ETDEWEB)

    Giessen, Elsmarieke van de [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); Booij, Jan [University of Amsterdam, Academic Medical Center, Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, Amsterdam (Netherlands); University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, F2-236, Amsterdam (Netherlands)

    2010-08-15

    The tracer {sup 123}I-2-([2-({l_brace}dimethylamino{r_brace}methyl)phenyl]thio)-5-iodophenylamine ([{sup 123}I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [{sup 123}I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [{sup 123}I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [{sup 123}I]ADAM binds selectively to SERTs. We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [{sup 123}I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Our preliminary findings suggest that [{sup 123}I]ADAM binds selectively to SERTs in human brain. (orig.)

  6. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    Background: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters...

  7. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  8. The ABC of ECF transporters : discovery and initial characterization of ECF-type ATP-binding casette (ABC) importers

    NARCIS (Netherlands)

    ter Beek, Josy

    2012-01-01

    Josy ter Beek heeft een nieuwe klasse transporteiwitten in de celmembraan ontdekt en gekarakteriseerd. Aangezien deze transporter alleen door bacteriën wordt gebruikt en voor het transport van verscheidene belangrijke stoffen zorgt, kan informatie over deze nieuwe klasse transporters in de toekomst

  9. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization....... In dopamine transporter-AAA neurons, but not in wild-type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ-domain interactions are critical for synaptic distribution of dopamine transporter in vivo and thereby for proper...

  10. The role of ABCG-type ABC transporters in phytohormone transport.

    Science.gov (United States)

    Borghi, Lorenzo; Kang, Joohyun; Ko, Donghwi; Lee, Youngsook; Martinoia, Enrico

    2015-10-01

    Plant hormones (phytohormones) integrate endogenous and exogenous signals thus synchronizing plant growth with environmental and developmental changes. Similar to animals, phytohormones have distinct source and target tissues, hence controlled transport and focused targeting are required for their functions. Many evidences accumulated in the last years about the regulation of long-distance and directional transport of phytohormones. ATP-binding cassette (ABC) transporters turned out to play major roles in routing phytohormones not only in the plant body but also towards the outer environment. The ABCG-type proteins ABCG25 and ABCG40 are high affinity abscisic acid (ABA) transporters. ABCG14 is highly co-expressed with cytokinin biosynthesis and is the major root-to-shoot cytokinin transporter. Pleiotropic drug resistance1 (PDR1) from Petunia hybrida transports strigolactones (SLs) from the root tip to the plant shoot but also outside to the rhizosphere, where SLs are the main attractants to mycorrhizal fungi. Last but not least, ABCG36 and ABCG37 possibly play a dual role in coumarine and IBA transport. © 2015 Authors.

  11. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport.

    Science.gov (United States)

    Geisler, Markus; Aryal, Bibek; di Donato, Martin; Hao, Pengchao

    2017-10-01

    Different subclasses of ATP-binding cassette (ABC) transporters have been implicated in the transport of native variants of the phytohormone auxin. Here, the putative, individual roles of key members belonging to the ABCB, ABCD and ABCG families, respectively, are highlighted and the knowledge of their assumed expression and transport routes is reviewed and compared with their mutant phenotypes. Protein-protein interactions between ABC transporters and regulatory components during auxin transport are summarized and their importance is critically discussed. There is a focus on the functional interaction between members of the ABCB family and the FKBP42, TWISTED DWARF1, acting as a chaperone during plasma membrane trafficking of ABCBs. Further, the mode and relevance of functional ABCB-PIN interactions is diagnostically re-evaluated. A new nomenclature describing precisely the most likely ABCB-PIN interaction scenarios is suggested. Finally, available tools for the detection and prediction of ABC transporter interactomes are summarized and the potential of future ABC transporter interactome maps is highlighted. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. PEB1, the Major Cell-Binding Factor of Campylobacter jejuni, Is a Homolog of the Binding Component in Gram-Negative Nutrient Transport System

    Science.gov (United States)

    1993-01-01

    involved in Campylobacter colonization of the intestine terminal sequencing of mature PEBi from C. jejuni. (13). PEBI is a lysine-rich basic (pl 8.5...strain 81- intestinal cells and in amino acid transport. 176. The deduced amino acid sequence indicated that PEBI has a cleaved 26-amino acid lepder...H’ennessy, J. N.. and Congi, FL V. (1983) Eu,. J. Clin. 40. Kraft, R4., and Le:nwand. L. A. (1987) Nucleic Acids, Res. 15. 8568 Microbiot 2. 378

  13. Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs.

    Science.gov (United States)

    Krout, Danielle; Pramod, Akula Bala; Dahal, Rejwi Acharya; Tomlinson, Michael J; Sharma, Babita; Foster, James D; Zou, Mu-Fa; Boatang, Comfort; Newman, Amy Hauck; Lever, John R; Vaughan, Roxanne A; Henry, L Keith

    2017-10-15

    Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2-24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2-24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2-24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (-)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site

  14. Sphingosine-1-Phosphate Transporters as Targets for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Masayuki Nagahashi

    2014-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a pleiotropic lipid mediator that regulates cell survival, migration, the recruitment of immune cells, angiogenesis, and lymphangiogenesis, all of which are involved in cancer progression. S1P is generated inside cancer cells by sphingosine kinases then exported outside of the cell into the tumor microenvironment where it binds to any of five G protein coupled receptors and proceeds to regulate a variety of functions. We have recently reported on the mechanisms underlying the “inside-out” signaling of S1P, its export through the plasma membrane, and its interaction with cell surface receptors. Membrane lipids, including S1P, do not spontaneously exchange through lipid bilayers since the polar head groups do not readily go through the hydrophobic interior of the plasma membrane. Instead, specific transporter proteins exist on the membrane to exchange these lipids. This review summarizes what is known regarding S1P transport through the cell membrane via ATP-binding cassette transporters and the spinster 2 transporter and discusses the roles for these transporters in cancer and in the tumor microenvironment. Based on our research and the emerging understanding of the role of S1P signaling in cancer and in the tumor microenvironment, S1P transporters and S1P signaling hold promise as new therapeutic targets for cancer drug development.

  15. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kinetic analysis of transport and opioid receptor binding of ( sup 3 H)(-)-cyclofoxy in rat brain in vivo: Implications for human studies

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y.; Kawai, R.; McManaway, M.; Otsuki, H.; Rice, K.C.; Patlak, C.S.; Blasberg, R.G. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    (3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.

  17. Kinetic analysis of transport and opioid receptor binding of [3H](-)-cyclofoxy in rat brain in vivo: Implications for human studies

    International Nuclear Information System (INIS)

    Sawada, Y.; Kawai, R.; McManaway, M.; Otsuki, H.; Rice, K.C.; Patlak, C.S.; Blasberg, R.G.

    1991-01-01

    [3H]Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB); estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using [18F]CF and positron emission tomography

  18. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)*

    Science.gov (United States)

    Schölz, Christian; Parcej, David; Ejsing, Christer S.; Robenek, Horst; Urbatsch, Ina L.; Tampé, Robert

    2011-01-01

    The transporter associated with antigen processing (TAP) plays a key role in adaptive immunity by translocating proteasomal degradation products from the cytosol into the endoplasmic reticulum lumen for subsequent loading onto major histocompatibility (MHC) class I molecules. For functional and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture. Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry. The antigen translocation activity is stimulated by phosphatidylinositol and -ethanolamine, whereas cholesterol has a negative effect on TAP activity. PMID:21357424

  19. Disinfection efficacy of an ultraviolet light on film cassettes for preventive of the nosocomial infection

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol [Seoul National Univ. Hospital, Seoul (Korea, Republic of); Jeon, Yong Woong; Cho, Am [Dongguk Univ., Seoul (Korea, Republic of)

    2001-06-01

    The bacterial infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacterial. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradiate bacterial. Additionally, two minutes are required to sterilize film cassettes.

  20. Disinfection efficacy of an ultraviolet light on film cassettes for preventive of the nosocomial infection

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Jeon, Yong Woong; Cho, Am

    2001-01-01

    The bacterial infection on film cassette contact surface was examined at the diagnostic radiology department of the S. hospital. The objective of this study was to assess the contamination level on film cassette contact surface as a predictor of patient prevention from nosocomial infection and for improvement of the hospital environment. The laboratory result was identified non-pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection is proven suitable for bacterial. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In addition education of nosocomial infection for radiographers will be required. In conclusion, ultraviolet is considered effective to irradiate bacterial. Additionally, two minutes are required to sterilize film cassettes

  1. Compensating stereochemical changes allow murein tripeptide to be accommodated in a conventional peptide-binding protein.

    Science.gov (United States)

    Maqbool, Abbas; Levdikov, Vladimir M; Blagova, Elena V; Hervé, Mireille; Horler, Richard S P; Wilkinson, Anthony J; Thomas, Gavin H

    2011-09-09

    The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ∼ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.

  2. Acyl-CoA-binding protein (ACBP) can mediate intermembrane acyl-CoA transport and donate acyl-CoA for beta-oxidation and glycerolipid synthesis

    DEFF Research Database (Denmark)

    Rasmussen, J T; Færgeman, Nils J.; Kristiansen, K

    1994-01-01

    The dissociation constants for octanoyl-CoA, dodecanoyl-CoA and hexadecanoyl-CoA binding to acyl-CoA-binding protein (ACBP) were determined by using titration microcalorimetry. The KD values obtained, (0.24 +/- 0.02) x 10(-6) M, (0.65 +/- 0.2) x 10(-8) M and (0.45 +/- 0.2) x 10(-13) M respectively......, were much lower than expected. ACBP was able to extract hexadecanoyl-CoA from phosphatidylcholine membranes immobilized on a nitrocellulose membrane. The acyl-CoA/ACBP complex formed was able to transport acyl-CoA to mitochondria or microsomes in suspension, or to microsomes immobilized...

  3. Control of Insulin Granule Formation and Function by the ABC Transporters ABCG1 and ABCA1 and by Oxysterol Binding Protein OSBP.

    Science.gov (United States)

    Hussain, Syed Saad; Harris, Megan T; Kreutzberger, Alex J B; Inouye, Candice M; Doyle, Catherine A; Castle, Anna M; Arvan, Peter; Castle, J David

    2018-03-14

    In pancreatic β cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol's role in supporting granule membrane formation and function is poorly understood. A TP b inding c assette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi-induced depletion in cultured pancreatic β cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP) appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal ER defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging and export levels through the actions of OSBP and ABCs G1 and A1. © 2018 by The American Society for Cell Biology.

  4. The x-ray source application test cassette for radiation exposures at the OMEGA laser

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B.; Rekow, V.; Emig, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Fisher, J. H.; Newlander, C. D. [Fifth Gait Technologies, Inc., Huntsville, Alabama 35803 (United States); Horton, R. [Gray Research, Inc., Huntsville, Alabama 35806 (United States); Davis, J. [Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060 (United States)

    2012-10-15

    We have designed a sample cassette that can be used to position up to six samples in the OMEGA laser chamber. The cassette accommodates round samples up to 38.1 mm (1.5{sup Double-Prime }) in diameter and square samples up to 27 mm on a side, any of which can be up to 12.7 mm thick. Smaller specimens are centered with spacers. The test cassette allows each sample to have a unique filter scheme, with multiple filter regions in front of each sample. This paper will present mechanical design considerations and operational aspects of the x-ray source application cassette.

  5. On wiping the interior walls of 37-mm closed-face cassettes: an OSHA perspective.

    Science.gov (United States)

    Hendricks, Warren; Stones, Fern; Lillquist, Dean

    2009-12-01

    As early as 1976, Occupational Safety and Health Administration (OSHA) methods for analyzing metal samples collected using 37-mm polystyrene closed-face cassettes specified that any loose dust be transferred from the cassette to the digestion vessel, that the cassette be rinsed, and that, if necessary, the cassette be wiped out to help ensure that all particles that enter the cassette are included along with the filter as part of the sample for analysis. OSHA analytical methods for metal analysis were recently revised to explicitly require cassette wiping for all metal samples. This change was based on policy that any material entering the collection device constitutes part of the sample and on OSHA Salt Lake Technical Center research showing that invisible residue on the cassette walls can significantly contribute to the total sample results reported. OSHA procedures are consistent with guidance given in the NIOSH Manual of Analytical Methods. This guidance concludes that internal deposits in sampling cassettes should be included in the analysis and that one way to accomplish this would be to wipe or wash the internal surfaces of the cassette and include the material along with the filter for analysis.

  6. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding

    NARCIS (Netherlands)

    Soysa, R.; Venselaar, H.; Poston, J.; Ullman, B.; Hasne, M.P.

    2013-01-01

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural

  7. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  8. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  9. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described. Copyright © 2016. Published by Elsevier B.V.

  10. Attention deficit hyperactivity disorder: binding of [{sup 99m}Tc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.; LaFougere, C.; Brinkbaeumer, K.; Hahn, K.; Tatsch, K. [Dept. of Nuclear Medicine, Univ. of Munich (Germany); Krause, J.; Krause, K.-H. [Inst. for Psychiatry and Psychotherapy, Ottobrunn (Germany); Friedrich Baur Inst., Univ. of Munich (Germany); Kung, H.F. [Dept. of Radiology, Univ. of Pennsylvania (United States)

    2000-10-01

    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [{sup 99m}Tc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [{sup 99m}Tc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [{sup 99m}Tc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43{+-}0.18 vs 1.22{+-}0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00{+-}0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  11. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment

    International Nuclear Information System (INIS)

    Dresel, S.; LaFougere, C.; Brinkbaeumer, K.; Hahn, K.; Tatsch, K.; Krause, J.; Krause, K.-H.; Kung, H.F.

    2000-01-01

    Involvement of the dopaminergic system has been suggested in patients suffering from attention deficit hyperactivity disorder (ADHD) since the symptoms can be successfully treated with methylphenidate, a potent blocker of the dopamine transporter (DAT). This study reports the findings on the status of the DAT in adults with ADHD before and after commencement of treatment with methylphenidate, as measured using [ 99m Tc]TRODAT-1. Seventeen patients (seven males, ten females, aged 21-64 years, mean 38 years) were examined before and after the initiation of methylphenidate treatment (3 x 5 mg/day). All subjects were injected with 800 MBq [ 99m Tc]TRODAT-1 and imaged 3 h p.i. Single-photon emission tomography (SPET) scans were acquired using a triple-headed gamma camera. For semi-quantitative evaluation of the DAT, transverse slices corrected for attenuation were used to calculate specific binding in the striatum, with the cerebellum used as background [(STR-BKG)/BKG]. Data were compared with an age-matched control group. It was found that untreated patients presented with a significantly increased specific binding of [ 99m Tc]TRODAT-1 to the DAT as compared with normal controls [(STR-BKG)/BKG: 1.43±0.18 vs 1.22±0.06, P<0.001]. Under treatment with methylphenidate, specific binding decreased significantly in all patients [(STR-BKG)/BKG: 1.00±0.14, P<0.001]. Our findings suggest that the number of DAT binding sites is higher in drug-naive patients suffering from ADHD than in normal controls. The decrease in available DAT binding sites under treatment with methylphenidate correlates well with the improvement in clinical symptoms. The data of this study help to elucidate the complex dysregulation of the dopaminergic neurotransmitter system in patients suffering from ADHD and the effect of treatment with psychoactive drugs. (orig.)

  12. Decreased striatal dopamine transporter binding assessed with [123I] FP-CIT in first-episode schizophrenic patients with and without short-term antipsychotic-induced parkinsonism.

    Science.gov (United States)

    Mateos, Jose J; Lomeña, Francisco; Parellada, Eduardo; Font, Mireia; Fernandez, Emili; Pavia, Javier; Prats, Alberto; Pons, Francisca; Bernardo, Miquel

    2005-09-01

    Drug-induced parkinsonism (DIP) is one of the main causes of treatment drop-out in schizophrenic patients causing a high incidence of relapse that leads patients to a bad clinical prognosis. The dopaminergic nigrostriatal pathway is involved in the movement control, so the study of the dopamine transporter (DAT) could be of great value to determine its implication in the appearance of DIP. The goal of the study is to determine the striatal DAT binding assessed with [(123)I] FP-CIT SPECT in first-episode neuroleptic-naive schizophrenic in-patients with DIP after short-term antipsychotic treatment. The [(123)I] FP-CIT binding ratios of ten schizophrenic in-patients who developed DIP during the first 4-week period of risperidone treatment (6+/-2 mg/day) were compared with ten schizophrenic in-patients treated with the same doses of risperidone and who do not developed DIP and with ten age-matched healthy subjects. Quantitative analyses of SPECTs were performed using regions of interest located in caudate, putamen and occipital cortex. Parkinsonism was assessed by the Simpson-Angus Scale and the psychopathological status by the Clinical General Impression and Positive and Negative Syndrome Scales. Whole striatal [(123)I] FP-CIT binding ratios were significantly lower in patients with and without DIP than in healthy subjects (p<0.001). This was also observed in whole putamen (p<0.001) and caudate nucleus (p<0.001). Females showed higher whole striatal [(123)I] FP-CIT binding ratios than males (p<0.05). No differences in psychopathological scales were observed between patients with and without DIP. Our first-episode schizophrenic patients with and without DIP after short-term risperidone treatment have a decreased striatal DAT binding assessed with [(123)I] FP-CIT. This alteration could be related to the schizophrenic disease or may be secondary to the antipsychotic treatment.

  13. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism.

    Science.gov (United States)

    Döring, Barbara; Petzinger, Ernst

    2014-08-01

    The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.

  14. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  15. A survey of the radiographic cassettes disinfection of university hospitals in seoul

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom; Kim, Moon Sun; Kim, Dong Sung

    2001-01-01

    The purpose of this study is to prevent nosocomial infection in patients through contact of radiographic cassettes. Data were collected from radiographers working in 29 university hospitals in Seoul in February and March 2001. Radiographic cassettes were disinfected daily in 5 hospitals, weekly in 4 hospitals, monthly in 5 hospitals, bimonthly in 1 hospital and once every three months in another hospital. 12 other hospitals do not practice regular disinfections of radiographic cassettes. Gauze soaked in disinfectant solution is used in 7 hospitals while 11 hospitals used cotton and cloth soaked in disinfectant solution to clean the radiographic cassettes. 26 hospitals used 99% alcohol based disinfectant solutions while 3 hospitals used 75% alcohol based disinfectant, 26 hospitals use of intercourse cassettes outpatients and in patients. In 26 hospitals, all patients shared the same set of radiographic cassettes used in the hospitals, or in 26 hospitals, separate sets of radiographic cassettes are used for outpatients and inpatients. Separate sets of cassettes are used for ICU and inpatients in 6 others hospitals. 23 hospitals used the same sets of radiographic cassettes for all their patients. radiographic cassettes are cleaned in wash area in the study room of the radiographic department in 17 hospitals. 12 other hospitals do not have designated cleaning areas for the cassettes. All radiographers practiced hands washing with soap. All 29 hospitals surveyed have infection control committee. However, only 9 out of the 29 hospitals surveyed provided Infection · disinfections control education to radiographers. Only 3 hospitals have radiographers sitting in the infection control committee. Infection management education is conducted in 63 hospitals annually, twice a year in 1 hospital and once every 3 months in 2 hospitals

  16. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Matthew [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom); Harvey, Jane M. [School of Allied Health Professions and Science, Faculty of Health, Wellbeing and Science, University Campus Suffolk, Rope Walk, Ipswich, Suffolk, IP4 1LT (United Kingdom)], E-mail: j.harvey@ucs.ac.uk

    2008-11-15

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible

  17. An investigation of infection control for x-ray cassettes in a diagnostic imaging department

    International Nuclear Information System (INIS)

    Fox, Matthew; Harvey, Jane M.

    2008-01-01

    Introduction: This research was conducted to investigate if X-ray cassettes could be a possible source of pathogens capable of causing nosocomial infections, and if they could be a possible vector for cross infection within the hospital environment. Method: The research involved the swabbing of X-ray cassettes in a Diagnostic Imaging Department of a large hospital in the east of England. Two areas of the Diagnostic Imaging Department were included in the study. Research concentrated on X-ray cassettes used for mobile radiography, accident and emergency and inpatient use. Forty cassettes were swabbed in total specifically for general levels of bacterial contamination, also for the presence or absence of methicillin-resistant Staphylococcus aureus (MRSA). A mapping exercise was completed following the location of an X-ray cassette typically used in mobile radiography. The exercise noted the level of direct contact with patient's skin and other possible routes of infection. Results: The results demonstrated that there were large levels of growth of samples taken from cassettes and developed in the Microbiology Department. Coagulase-negative Staphylococcus, Micrococci, Diptheroids and species of Bacillus were all identified. The mapping exercise in which the journey of a 35/43 cm cassette used for mobile radiography was tracked found that contact with patient's skin and potential pathogens or routes of cross infection was a common occurrence whilst undertaking mobile radiography. Conclusion: The research has identified the presence of bacterial contamination on cassettes. The research established that X-ray cassettes/imaging plates are often exposed to pathogens and possible routes of cross infection; also that patient's skin often comes directly in contact with the X-ray cassette/imaging plate. The research also shows that as cassettes/imaging plates are a potential source of cross infection, the Diagnostic Imaging Department may be partly responsible for adding to

  18. Suboptimal maternal diets alter mu opioid receptor and dopamine type 1 receptor binding but exert no effect on dopamine transporters in the offspring brain.

    Science.gov (United States)

    Thanos, Panayotis K; Zhuo, Jianmin; Robison, Lisa; Kim, Ronald; Ananth, Mala; Choai, Ilon; Grunseich, Adam; Grissom, Nicola M; George, Robert; Delis, Foteini; Reyes, Teresa M

    2018-02-01

    Birthweight is a marker for suboptimal fetal growth and development in utero. Offspring can be born large for gestational age (LGA), which is linked to maternal obesity or excessive gestational weight gain, as well as small for gestational age (SGA), arising from nutrient or calorie deficiency, placental dysfunction, or other maternal conditions (hypertension, infection). In humans, LGA and SGA babies are at an increased risk for certain neurodevelopmental disorders, including Attention Deficit/Hyperactivity Disorder, schizophrenia, and social and mood disorders. Using mouse models of LGA (maternal high fat (HF) diet) and SGA (maternal low protein (LP) diet) offspring, our lab has previously shown that these offspring display alterations in the expression of mesocorticolimbic genes that regulate dopamine and opioid function, thus indicating that these brain regions and neurotransmitter systems are vulnerable to gestational insults. Interestingly, these two maternal diets affected dopamine and opioid systems in somewhat opposing directions (e.g., LP offspring are generally hyperdopaminergic with reduced opioid expression, and the reverse is found for the HF offspring). These data largely involved evaluation at the transcriptional level, so the present experiment was designed to extend these analyses through an assessment of receptor binding. In this study, control, SGA and LGA offspring were generated from dams fed control, low protein or high fat diet, respectively, throughout pregnancy and lactation. At weaning, mice were placed on the control diet and sacrificed at 12 weeks of age. In vitro autoradiography was used to measure mu-opioid receptor (MOR), dopamine type 1 receptor (D1R), and dopamine transporter (DAT) binding level in mesolimbic brain regions. Results showed that the LP offspring (males and females) had significantly higher MOR and D1R binding than the control animals in the regions associated with reward. In HF offspring there were no differences in

  19. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    Science.gov (United States)

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions. © 2013.

  20. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.

    Science.gov (United States)

    Quentin, Y; Fichant, G; Denizot, F

    1999-04-02

    We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems. Copyright 1999 Academic Press.

  1. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut

    DEFF Research Database (Denmark)

    Leth, Maria Louise; Ejby, Morten; Workman, Christopher

    2018-01-01

    and dynamic association to xylan via four xylan-binding modules. This xylanase operates in concert with an ATP-binding cassette transporter to mediate breakdown and selective internalization of xylan fragments. The transport protein of R. intestinalis prefers oligomers of 4-5 xylosyl units, whereas......Metabolism of dietary glycans is pivotal in shaping the human gut microbiota. However, the mechanisms that promote competition for glycans among gut commensals remain unclear. Roseburia intestinalis, an abundant butyrate-producing Firmicute, is a key degrader of the major dietary fibre xylan....... Despite the association of this taxon to a healthy microbiota, insight is lacking into its glycan utilization machinery. Here, we investigate the apparatus that confers R. intestinalis growth on different xylans. R. intestinalis displays a large cell-attached modular xylanase that promotes multivalent...

  2. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species

    Directory of Open Access Journals (Sweden)

    Fauzy Nasher

    2018-01-01

    Full Text Available The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus. Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami–AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.

  3. Differences in [99mTc]TRODAT-1 SPECT binding to dopamine transporters in patients with multiple system atrophy and Parkinson's disease

    International Nuclear Information System (INIS)

    Swanson, Randel L.; Newberg, Andrew B.; Acton, Paul D.; Siderowf, Andrew; Wintering, Nancy; Alavi, Abass; Mozley, P. David; Plossl, Karl; Udeshi, Michelle; Hurtig, Howard

    2005-01-01

    Multiple system atrophy (MSA), a disorder causing autonomic dysfunction, parkinsonism, and cerebellar dysfunction, is difficult to differentiate from other movement disorders, particularly early in the course of disease. This study evaluated whether [ 99m Tc]TRODAT-1 binding to the dopamine transporter differentiates MSA from other movement disorders. Single-photon emission computed tomographic brain scans were acquired in 25 MSA patients, 48 age-matched controls, and 130 PD patients, 3 h after the injection of 740 MBq (20 mCi) of [ 99m Tc]TRODAT-1. Regions of interest (ROIs) were placed manually on subregions of both basal ganglia and distribution volume ratios (DVRs) were calculated. Regional DVRs were compared between study groups in MSA patients. Student's ttests were used to compare MSA patients with other study groups. Spearman correlations were used to compare DVRs with NP measures. Based upon various motor scores, MSA and PD patients had comparable motor impairment, and were significantly impaired compared with controls. Mean DVRs in the basal ganglia of MSA patients were significantly less than those of controls, but generally higher (p 99m Tc]TRODAT-1 binding, particularly in the posterior putamen, compared with PD patients and significantly lower binding compared with controls. This may reflect different pathophysiological processes of the two neurodegenerative diseases. (orig.)

  4. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  5. Multifunctional RNA Binding Protein OsTudor-SN in Storage Protein mRNA Transport and Localization.

    Science.gov (United States)

    Chou, Hong-Li; Tian, Li; Kumamaru, Toshihiro; Hamada, Shigeki; Okita, Thomas W

    2017-12-01

    The multifunctional RNA-binding protein Tudor-SN plays multiple roles in transcriptional and posttranscriptional processes due to its modular domain structure, consisting of four tandem Staphylococcus nuclease (SN)-like domains (4SN), followed by a carboxyl-terminal Tudor domain, followed by a fifth partial SN sequence (Tsn). In plants, it confers stress tolerance, is a component of stress granules and P-bodies, and may participate in stabilizing and localizing RNAs to specific subdomains of the cortical-endoplasmic reticulum in developing rice ( Oryza sativa ) endosperm. Here, we show that, in addition to the intact rice OsTudor-SN protein, the 4SN and Tsn modules exist as independent polypeptides, which collectively may coassemble to form a complex population of homodimer and heteroduplex species. The 4SN and Tsn modules exhibit different roles in RNA binding and as a protein scaffold for stress-associated proteins and RNA-binding proteins. Despite their distinct individual properties, mutations in both the 4SN and Tsn modules mislocalize storage protein mRNAs to the cortical endoplasmic reticulum. These results indicate that the two modular peptide regions of OsTudor-SN confer different cellular properties but cooperate in mRNA localization, a process linking its multiple functions in the nucleus and cytoplasm. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  7. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  8. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors

    DEFF Research Database (Denmark)

    Chen, Fenghua; Larsen, Mads Breum; Sánchez, Connie

    2005-01-01

    The interaction of the S- and R-enantiomers (escitalopram and R-citalopram) of citalopram, with high- and low-affinity binding sites in COS-1 cell membranes expressing human SERT (hSERT) were investigated. Escitalopram affinity for hSERT and its 5-HT uptake inhibitory potency was in the nanomolar...... range and approximately 40-fold more potent than R-citalopram. Escitalopram considerably stabilised the [3H]-escitalopram/SERT complex via an allosteric effect at a low-affinity binding site. The stereoselectivity between escitalopram and R-citalopram was approximately 3:1 for the [3H]-escitalopram....../hSERT complex. The combined effect of escitalopram and R-citalopram was additive. Paroxetine and sertraline mainly stabilised the [3H]-paroxetine/hSERT complex. Fluoxetine, duloxetine and venlafaxine have only minor effects. 5-HT stabilised the [125I]-RTI-55, [3H]-MADAM, [3H]-paroxetine, [3H]-fluoxetine and [3H...

  9. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary.

    Science.gov (United States)

    Schumacher, Toni; Benndorf, Ralf A

    2017-04-06

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter's function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications.

  10. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance.

    Science.gov (United States)

    Begicevic, Romana-Rea; Falasca, Marco

    2017-11-08

    The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.

  11. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance

    Directory of Open Access Journals (Sweden)

    Romana-Rea Begicevic

    2017-11-01

    Full Text Available The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs, endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.

  12. Relationship between clinical features of Parkinson`s disease and presynaptic dopamine transporter binding assessed with [{sup 123}I]IPT and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K. [Department of Nuclear Medicine, University of Munich (Germany); Schwarz, J. [Department of Neurology, University of Munich (Germany); Mozley, P.D. [Department of Radiology, University of Pennsylvania (United States)]|[Department of Psychiatry, University of Pennsylvania (United States); Linke, R. [Department of Nuclear Medicine, University of Munich (Germany); Pogarell, O. [Department of Neurology, University of Munich (Germany); Oertel, W.H. [Department of Neurology, University of Munich (Germany); Fieber, R.S. [Department of Nuclear Medicine, University of Munich (Germany); Hahn, K. [Department of Nuclear Medicine, University of Munich (Germany); Kung, H.F. [Department of Radiology, University of Pennsylvania (United States)

    1997-04-01

    IPT [N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl) tropane] is a new cocain analogue which allows the presynaptic dopamine transporters to be imaged with single-photon emission tomography (SPET) as early as 1-2 h post injection. In the present study [{sup 123}I]IPT SPET was performed in patients with Parkinson`s disease (PD) to analyse the relationship between specific dopamine tansporter binding and clinical features of the disease. Twenty-six PD patients (Hoehn and Yahr stages I-IV, age range 40-79 years) and eight age-matched controls were studied. SPET imaging was performed 90-120 min after injection of 160-185 MBq [{sup 123}I]IPT using a triple-head camera. For semiquantitative evaluation of specific [{sup 123}I]IPT binding, ratios between caudate, putamen and background regions were calculated. Specific [{sup 123}I]IPT uptake was significantly reduced in PD patients compared to controls. Most patients showed a marked asymmetry with a more pronounced decrease in [{sup 123}I]IPT binding on the side contralateral to the predominant clinical findings. The putamen was always more affected than the caudate. [{sup 123}I]IPT binding was significantly correlated with disease duration (r=-0.7, P<0.0001) but not with the age of PD patients (r=-0.10, P=0.61). Specific [{sup 123}I]IPT uptake in the caudate and putamen, and putamen to caudate ratios, decreased with increasing Hoehn and Yahr stage. (orig./AJ). With 2 figs., 2 tabs.

  13. Evolutionary Origin of the Staphylococcal Cassette Chromosome mec (SCCmec)

    DEFF Research Database (Denmark)

    Rolo, Joana; Worning, Peder; Nielsen, Jesper Boye

    2017-01-01

    Several lines of evidence indicate that the most primitive staphylococcal species, those of the Staphylococcus sciuri group, were involved in the first stages of evolution of the staphylococcal cassette chromosome mec (SCCmec), the genetic element carrying the β-lactam resistance gene mecA. However......, many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several...... species of the Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 106 isolates, comprising S. sciuri (n = 76), Staphylococcus vitulinus (n = 18), and Staphylococcus fleurettii (n = 12) from animal and human sources, and characterized the native location of mecA and the SCC...

  14. Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp.

    Directory of Open Access Journals (Sweden)

    Annie Albin Lumen

    Full Text Available We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918 to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health, Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown. These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1 bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2 partition into the basolateral membrane and directly reduce membrane permeability; (3 aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while

  15. Eliminating blurry bands in gels with a simple cost-effective repair to the gel cassette.

    Science.gov (United States)

    Bingaman, Jamie L; Frankel, Erica A; Hull, Chelsea M; Leamy, Kathleen A; Messina, Kyle J; Mitchell, David; Park, Hongmarn; Ritchey, Laura E; Babitzke, Paul; Bevilacqua, Philip C

    2016-12-01

    Gel electrophoresis and subsequent imaging using phosphorimagers is one of the most important and widely used techniques in RNA and DNA analysis. Radiolabeling nucleic acids with 32 P and detecting bands using a phoshorimager are useful both in a qualitative sense for nucleic acid detection and in a quantitative sense for structural, kinetic, or binding-based assays. Because of this, good resolution of gel bands based on molecular weight and size of RNA or DNA is essential for analysis. The appearance of blurry gel bands of 32 P-labeled RNA and DNA thus represents a serious problem in the laboratory. A quick search on the Internet uncovers numerous reports begrudging the appearance of blurry bands, as well as attempts to fix them without success. Indeed, our laboratories were beset by the intermittent problem of blurry gels for over one year before we found a solution. Herein we describe a simple and cost-effective solution to a problem that we show originates from the phosphorimager cassettes rather than the integrity of the gel itself. We hope that the information provided here will lead to immediate help for other laboratories experiencing similar issues with labeled nucleic acid gel-based assays. The improvement in the clarity of the gels is nothing short of astonishing in many instances and will lead to higher resolution images for analysis and publications. © 2016 Bingaman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. A multidrug ABC transporter with a taste for salt.

    Directory of Open Access Journals (Sweden)

    Saroj Velamakanni

    2009-07-01

    Full Text Available LmrA is a multidrug ATP-binding cassette (ABC transporter from Lactococcus lactis with no known physiological substrate, which can transport a wide range of chemotherapeutic agents and toxins from the cell. The protein can functionally replace the human homologue ABCB1 (also termed multidrug resistance P-glycoprotein MDR1 in lung fibroblast cells. Even though LmrA mediates ATP-dependent transport, it can use the proton-motive force to transport substrates, such as ethidium bromide, across the membrane by a reversible, H(+-dependent, secondary-active transport reaction. The mechanism and physiological context of this reaction are not known.We examined ion transport by LmrA in electrophysiological experiments and in transport studies using radioactive ions and fluorescent ion-selective probes. Here we show that LmrA itself can transport NaCl by a similar secondary-active mechanism as observed for ethidium bromide, by mediating apparent H(+-Na(+-Cl(- symport. Remarkably, LmrA activity significantly enhances survival of high-salt adapted lactococcal cells during ionic downshift.The observations on H(+-Na(+-Cl(- co-transport substantiate earlier suggestions of H(+-coupled transport by LmrA, and indicate a novel link between the activity of LmrA and salt stress. Our findings demonstrate the relevance of investigations into the bioenergetics of substrate translocation by ABC transporters for our understanding of fundamental mechanisms in this superfamily. This study represents the first use of electrophysiological techniques to analyze substrate transport by a purified multidrug transporter.

  17. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  18. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport

    OpenAIRE

    Barbosa, Daniel J.; Duro, Joana; Prevo, Bram; Cheerambathur, Dhanya K.; Carvalho, Ana X.; Gassmann, Reto

    2017-01-01

    Author summary Animal cells rely on molecular motor proteins to distribute intracellular components and organize their cytoplasmic content. The motor cytoplasmic dynein 1 (dynein) uses microtubule filaments as tracks to transport cargo from the cell periphery to the cell center, where the microtubule minus ends are embedded at the centrosome. Conversely, when dynein is anchored at the cell cortex or on organelles in the cytoplasm, the motor can pull on microtubules to position centrosomes wit...

  19. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport.

    Science.gov (United States)

    Vijayakumar, Archana; Aryal, Pratik; Wen, Jennifer; Syed, Ismail; Vazirani, Reema P; Moraes-Vieira, Pedro M; Camporez, Joao Paulo; Gallop, Molly R; Perry, Rachel J; Peroni, Odile D; Shulman, Gerald I; Saghatelian, Alan; McGraw, Timothy E; Kahn, Barbara B

    2017-10-24

    Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT. Binding kinetics in the human brain

    International Nuclear Information System (INIS)

    Bruecke, T.; Asenbaum, S.; Frassine, H.; Podreka, I.; Angelberger, P.

    1993-01-01

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [ 123 I]-2-β-carbomethoxy-3-β-(4-iodophenyl)-tropane ([ 123 I]β-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [ 123 I]β-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [ 123 I]β-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain

  1. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport

    Directory of Open Access Journals (Sweden)

    Archana Vijayakumar

    2017-10-01

    Full Text Available Lower adipose-ChREBP and de novo lipogenesis (DNL are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO mice with negligible sucrose-induced DNL in adipose tissue (AT. Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.

  2. Relationships between Serotonin Transporter Binding in the Raphe Nuclei, Basal Ganglia, and Hippocampus with Clinical Symptoms in Cervical Dystonia: A [11C]DASB Positron Emission Tomography Study

    Directory of Open Access Journals (Sweden)

    Marenka Smit

    2018-02-01

    Full Text Available PurposeAlterations of the central serotonergic system have been implicated in the pathophysiology of dystonia. In this molecular imaging study, we assessed whether altered presynaptic serotonin transporter (SERT binding contributes to the pathophysiology of cervical dystonia (CD, concerning both motor and non-motor symptoms (NMS.MethodsWe assessed the non-displaceable binding potential (BPND using the selective SERT tracer [11C]DASB and positron emission tomography (PET in 14 CD patients and 12 age- and gender-matched controls. Severity of motor symptoms was scored using the Toronto Western Spasmodic Torticollis Rating Scale and Clinical Global Impression jerks/tremor scale. NMS for depressive symptoms, anxiety, fatigue, and sleep disturbances were assessed with quantitative rating scales. The relationship between SERT binding and clinical patient characteristics was analyzed with the Spearman’s rho test and multiple regression.ResultsWhen comparing the CD patients with controls, no significant differences in BPND were found. Higher BPND in the dorsal raphe nucleus was statistically significantly correlated (p < 0.001 with motor symptom severity (rs = 0.65, pain (rs = 0.73, and sleep disturbances (rs = 0.73, with motor symptom severity being the most important predictor of SERT binding. Furthermore, fatigue was negatively associated with the BPND in the medial raphe nucleus (rs = −0.61, p = 0.045, and sleep disorders were positively associated with the BPND in the caudate nucleus (rs = 0.58, p = 0.03 and the hippocampus (rs = 0.56, p = 0.02.ConclusionMotor symptoms, as well as pain, sleep disturbances, and fatigue in CD showed a significant relationship with SERT binding in the raphe nuclei. Moreover, fatigue showed a significant relationship with the medial raphe nucleus and sleep disorders with the caudate nucleus and hippocampus. These findings suggest that an altered serotonergic signaling in

  3. Studies on the binding and transport processes of americium-241 hydroxide polymers in rat lung and bovine alveolar macrophages

    International Nuclear Information System (INIS)

    Taya, A.

    1986-03-01

    The binding of Am-241 hydroxide polymers to the cell components of rat lung was investigated using differential centrifugation, density gradient centrifugation with different media, gel chromatography, free flow electrophoresis and electron microscopic autoradiography with Pu-241. The bovine alveolar macrophage cultures were introduced as an in vitro test system for Am-241 uptake. Form the biochemical and electron microscopic studies it can be concluded that Am-241 is taken up by pulmonary macrophages, where its first storage site is probably the lysosome. Then the Am-241 seems to be solubilized in the lysosomes and to be bound to the cytosolic ferritin of macrophages. Am-241 might be released from the cells and crosses the alveolar membranes as bound to transferrin or as low molecular weight form. (orig.) [de

  4. Context-driven discovery of gene cassettes in mobile integrons using a computational grammar.

    Science.gov (United States)

    Tsafnat, Guy; Coiera, Enrico; Partridge, Sally R; Schaeffer, Jaron; Iredell, Jon R

    2009-09-08

    Gene discovery algorithms typically examine sequence data for low level patterns. A novel method to computationally discover higher order DNA structures is presented, using a context sensitive grammar. The algorithm was applied to the discovery of gene cassettes associated with integrons. The discovery and annotation of antibiotic resistance genes in such cassettes is essential for effective monitoring of antibiotic resistance patterns and formulation of public health antibiotic prescription policies. We discovered two new putative gene cassettes using the method, from 276 integron features and 978 GenBank sequences. The system achieved kappa = 0.972 annotation agreement with an expert gold standard of 300 sequences. In rediscovery experiments, we deleted 789,196 cassette instances over 2030 experiments and correctly relabelled 85.6% (alpha > or = 95%, E analysis demonstrated that for 72,338 missed deletions, two adjacent deleted cassettes were labeled as a single cassette, increasing performance to 94.8% (mean sensitivity = 0.92, specificity = 1, F-score = 0.96). Using grammars we were able to represent heuristic background knowledge about large and complex structures in DNA. Importantly, we were also able to use the context embedded in the model to discover new putative antibiotic resistance gene cassettes. The method is complementary to existing automatic annotation systems which operate at the sequence level.

  5. Context-driven discovery of gene cassettes in mobile integrons using a computational grammar

    Directory of Open Access Journals (Sweden)

    Schaeffer Jaron

    2009-09-01

    Full Text Available Abstract Background Gene discovery algorithms typically examine sequence data for low level patterns. A novel method to computationally discover higher order DNA structures is presented, using a context sensitive grammar. The algorithm was applied to the discovery of gene cassettes associated with integrons. The discovery and annotation of antibiotic resistance genes in such cassettes is essential for effective monitoring of antibiotic resistance patterns and formulation of public health antibiotic prescription policies. Results We discovered two new putative gene cassettes using the method, from 276 integron features and 978 GenBank sequences. The system achieved κ = 0.972 annotation agreement with an expert gold standard of 300 sequences. In rediscovery experiments, we deleted 789,196 cassette instances over 2030 experiments and correctly relabelled 85.6% (α ≥ 95%, E ≤ 1%, mean sensitivity = 0.86, specificity = 1, F-score = 0.93, with no false positives. Error analysis demonstrated that for 72,338 missed deletions, two adjacent deleted cassettes were labeled as a single cassette, increasing performance to 94.8% (mean sensitivity = 0.92, specificity = 1, F-score = 0.96. Conclusion Using grammars we were able to represent heuristic background knowledge about large and complex structures in DNA. Importantly, we were also able to use the context embedded in the model to discover new putative antibiotic resistance gene cassettes. The method is complementary to existing automatic annotation systems which operate at the sequence level.

  6. Locomotor sensitization and decrease in [3H]mazindol binding to the dopamine transporter in the nucleus accumbens are delayed after chronic treatments by GBR12783 or cocaine.

    Science.gov (United States)

    Boulay, D; Duterte-Boucher, D; Leroux-Nicollet, I; Naudon, L; Costentin, J

    1996-07-01

    Rats were treated once daily for 15 consecutive days with either cocaine or the specific dopamine uptake inhibitor 1-[2- (diphenylmethoxy)ethyl]-4-(3-phenyl-2-(propenyl)-piperazine (GBR12783) at a dose (10 mg/kg) that given acutely increases locomotor activity. Two or 14 days after the last administration, the motor stimulant responses of rats to a challenge dose (5 mg/kg) of the drug administered previously were compared with the motor stimulant responses of rats daily injected with solvent. A sensitization to the acute stimulant locomotor effect of these drugs was only observed 14 days after cessation of chronic treatments. After this withdrawal period, autoradiographic analysis revealed a significant decrease in the desipramine-insensitive [3H]mazindol binding to the dopamine transporter in the shell of the nucleus accumbens. No change was noticed in other regions with high dopamine content: core of nucleus accumbens, striatum, olfactory tubercle, substantia nigra and ventral tegmental area. Absence of concomitant decrease in [3H]dihydrotetrabenazine labeling, which indicates lack of effect on vesicular monoamine transporters, suggests that the decrease in accumbal [3H]mazindol binding did not result from a cytotoxic effect on corresponding dopamine neurons. In addition, 14 days after the last administration of GBR12783, the levels of dopamine and metabolites (dihydroxy-phenylacetic acid, homovanillic acid) and the ability of acute GBR12783 to synergize with haloperidol-induced increase in these metabolites were not modified either in the whole nucleus accumbens or in the striatum.

  7. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Equilibrated atomic models of outward-facing P-glycoprotein and effect of ATP binding on structural dynamics.

    Science.gov (United States)

    Pan, Lurong; Aller, Stephen G

    2015-01-20

    P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms.

  9. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.

    Science.gov (United States)

    Herman, M W; Mak, H K; Lachman, R S

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  10. A clinical trial of a rare earth screen/film system in a periapical cassette

    Energy Technology Data Exchange (ETDEWEB)

    Kogon, S.L.; Stephens, R.G.; Reid, J.A.; Lubus, N.J.

    1984-04-01

    In a clinical trial, a slow rare earth screen/film system (Siemens Titan 2D/Kodak XG) was used to obtain intraoral radiographs at conventional monitoring stages in endodontic treatment. The screen film image proved to be an effective substitute for the direct-exposure Ultraspeed periapical film. The intraoral cassettes, designed and fabricated for the study, were an adaptation of the flexible, vacuum-sealed cassettes used in mammography. It is believed that when a practicable periapical cassette is manufactured, many additional indications for the system are probable. Major reductions in patient exposure of at least 85% to 90% per periapical film would be effected.

  11. A clinical trial of a rare earth screen/film system in a periapical cassette

    International Nuclear Information System (INIS)

    Kogon, S.L.; Stephens, R.G.; Reid, J.A.; Lubus, N.J.

    1984-01-01

    In a clinical trial, a slow rare earth screen/film system (Siemens Titan 2D/Kodak XG) was used to obtain intraoral radiographs at conventional monitoring stages in endodontic treatment. The screen film image proved to be an effective substitute for the direct-exposure Ultraspeed periapical film. The intraoral cassettes, designed and fabricated for the study, were an adaptation of the flexible, vacuum-sealed cassettes used in mammography. It is believed that when a practicable periapical cassette is manufactured, many additional indications for the system are probable. Major reductions in patient exposure of at least 85% to 90% per periapical film would be effected

  12. Transporter-Mediated Drug–Drug Interactions with Oral Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jörg König

    2011-10-01

    Full Text Available Uptake transporters (e.g., members of the SLC superfamily of solute carriers and export proteins (e.g., members of the ABC transporter superfamily are important determinants for the pharmacokinetics of drugs. Alterations of drug transport due to concomitantly administered drugs that interfere with drug transport may alter the kinetics of drug substrates. In vitro and in vivo studies indicate that many drugs used for the treatment of metabolic disorders and cardiovascular diseases (e.g., oral antidiabetic drugs, statins are substrates for uptake transporters and export proteins expressed in the intestine, the liver and the kidney. Since most patients with type 2 diabetes receive more than one drug, transporter-mediated drug-drug interactions are important molecular mechanisms leading to alterations in oral antidiabetic drug pharmacokinetics with the risk of adverse drug reactions. This review focuses on uptake transporters of the SLCO/SLC21 (OATP and SLC22 (OCT/OAT family of solute carriers and export pumps of the ABC (ATP-binding cassette transporter superfamily (especially P-glycoprotein as well as the export proteins of the SLC47 (MATE family and their role for transporter-mediated drug-drug interactions with oral antidiabetic drugs.

  13. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinlan; Li, Xiaolu [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Feng, Yue; Zhang, Bo [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China); Miao, Shiying [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Linfang, E-mail: lfwangz@yahoo.com [State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People' s Republic of China (China); Wang, Na, E-mail: nawang@tsinghua.edu.cn [Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, People' s Republic of China (China)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We truncated the signal peptide of OppA{sub TTE0054} to make it express in Escherichia coli as a soluble protein. Black-Right-Pointing-Pointer Crystals of OppA{sub TTE0054} were grown by sitting-drop vapor diffusion method. Black-Right-Pointing-Pointer The crystal of OppA{sub TTE0054} diffracted to 2.25 A. -- Abstract: Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 A. The crystal belonged to space group C222{sub 1}, with unit-cell parameters of a = 69.395, b = 199.572, c = 131.673 A, and {alpha} = {beta} = {gamma} = 90 Degree-Sign .

  14. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4......-5 weeks post conception, are between brain and embryonic cerebrospinal fluid (eCSF) and between outer surface of brain anlage and primary meninx. They already exclude α-fetoprotein and are immunopositive for both claudins, ABCC1 and ABCG2. ABCB1 is detectable within a week of blood vessels first...

  15. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy

    DEFF Research Database (Denmark)

    Cronin-Fenton, D. P.; Damkier, P.; Lash, T. L.

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review...... is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen's complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen...... effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline endocrine therapy....

  16. Maternal-fetal immunoglobulin transport: Studies on the binding, internalization, and release of IgG by chick yolk sac tissue and cultured cells

    International Nuclear Information System (INIS)

    Donaldson, J.G.

    1988-01-01

    Immunoglobulin G (IgG) is transported from the yolk across the endodermal cells of the yolk sac and into the fetal circulation during chick embryonic development, thus providing the chick with passive immunity until it becomes immunocompetent. Saturable, Fc-specific receptors are present on the endodermal cells and are believed to mediate this transfer. In this study, IgG receptors were shown to be present on the yolk sac endodermal cells throughout the 21 days of development, although most of the transport occurs during the last 3 days prior to hatching. Fluorescently conjugated IgG was internalized by a receptor mechanism into small apical vesicles in yolk sac endoderm throughout, but cells from 19 day yolk sacs internalized more conjugate than those from 14 day yolk sacs. This was confirmed and quantitated by assaying the internalization of 125 I-IgG into yolk sac tissue. IgG was internalized by a receptor mediated mechanism, reaching a steady state level after 1 to 2 hours. Although both ages of yolk sac tissue possessed the same number of surface IgG receptors, as measured by equilibrium binding assays at 4 degree C, 19 day yolk sac had the capacity to internalize six times as much IgG by a receptor mechanism as 14 day yolk sac

  17. Use of an improved simultaneous tomography cassette in linear tomography

    International Nuclear Information System (INIS)

    Egender, G.; Pirker, E.; Gornik, E.; Innsbruck Univ.

    1984-01-01

    An improved simultaneous tomography cassette according to P. Landau was tried out for four months using four tomographs in routine work. The mode of operation is based on accurate control of the relative speeds of the individual x-ray films resulting in simultaneous imaging of 6 equidistant tomographic levels. Clinical testing was effected in 80 cases: nephrotomography, of the lungs, the hilum, and the skeleton. In particular, the article describes imaging of the renal arteries by simultaneous tomography for the purpose of finding out the cause of hypertension, and if there is suspicion of a space-occupying growth in the kidney, basing on the urogram. The specific advantages of this technique are, on the one hand, improved diagnostic efficiency (the tomograms are taken during the same respiratory phase, more rapid diagnosis especially with accident patients), and, on the other hand, an important reduction in the x-ray exposure of the patient; furthermore, the life of the x-ray tube is prolonged, and there is a definite saving of time for both patient and personnel, the image quality being comparable with that of single-layer tomography. (orig.) [de

  18. Resistance-Gene Cassettes Associated With Salmonella enterica Genotypes.

    Science.gov (United States)

    Bakhshi, Bita; Ghafari, Mohsen; Pourshafie, Mohammad R; Zarbakhsh, Behnaz; Katouli, Mohammad; Rahbar, Mohammad; Hajia, Masoud; Hosseini-Aliabad, Neda; Boustanshenas, Mina

    2015-01-01

    The epidemiology of salmonellosis is complex because of the diversity and different serotypes of Salmonella enterica (S. enterica) that occur in different reservoirs and geographic incidences. To determine the genotype distribution and resistance-gene content of 2 classes of integron among S. enterica isolates. Thirty-six S. enterica species were isolated and tested for their serological distribution and the resistance-gene contents of 2 classes of integron, as well as for their genetic diversity, using the pulsed-field gel electrophoresis (PFGE) genotyping method. Serogroups E (36.1%) and D (30.5%) were dominant among the isolates. All of the isolates in serogroup D belonged to the serovar enteritidis. The aadA1 gene was found within all resistance-gene cassettes. We observed 4 common and 26 single pulsotypes among the isolates, which indicated a high degree of genetic diversity among the isolates. Using the PulseNet International standard protocol, it was found that these isolates were different from those reported previously in Iran. The presence of a few common and new pulsotypes among the isolates suggests the emergence and spread of new clones of S. enterica in Iran. Copyright© by the American Society for Clinical Pathology (ASCP).

  19. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.

    Science.gov (United States)

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T

    1999-08-20

    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant Mod

  20. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities.

    Science.gov (United States)

    Grisafi, P L; Scholle, A; Sugiyama, J; Briggs, C; Jacobson, G R; Lengeler, J W

    1989-05-01

    We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.